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Main results

Let C n c (R m ) be the class of compactly supported n times continuously differentiable functions on R m , endowed with the norm

U n := sup ∂ α U L ∞ (R m ) ; |α| ≤ n , • 0 ≡ • L ∞ , (n, m) ∈ N 2 .
Consider a Cauchy problem which is locally well-posed in C n c with n ∈ N * . Given some initial data U 0 ∈ C n c , denote by T (U 0 ) ∈ R * + ∪ {+∞} the lifespan of the associated smooth (say C 1 ) solution. Select a subspace N ⊂ C n c which is equipped with a « small » norm N , weaker than • n meaning that N • n on N. From there, for all S 0 ∈ R + , we can introduce the lower bound (1.1) T (N, N ; S 0 ) := inf T (U 0 ) ; U 0 ∈ N and N (U 0 ) ≤ S 0 ∈ R + ∪ {+∞}.

Definition 1 (Smooth solvability of initial value problems). We say that a Cauchy problem is locally smoothly solvable (LSS) for (N, N ) when T (N, N ; S 0 ) is a positive number for all S 0 ∈ R + . It is globally smoothly solvable (GSS) for (N, N ) when T (N, N ; S 0 ) = +∞ for all S 0 ∈ R + .

The notion of smooth solvability for (N, N ) focuses on the persistence of regularity. It must be clearly distinguished from the classical concept of « well-posedness », which is usually understood in the sense of Hadamard that is with existence, uniqueness and also stability related to the normed space associated with N . It is less demanding in the sense that it does not necessarily require the continuous dependence with respect to the « small » norm N . Such an alleviation may have an important implication to analyze systems in turbulent regimes.

For a large class of first-order quasilinear symmetric hyperbolic systems (QSH systems) whose prototypes are Burgers' equation and the 3D compressible Euler equations (away from the vacuum), the Cauchy problem is known to be well posed in (C n c , • n ) as long as n is large enough. But, due to the finite-time singularity formation, it is certainly not globally smoothly solvable for such (C n c , • n ). A simple scaling argument indicates that it cannnot be LSS for (C n c , • 0 ). For another whole range of (three-dimensional) nonlinear equations including the incompressible Euler equations, the Navier-Stokes equations and the Relativistic Vlasov-Maxwell system (RVM system in abbreviated form), we have the local well-posedness (at least for adequate « large » norms), but the global well-posedness is still open. Standard results involving norms • n with n large provide with a lower bound for T (U 0 ) which is typically of the form U 0 -1 n . Starting from there, the local smooth solvability for weaker norms N (with N

• n ) may not be granted. It is recognized that the challenge behind this issue (and behind GSS) lies in the development of turbulence. This text is devoted to the three-dimensional RVM system. The local Hadamard well-posedness for the norm C 1 × C 2 × C 2 is known [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF][START_REF] Wollman | An existence and uniqueness theorem for the Vlasov-Maxwell system[END_REF]. The same applies to the global weak existence [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF][START_REF] Rein | Global weak solutions to the relativistic Vlasov-Maxwell system revisited[END_REF] (without uniqueness and stability) for data in L ∞ × L 2 × L 2 (with finite energy). Our goal here is to make a significant progress at the interface. It is to show the local smooth solvability for the norm

L ∞ × H 1 × H 1 .
As a consequence, we can keep the local existence with the regularity L ∞ × H 1 × H 1 while conserving the uniqueness (Corollary 12). The present section summarizes our outcomes. In Subsection 1.1, we specify our result (Theorem 2) on LSS. In Subsection 1.2, the focus is on dense, hot, collisionless and strongly magnetized plasmas. As a by-product of our analysis, we are able to construct a framework within which the local uniform existence of smooth solutions may be achieved while a large magnetic field is applied (Theorem 5). This furnishes mathematical tools for a better understanding of plasmas during their confinement (like in fusion devices), including the several complicated behaviors that can occur.

1.1. On the Cauchy problem for the RVM system in a strong-weak setting. The unknowns are the distribution function f and the electromagnetic field (E, B) depending on the time t ∈ R, on the spatial position x ∈ R 3 and on the momentum ξ ∈ R 3 as indicated below f : R t × R 3 x × R 3 ξ → R + , E : R t × R 3

x → R 3 , B : R t × R 3

x → R 3 . The speed of light is normalized to one. We deal with the relativistic velocity ν(ξ) := ξ -1 ξ, ξ := 1 + |ξ| 2 , |ν(ξ)| < 1.

The RVM system is composed of the Vlasov equation

(1.2) ∂ t f + ν(ξ) • ∇ x f + F(t, x, ξ) • ∇ ξ f = 0 , F(t, x, ξ) := E(t, x) + ν(ξ) × B(t, x)
coupled with Maxwell's equations

∂ t E -∇ x × B = J := - R 3 ν(ξ) f(t, x, ξ) dξ, ∇ x • E = R 3 f(t, x, ξ) dξ -ρ, (1.3a) ∂ t B + ∇ x × E = 0, ∇ x • B = 0. (1.3b)
The system (1.2)-(1.3) on U := (f, E, B) is completed with initial data (1.4)

U |t=0 = U 0 = (f 0 , E 0 , B 0 ),
satisfying, for some given function ρ(x) ∈ C 1 c (R 3 ; R + ), the compatibility conditions

(1.5) ∇ x • E 0 = R 3 f 0 (x, ξ) dξ -ρ , ∇ x • B 0 = 0.
Theorem 2. Fix P 0 ∈ R + , and denote by B(0, P 0 ] the closed ball of R 3 with radius P 0 . Select any Sobolev exponent p ∈]3/2, 2]. The RVM is locally smoothly solvable for the subspace

(1.6) N := U 0 ∈ C 1 c (R 3 × R 3 ) × C 2 c (R 3 ) × C 2 c (R 3 
) ; supp f 0 ⊂ R 3 × B(0, P 0 ] equipped with the product norm

(1.7) N (U 0 ) := f 0 L ∞ (R 3 ×R 3 ) + E 0 W 1, p (R 3 ) + B 0 W 1, p (R 3 ) .
At the level of (1.6) and (1.7), the topologies related to f 0 and (E 0 , B 0 ) are managed separately. The choice of C 1 for f 0 and C 2 for (E 0 , B 0 ) inside (1.6) is classical [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF]. Passing to (1.7), each of these indices go down one level. To put into perspective Theorem 2, as a first step, we can work in a simplified context. With this in mind, we handle initial data which are restricted to

N r := U 0 ; f 0 ∈ C 1 c (R 3 × R 3 ) , supp f 0 ⊂ R 3 × B(0, P 0 ] , E 0 ≡ 0 , B 0 ≡ 0 ⊂ N.
Observe that in such a case, a non trivial electromagnetic field (E, B) is generated by interaction. Now, tested on N r , the norm N reduces to the sup-norm (on the sole component f 0 ). As a direct consequence of Theorem 2, the RVM system is locally solvable for (N r , • 0 ). Since the RVM system shares many commonalities with QSH systems, it is instructive to compare this information with what is obtained for hyperbolic systems. Starting from a smooth solution leading to blow-up in finite time, a scaling argument indicates that general QSH systems (with constant coefficients) are not locally solvable for (C n c , • 0 ). Why is there such discrepancy ? This is because there are also notable differences separating the RVM system from common QSH systems. First, the RVM system is not scaling invariant (due to the Lorentz factor). Secondly, the nonlinearity occurs only on a transport part which preserves the sup-norm. There is however a coupling (through the integral term J) which produces a self-consistent electromagnetic field. The feedback of this (E, B) on f may destroy the C 1 -regularity. But this impact is lessened due to a number of specificities, among which relativistic effects and transfers from time (in t) and space (in x) derivatives to kinetic (in ξ) derivatives, which can be neutralized at the level of the electric current J through arguments from [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF][START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF]. For data in N r , we simply work with (1.8) U |t=0 = U 0 = (f 0 , E 0 , B 0 ) = (f 0 , 0, 0), where f 0 satisfies (for some P 0 ∈ R + and S 0 ∈ R + )

f 0 ∈ C 1 c (R 3 × R 3 ; R), (1.9a) supp f 0 ⊂ R 3 × B(0, P 0 ], (1.9b) 
f 0 0 := sup (x,ξ)∈R 3 ×R 3 |f 0 (x, ξ)| ≤ S 0 , (1.9c) 
together with the compatibility condition inherited from (1.5) and (1.8), that is

(1.10) 0 = R 3 f 0 (x, ξ) dξ -ρ.
The initial data f 0 , while remaining smooth, can undergo large fluctuations allowing to trigger filamentation or coherent structures [START_REF] Cheverry | Anomalous transport[END_REF][START_REF] Cheverry | Long time gyrokinetic equations[END_REF], whose counterparts in the fluid description are shearing and cascade of phases. The point is that the regularity persists locally in time, uniformly with respect to the small norm N (instead of • 1 ). In other words, despite arbitrarily large derivatives of f 0 , a control remains within reach. Basically, this relates to the minimal radius P(t) of the balls containing the momentum support of f(t, •), i.e. :

(1.11) P(t) := inf R ∈ R + ; f(t, x, ξ) = 0 for all x ∈ R 3 and for all ξ ∈ R 3 with R ≤ |ξ| .

The role of P is essential in the forthcoming discussion. From the definition (1.6) of N, we can assert that P(0) ≤ P 0 . In what follows, we will exhibit (Proposition 10) a positive increasing continuous function F depending only on S 0 , allowing to control P as indicated in (4.6). Now, from Glassey-Strauss' conditional theorem [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF], singularities may develop only if P(t) explodes. Looking at (3.10), this may occur only if E(t, •) L ∞ goes to +∞. This explosion mechanism does not necessarily apply to f(t, •) W 1,∞ . Large values of f(t, •) W 1,∞ are not known to be a triggering factor of the rapid breakdown of smooth solutions. In line with this, Theorem 2 shows that large Lipschitz norms of f 0 are compatible with a uniform life-span. Another way to put Theorem 2 in context is to derive a priori sup-norm estimates on all fluid quantities (Corollary 11), without the need for looking at derivatives of f 0 . In fact, our approach brings into play strong and weak characteristics : strong in view of the (technical) regularity assumption (1.9a), weak in the sense of the relaxed conditions (1.9b) and (1.9c). Now, by compactness arguments, we can exhibit a notion of local well-posedness (without stability) in the framework of L ∞ × H 1 × H 1 . Such « strong-weak » solutions satisfy (4.6) and they are unique, see Corollary 12. Note that the existence results [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF][START_REF] Rein | Global weak solutions to the relativistic Vlasov-Maxwell system revisited[END_REF] of weak solutions do not provide information about the persistence of regularity nor about the property (4.6). On the other hand, little is known about the uniqueness of these weak solutions, see [START_REF] Jabin | DiPerna-Lions flow for relativistic particles in an electromagnetic field[END_REF] for an overview and a result (in the absence of coupling).

Theorem 2 is derived from Sections 3 and 4. It is a compilation of two intermediate important stages. First, in Section 3, we bring to the fore a representation formula for the momentum increment (Definition 6) with some original proof (resorting to a Radon transform [START_REF] Helgason | The Radon transform, volume 5 of Progress in Mathematics[END_REF] with respect to x ∈ R 3 and oscillatory integrals). Second, in Section 4, we control the momentum spread. To this end, we have to study a class of singular weighted integrals. A few ideas leading to (4.6) are new in comparison to the preceding approaches (presented in Subsection 2.3). They are exposed in Subsection 2.4.

1.2. Application : the regime of dense, hot and strongly magnetized plasmas. In kinetic theory, the time evolution of a single species of charged particles (typically electrons in a background of ions) is described (in dimensionless units) by the system (1.2)- (1.3). The study of (1.2)-(1.3) is of fundamental interest because it reveals the interactions between the matter (driven by f) and the fields (represented by E and B). In (1.3a), the function ρ ∈ C 1 c (R 3 ; R + ) stands for the density of charges associated with protons. Property (4.6), which prevails for strong and (adequate) weak solutions, is likely to furnish a wide range of applications. It is related to precise quantitative information on the lifespan, and therefore it is well suited to the study of the RVM system at specific scales. Particular emphasis is placed here on situations involving (after nondimensionalization) large magnetic fields. As a matter of fact, such models constitute a real challenge in plasma physics (Paragraph 1.2.1) and provide means (Paragraph 1.2.2) to generate solutions undergoing rapid oscillations. 1.2.1. The physical model. In many important applications such as planetary magnetospheres (like the Van Allen Belts in the Earth situation) or fusion devices (like tokamaks), a large inhomogeneous external magnetic field ε -1 B e (x) is applied. Here, the number ε is the inverse of the electron gyrofrequency ; it is a small dimensionless parameter which is typically in the order of ε ≈ 10 -5 . By extension and to highlight the smallness of ε, we will work with ε ∈]0, 1]. Since the large weight ε -1 is in factor of B e , the plasma is strongly magnetized as soon as B e ≡ 0. The function B e (•) often takes the form of a smooth bounded solenoidal and irrotational vector field :

(1.12)

B e ∈ C 1 b (R 3 ; R 3 ) , ∇ x • B e ≡ 0 , ∇ x × B e ≡ 0.
By this way, the given external magnetic field B e does fit in with the second condition inside (1.5), which means that it induces zero current. The variations of B e are quite important since they account for the spatial inhomogeneities which are usually issued from the underlying physical geometries (such as toroidal shapes). Physical plasmas are generally comprised of a dominant part which stays at the thermodynamic equilibrium. In the relativistic framework, the reference model at rest is the Maxwell-Jüttner distribution. We consider here that most of charged particles are in a steady state. This may be represented by a distribution profile for f(•) of the form M(ε, ξ ), which may depend smoothly on

ε ∈ [0, 1]. More precisely (1.13) M ≡ M ε ≡ M(ε, ξ ) , M(ε, r) ∈ C 1 c ([0, 1] × [1, +∞[; R + ). The plasma is called dense when there exists a constant c 1 ∈ R * + such that (1.14) 0 < c 1 ≤ M(ε, •) ∞ , ∀ε ∈ [0, 1].
It is called hot when there exists a constant

c 2 ∈ R * + such that (1.15) supp M(ε, •) ∩ [1 + c 2 , +∞[ = ∅ , ∀ε ∈ [0, 1].
To fit with (1.5), we must assume that ρ ≡ ρ ε is a constant adjusted in such a way that (1.16)

ρ ε = R 3 M(ε, ξ ) dξ , ∀ε ∈ [0, 1].
Then, for all parameter ε ∈]0, 1], the expression

(1.17) Ũε a (t, x, ξ) := M(ε, ξ ), 0, ε -1 B e (x) ≡ Ũε a (0, x, ξ
) is clearly a stationary solution to the RVM system. When M ≡ 0 does not depend on ε and B e ≡ 0, it is the prototype of a solution belonging to the regime of dense, hot and strongly magnetized plasmas. It can serve as a working example. Retain however that we deal with a more general class of approximate solutions denoted by U ε a = (f ε a , E ε a , B ε a ), adjusted as follows. Assumption 3. The family {U ε a } ε is well-prepared in the sense of Definition 21.

The reader is referred to Paragraph 5.1.1 for a precise description and a discussion about the content of U ε a . The expression U ε a does not necessarily have to be an exact solution to (1.2)- (1.3). It may produce a non-zero remainder R ε a . It may also reveal a full range of plasma distinctive features which are not detected by Ũε a , see for instance [START_REF] Cheverry | Anomalous transport[END_REF][START_REF] Cheverry | Long time gyrokinetic equations[END_REF] for a preview of what can happen. From now on, we fix a family {U ε a } ε of approximate solutions and, at the initial time t = 0, we modify U ε a (0, •) according to (1.18)

U ε 0 = U ε a (0, •) + U ε 0 , U ε 0 = (f ε 0 , 0, 0), ε ∈]0, 1].
In (1.18), there is no initial electromagnetic perturbation (E ε 0 , B ε 0 ) interfering with U ε a . This is because, under adequate assumptions that will be investigated in Paragraph 5.1.1, the influence of such 

(E ε 0 , B ε 0 ) can be incorporated inside (E ε a , B ε a )(0, •).
U ε (t, x, ξ) = U ε a (t, x, ξ) + U ε (t, x, ξ), U ε = (f ε , E ε , B ε ).
Theorem 5 (Uniform life-span for classical solutions). Fix a well-prepared family {U ε a } ε of approximate solutions. Select a compatible family {f ε 0 } ε of initial data controlled by P 0 , S 0 and N 0 . Then, there exists a positive time T depending only on 3 . Moreover, there exists a positive continuous function F depending only on

(P 0 , S 0 , N 0 ), say T ≡ T (P 0 , S 0 , N 0 ) ∈ R * + , such that, for all ε ∈]0, 1], the Cauchy problem (1.2)-(1.3)-(1.4) with U ε 0 as in (1.18) has a smooth C 1 c -solution on the domain [0, T ] × R 3 × R
(P 0 , S 0 , N 0 ), say F ≡ F(P 0 , S 0 , N 0 ) : [0, T ] → R * + , such that (1.20) supp f ε (t, •) ⊂ R 3 × B 0, F(P 0 , S 0 , N 0 )(t) , ∀ t ∈ [0, T (P 0 , S 0 , N 0 )].
Resorting to approximate solutions U ε a allows to break (1.8) since (E ε a , B ε a )(0, •) is aimed at being nontrivial. As can be guessed by looking at (1.17), Definition 21 gives access to large magnetic fields B ε a . That is, however, not the only aspect. Implementing U ε a or f ε 0 is also a way to generate rapid fluctuations, and then to measure their quantitative impact. In Theorem 5, the absorption of large fields and oscillations requires the L 2 -smallness conditions (5.6b) on the remainder R ε a and (5.18) on the initial data f ε 0 . This is really not demanding in comparison with the common assumptions (like coherence, H s ε -estimates and so on) in nonlinear geometric optics [START_REF] Métivier | The mathematics of nonlinear optics[END_REF][START_REF] Rauch | Hyperbolic Partial Differential Equations and Geometric Optics[END_REF], in comparison with the already improved contexts of [START_REF] Cheverry | The relativistic Vlasov Maxwell equations for strongly magnetized plasmas[END_REF] or [START_REF] Cheverry | Uniform lifetime for classical solutions to the hot, magnetized, relativistic Vlasov Maxwell system[END_REF], and in comparison with the strong conditions imposed in [START_REF] Rein | Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics[END_REF] and recently in [START_REF] Wei | On the 3D relativistic Vlasov-Maxwell system with large Maxwell field[END_REF]. The regime of dense, hot and strongly magnetized plasmas is of practical interest. For this reason, it has been intensively studied in physics. Up to now, the mathematical advances [START_REF] Bostan | The Vlasov-Maxwell system with strong initial magnetic field : guiding-center approximation[END_REF][START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF] are based on weak solutions which do not confer the ability to describe and control the solutions (due to lack of uniqueness). Theorem 5 achieves that goal with smooth solutions on a pertinent observation time (t ∼ 1). It can be interpreted as a kind of stability statement about the regularity of solutions near WKB expansions (such as U ε a ), when some large C 1 -perturbations are applied. Theorem 5 is proved in Section 5. For more details on Theorems 2 and 5, the reader is recommended to look at next Section 2.

Detailed introduction

The construction of solutions to the RVM system has a long history going back to the pioneering works of Wollman [START_REF] Wollman | An existence and uniqueness theorem for the Vlasov-Maxwell system[END_REF], Glassey-Strauss [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF] and DiPerna-Lions [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF] in the 1980s. It also includes the alternative methods proposed by Klainerman-Staffilani [START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF] and Bouchut-Golse-Pallard [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF] in the early 2000s. This also relates to the recent developments [START_REF] Cheverry | The relativistic Vlasov Maxwell equations for strongly magnetized plasmas[END_REF][START_REF] Cheverry | Uniform lifetime for classical solutions to the hot, magnetized, relativistic Vlasov Maxwell system[END_REF][START_REF] Rein | Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics[END_REF][START_REF] Wei | On the 3D relativistic Vlasov-Maxwell system with large Maxwell field[END_REF] in connection with plasmas involving large fields. In this section, we aim to explain in depth how our results and techniques stand in relation to the preceding contributions, and also how they differ from them. In Subsection 2.1, we recall the historical backdrop. In Subsection 2.2, we give some insight into localized and oscillating solutions. In Subsection 2.3, we list the preceding approaches. In Subsection 2.4, we compare them with our strategy ; we also detail the plan and the content of the text, while giving a sketch of ideas and proofs.

2.1. Historical background. We give here a quick overview of previous contributions.

2.1.1.

Local and global smooth well-posedness. The existence of local stable classical solutions dates back to [START_REF] Wollman | An existence and uniqueness theorem for the Vlasov-Maxwell system[END_REF]. The issue of global existence was then raised in [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF]. Then, much has been done to make progress on the global smooth solvability. The advances concern small initial data [START_REF] Glassey | Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data[END_REF] (much smaller than in Theorem 5), reduced dimensions [START_REF] Glassey | The "two and one-half-dimensional" relativistic Vlasov Maxwell system[END_REF][START_REF] Glassey | The relativistic Vlasov-Maxwell system in two space dimensions. I, II[END_REF] (less than the six dimensions of the actual phase space), symmetry conditions [START_REF] Wang | Global solutions of the 3d relativistic vlasov-maxwell system for large data with cylindrical symmetry[END_REF] (broken by the inhomogeneities of the external field B e ), stability properties [START_REF] Rein | Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics[END_REF] (under stronger topologies), and so on. For further information, we can refer to the survey article [START_REF] Glassey | The Cauchy problem in kinetic theory[END_REF]. The most elaborate result in relation with our theme is perhaps the latest article [START_REF] Wei | On the 3D relativistic Vlasov-Maxwell system with large Maxwell field[END_REF] of Wei-Yang which (among other things) can include a large electromagnetic field but which also requires (in compensation) a very small density distribution. In view of [START_REF] Wei | On the 3D relativistic Vlasov-Maxwell system with large Maxwell field[END_REF]-Proposition 4.8, interpreted in our framework, this density should be of size less that ε 8 | ln ε| -11 . This is far from the regime under consideration in Theorem 5. Now, for general data, many continuation criteria have been established, see [START_REF] Luk | Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system[END_REF][START_REF] Pallard | A refined existence criterion for the relativistic Vlasov-Maxwell system[END_REF][START_REF] Patel | Three new results on continuation criteria for the 3D relativistic Vlasov-Maxwell system[END_REF] and the references therein. However, the global existence of classical solutions remains open. This is a longstanding and still active problem. On the other hand, failing to reach global existence, in connection with concrete applications, we can seek for more precise quantitative information on the life-span of smooth solutions. That is the position of the present text.

2.1.2. About nonlinear geometric optics. The construction of oscillating solutions for quasilinear systems of conservation laws is the core subject of nonlinear geometric optics. However, the general results [START_REF] Métivier | The mathematics of nonlinear optics[END_REF][START_REF] Rauch | Hyperbolic Partial Differential Equations and Geometric Optics[END_REF] do not furnish optimal information when applied to the RVM system. There are several reasons for this. The transport part (the Vlasov equation) and the integral source term (the electric courant) make things easier. Also, importantly, the variable coefficients with ε -1 in factor (generated by B e ) can be handled through different arguments than the usual quite restrictive conditions. With the goal of better exploiting the specificities of (1.2)-(1.3) and also motivated by the applications, there has been some progress to remedy this situation. The cold configuration for which |ξ| ε, or [START_REF] Cheverry | The relativistic Vlasov Maxwell equations for strongly magnetized plasmas[END_REF]. The hot but dilute situation, for which [START_REF] Cheverry | Uniform lifetime for classical solutions to the hot, magnetized, relativistic Vlasov Maxwell system[END_REF]. In [START_REF] Cheverry | Uniform lifetime for classical solutions to the hot, magnetized, relativistic Vlasov Maxwell system[END_REF], large amplitude profiles M ε ≈ 1 as well as weak norms of U ε 0 are excluded for deeper reasons related to the method used. To our knowledge, Theorem 5 is completely new. Implemented in the dense, hot and strongly magnetized framework, that is when M ≈ 1, P 0 ≈ 1 and |B e | ≈ 1, the criteria yielding global existence are clearly not applicable. On the other hand, all preceding approaches seem to furnish a life-span T ε ∈ R * + that shrinks very rapidly to 0 when ε goes to 0.

M ε ≡ M (|ξ|/ε) with M ∈ C 1 c (R + ; R + ), is examined in
M ε ≡ ε M (ξ) with M ∈ C 1 c (R 3 ; R + ) and (f ε 0 , E ε 0 , B ε 0 ) is small in Lipschitz norm (of size ε), is investigated in

Global weak existence.

As is well-known, weak global solutions are available. This has been shown by DiPerna and Lions in the seminal contribution [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF], just after [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF] in the late 1980s. But such solutions are obtained by compactness methods, and much information has not yet been provided. In the context of (1.2)-(1.3), little can currently be said about the uniqueness, the stability, the regularity, or the (oscillating) form of these solutions. Note however that uniqueness and stability can be addressed from the perspective of the renormalization property [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF]. We refer to [START_REF] Jabin | DiPerna-Lions flow for relativistic particles in an electromagnetic field[END_REF]-Paragraph 1.3 for recent developments (in a decoupled situation) and a nice presentation of results in this direction. Recall also that weak solutions have been considered in the framework (similar to Subsection 1.2) of large magnetic fields in order to give partial information, develop asymptotic models or enrich gyrokinetic theory (see for instance [START_REF] Bostan | The Vlasov-Maxwell system with strong initial magnetic field : guiding-center approximation[END_REF]). In view of Theorem 5, some strong control (related to the smoothness) on the solutions does persist. But how is this possible, and why ? The first step (Subsection 2.2) is to identify the underlying difficulties ; the second step (Subsection 2.3) is to complement our presentation by recalling the previous strategies ; the third step (Subsection 2.4) is to present our plan and to explain our approach. 2.2. The impact of localizations and oscillations. Plasmas out of equilibrium can exhibit a wide variety of complicated behaviors, which are manifested by oscillating coherent structures (in subdomains of the phase space [START_REF] Cheverry | Anomalous transport[END_REF][START_REF] Cheverry | Long time gyrokinetic equations[END_REF]) or by chaotic motions (shearing due to the sensitivity of characteristics under changes of initial data, especially near separatrices). As a consequence, the Lipschitz norm of f ε is in practice often very large. Our aim in this subsection is not to inventory all the phenomena that can occur. Instead, we want to indicate why the distribution function f ε should undergo large rapid variations (when B e ≡ 0). For the sake of simplicity, we do not (always) mention the dependence on the parameter ε at the level of U, U , f , E and B.

In the simplified framework (1.17), emphasis may be placed on the role of f ε 0 , and its impact on f and on the self-consistent electromagnetic field (E, B). The presence of some f ε 0 ≡ 0 has many consequences, among which : i) the onset of anisotropic features (in momentum variable ξ). A spatial localization of f ε 0 necessarily implies that ∇ x f ≡ 0. Then, the part ν(ξ) • ∇ x f ≡ 0 inside (1.2) is switched on, and it cannot be only a function of |ξ|. The same applies for f . ii) the emergence of fast oscillations. The Lorentz force F can be decomposed into (2.1)

F = F + ε -1 ν(ξ) × B e (x) , F (t, x, ξ) := E(t, x) + ν(ξ) × B(t, x).
Due to the anisotropy of f , when computing the contribution (ξ × B e ) • ∇ ξ f, the above fast rotating term is certainly activated. This means that, as allowed by (1.9c), f W 1,∞ is designed to be not uniformly bounded with respect to ε ∈]0, 1]. The condition (1.9c) does not preclude the choice of initial data f ε 0 having arbitrarily large Lipschitz norms (as compared to P 0 and S 0 ). The above considerations deserve to be highlighted by a concrete example (more elaborate models can be found in [START_REF] Cheverry | Anomalous transport[END_REF][START_REF] Cheverry | Long time gyrokinetic equations[END_REF][START_REF] Gallagher | On pressureless gases driven by a strong inhomogeneous magnetic field[END_REF]). Let φ : R 3 → R 3 be a global diffeomorphism. Select

f ε 0 (x, ξ) := P x, ε -1 φ(x), ξ , P ∈ C 1 c (R 3 x × R 3 × R 3 ξ ; R).
The profile P may be periodic or (partially) compactly supported with respect to its second variable (to represent a localized input of electrons for the initialization of an electron beam). For adequate choices of P and φ, we have clearly access to (5.18), and Theorem 5 does apply. Now, we can get a preview of what happens at least when neglecting most of the terms inside (1.2). With this in mind, we can consider the elementary transport equation

(2.2) ∂ t f + ε -1 ν(ξ) × B e (x) • ∇ ξ f = 0, B e (x) = b e (x 3 ) t (0, 0 , 1). 
In (2.2), the field B e has a fixed (vertical) direction and a varying amplitude b e (depending only on x 3 to satisfy ∇ • B e = 0, = ∇ × B e = 0) . In the cylindrical coordinate system for ξ, with ξ = (r cos θ, r sin θ, ξ 3 ),

r 2 = ξ 2 1 + ξ 2 2 , θ ∈ T, P(•, r, θ, ξ 3 ) := P(•, r cos θ, r sin θ, ξ 3 ),
the solution is simply given by (2.3) f (x, r, θ, ξ 3 ) := f (t, x, r cos θ, r sin θ, ξ 3

) = P x, φ(x) ε , r, θ + t b e (x 3 ) ε √ 1 + r 2 , ξ 3 .
The transport part ν(ξ) • ∇ x f of (1.2) has been removed at the level of (2.2). This suppresses the first effect i). But still we are faced with ii). Indeed, when ∂ θ P ≡ 0, the first order derivatives in almost all directions (time, space and momentum) of the expression f given by (2.3) are of large size ε -1 . As a consequence, uniform Lipschitz estimates (with respect to ε) are certainly not available. The same is sure to apply to the solutions provided by Theorem 5.

In the dilute situation [START_REF] Cheverry | Uniform lifetime for classical solutions to the hot, magnetized, relativistic Vlasov Maxwell system[END_REF], the expression U ε a and the perturbation f ε a are of small amplitude ε. This weight ε which can be put in factor of the data can be used to absorb the oscillations at the frequency ε -1 . This boils down to a sort of weakly nonlinear regime. Then, uniform Lipschitz estimates may become available and, by this way, oscillating approximate solutions to (1.2) can be constructed and justified by standard arguments. There is nothing like this in the framework of Theorem 5. In fact, the main reason why it is complicated to achieve T ε ∼ 1 is the following. So far, the methods which have been implemented require, at a moment or another, to compute derivatives of U . But this is proving to be very costly in terms of negative powers of ε because these derivatives are -in all reasonable norms -at least of size ε -1 , compromising the existence of a uniform life-span. By contrast, we are able here to avoid this problem.

2.3.

Previous approaches for smooth solutions. Estimates on P (or on similar quantities) have been a central part in the study of the RVM system because singularities do not develop as long as the momentum support of f(t, •) remains bounded. This is Glassey-Strauss' conditional theorem [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF] which has inspired many works and which has been revisited in [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF]. Such bounds have been achieved by pursuing three noteworthy lines of research.

2.3.1. The historical procedure. As already mentioned, the standard method has been initiated in [START_REF] Glassey | Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data[END_REF][START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF]. It is based on a representation formula for (E, B), see [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF]-Theorem 3 and [START_REF] Glassey | The relativistic Vlasov-Maxwell system in two space dimensions. I, II[END_REF] for its simplified two-dimensional version. In this line, the stability under (very) small perturbations in Lipschitz norm of smooth solutions (such as U ε a ) has been investigated in [START_REF] Rein | Generic global solutions of the relativistic Vlasov-Maxwell system of plasma physics[END_REF].

2.3.2. An alternative path. The second way is to proceed similarly to what has been done in Klainerman-Staffilani [START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF] or even simpler in Bouchut-Golse-Pallard [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF]. These authors have obtained with an economy of means Lipschitz estimates on the field (E, B). To this end, they have implemented three principal arguments : a) commuting vector field techniques [START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF] for the wave equation related to Maxwell's equations ; b) a non-resonant smoothing property [START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF] stating that 1 ± ν(ξ) • ω with ω ∈ S 2 remains away from zero. This property of ellipticity deteriorates when |ξ| grows up, and this is one of the difficulties ; c) a division lemma, see [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF]-Lemma 3.1, whose aim is to convert transversal derivatives to the light cone into the derivative ∂ t + ν(ξ) • ∇ x (appearing in the transport part of RVM).

2.3.3.

Global existence through sharp decay estimates. The third method is to implement (by way of a fixed-point iteration) sup-norm controls and decay estimates (related to the dispersion) on (E, B), as was achieved by Wei-Yang in [START_REF] Wei | On the 3D relativistic Vlasov-Maxwell system with large Maxwell field[END_REF]. But this requires controls in C 1 × C 2 × C 2 which are at the origin of the strong smallness condition (≤ ε 8 | ln ε| -11 ) on f ε 0 noted above. The three approaches 2.3.1, 2.3.2 and 2.3.3 are based on different assumptions ; they resort to distinct techniques ; they produce complementary information ; and they are good starting points. But, to achieve our goal, they need to be supplemented by novel procedures. We will adapt these methods by following at some points a different logic, yielding other consequences.

2.4.

Plan of the text, and main ideas. This article is organized around three sections (3, 4 and 5) whose contents are detailed in below.

2.4.1. Content of Section 3. In Section 3, we deal with smooth compactly supported solutions to the RVM system (1.2)-(1.3). We derive a representation formula (Proposition 7) which is reminiscent of [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF]. In contrast to [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF], we do not look at (E, B). Instead, we focus on the momentum increment D(t, y, η), see Definition 6. The construction of D(t, y, η) is related to the characteristic (X, Ξ)(t, y, η) emanating from a point (y, η) and associated with the Vlasov equation (1.2). Equivalently, D(t, y, η) is the difference Ξ(t, y, η) -η which is built from the solution (X, Ξ) to the ordinary differential equation (3.1). The quantity D depends on t. It is a dynamical quantity which allows to control the size P(t) of the momentum support. Obviously, when E ≡ 0, we find that D is invariant, that is D(t) = D(0) for all time t. But certainly this becomes not true in the presence of interactions. This raises an interesting question : Question 1. Can we identify the factors that alter D ? And evaluate their quantitative effects ? The determination of D is based on |Ξ|, not on Ξ. This remark is important because, in the regime under consideration, the directions of Ξ may be strongly oscillating with respect to the parameter ε ∈]0, 1], see for instance (2.3), and therefore they would be impractical to control. In fact, resorting on D is a way to avoid rapid fluctuations of Ξ/|Ξ|, and to dispense with having to implement the (possibly large) momentum speed of propagation. The quantity D is recovered after some integration (with underlying cancellation effects), while still informing about the expanse of the momentum support. To evaluate D, a first option is to consider (3.10), and to directly extract the sup-norm of E. But this would imply pointwise estimates (like the estimates of von Wahl [START_REF] Wahl | L p -decay rates for homogeneous wave-equations[END_REF] or the Strichartz inequalities [START_REF] Keel | Endpoint Strichartz estimates[END_REF][START_REF] Sogge | L p estimates for the wave equation and applications[END_REF]) at the level of a three-dimensional wave equation with source term ∂ t J. This would take us back to the control of derivatives with again important losses in terms of negative powers of ε. This is why we adopt an alternative strategy which is partly inspired by [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Pallard | A refined existence criterion for the relativistic Vlasov-Maxwell system[END_REF]. As in [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF], in Paragraph 3.1.1, we interpret the RVM system in terms of the Lienard-Wiechert potential u(t, x, ξ). As in [START_REF] Pallard | A refined existence criterion for the relativistic Vlasov-Maxwell system[END_REF], we aim at substituting for (3.10) integral expressions which are not based on dt but instead which integrate with respect to the time, the space and the velocity. But, to this end, we exploit other arguments. Our main innovation to prove (3.4) is :

-to perform a Radon transform (with respect to the position variable x ∈ R 3 ). The Radon transform (see the book [START_REF] Helgason | The Radon transform, volume 5 of Progress in Mathematics[END_REF] and Paragraph 3.1.2) allows to convert f(t, x, ξ) into g(t, ω, p, ξ) and u(t, x, ξ) into v(t, ω, p, ξ). The equation (3.23) for g(•, ω, •, ξ) becomes (with respect to t and p) a one-dimensional transport equation ; the equation (3.22) for v(•, ω, •, ξ) becomes (with respect to t and p) a one-dimensional wave equation. These one-dimensional features entail many simplifications. Indeed, we recover a simple one dimensional mean field equation (comparable to the model studied in [START_REF] Gerard | A mean-field toy model for resonant transport[END_REF]) with all the three dimensional geometry encoded in the sphere (with the angle ω ∈ S 2 serving as a parameter).

-to interpret D as an oscillatory integral. By this way, the geometry of propagation is driven by the phase ±|X(s) -x| + s -r which reveals very well the joint properties of the transport equation (1.2) and of the wave equation inside (1.3).

It follows that :

a) the commutating vector fields considerations of [START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF] are bypassed ; b) the non-resonant smoothing property of [START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF] reduces to the manipulation of a non-zero coefficient (vanishing to 0 when |ξ| tends to +∞) occurring in a non-stationary phase ; c) the division lemma of [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF] is replaced by a straightforward argument (there is no more three spatial directions but instead only one direction p with a parameter ω ∈ S 2 ). On the other hand, the return through the inverse Radon transform to the original spatial configuration (in x) involves oscillatory integrals which, thanks to Lemmas 8 and 9, simplify and lead to the explicit formula (3.4), which is easy to use. The content of (3.4) does not imply any derivative of f, E or B. It does neither require any pointwise estimate on f, E or B. Instead, it relies on integral computations with respect to the volume element ds dω dξ. Modulo the (singular) Jacobian (4.16) which is issued from a pushforward to the original phase space, this amounts to work with the Lebesgue measure dx dξ. The great advantage is that this Liouville measure dx dξ is preserved by the flow (3.1). Henceforth, we obtain a connection between the value of D(t, y, η), regarding one particular characteristic issued from (y, η), and the computation of the total energy

(2.4) E E E (t) := R 3 R 3 ξ f(t, x, ξ) dx dξ + 1 2 R 3 |E(t, x)| 2 dx + 1 2 R 3 |B(t, x)| 2 dx,
which is for smooth solutions a conserved quantity [START_REF] Rein | Global weak solutions to the relativistic Vlasov-Maxwell system revisited[END_REF] while, for weak solutions, this issue has not yet been completely resolved (see [START_REF] Bardos | Onsager-type conjecture and renormalized solutions for the relativistic Vlasov-Maxwell system[END_REF] for a discussion about Onsager's conjecture). The fact remains that, in the actual context of smooth solutions, we have

(2.5) E E E (t) = E E E 0 := E E E (0) , t ≥ 0.
Thus, the search for pointwise estimates on D is driven by the invariant energy estimate (2.5). In that sense, we can again assert that our approach is at the junction between results about weak solutions (which rely on the sole preservation of E E E and which do not bring into play derivatives) and results yielding a kind of strong information (namely sup-norm estimates for adequate quantities) without resorting to the computation of derivatives. Amongst other things, the formula (3.4) has the benefit of revealing and delineating the role of a series of weights W defined on R + × S 2 ω × R 3 ξ . Depending on the respective positions of the directions Ξ(s), ω and ξ, these weights may be larger or smaller. This remark gives access to quantitative estimates which differentiate between the localizations of Ξ(s), ω, ξ . This process is precisely what motivates Section 4. 3). In Subsection 5.2, we come back to the question of energy estimates. It turns out that (2.5) is not very useful. Instead, we have to propagate the L 2 -norm of U (t) at the level of the linearized equations along U ε a . That is the only way to ensure that the smallness L 2conditions (5.6b) and (5.18) is passed on to U (t). In Subsection 5.3, we prove Theorem 5. This is done by estimating separately the approximate momentum increment D ε a , bilinear terms obtained by freezing D n along U ε a , and a full nonlinear contribution D n . In this process, it is essential to know that U (t) is of size ε in L 2 . Indeed, this emerges as an indispensable prerequisite to compensate the presence inside (5.12) of the large factor ε -1 . Again, it is noteworthy that the preceding approaches would furnish, if any, much less information than in Theorem 5.

The proof of a representation formula

In this section, we consider a solution (f, E, B) to the Cauchy problem (1.2)-(1.3)-(1.4), which is assumed to be smooth, which is compactly supported with respect to ξ, and which is defined on [0, T [ for some

T ∈ R * + ∪ {+∞}. In what follows, the time t is chosen in [0, T [. The Vlasov equation (1.
2) is linked to a dynamical system on the phase space R 3

x × R 3 ξ . Recall that F is the Lorentz force given by (1.2), and consider the flow (X, Ξ) obtained by solving the ordinary differential equation :

(3.1)        dX dt (t, y, η) = ν(Ξ), X(0, y, η) = y, dΞ dt (t, y, η) = F(t, X, Ξ), Ξ(0, y, η) = η.
The solution f may be recovered by integrating along the characteristics, in the sense that

(3.2) f(t, x, ξ) = f 0 X(-t, x, ξ), Ξ(-t, x, ξ) .
Definition 6 (Momentum increment). The momentum increment at the time t associated with an initial phase point (y, η) is the difference D(t, y, η) := Ξ(t, y, η) -η .

In the absence of an electric field, that is when E ≡ 0 as it is the case concerning the stationary solution Ũε a of (1.17), the kinetic energy |Ξ| 2 /2 is just constant, and the same applies to Ξ so that D ≡ 0. But in general, we have D ≡ 0 for two main reasons :

-Impact of a non-zero initial data (E 0 , B 0 ) ≡ 0, with ∇ x ×B 0 ≡ 0 when E 0 ≡ 0. Then, a non-trivial electric field E ≡ 0 persists or is created (at least for small times t). It can be approximated by solving the homogeneous version of Maxwell's equations :

(3.3) ∂ 2 tt E h -∆ x E h = 0 , E h|t=0 = E 0 , ∂ t E h|t=0 = ∇ x × B 0 ,
where the subscript h is for homogeneous. Retain that the access to E h is determined only by (E 0 , B 0 ) ; it is obtained by solving a linear wave equation ; and it is completely decoupled from the Vlasov equation.

-Effect of nonlinear interactions (the quadratic terms in the Vlasov equation) together with the coupling (electric current in Maxwell's equations).

The momentum increment D(t) can be computed from E h , f and F as indicated below.

Proposition 7 (Representation formula for D). We have

D = D 0 + D h + D l + D n with D 0 := t 0 S 2 R 3 W 0 (s, ω, ξ) f 0 X(s) + sω, ξ ds dω dξ, (3.4a) D h := t 0 ν • Ξ(s) • E h s, X(s) ds, (3.4b) D l := t 0 t r S 2 R 3 W l (s, ω, ξ) f r, X(s) + (s -r)ω, ξ ds dω dξ dr, (3.4c) D n := t 0 t r S 2 R 3 W n (r, s, ω, ξ) • F r, X(s) + (s -r)ω, ξ × f r, X(s) + (s -r)ω, ξ ds dω dξ dr, (3.4d) 
where the microlocal weights W are given by

W 0 (s, ω, ξ) := - s 4π ν • Ξ(s) • ν(ξ) + ω 1 + ω • ν(ξ) , (3.5a) W l (s, ω, ξ) := - 1 4π 1 ξ 2 ν • Ξ(s) • ω + ν(ξ) 1 + ω • ν(ξ) 2 , (3.5b) W n (r, s, ω, ξ) := - s -r 4π ∇ ξ ν • Ξ(s) • ν(ξ) + ω 1 + ω • ν(ξ) . (3.5c)
In (3.4), the subscripts 0, h, l and n stand respectively for t = 0 (initial time), homogeneous, linear with respect to f, and nonlinear in terms of f and F. We can separate inside D n the bilinear interactions involving E and B. We have D n = D ne +D nb . The expression D ne and D nb are defined as D n with (W n , F) replaced respectively by (W ne , E) and (W nb , B) where

(3.6) W ne (r, s, ω, ξ) := W n (r, s, ω, ξ) , W nb (r, s, ω, ξ) := W n (r, s, ω, ξ) × ν(ξ).
In the pioneering works of Glassey and Strauss [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF], the electromagnetic field (E, B) was represented in terms of E h , f and F. The pointwise estimates on E and B thus obtained were exploited (in [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF] and subsequent works) to extract information on D. By contrast, we focus here directly on D. As a consequence, we will be able to control D without resorting to (costly) sup-norm estimates on E and B but only through integrals involving f, E and B. Seen in this light, our approach is more in line with [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF], and especially [START_REF] Pallard | Smooth solutions to the relativistic Vlasov-Maxwell system[END_REF]. It can be interpreted as an alternative to these contributions. Still, it differs from those both in its formulation, conception (some arguments we use to prove Proposition 7 are original), and consequences. This section is devoted to the decomposition of D into (3.4). In Subsection 3.1, we introduce basic tools. In Subsection 3.2, we compute two oscillatory integrals. Then, in Subsection 3.3, we show Proposition 7.

For the sake of simplicity, we will prove Proposition 7 for smooth solutions which are compactly supported with respect to both variables x and ξ. The finite speed of propagation in x allows ultimately to relax this condition on the spatial support. Note also that Proposition 7 should remain true for less regular (weak) solutions under adequate integrability conditions in ξ. But this aspect will not be investigated here. 3.1.1. Lienard-Wiechert potentials. Choose a vector field A i : R 3 x → R 3 , where i stands for initial, such that ∇ x • A i = 0 and ∇ x × A i = B 0 . Then, solve the wave equation

(3.7) ∂ 2 tt A h -∆ x A h = 0 , A h|t=0 = A i , ∂ t A h|t=0 = -E 0 .
This allows to recover E h through the relation

E h = -∂ t A h .
As first noted in [START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF] and exploited for instance in [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Cheverry | The relativistic Vlasov Maxwell equations for strongly magnetized plasmas[END_REF], the RVM system can be recast as a coupling between a wave equation and a Vlasov equation. To this end, it suffices to define the microscopic electromagnetic potential u(t, x, ξ) which solves the initial value problem :

(3.8) (∂ 2 tt -∆ x )u = f, u |t=0 = 0, ∂ t u |t=0 = 0.
Then, the electromagnetic field (E, B) can be computed from u by the two identities

E(t, x) = -∂ t A h (t, x) - R 3 ν(ξ)∂ t u + ∇ x u (t, x, ξ) dξ, (3.9a) B(t, x) = ∇ x × A h (t, x) + R 3 ∇ x × u ν(ξ) (t, x, ξ) dξ. (3.9b) System (1.2)-(3.8)-(3.9) is self-contained. It is equivalent to (1.2)-(1.
3). This is why, in what follows, it will also be referred to as the "RVM system". From (3.1) and due to the special structure inside (1.2) of F, we have

(3.10) D(t, y, η) = t 0 d ds Ξ(s) ds = t 0 ν • Ξ(s) • E s, X(s) ds.
We can plug (3.9a) into (3.10). The part

-∂ t A h inside (3.9a) leads to D h . We have D = D h + D with (3.11) D(t, y, η) = - t 0 R 3 ν • Ξ(s) • ν(ξ) ∂ s u s, X(s), ξ + ν • Ξ(s) • ∇ x u s, X(s), ξ ds dξ.
This explains the origin of the term D h inside (3.4). Observe that the influence of A h is not limited to D h . It does also impact D (through u). Indeed, equations (1.2) and (3.8) are coupled with A h appearing inside (1.2) because the Lorentz force F = E + ν(ξ) × B must be computed with E and B given by (3.9). On the one hand, the formula (3.10) seems to indicate that the control of D should require a sup-norm estimate on E. On the other hand, the second identity (3.11) suggests that the access to D should imply sup-norm estimates on ∂ s u and ∇ x u. As is well-known [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF][START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF][START_REF] Pallard | Smooth solutions to the relativistic Vlasov-Maxwell system[END_REF], this gives false impressions. As will be seen, more can be done.

3.1.2. Reminders on the Radon transform. The Radon transform [START_REF] Helgason | The Radon transform, volume 5 of Progress in Mathematics[END_REF] is the map defined by

R : C 0 c (R 3 ; C) -→ C 0 c (S 2 × R; C) f(x) -→ Rf(ω, p), where (3.12) g(ω, p) := Rf(ω, p) := Hω,p f(x) dm(x) = g(-ω, -p),
and dm is the Euclidean measure on the hyperplane H ω,p := {x ∈ R 3 ; ω • x = p}. Recall that Rf is linked to the Fourier transform f through the relation

f(ρ ω) = +∞ -∞ e -iρp Rf(ω, p) dp, ρ ∈ R + .
It follows that

(3.13) R(∂ xi f)(ω, p) = ω i ∂ p g(ω, p) , R(∆f)(ω, p) = ∂ 2 pp g(ω, p).
As explained for instance in line (38)-p. 19 of [START_REF] Helgason | The Radon transform, volume 5 of Progress in Mathematics[END_REF], with η = ρ ω ∈ R 3 , we obtain that

(3.14) f(x) = 1 (2π) 3 R 3 e ix•η f(η) dη = 1 (2π) 3 S 2 +∞ 0 e iρ(ω•x) f(ρ ω) ρ 2 dρ dω = 1 2 1 (2π) 3 S 2 +∞ -∞ ρ 2 e iρ(ω•x) +∞ -∞ e -iρp Rf(ω, p) dp dρ dω,
where the change of variables (ω, ρ) into (-ω, -ρ) has been exploited to pass from the first to the second line. This yields the (three dimensional) inversion formula

(3.15) f(x) = R -1 g(x) := - 1 2 1 (2π) 2 S 2 ∂ 2 pp g(ω, ω • x) dω.
Also observe that

(3.16) ∀n ∈ N, (i ρ) n f(ρω) = F p (∂ n p Rf)(ω, •) (ρ).
As a consequence, we have

(3.17) ∀n ∈ N, (∂ n p Rf)(ω, p) = 1 2π R R 3 e iρ(p-ω•x) (i ρ) n f(x) dρ dx.
The relation (3.13) indicates that a derivative in x is on the Radon side a derivative in p. But the Radon transform is clearly associated with a smoothing effect (due to the integration). And thereby, its inverse can consume derivatives of g, as demonstrated on (3.15). This means that gains of derivatives (in p) are hidden behind the integration with respect to ω. This phenomenon is detected in Subsection 3.2 and exploited in Subsection 3.3.

Two oscillatory integrals.

As in the case of the Fourier transform, the study of partial differential equations with the Radon transform may reveal the role of oscillatory integrals. In the present context, these integrals are of two types : the first (Paragraph 3.2.1) involves a compact surface (the sphere S 2 ) ; the second (Paragraph 3.2.2) implies the whole space R × R 3 . In both cases, the aim is to take advantage of cancellation properties induced by oscillations.

3.2.1.

Oscillatory integrals on the sphere. In view of (3.16), a derivative ∂ p on the Radon side costs a multiplication by ρ. On the other hand, as can be inferred from (3.17), this loss may be associated with oscillatory integrals implying phases looking like ρ (ω • X + τ ). It is compensated at the level of (3.15) by an integration with respect to ω. Thus, there is some underlying spatial averaging effect (on S 2 ). This is highlighted below.

Lemma 8 (Gain of one derivative). Fix X ∈ R 3 \ {0} and (ρ, τ ) ∈ R 2 . We have

(3.18) S 2 e iρ (ω•X+τ ) (iρ) dω = 2π |X| ± ±e iρ (±|X|+τ ) = 4π i e iρ τ sin(ρ |X|) |X| .
Proof. Let R be a rotation such that R (X/|X|) = t (0, 0, 1). We can change ω into ω := Rω and then work in spherical coordinates, that is with

(3.19) ω =   cos ϕ sin ϑ sin ϕ sin ϑ cos ϑ   , ϕ ∈ [0, 2π], ϑ ∈ [0, π], dω = sin ϑ dϑ dϕ. Since R -1 ω • X = ω • RX, this furnishes S 2 e iρ (ω•X+τ ) (iρ) dω = S 2 e iρ (R -1 ω•X+τ ) (iρ) dω = S 2 e iρ |X| ω•R(X/|X|)+τ (iρ) dω = π 0 2π 0 e iρ (|X| cos ϑ+τ ) (iρ) sin ϑ dϑ dϕ = - 2π |X| π 0 ∂ ϑ e iρ [|X| cos ϑ+τ ) dϑ = 2π |X| e iρ[+|X|+τ ] -e iρ[-|X|+τ ] ,
which is exactly (3.18).

Let ν ∈ R 3 . Applying the differential operator ν • ∇ X to the identity (3.18), we end up with (3.20)

S 2 ν • ω e iρ (ω•X+τ ) ρ 2 dω = 2π ν • X |X| 3 ± (±1 -i ρ |X|) e iρ (±|X|+τ ) .

3.2.2.

Oscillatory integrals on the whole space. Replace X by X -x. Looking at the right hand side of (3.18), we see that the integration with respect to dω may produce singular weights (like 1/|X -x| near X = x) in factor of oscillations. Now, the integration with respect to dρ dx of such expressions multiplied by f can produce the integral of the trace of f on spheres.

Lemma 9 (Passage from singular weights to traces). Let f : R 3 → R be a compactly supported function of class C 1 . Let K : S 2 → R be a bounded function. Fix X ∈ R 3 , α ∈ R and τ ∈ R. Then, for α ≤ 2, we have

(3.21) R R 3 e iρ[±|X-x|+τ ] K x -X |x -X| f(x) |X -x| α dρ dx = 2π S 2 |τ | 2-α H(∓τ ) K(ω) f(X + |τ | ω) dω,
where H is the Heaviside function (in the half-maximum convention which is important at least when α = 2 and τ = 0), namely

H(τ ) := 1 2 1 R+ (τ -) + 1 R+ (τ +) =    0 if τ < 0, 1/2 if τ = 0, 1 if τ > 0.
Proof. In spherical coordinates r ω for x -X, we have to deal with

S 2 R K(ω) R+ r 2-α f(X + r ω) e -iρ (∓r-τ ) dr dρ dω = S 2 K(ω) R R ψ ∓ (r) e -iρ r dr dρ dω = S 2 K(ω) R F(ψ ∓ )(ρ) dρ dω ,
where we have changed r into r := ∓r -τ , and where we have introduced the function ψ ∓ : R → R (depending on ω) given by

ψ ∓ (r) := |r + τ | 2-α 1 R+ ∓(r + τ ) f X + |r + τ | ω).
The function ψ ∓ is compactly supported. It is bounded and piecewise C 1 as long as α ≤ 2 with only one possible discontinuity when α = 2 (located at r = -τ ). Thus, we can apply the Dirichlet condition for inversion of Fourier integrals which furnishes

R F(ψ ∓ )(ρ) dρ = 2π (F -1 • F)(ψ ∓ )(0) = π ψ ∓ (0+) + ψ ∓ (0-) .
After substitution, we find (3.21).

3.3.

Proof of Proposition 7. The demonstration is done in three stages. In Paragraph 3. 

:= R u(t, •, ξ) (ω, p), g(t, ω, p, ξ) := R f(t, •, ξ) (ω, p).
Under the action of the Radon transform, the three-dimensional wave equation is transformed into a one-dimensional wave equation. With v 1 ≡ 0, the Cauchy problem (3.8) becomes

(3.22) (∂ 2 tt -∂ 2 pp )v = g, v |t=0 = 0, ∂ t v |t=0 = v 1 .
On the other hand, from the Vlasov equation, we can deduce that

(3.23) ∂ t g + ν(ξ) • ω ∂ p g + div ξ R(f F) = 0, g |t=0 = g 0 := R f 0 (•, ξ) .
At the level of (3.11), the integral D is built with four types of derivative : ∂ s u and ∂ xi u with i ∈ {1, 2, 3}.

In Subparagraph a), we show that ∂ s u can be expressed as a function of ∂ 2 pp g. In Subaragraph b), we do the same for ∇ x u. By this way, in Subparagraph c), we can extract a reformulation of D in terms of one type of derivative, namely ∂ 2 pp g. By this way, contrary to the division lemma [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF], looking at D as depending on g instead of u allows to reduce the kinds of derivatives which are needed : we can concentrate on ∂ p only.

• a) Computation of ∂ s u. The solution to the one-dimensional wave equation (3.22) 

(t, p) := (s, y) ; s ∈ [0, t] , p -(t -s) ≤ y ≤ p + (t -s) .
From (3.22) with v 1 ≡ 0, we find also

(∂ 2 tt -∂ 2 pp )(∂ t v) = ∂ t g, ∂ t v |t=0 = 0,
as well as 

∂ t (∂ t v) |t=0 = g |t=0 + (∂
∂ s u(s, x, ξ) = R -1 (∂ s v)(s, x, ξ) = - 1 2 1 (2π) 2 S 2 (∂ 2 pp ∂ s v)(s, ω, ω • x, ξ) dω = - 1 4 1 (2π) 2 ± S 2 s 0 ∂ 2 pp g r, ω, ω • x ± (s -r), ξ dr dω.
Since ∂ 2 pp g(r, •, ξ) is in view of (3.12) an even function, we know that (3.27)

∂ 2 pp g r, -ω, -ω • x -(s -r), ξ = ∂ 2 pp g r, ω, ω • x + (s -r)
, ξ , and therefore, changing ω into -ω, we can deduce that

(3.28) ∂ s u(s, x, ξ) = - 1 2 1 (2π) 2 S 2 s 0 ∂ 2 pp g r, ω, ω • x + (s -r), ξ dr dω. • b) Computation of ∇ x u. From (3.22) with v 1 ≡ 0, we can extract (3.29) (∂ 2 tt -∂ 2 pp )(∂ p v) = ∂ p g, (∂ p v) |t=0 = 0, ∂ t (∂ p v) |t=0 = 0.
Applying (3.24), this yields (3.30)

∂ p v(t, ω, p, ξ) = 1 2 (t,p)
∂ p g(s, ω, y, ξ) ds dy = 1 2 t 0 g(s, ω, p + t -s, ξ) -g(s, ω, p -t + s, ξ) ds.

On the other hand, from (3.13), we have

R ν • Ξ(s) • ∇ x u (s, ω, p, ξ) = ν • Ξ(s) • ω ∂ p v(s, ω, p, ξ),
and therefore, using (3.27) again and (3.30), we obtain that 

(3.31) ν • Ξ(s) • ∇ x u(s, x, ξ) = R -1 ν • Ξ(s) • ω ∂ p v (s, x, ξ) = - 1 2 1 (2π) 2 S 2 ν • Ξ(s) • ω ∂ 2 pp (∂ p v)(s, ω, ω • x, ξ) dω = - 1 2 1 (2π) 2 S 2 s 0 ν • Ξ(s) • ω ∂ 2 pp g(r, ω, ω • x + s -r,
D = 1 8π 2 R 3 S 2 t 0 s 0 ν • Ξ(s) • ω + ν(ξ) ∂ 2 pp g r, ω
, ω • X(s) + s -r, ξ dr ds dω dξ.

Recall (3.13) which says that ∂ 2 pp = R∆. Thus, the computation of D seems to consume two derivatives of f. The aim of the next paragraph is to show that this is not the case. The goal is to remove the presence of ∂ 2 pp inside D.

Analysis through oscillatory integrals.

To better understand the content of D, we can apply (3.17) with n = 2 to exhibit the following oscillatory integral

D = - 1 16π 3 t 0 s 0 R R 3 R 3 S 2 ν • Ξ(s) • ω + ν(ξ) e iρ[ω•X(s)-ω•x+s-r] ρ 2 dω
× f(r, x, ξ) ds dr dρ dx dξ.

We can apply Lemma 8 and (3.20) with X = X(s) -x and τ = s -r to get

D = ± ∓ 1 8π 2 t 0 s 0 R R 3 R 3 ν • Ξ(s) • X(s) -x |X(s) -x| 3 f(r,
x, ξ) e iρ [±|X(s)-x|+s-r] ds dr dρ dx dξ

+ ± ± 1 8π 2 t 0 s 0 R R 3 R 3 ν • Ξ(s) • ν(ξ) |X(s) -x| ± ν • Ξ(s) • X(s) -x |X(s) -x| 2
× f(r, x, ξ) (iρ) e iρ [±|X(s)-x|+s-r] ds dr dρ dx dξ.

In the second sum, there is still ρ in factor (which corresponds to the lost of one derivative). The next idea is to eliminate this weight ρ by exploiting the underlying presence of oscillations. This is the principle of non-stationary phase. To this end, the strategy is to perform an integration by parts with respect to r and x. As usual, this operation costs time and spatial derivatives of the symbol f. It must be done without introducing unmanageable derivatives of f. In practice, taking into account the Vlasov equation, we can convert the derivative ∂ r + ν(ξ) • ∇ x into derivatives with respect to ξ. With this in mind, we look at

(3.32) ∂ r + ν(ξ) • ∇ x e iρ [±|X(s)-x|+s-r] = -1 ± x -X(s) |x -X(s)| • ν(ξ) (iρ) e iρ [±|X(s)-x|+s-r] .
Since |ν(ξ)| < 1, the multiplicative factor in the right hand side is negative, and therefore it can be inverted. This argument exploits a microlocal ellipticity property. As mentioned in b) of Paragraph 2.3.2, it is referred to as a non-resonant smoothing property [START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF].

The identity (3.32) connects ∂ r + ν(ξ) • ∇ x to the multiplication by ρ. In view of (3.16), this amounts to apply the derivative ∂ p . Now, recall that R(∂ xi f) = ω i ∂ p (Rf), and thereby ω i ∂ p may be viewed on the Radon side as a condensed version of the spatial derivatives ∂ xi . Thus, a link is established between

∂ r + ν(ξ) • ∇ x and ∂ xi .
Historically [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Klainerman | A new approach to study the Vlasov-Maxwell system[END_REF], this was done by converting the derivative

∂ xi u inside (3.11) into ∂ r f + ν(ξ) • ∇ x f.
Here, there is no need of such division lemma, alinea c) of Paragraph 2.3.2. We just observe that the light cones (related to the wave equation for the electromagnetic fields), which may be viewed as the level surfaces in R×R 3 of the phase functions ±|X(s)-x|+s-r, are transversal to the derivative ∂ r +ν(ξ)• ∇ x (which is related to the time-spatial transport in the Vlasov equation). With the help of (3.32), in the second sum defining D, we can interpret the coefficient which is in factor of f according to

ν • Ξ(s) • ν(ξ) |X(s) -x| ± ν • Ξ(s) • X(s) -x |X(s) -x| 2 (iρ) e iρ [±|X(s)-x|+s-r] = -k ∓ (s, x, ξ) ∂ r + ν(ξ) • ∇ x e iρ [±|X(s)-x|+s-r] ,
with

k ∓ (s, x, ξ) := 1 |X(s) -x| K ∓ s, x -X(s) |x -X(s)| , ξ , K ∓ (s, ω, ξ) := ν • Ξ(s) • ν(ξ) ∓ ω 1 ∓ ω • ν(ξ) .
Let T k be the multiplicative operator by the function k, that is

(3.33) T k (f)(r, s, x, ξ) := k(s, x, ξ) f(r, x, ξ).
Now, we can integrate by parts with respect to r and x to obtain

D = ± ∓ 1 8π 2 t 0 s 0 R R 3 R 3 ν • Ξ(s) • X(s) -x |X(s) -x| 3 f(r, x, ξ) e iρ [±|X(s)-x|+s-r]
ds dr dρ dx dξ

+ ± ± 1 8π 2 t 0 R R 3 s 0 R 3 ∂ r + ν(ξ) • ∇ x T k∓ (f) e iρ [±|X(s)-x|+s-r] dx dr dξ dρ ds - ± ± 1 8π 2 t 0 R R 3 R 3 T k∓ (f) e iρ [±|X(s)-x|+s-r] dx s 0 dξ dρ ds.
This yields two boundary terms (D b0 and D bs issued respectively from r = 0 and r = s), a term D l including the integrands which have f in factor, as well as a contribution D n which implies derivatives of f. More precisely, we have D = D b0 + D bs + D l + D n with

D b0 = ± ±D ± b0 , D bs = ± ∓D ± bs , D l = ± ±D ± l , D n = ± ±D ± n ,
where

D ± b0 := 1 8π 2 t 0 R R 3 R 3
T k∓ (f)(0, s, x, ξ) e iρ [±|X(s)-x|+s] ds dρ dx dξ,

D ± bs := 1 8π 2 t 0 R R 3 R 3
T k∓ (f)(s, s, x, ξ) e ±iρ |X(s)-x| ds dρ dx dξ,

D ± l := 1 8π 2 t 0 s 0 R R 3 R 3
T k∓ (f) e iρ [±|X(s)-x|+s-r] ds dr dρ dx dξ,

D ± n := 1 8π 2 t 0 s 0 R R 3 R 3 T k∓ ∂ r f + ν(ξ) • ∇ x f e iρ [±|X(s)-x|+s-r] ds dr dρ dx dξ.
By construction, we find

k∓ := - ν • Ξ(s) • X(s) -x |X(s) -x| 3 + ν(ξ) • ∇ x k ∓ = 1 |X(s) -x| 2 K∓ s, x -X(s) |x -X(s)| , ξ , with K∓ (s, ω, ξ) := 1 ξ 2 ν • Ξ(s) • ω ∓ ν(ξ) 1 ∓ ω • ν(ξ) 2 .
Now, the time spatial derivative ∂ r f + ν(ξ) • ∇ x f can be exchanged with velocity derivatives. Indeed, using the Vlasov equation, it can be converted into derivatives with respect to ξ (which are harmless because the coefficients are smooth in ξ and because the phase does not depend on ξ). We find that

D ± n = 1 8π 2 t 0 s 0 R R 3 R 3 ∇ ξ k ∓ • F f e iρ [±|X ( 
s)-x|+s-r] ds dr dρ dx dξ.

On the other hand, in D ± l and D ± n , we can switch the order of integrations according to

t 0 s 0 • • • dr ds = t 0 t r • • • ds dr.
3.3.3. Epilog. In general, the Fourier analysis as well as the Radon analysis of nonlinear partial differential equations lead to complex formulas. And indeed, the above oscillatory integrals seem complicated. Surprisingly, they can be significantly simplified by applying Lemma 9. As a matter of fact, all the computations can be made explicit :

-Study of D b0 . We take K = K ∓ , X = X(s), α = 1 and τ = s ≥ 0. We find that D + b0 = 0 and D b0 = -D - b0 . With W 0 = -s K + /(4π), we can recognize D 0 as in (3.4a). -Study of D bs . We take K = K ∓ , X = X(s), α = 1 and τ = 0 to see that D ± bs = 0. -Study of D l . We take K = K∓ , X = X(s), α = 2 and τ = s -r ≥ 0 to obtain D + l = 0 so that D l = -D - l . This is coherent with (3.4c) where W l = -K+ /(4π) as in (3.5b). -Study of D n . We deal with a vector valued version of (3.21) where f is replaced by F f. We take K = ∇ ξ K ∓ , X = X(s), α = 1 and τ = s -r ≥ 0 to see that D + n = 0 and therefore that D n = -D - n . By this way, with W n = -(s -r) ∇ ξ K + /(4π), we find that D n is given by (3.4d). The proof of Proposition 7 is now complete.

The control of the momentum spread

In this section, we consider a solution U to the Cauchy problem (1.2)-(1.3)-(1.4), assumed to be smooth, compactly supported (in ξ), and defined on [0, T [ where T ≡ T (U 0 ) ∈ R * + ∪ {+∞} is the maximum lifespan of this smooth solution. From (3.2), we know that the support of f(t, •) is the image by the map (X, Ξ)(t, •) of the support of f 0 . Given t ∈ [0, T [, we can define the maximal size Q(t) of the spatial support of f(t, •), which is

(4.1) Q(t) := inf R ∈ R + ; f(t, x, ξ) = 0 for all ξ ∈ R 3 and for all x ∈ R 3 with R ≤ |x| ,
as well as the maximal size P(t) of the momentum support of f(t, •), which is (4.2) P(t) := inf R ∈ R + ; f(t, x, ξ) = 0 for all x ∈ R 3 and for all ξ ∈ R 3 with R ≤ |ξ| .

By construction, we have

supp f ⊂ (t, x, ξ) ∈ [0, T [×R 3 × R 3 ; |x| ≤ Q(t) , |ξ| ≤ P(t) .
The quantity Q yields a control on the size of the spatial domain of influence. In view of the first equation of (3.1), the spatial speed of propagation is bounded by one, so that

(4.3) Q(t) ≤ Q 0 + t , Q 0 := Q(0).
Both Vlasov and Maxwell's equations have a finite spatial speed of propagation (bounded by 1). Thus, exploiting the notion of region of influence, to prove the local smooth solvability, it suffices to work with solutions that are compactly supported with respect to the space variable x. To simplify, we can localize the spatial and momentum support in the same ball (say of size P 0 ). With this in mind, we replace the condition inside (1.6) on supp f 0 by (4.4) supp f 0 ⊂ B(0, P 0 ] × B(0, P 0 ].

On the other hand, the quantity P gives a bound on the extent of the momentum domain of influence.

It provides insight into the momentum spread. Without a control involving the sup-norm of F (that is equivalently of E and B), the second equation of (3.1) does not provide with a bound for the momentum speed of propagation. This is usually resolved by looking at Lipschitz bounds on U = (f, E, B). From the pioneering works [START_REF] Glassey | Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data[END_REF][START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF][START_REF] Wollman | An existence and uniqueness theorem for the Vlasov-Maxwell system[END_REF] on smooth solutions, we know that there exists a time T s ∈ R * + and a continuous function F s : [0, T s ] → R + (the subscript s stands for smooth) depending both on the Lipschitz norm of U 0 such that (4.5)

P(t) ≤ F s (t) , ∀ t ∈ [0, T s ] , 0 < T s ≤ T.
A key issue is whether (4.5) remains true under less restrictive criteria on the initial data U 0 . Our purpose here is to remove the Lipschitz condition on f 0 and to relax the cost of two derivatives concerning (E 0 , B 0 ).

Proposition 10 (Control on the momentum spread by mild information). Fix P 0 ∈ R + , and consider the corresponding subspace N adjusted as in (1.6). Given any S 0 ∈ R * + , select initial data U 0 ∈ N satisfying N (U 0 ) ≤ S 0 with N as in (1.7). Then, there exist a time T ∈ R * + and a continuous increasing function F : [0, T ] → R + , both depending only on S 0 so that T ≡ T (S 0 ) and F ≡ F(S 0 ; •), such that (4.6) P(t) ≤ F(S 0 ; t), ∀ t ∈ 0, min T (U 0 ); T (S 0 ) .

Moreover, under (4.4), the behavior of T for small values of S 0 is bounded below according to

(4.7) ∃ c ∈ R * + ; c S -1 0 ≤ T (S 0 ) , ∀ S 0 ∈ R * + .
From Glassey-Strauss continuation criterion [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF], assuming that T (U 0 ) ∈ R * + , the size of P(t) must explode when t → T (U 0 )-. Looking at (4.6), since F is continuous on 0, T (S 0 ) and therefore bounded, there is a contradiction if T (U 0 ) < T (S 0 ). Expressed in terms of (1.1), this means that (4.8)

0 < T (S 0 ) ≤ T (N, N ; S 0 ) ≤ T (U 0 ).
Theorem 2 is a direct consequence of (4.8). Given P 0 , the line (4.7) specifies how fast T (N, N ; S 0 ) tends to +∞ when S 0 goes to zero. Without (4.4), a version of (4.7) is still available under adaptations. To this end, the spatial support of f 0 must be truncated on a larger ball of size C t with C > 1, and the smallness parameters must be revisited. Now, let G : R 3 → R q with q ∈ N * . The usual fluid description of plasmas (MHD) involves macroscopic quantities like

M G (t, x) := R 3 G(ξ) f(t, x, ξ) dξ.
For G ≡ 1, we deal with the number density. For G ≡ ν(ξ), we recover the current density. For

G n (ξ) = ξ ⊗ ξ ⊗ • • • ⊗ ξ,
where ξ is multiplied n times with n ∈ N * , we find the n-th moment, with in particular the momentum density (for n = 1).

Corollary 11 (Sup-norm controls on all fluid quantities under mild information). In the context of Proposition 10, for all G ∈ L ∞ (R 3 ; R q ), we have

(4.9) ∀ (t, x) ∈ [0, T (S 0 )] × R 3 , M G (t, x) ≤ 4π S 0 sup |ξ|≤F (S0;t) G(ξ) 3 < +∞.
This furnishes a range of a priori sup-norm estimates which, contrary to (4.5), do not require any regularity on f 0 , and which implement (relatively) weak estimates on (E 0 , B 0 ). This may seem surprising in the quasilinear context (1.2)-(1.3) under study. Recall however that such bounds are basically inherited from the transport part (the Vlasov equation) after its (complicated) interaction with Maxwell's equations.

Our construction is also a gateway to a notion of solutions which is at the interface between the strong and weak versions of respectively [START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Glassey | Large velocities in the relativistic Vlasov-Maxwell equations[END_REF] and [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF].

Corollary 12 (Strong-weak solutions). (1.9c) and (1.10). Choose E 0 ∈ H1 (R 3 ) and B 0 ∈ H 1 (R 3 ). Assume that N (U 0 ) ≤ S 0 where N is as in (1.7) with p = 2. Then, we can find a time T ≡ T (S 0 ) ∈ R * + depending only on S 0 such that the Cauchy problem (1.2)-(1.3)-(1.4) has a unique solution satisfying

Fix (P 0 , S 0 ) ∈ R + × R * + . Select f 0 ∈ L ∞ (R 3 × R 3 ) satisfying (1.9b),
(4.10) supp f(t, •) ⊂ R 3 × B 0, F(S 0 ; t) ] , ∀t ∈ [0, T ] as well as E ∈ H 1 ([0, T ] × R 3 ) and B ∈ H 1 ([0, T ] × R 3 ).
Proof. Any bounded function f 0 satisfying (1.9b), (1.9c) and (1.10) can be approximated by a sequence (f n 0 ) n subject to (1.9)-(1.10) uniformly with respect to n ∈ N. Similarly, E 0 and B 0 can be approximated by

(E n 0 ) n and (B n 0 ) n with E n 0 ∈ C 2 c and B n 0 ∈ C 2 c . Moreover, it can be ensured that U n 0 := (f n 0 , E n 0 , B n 0 ) is such that N (U n 0 ) ≤ S 0 for all n ∈ N.
Theorem 2 gives access to solutions U n on [0, T ] associated with the initial data U n 0 , and satisfying (4.6). By compactness arguments (based on averaging lemmas [START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF][START_REF] Rein | Global weak solutions to the relativistic Vlasov-Maxwell system revisited[END_REF]), passing to the limit (n → +∞), we can extract a corresponding weak solution U = (f, E, B) ∈ L ∞ ×L 2 ×L 2 which still satisfies (4.6). But from [START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF]-Theorem 1 (or alternatively [START_REF] Besse | Regularity of weak solutions for the relativistic Vlasov-Maxwell system[END_REF]) together with (4.6), we can deduce 1 that ξ-averages of u (without the need of momentum cutoff) are in H 2 ([0, T ] × R 3 ), and therefore that E ∈ H 1 and B ∈ H 1 . From there, applying [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], we can recover the uniqueness.

The information (4.6) is also adapted to concrete applications and to further stability results which, as in [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF], may be inherited from (4.6). Since the study of strongly magnetized plasmas were our point of entry [START_REF] Cheverry | The relativistic Vlasov Maxwell equations for strongly magnetized plasmas[END_REF][START_REF] Cheverry | Uniform lifetime for classical solutions to the hot, magnetized, relativistic Vlasov Maxwell system[END_REF], this axis of research is prioritized in the present article. For the moment, we can only say that T is all the greater given that S 0 is small. And we can already guess that T could remain fixed for a large magnetic field whose size is adequately compensated by the smallness of S 0 . This will be confirmed in Section 5. In Subsection 4.1, we lay the background for a phase space analysis. These preliminaries lead in Subsection 4.2 to the study of weighted integrals. This results in Subsection 4.3 in the proof of Proposition 10. From now on, we will work implicitly with t < T . P ∞ (t) := sup 1 + P(s) 2 1/2 ; s ∈ [0, t] .

By compactness arguments using the continuity of f, we can find some (t 0 , x 0 , ξ 0 ) such that

(t 0 , x 0 , ξ 0 ) ∈ [0, t] × supp f(t 0 , •) , ξ 0 = P (t 0 ) = P ∞ (t).
In view of (3.2), the position (x 0 , ξ 0 ) is necessarily the image by (X, Ξ)(t 0 , •) of some (y 0 , η 0 ) in the support of f 0 . In other words, we have ξ 0 = Ξ(t 0 , y 0 , η 0 ) for some η 0 satisfying |η 0 | ≤ P 0 . It follows that (4.12)

P ∞ (t) = Ξ(t 0 , y 0 , η 0 ) = η 0 + D(t 0 , y 0 , η 0 ) ≤ 1 + P 0 + |D(t 0 , y 0 , η 0 )|.
By this way, the control of P ∞ (t) boils down to the study of |D(t 0 , y 0 , η 0 )|. Moreover, for s = t 0 , we find that (X, Ξ)(s, y 0 , η 0 ) must be in the support of f(s, •) so that

(4.13) Ξ(s, y 0 , η 0 ) ≤ P ∞ (s) ≤ P ∞ (t) , ∀s ∈ [0, t].
Unless necessary, we will no more mention the selection of (y 0 , η 0 ). 

0 ≤ f(r, x, ξ) ≤ S 0 , ∀ (r, x, ξ) ∈ [0, T [×R 3 × R 3 .
Looking at (4.14), we can already assert that P ∞ is qualitatively controlled by zero-order information on U, with no derivatives of f, E h , E or B. In fact, the situation is even better since the influence of f, E and B is expressed through integrals with respect to ds dω dξ. This aspect is examined in the next paragraph.

Comparison of measures, microlocal pictures and related difficulties.

All the integrals D a (except for = h) involve the differential element ds dω. It is worth noting that this ds dω appears in our analysis after special procedures, by mixing different aspects :

-the part ds comes from (3.10). We do not look at the speed of propagation (in momentum) which in our context may be large. Instead, we consider some integral version of it. When dealing with (3.1), we exploit Duhamel's principle.

-the part dω is issued from (3.15). The Radon transform involves integrals on families of (twodimensional) hyperplanes. Its inverse implies integrals on (two-dimensional) spheres with respect to dω.

By assembling ds and dω, we find ds dω. This combination of the variables s and ω emerges also at the level of (3.4). Indeed, in the D a , all expressions, like f(r, •, ξ), are evaluated at the specific position X(s) + (s -r)ω (note that r = 0 in case of D a 0 ). This furnishes a link to the Lebesgue measure dx. To this end, we can (for instance) exploit Lemma 2.2 of [START_REF] Pallard | A refined existence criterion for the relativistic Vlasov-Maxwell system[END_REF] which is recalled below for the sake of completeness. 

X : [r, t] × S 2 -→ R 3 (s, ω) -→ X (s, ω) := X(s) + (s -r) ω is a C 1 -
diffeomorphism onto some region of R 3 . Its Jacobian J is given by

(4.16) J(r, s, ω) := (s -r) 2 1 + ω • ν • Ξ(s) , J ds dω = dx.
Thus, the pushforward (by X ) of the measure ds dω is absolutely continuous with respect to the Lebesgue measure : it is just J -1 dx. Now, we can extend this argument at a microlocal level. The Radon transform is an integral (hence non local) operator and, as such, it is not suitable for transferring localizations.

However, what counts inside the D a is X , which can effectively translates (microlocal) localizations in terms of (s, ω, ξ) into (microlocal) localizations in terms of (x, ξ) -and conversely. In doing so, the landscape is changing. The advantage is that working with (s, ω, ξ) instead of (x, ξ) is much easier. This transfer of microlocal localizations is achieved by the map X which is built (through X) on a complete nonlinear evolution (on a special solution to the RVM system) and on the choice of a specific characteristic (namely X for a special selection of y 0 and η 0 ). Passing to the phase space, we have to deal with the pushforward by X ⊗ Id ξ of the measure ds dω dξ. Modulo the Jacobian J, this enables a connection with the Liouville measure dx dξ.

One of the main interests of Proposition 7 associated with (4.16) is to produce explicit weights which indicate where f , E and B contribute most to the D a . Depending upon the relative positions of Ξ(s), ω and ξ, these weights can be larger or smaller. To perform estimates by taking care of the respective localizations of Ξ(s), ω and ξ is what we call here Radon Fourier analysis. We use the expression « Radon » because the angle ω (resp. the measure dω) has appeared after a Radon transform (resp. through its inverse R -1 ).

In the end, we are faced with three types of singularities related to the content of the weight functions |W | or to negative powers of J thus introduced :

a) Complication at ω = -ξ/|ξ| coming from negative powers of 1 + ω • ν(ξ) inside the |W |. This leads to unbounded coefficients in the perspective of a global analysis (ξ ∈ R 3 ).

b) Problem at s = r due to the introduction of J -1 (or J -1/p in case of Hölder estimates). This induces a singularity in the time variable.

c) Difficulty at ω = -Ξ(s)/|Ξ(s)| issued from negative powers of 1 + ω • ν • Ξ(s) which are provided by J -1 (or J -1/p ). This reflects some interplay between the phase space and the momentum component Ξ(s) of the characteristics.

4.1.3. Three useful tools. The origin of negative powers of 1 + ω • ν(η) inside (3.4) is manifold. For η = ξ, they go with the gain of one derivative (in Lemma 8). For η = ξ again, they are also due to the rate at which the transversality condition between the derivative ∂ t +ν(ξ)•∇ x and the light cones can degenerate for large values of |ξ|. Or for η = Ξ(s), they could be issued from the inverse J -1/p of the Jacobian. From a quantitative perspective, they may furnish large weights. We examine below what happens in diverse situations A, B and C.

• A. This case deals with sup-norm estimates on the coefficients. It is particularly relevant for the study of D a ne and D a nb because only L 2 -estimates are available when dealing with E and B. Lemma 14. [Maximal loss due to the proximity of ν(η) to the light cone] We have

(4.17) 0 ≤ 1 + ω • ν(η) -1 ≤ 2 η 2 , ∀ (ω, η) ∈ S 2 × R 3 . Proof. It suffices to remark that 1 + ω • ν(η) -1 ≤ 1 -(|η|/ η ) -1 = η ( η + |η|).
The bound (4.17) is (almost) optimal when |η| is large, and ω becomes close to -η/|η|. However, for other values of ω, the upper bound (4.17) furnishes only a rough control. The question is therefore to evaluate the impact of this singular factor in terms of the measure dω.

• B. Large weights may have a limited impact when they focus on a domain of small measure. This is helpful at the level of D a 0 and D a l because we know that f 0 and f are bounded functions. Below, this effect appears after integration with respect to ω. Lemma 15. [Gain after averaging along the sphere] For all (δ, η) ∈ R + × R 3 , we have

(4.18) 0 ≤ S 2 1 + ω • ν(η) -δ dω        η 2 (δ-1) when 1 < δ, 1 + ln η when δ = 1, 1 when δ < 1.
Proof. By performing a rotation in ω, we can always assume that ν(η) = (|η|/ η ) t (0, 0, 1). Then, we can work in spherical coordinates as in (3.19) to see that

S 2 dω 1 + ω • ν(η) δ = π 0 2π 0 sin ϑ dϑ dϕ 1 + |η| cos ϑ/ η δ = (2π) η |η| +|η|/ η -|η|/ η ds (1 -s) δ = (2π) η |η| ×        1 1 -δ -1 - |η| η 1-δ + 1 + |η| η 1-δ when δ = 1, -ln 1 - |η| η + ln 1 + |η| η when δ = 1.
By this way, we can easily deduce (4.18).

• C. On different occasions, we will have to evaluate the distance between ν(η) and ω. This will serve for instance to control the vector valued functions W ne and W nb .

Lemma 16. [Comparison between ν(η)

and ω] We have

(4.19) |ν(η) + ω| ≤ √ 2 1 + ω • ν(η) 1/2 , ∀ (ω, η) ∈ S 2 × R 3 .
Proof. This is just because |ν(η) • Study of |W 0 |. From (3.5a), remark that

+ ω| 2 = |ν(η)| 2 + 2 ω • ν(η) + 1 ≤ 2 1 + ω • ν(η) .
W 0 (s, ω, ξ) := s 4π 1 - ν • Ξ(s) + ω • ν(ξ) + ω 1 + ω • ν(ξ) . With (4.19), it is obvious that (4.20) |W 0 (s, ω, ξ)| ≤ s 4π 1 + 2 1 + ω • ν • Ξ(s) 1/2 1 + ω • ν(ξ) 1/2 . • Study of |W l | From (3.5b), observe that W l (s, ω, ξ) := 1 4π 1 ξ 2 1 1 + ω • ν(ξ) - ν • Ξ(s) + ω • ω + ν(ξ) 1 + ω • ν(ξ) 2 .
Then, as a corollary of Lemmas 14 and 16, we can assert that 

(4.21) |W l (s, ω, ξ)| ≤ 1 π 1 + 1 + ω • ν • Ξ(s) 1/2 1 + ω • ν(ξ) 1/2
∇ ξ ν • Ξ(s) • ν(ξ) + ω 1 + ω • ν(ξ) = 1 ξ 1 + ω • ν(ξ) ν • Ξ(s) -ν(ξ) • ν • Ξ(s) ν(ξ) - ν • Ξ(s) • ν(ξ) + ω ξ 1 + ω • ν(ξ) 2 ω -ν(ξ) • ω ν(ξ) .
This is a vector valued function which can be decomposed with respect to the moving "frame" made of the three directions ω, ν • Ξ(s) + ω and ν(ξ) + ω. This gives rise to

∇ ξ ν • Ξ(s) • ν(ξ) + ω 1 + ω • ν(ξ) = - 1 ξ 1 + ω • ν • Ξ(s) 1 + ω • ν(ξ) ω + 1 ξ 1 1 + ω • ν(ξ) ν • Ξ(s) + ω + 1 ξ + 1 + ω • ν • Ξ(s) 1 + ω • ν(ξ) - ν(ξ) + ω • ω + ν • Ξ(s) 1 + ω • ν(ξ) 2 ν(ξ) + ω .
The three vectors ω, ν • Ξ(s) + ω and ν(ξ) + ω are clearly uniformly bounded (by 2) as functions of (s, ω, ξ). When doing the above decomposition, we can observe that the coefficient in factor of ω is small (at least smaller than what appears at first sight ) due to various cancellations that are revealed during its decomposition. On the other hand, the sizes of ν • Ξ(s) + ω and ν(ξ) + ω can be estimated through Lemma 16. Briefly, from (3.6), we can deduce that

(4.22) |W n (r, s, ω, ξ)| ≤ 3 √ 2 2 π (s -r) ξ 1 + ω • ν • Ξ(s) 1/2 1 + ω • ν(ξ) , ∀ ∈ {e, b}.
4.2. Weighted integrals. The goal of this subsection is to estimate the contributions provided by the D a with ∈ {0, h, l, ne, nb}. This will be done in separate paragraphs, one for each D a . Before starting, we would like to accurately define the scope of our discussion. Indeed, different courses of action are possible when studying the D a .

In the perspective of continuation criteria, one might attempt to minimize the powers of P ∞ needed to control the D a . As in [START_REF] Luk | Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system[END_REF][START_REF] Pallard | A refined existence criterion for the relativistic Vlasov-Maxwell system[END_REF][START_REF] Patel | Three new results on continuation criteria for the 3D relativistic Vlasov-Maxwell system[END_REF], it seems that additional conditions (to be identified) are needed to recover the global existence. This interesting option is not pursued here.

On the other hand, to fit in with Proposition 10, one can insist on the role of S 0 when looking at the momentum increment. This is the path that we follow below. However, when doing this, a cautionary note is in order. This is because the functional N (and thereby S 0 ) involves different types of norms : first, the sup-norm concerning f 0 ; and secondly, the Sobolev norm W 1, p in the case of (E 0 , B 0 ). Let us explain the origin of this distinction :

-The handling of the D a with ∈ {0, l, ne, nb} does not prove to be demanding in terms of regularity. It will only require the use of f 0 0 and E E E 0 .

-The manipulation of D a h could be based just on a sup-norm estimate concerning E h . It is the transcription of such uniform bound in terms of the initial data (E 0 , B 0 ) that generates the implementation of W 1, p. By the way, note that the use of p ∈]3/2, 3[ instead of p = +∞ (or even higher levels of regularity) is a subtle refinement that will be clarified in Paragraph 4.2.2.

In other words, the focus is on the minimal regularity required on the complete initial data U 0 in order to control the quantities D a . In so doing, for the sake of simplicity, we have highlighted in Proposition 10 the role of the sole parameter S 0 , which serves in fact to cover different aspects. For instance, from (1.9), we get that (4.23)

R 3 R 3 ξ f 0 (x, ξ) dx dξ P 7 0 S 0 , P 0 := (1 + P 2 0 ) 1/2 ,
where the symbol is for ≤ C with some (universal) constant C not depending on P 0 or S 0 . On the other hand, the Sobolev embedding theorem (which holds since p < 3) ensures that E 0 ∈ L p for some p > 3. By interpolation, we get that W 1, p → L 2 . Now, since N (U 0 ) ≤ S 0 , we have (4.24)

R 3 |E 0 (x)| 2 dx + R 3 |B 0 (x)| 2 dx S 2 0 .
Coming back to (2.4) and using (4.4), it follows that (for fixed P 0 and small S 0 )

(4.25) E E E 0 P 7 0 S 0 + S 2 0 S 0 .
It is clear that the S 0 of (4.23) comes from the sup-norm of f 0 , while the S 0 of (4.24) is issued from the W 1, p-norm of (E 0 , B 0 ). These contributions are mixed (with different powers) at the level of (4.25).

To avoid having to introduce too much material, our decision is to not make the various origins of S 0 apparent in the final statement. But the interested reader can easily trace S 0 in the forthcoming analysis. 

D a 0 (t) = t 0 S 2 R 3 |W 0 (s, ω, ξ)| f 0 X(s) + sω, ξ ds dω dξ S 1-(1/p) 0 E E E 1/p 0 t 2-(3/p) (1 + P 2 0 ) (3/2)-(2/p) .
Proof. Let q be the conjugate index of p. Remark that

D a 0 (t) = t 0 S 2 R 3 s -(2/p) |W 0 (s, ω, ξ)| ξ 1/p 1 + ω • ν • Ξ(s) 1/p × J(0, s, ω) 1/p ξ 1/p f 0 X(s) + sω, ξ ds dω dξ.
As explained in Paragraph 4.1.2, see (4.16), we can assert that

J 1/p ξ 1/p f 0 X(s) + sω, ξ L p ([0,t]×S 2 ×R 3 ) ≤ R 3 R 3 ξ f 0 (x, ξ) p dx dξ 1/p ≤ S 1-(1/p) 0 E E E 1/p 0 .
By Hölder's inequality, exploiting (4.20) and the condition p > 2 for the second term in the right hand side of (4.20), we find that

D a 0 (t) S 1-(1/p) 0 E E E 1/p 0 t 0 S 2 |ξ|≤P0 s q-(2q/p) ξ -(q/p) 1 + ω • ν • Ξ(s)
q/p ds dω dξ

1/q + S 1-(1/p) 0 E E E 1/p 0 t 0 S 2 |ξ|≤P0 s q-(2q/p) ξ -(q/p) 1 + ω • ν(ξ) q/p ds dω dξ 1/q .
We first integrate with respect to ω. Since q/p < 1 (since again p > 2), from Lemma 15, we have

D a 0 (t) S 1-(1/p) 0 E E E 1/p 0 t 0 s q-(2q/p) ds 1/q |ξ|≤P0 ξ -(q/p) dξ 1/q .
Since q -(2q/p) > 0, we end up with (4.26).

Study of

D a h . Remark that 0 ≤ D a h := t 0 |ν • Ξ(s)| |E h s, X(s) | ds ≤ t 0 |E h s, X(s) | ds , t ≤ T.
As already noted, the field (E 0 , B 0 ) has an impact on all the D as well as X because the Lorentz force F is built with (3.9), where A h (and therefore E 0 and B 0 ) is activated. It is particularly interesting to further examine its influence on D a h . There are two ways of thinking. • The linear viewpoint. That is concentrating on the only role of E h . This method could be based on the following observations marked by a) and b). a) In the local (in time) version of Proposition 10, it turns out that the restriction on (E 0 , B 0 ) may be exchanged with the mild assumption (4.27)

E h ∈ L 1 loc R + ; L ∞ (R 3 ) . b)
The field E h allows to absorb the main contribution brought by (E 0 , B 0 ). The wave equation inside (3.3) is linear and completely decoupled from (1.2)-(1.3). Moreover, the information (4.27) is available for a whole range of bounded initial data (E 0 , B 0 ). The W 1, p-condition is not necessarily (and also not sufficient) for that.

• It would be enough to deal with (4.27), but this would be disappointing in terms of the Cauchy problem for the RVM system. Moreover, that would ignore a subtle nuance arising between the time integration of E h s, X(s) and the one of E h (s, x). First, recall that (4.27) is not easy to find [START_REF] Sogge | L p estimates for the wave equation and applications[END_REF]. In particular, the endpoint Strichartz estimate (4.28)

E h L 2 t L ∞ x E 0 Ḣ1 + ∇ x × B 0 L 2
is known to be false [START_REF] Keel | Endpoint Strichartz estimates[END_REF]. Furthermore, for data E 0 and B 0 in W 1, p(R 3 ), it is not clear that the integral of E h along any space-time curve makes sense. At this low level of regularity, the meaning of D h cannot be based solely on the properties of E h . We have to change the perspective.

• The nonlinear viewpoint. This means to look at the expression D a h as a nonlinear functional, pursuant to the influence of X. This approach has a clear advantage. The counter-examples to the inequality (4.28) are exhibited by concentrating solutions along the light cone. But the special curve s, X(s) ; s ∈ [0, t] intersects the light cone transversally, and therefore the time integration of E h when computing D a h reduces this alignment effects. This (relativistic) feature is a key ingredient because it allows to exploit (as in [START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Glassey | Singularity formation in a collisionless plasma could occur only at high velocities[END_REF][START_REF] Jabin | DiPerna-Lions flow for relativistic particles in an electromagnetic field[END_REF][START_REF] Klainerman | Space-time estimates for null forms and the local existence theorem[END_REF]) the different speeds of propagation between the slow particles and the fields (which propagate at the speed of light). It is crucial here to make sense of D h in the context of (1.7).

•

Lemma 18. [Control of D a h ] We have (4.29) D a h S 0 (t + 1) P ∞ (t) 2/3 .
Proof. Let us turn to another interpretation of D h . The field E h is given by Kirchhoff's formula

E h (t, x) = t M t (∇ x × B 0 ) + ∂ t t M t (E 0 ) = t M t (∇ x × B 0 ) + t M t (ω • ∇ x E 0 ) + M t (E 0 ),
where, for t ∈ R + , we have introduced the mean operator

M t : L ∞ (R 3 ) → L ∞ (R 3 ) defined by M t (k)(x) := 1 4π S 2 k(x + tω) dω , |||M t ||| L(L ∞ ) ≤ 1.
After substitution, this means that (4.30)

D a h 3 i=1 t 0 S 2 s |∂ xi E 0 | + |∂ xi B 0 | s, X(s) + sω ds dω + t 0 S 2 |E 0 | s, X(s) + sω ds dω.
First, consider the contribution coming from ∂ xi E 0 (do the same with

∂ xi B 0 ). Since E 0 is selected in W 1, p, we know that ∂ xi E 0 ∈ L p.
Let q := p/(p -1) be the Hölder conjugate of p. By Hölder's inequality, we can assert that

t 0 S 2 s |∂ xi E 0 | s, X(s) + sω ds dω t 0 S 2 J |∂ xi E 0 | p s, X(s) + sω ds dω 1/ p t 0 S 2 s q J q/ p ds dω 1/q S 0 E 0 W 1, p t 0 S 2 s q-(2q/ p) 1 + ω • ν • Ξ(s) q/ p ds dω 1/q .
To estimate the right hand side, we start by applying Lemma 15 with 1 ≤ δ = q/p ≤ 2 ; then, we use (4.13) and finally, to obtain the time integrability near s = 0, it suffices to remark that we have q -(2q/p) > -1 (since 3/2 < p). This furnishes

t 0 S 2 s q-(2q/ p) 1 + ω • ν • Ξ(s) q/ p ds dω 1/q t 2-(3/ p) P ∞ (t) (4/ p)-2 .
Since 2 -(3/p) < 1 and (4/p) -2 ≤ 2/3 when 3/2 < p ≤ 2, we find the right hand side of (4.29). Secondly, we look at the contribution brought inside (4.30) by E 0 . The difficulty is that « s » is no more in factor. But this lost may be compensated by extra integrability concerning E 0 . Indeed, the Sobolev embedding theorem gives E 0 ∈ L p for some p > 3. Let q := p/(p -1) be the Hölder conjugate of q so that 2q/p < 1. By Hölder's inequality, we have

t 0 S 2 |E 0 | s, X(s) + sω ds dω t 0 S 2 J |E 0 | p s, X(s) + sω ds dω 1/ p t 0 S 2 J -q/ p ds dω 1/q S 0 E 0 L p t 0 S 2 s -2q/ p 1 + ω • ν • Ξ(s) q/ p ds dω 1/q S 0 E 0 W 1, p t -(2/ p)+(1/q) S 0 (t + 1).
Again, this is consistent with (4.29).

4.2.3.

Study of D a l . Observe that W l (s, •) is an odd function. Thus, there is no benefit from the sign condition on f when studying D a l . Lemma 19. [Control of D a l ] For all p ∈]3, +∞], we have

(4.31) D a l (t) = t 0 t r S 2 R 3 W l (s, ω, ξ) f r, X(s) + (s -r)ω, ξ ds dω dξ dr S 1-(1/p) 0 E E E 1/p 0 t 1-(3/p) t 0 P ∞ (r) 3-(4/p) dr.
Proof. The inequalities (4.20) and (4.21) are similar, except that (s -r) does not appear in factor in the right hand side of (4.21). Due to this additional difficulty, there are some nuances in comparison to what has been done in Paragraph 4.2.1. From (4.21), as soon as p > 2, we have

D a l (t) t 0 t r S 2 R 3 (J 1/p ξ 1/p f) r, X(s) + (s -r)ω, ξ (s -r) 2/p 1 + ω • ν • Ξ(s) 1/p ξ 1/p ds dω dξ dr + t 0 t r S 2 R 3 (J 1/p ξ 1/p f) r, X(s) + (s -r)ω, ξ (s -r) 2/p 1 + ω • ν(ξ) 1/2 ξ 1/p
ds dω dξ dr.

We apply Hölder's inequality

D a l (t) S 1-(1/p) 0 E E E 1/p 0 t 0 t r S 2 |ξ|≤P(r)
ds dω dξ

(s -r) 2q/p 1 + ω • ν • Ξ(s) q/p ξ q/p 1/q dr + S 1-(1/p) 0 E E E 1/p 0 t 0 t r S 2 |ξ|≤P(r)
ds dω dξ

(s -r) 2q/p 1 + ω • ν(ξ) q/2 ξ q/p 1/q dr.
Knowing that q/p < 1 and q/2 < 1, we can integrate with respect to ω through Lemma 15. Then, we have to take p > 3 (so that 2q/p < 1) in order to be sure that the integral with respect to ds is convergent, giving rise to (4.31). 

(4.32) D a n (t) S 1-(1/2p) 0 E E E (1/2)+(1/2p) 0 t (1/2)-(3/2p) t 0 P ∞ (r) 4-(3/p) dr.
Proof. By Cauchy-Schwarz inequality, since G (r, •) ∈ L 2 (R 3 ) with a bound which can be viewed as coming from (2.5), we have

D a n (t) S 1/2 0 E E E 1/2 0 × t 0 P ∞ (r) 3/2 t r S 2 |ξ|≤ P ∞(r) (J -1 W 2 n f) r, X(s) + (s -r)ω, ξ ds dω dξ 1/2
dr.

From (4.22), for ∈ {e, b}, we obtain that

J -1 W 2 n ξ -2 1 + ω • ν(ξ) -2 .
Again, we select some p > 3. By Hölder's inequality, we get

t r S 2 |ξ|≤ P ∞ (r) (J -1 W 2 n f) r, X(s) + (s -r)ω, ξ ds dω dξ t r S 2 |ξ|≤ P ∞(r) J 1/p ξ 1/p f r, X(s) + (s -r)ω, ξ (s -r) 2/p ξ 2+(1/p) 1 + ω • ν(ξ) 2 1 + ω • ν • Ξ(s) 1/p ds dω dξ S 1-(1/p) 0 E E E 1/p 0 t r S 2 |ξ|≤ P ∞ (r) ξ -2q-(q/p) (s -r) 2q/p 1 + ω • ν • Ξ(s) -q/p 1 + ω • ν(ξ) 2q ds dω dξ 1/q .
On the one hand, from Lemma 14, we have

ξ -2q-(q/p) 1 + ω • ν(ξ) -2q ξ 2q-(3q/p) 1 + ω • ν(ξ) -q/p .
On the other hand, from Lemma 15 together with the condition 2q/p < 1, we can assert that

S 2 1 + ω • ν(ξ) -q/p 1 + ω • ν • Ξ(s) -q/p dω S 2 1 + ω • ν(ξ) -2q/p dω + S 2 1 + ω • ν • Ξ(s) -2q/p dω 1.
This implies that t r S 2 |ξ|≤ P ∞(r)

ξ -2q-(q/p) (s -r) 2q/p 1 + ω • ν • Ξ(s) -q/p 1 + ω • ν(ξ) 2q ds dω dξ 1/q t 1-(3/p) P ∞ (r) 5-(6/p) .
From there, it is easy to deduce (4.32). 

P ∞ (τ ) 1 + P 0 + S (3/p)-1+ι (2-3/p) 0 τ 2-(3/p) (1 + P 2 0 ) (3/2)-(2/p) + (S ι 0 τ + S 0 ) P ∞ (τ ) 2/3 + S (3/p)-1+ι (2-3/p) 0 τ (p-3)/p τ 0 P ∞ (r) 3-(4/p) dr + S (3/2p)+ι (p-3)/(2p) 0 τ (p-3)/(2p) τ 0 P ∞ (r) 4-(3/p) dr.
We can adjust p > 3 sufficiently close to 3 to ensure that 0 < (3/p) -1 + ι (2 -3/p).

We select τ ∈ [0, τ 0 ] with arbitrary τ 0 > 0, and using Young's inequality, one can absorb the power 2/3 of P ∞ (τ ). There remains

P ∞ (τ ) 1 + τ 0 P ∞ (r) 4 dr.
This estimate is compatible with Bihari-LaSalle inequality. It furnishes a time τ ≤ τ 0 and a continuous increasing function F : [0, τ ] → R + (not depending on ι) such that

P ∞ (τ ) ≤ F(τ ) , ∀ τ ∈ [0, τ ],
or equivalently (4.33)

P(t) ≤ P ∞ (t) ≤ F(S 1-ι 0 t) , ∀ t ∈ [0, T [∩[0, S ι-1 0 τ ].
Passing to the limit (ι → 0+), with c = τ and F(S 0 ; t) := F(S 0 t), we recover (4.6) .

Application

This section is still devoted to the study of (1.2)-(1.3)- (1.4). But from now on, we assume that the initial data U 0 ≡ U ε 0 takes the form of (1.18) where U ε a (0, •) is issued from a well-prepared approximate solution U ε a (in the sense of Definition 21 below). Thus, we consider a family of Cauchy problems indexed by ε ∈]0, 1]. From [START_REF] Wollman | An existence and uniqueness theorem for the Vlasov-Maxwell system[END_REF], for all ε ∈]0, 1], there exists locally in time, say on the interval [0, T ε ] with T ε ∈ R * + , a unique smooth solution U ≡ U ε . The main goal is to show that we can extract a lower bound T ∈ R * + such that T ≤ T ε for all ε ∈]0, 1]. To this end, Proposition 10 is of no use. Indeed, as soon as B ε a ∼ ε -1 , the condition N (U ε 0 ) 1 is not uniformly satisfied when ε → 0. However, the proof of Proposition 10 does not exploit a number of specificities that can be detected by working in the vicinity of U ε a . Far beyond [START_REF] Cheverry | The relativistic Vlasov Maxwell equations for strongly magnetized plasmas[END_REF][START_REF] Cheverry | Uniform lifetime for classical solutions to the hot, magnetized, relativistic Vlasov Maxwell system[END_REF][START_REF] Wei | On the 3D relativistic Vlasov-Maxwell system with large Maxwell field[END_REF], this will allow us to incorporate the dense, hot and strongly magnetized framework. In Subsection 5.1, we furnish some preparatory material. In Subsection 5.2, we discuss the issue of energy estimates. This is an opportunity to identify the challenges posed by the introduction of U ε a . In Subsection 5.3, we prove Theorem 5. 5.1. Preliminary background. We start in Paragraph 5.1.1 by generalizing the choice (1.17). In Paragraph 5.1.2, we write the equations which are satisfied by the perturbation U = (f, E, B). In Paragraph 5.1.3, we specify the exact meaning of «compatible initial data». 5.1.1. Well-prepared approximate solutions. The system built with (1.2) and the two equations at the left of (1.3) is denoted by L(U, ∂)U = 0. This quasilinear system (with integral source term J) is obtained by ignoring the compatibility conditions. Definition 21 (Well-prepared approximate solutions). We say that the family {U ε a } ε is a well-prepared approximate solution to (1.2)-(1.3) if :

• There exists a time T a ∈ R * + such that, for all ε ∈]0, 1], we have (5.1)

U ε a = (f ε a , E ε a , B ε a ) ∈ C 1 ([0, T a ] × R 3 × R 3 ; R 7
). • There exists a constant P a ∈ R * + such that, for all ε ∈]0, 1], we have

(5.2) supp f ε a ⊂ [0, T a ] × R 3 × B(0, P a ].
• There exist positive constants S a and H a such that (in the sup-norm with respect to the domain [0, T a ] × R 3 × R 3 ), for all ε ∈]0, 1], we have the sup-norm estimates

f ε a ∞ ≤ S a , (5.3a) E ε a ∞ ≤ S a , , (5.3b 
) ε B ε a ∞ ≤ H a . ( 5 

.3c)

• There exists a constant L a such that, for all ε ∈]0, 1], we have the Lipschitz estimate

(5.4) ∇ t,x,ξ f ε a ∞ ≤ L a . • Let E ε
h be the solution to the linear wave equation (3.3) with initial data

E ε h|t=0 = E ε a (0, •) , ∂ t E ε h|t=0 = ∇ x × B ε a (0, •).
There exists a positive constant S h ∈ R * + such that, for all ε ∈]0, 1], we have (5.5)

E ε h L 1 ([0,Ta];L ∞ x ) ≤ S h . • Introduce the remainder R ε a := L(U ε a , ∂)U ε a .
There exist positive constants S r and N r such that, for all ε ∈]0, 1], we have

R ε a ∞ ≤ S r , (5.6a) R ε a L 2 ≤ N r ε, (5.6b)
where R ε a L 2 stands for the following L 2 -norm :

R ε a L 2 := R ε fa 2 L 2 ([0,Ta]×R 3 ×R 3 ) + R ε Ea 2 L 2 ([0,Ta]×R 3 ) + R ε Ba 2 L 2 ([0,Ta]×R 3 ) 1/2 .
• For all (ε, x) ∈]0, 1] × R 3 , at the time t = 0, we impose the compatibility conditions

∇ x • E ε a (0, x) = R 3 f ε a (0, x, ξ) dξ -ρ ε (x), (5.7a) ∇ x • B ε a (0, x) = 0. (5.7b)
Let us come back to the situation (1.17), where B e and M ε are adjusted as in (1.12) and (1.13). This means to deal with Ũε a , which gives rise to Ẽε h and Rε a . The four conditions (5.1), (5.2), (5.3) and (5.4) are clearly satisfied for all T a ∈ R * + . Due to the last condition inside (1.12), we simply find that Ẽε h ≡ 0 so that (5.5) is evident. In the same vein, we have Rε a := L( Ũε a , ∂) Ũε a ≡ 0 so that (5.6) is achieved. The condition (5.7a) for Ẽε a ≡ 0 can be guaranteed by adjusting ρ ε as indicated in (1.16), while the condition (5.7b) for Bε a = ε -1 B e is a consequence of the second condition inside (1.12). In brief, the family { Ũε a } ε is a well-prepared approximate solution. For a better understanding, Definition 21 must be supplemented with a number of remarks. Indeed, the lines (5.1), (5.2) and (5.3a) are just extensions of (1.9). But the other constraints serve other purposes which must be clarified. We discuss the rest of (5.3b)-(5.4), (5.3c), (5.5), (5.6) and (5.7) in separate Paragraphs, respectively in ra), rb), rc), rd) and re) below.

• ra) Link between the notion of well-prepared data and the Lipschitz estimate on f ε a . By definition, we have the decomposition

R ε a = (R ε fa , R ε Ea , R ε Ba ) ∈ R × R 3 × R 3 , with in particular (5.8) R ε fa := ∂ t f ε a + ν(ξ) • ∇ x f ε a + E ε a • ∇ ξ f ε a + ν(ξ) × B ε a • ∇ ξ f ε a .
Then, from (5.2), it is easy to see that (5.9) supp R ε fa ⊂ [0, T a ] × R 3 × B(0, P a ]. Then, from (5.3b), (5.4) and (5.6a), we can also infer that (5.10)

ν(ξ) × B ε a • ∇ ξ f ε a ∞ ≤ S r + (2 + S a )
L a . This is not a consequence of (5.3c) and (5.4). This is possible only if B ε a and f ε a are adjusted accordingly. In particular, this should hold true at the time t = 0. This is the common notion of well-prepared initial data, see for instance [START_REF] Cheverry | The relativistic Vlasov Maxwell equations for strongly magnetized plasmas[END_REF][START_REF] Cheverry | Uniform lifetime for classical solutions to the hot, magnetized, relativistic Vlasov Maxwell system[END_REF] or the books [START_REF] Métivier | The mathematics of nonlinear optics[END_REF][START_REF] Rauch | Hyperbolic Partial Differential Equations and Geometric Optics[END_REF]. In coherence with (5.4), where the L inside L a is for Lipschitz, this prevents the emergence of rapid variations inside f ε a . Instead, oscillations can be (or are intended to be) introduced through f ε 0 . •

• rb) Large magnetic fields. Strongly magnetized plasmas are available due to the weight ε which is put in factor of B ε a inside (5.3c), where the letter H inside H a is for High. Again, the prototype of such behavior is ε -1 B e inside Ũε a . From there, the construction of more elaborate approximate solutions is a subject in its own right. This is a way of revealing various physical phenomena. In the absence of coupling, if we concentrate only on the Vlasov part, this involves a WKB analysis which ties in with the recent advances [START_REF] Cheverry | Anomalous transport[END_REF][START_REF] Cheverry | Long time gyrokinetic equations[END_REF].

•

• rc) The impact of initial electromagnetic fields. The condition (1.18) may seem restrictive since we impose (E ε 0 , B ε 0 ) ≡ 0. This is to forget that the presence at the time t = 0 of a non-zero electromagnetic component is considered as an integral part of the construction of U ε a . Indeed, the access to U ε a may be achieved in two steps. The first is to solve the Cauchy problem (3.3) 

with initial data (E 0 , B 0 ) ≡ (E ε a , B ε a )(0, •) in order to get (E ε h , B ε h ) ; the second is to seek approximate solutions in the form U ε a = (f ε a , E ε h + Ěε a , B ε h + Bε a ) with ( Ěε a , Bε a )(0, •) ≡ 0.
When doing this, there is not total freedom concerning the choice of (E ε a , B ε a )(0, •). Indeed, it is necessary to ensure the property (5.5). Now, for reasons explained in Paragraph 4.2.2, this cannot be taken for granted under only L 2 or even H 1 -controls on (E ε a , B ε a )(0, •). • • rd) About the remainder. The condition (5.6) gives meaning to the word «approximate». The smallness of the remainder is measured by the relatively mild constraint (5.6b).

•

• re) About the compatibility conditions. In view of (1.5), the restrictions (5.7a) and (5.7b) seem unavoidable. But it is difficult and pointless to preserve the compatibility conditions when constructing approximate solutions U ε a . It is preferable to rather leave some freedom to the remainder R ε a and therefore to the choice of U ε a while, as will be seen, the exact solution U ε is sure to propagate the initial compatibility conditions.

•

Changing T ε if necessary, we can always assume that we work with T ε ≤ T a .

5.1.2. The equations for the perturbation. Recall the decomposition (1.19) where U has been put in the form U = U ε a + U with U = (f, E, B). The Lorentz force F acts on the charged particles through a contribution coming from U ε a and a part issued from the self-consistent electromagnetic field (E, B). We have F = F ε a + F with (5.11)

F ε a := E ε a (t, x) + ν(ξ) × B ε a (t, x) , F ε ≡ F := E(t, x) + ν(ξ) × B(t, x).
After substitution of U as in (1.19) inside (1.2)-(1.3), the Vlasov equation becomes (5.12)

∂ t f + ν(ξ) • ∇ x f + (F ε a + F ) • ∇ ξ f + F • ∇ ξ f ε a = R ε fa ,
and the Maxwell's equations reduce to

∂ t E -∇ x × B + R 3 ν(ξ) f (t, x, ξ) dξ = R ε Ea , (5.13a) ∂ t B + ∇ x × E = R ε Ba . (5.13b)
The system (5.12)-(5.13) is denoted by L ε a (U, ∂)U = 0.

5.1.3. Compatible initial data. In view of (1.18), the initial data are adjusted according to (5.14)

f |t=0 = f ε 0 , E |t=0 = 0, B |t=0 = 0.
Constraints inherited from (1.9), (1.5)-(5.7) and (5.3c) must be imposed on f ε 0 . Definition 22. [Compatible family of initial data] We say that the family {f ε 0 } ε is compatible when the following five conditions are satisfied : a) Regularity :

(5.15)

f ε 0 ∈ C 1 c (R 3 × R 3 ; R) , ∀ ε ∈]0, 1].
b) Uniform control on the the size of the momentum support :

(5.16)

supp f ε 0 (•) ⊂ R 3 × B(0, P 0 ] , ∀ ε ∈]0, 1].
c) Uniform sup-norm estimate :

(5.17)

f ε 0 ∞ := sup (x,ξ)∈R 3 ×R 3 |f ε 0 |(x, ξ) ≤ S 0 , ∀ ε ∈]0, 1]. d) L 2 -smallness : (5.18) f ε 0 L 2 N 0 ε , ∀ ε ∈]0, 1].
e) Compatibility conditions (issued from U ε a ) :

(5.19)

R 3 f ε 0 (0, x, ξ) dξ = 0 , ∀ (x, ε) ∈ R 3 ×]0, 1].
In view of (1.18), (5.7) and (5.19), the compatibility conditions (1.5) are satisfied at time t = 0. They are propagated so that

∇ x • E ε a (t, x) + ∇ x • E(t, x) = R 3 f ε a (t, x, ξ) dξ + R 3 f (t, x, ξ) dξ -ρ ε (x), (5.20a) ∇ x • B ε a (t, x) + ∇ x • B(t, x) = 0. (5.20b)
We can test Definition 22 with f ε 0 ≡ ε f 0 where f 0 ∈ C 1 c (R 3 × R 3 ) does not depend on ε and is as indicated in (1.9) and (1.10) with ρ ≡ 0. We have obviously a), b) and c) as well as e). Moreover, we have d) with N 0 = f 0 L 2 . Thus, under these assumptions on f 0 , we can assert that :

The family {ε f 0 } ε is compatible. Now, we can apply Theorem 5 with U ε a ≡ 0 and f ε 0 = ε f 0 . Then, just fix ε = 1 to recover the conclusions of Theorem 2. Theorem 5 can therefore be viewed as an extension of Theorem 2. Its proof implies a few subtleties in comparison to what has been done in Section 4.

5.2.

Estimating the pertubation. In the perturbative context (5.12)-(5.13), it becomes more complicated to control f and (E, B). In Subsection 5.2.1, we comment on the structure of the characteristic flow and, from there, we deduce sup-norm estimates on f (t, •). In Subsection 5.2.2, we explain why E E E is of no use any more, and we follow an alternative path in order to manage the L 2 -norm of (E, B)(t, •).

5.2.1.

The oscillating characteristic flow. In the context of (1.19), the differential system (3.1) breaks down into (5.21)

       dX dt (t, y, η) = ν(Ξ), X(0, y, η) = y, dΞ dt (t, y, η) = F ε a (t, X, Ξ) + F (t, X, Ξ) , Ξ(0, y, η) = η.
In a first attempt, the impact of the self-consistent electromagnetic field (E, B) may be neglected. In particular, in the case of strongly magnetized plasmas (when B ε a ∼ ε -1 ), the dominant part inside (5.21) may be thought as

(5.22)        dX ε a dt (t, y, η) = ν(Ξ ε a ), X ε a (0, y, η) = y, dΞ ε a dt (t, y, η) = F ε a (t, X ε a , Ξ ε a ) , Ξ ε a (0, y, η) = η.
The study of (5.22), when for instance E ε a = E a and B ε a = B a + ε -1 B e with a given field (E a , B a ) not depending on ε, is very informative. This provides WKB expansions for (X ε a , Ξ ε a ) which reveal the high complexity of the underlying motions [START_REF] Cheverry | Anomalous transport[END_REF][START_REF] Cheverry | Long time gyrokinetic equations[END_REF]. The flow associated with (5.22) 

FD ε a (t, y, η) := t 0 ν • Ξ ε a (s, y, η) • E ε a s, X ε a (s, y, η) ds.
From (5.3b), we can see that |FD ε a | ≤ t S a . This is already an indication that D should remain under control only where the impact of U can be taken into account. To this end, by analogy with (4.2) and (4.11), we can define 3 and for all ξ ∈ R 3 with R ≤ |ξ| , as well as

P (t) := inf R ∈ R + ; f (t, x, ξ) = 0 for all x ∈ R
(5.23) P ∞ (t) := sup s∈[0,t] 1 + P (s) 2 1/2 .
The solutions to the Vlasov equation (1.2) are constant along the characteristics, so that

0 ≤ f ε a (t, x, ξ) + f ε (t, x, ξ) = f ε a 0, X(-t, x, ξ), Ξ(-t, x, ξ) + f ε 0 X(-t, x, ξ), Ξ(-t, x, ξ) .
As a consequence, we can assert that (5.24)

f ε (t, •) ∞ S a + S 0 , ∀(t, ε) ∈ [0, T ε ]×]0, 1]. 5.2.2. Propagation of the L 2 -norm. The system (1.2)-(1.
3) is endowed with the conserved total energy E E E (t), see (2.4)-(2.5). In the strongly magnetized case, we find that E E E (t) = E E E (0) ∼ ε -1 and the use of E E E (t) does not help in the perspective of uniform estimates. Instead, we could consider the relative energy E (t) defined by

E (t) := R 3 R 3 ξ f (t, x, ξ) dx dξ + 1 2 R 3 (|E| 2 + |B| 2 )(t, x) dx.
Let us first examine what happens in the case of Ũε a , with Ũε a as in (1.17).

Lemma 23. Assume that U ε a ≡ Ũε a . Then, for all t ∈ [0, T ε ], we have E (t) = E (0). Proof. The proof of this conservation of E may be achieved through direct computations based on (5.12)-(5.13). But it is more instructive to deduce it from the well-known conservation [START_REF] Rein | Global weak solutions to the relativistic Vlasov-Maxwell system revisited[END_REF] of the total energy E E E (t). When U ε a ≡ Ũε a , this gives rise to

R 3 R 3 ξ (M + f )(t, x, ξ) dx dξ + 1 2 R 3 |E(t, x)| 2 dx + 1 2 R 3 |ε -1 B e (x) + B(t, x)| 2 dx = R 3 R 3 ξ (M + f 0 )(x, ξ) dx dξ + 1 2 R 3 |ε -1 B e (x)| 2 dx.
This is the same as

E (t) + ε -1 R 3 B e (x) • B(t, x) = E (0).
Since B e is an irrotational field, it can be written as the gradient of a magnetic potential A e . After integration by parts, this yields (5.25)

R 3 B e (x) • B(t, x) dx = - R 3 A e (x) ∇ x • B(t, x) dx.
But, for B ε a ≡ ε -1 B e with B e as in (1.12), the Gauss's law (5.20b) reduces to ∇ x • B ≡ 0, which leads to the expected result.

To prove that 0 < T ≤ T ε , it seems essential to compensate the large factor ε -1 which may occur inside (5.12) in front of ∇ ξ f . To this end, the idea is to obtain some smallness information on U . As already mentioned, this cannot be achieved by passing through E E E (as in Section 4). This can also not be obtained by using E . Let us briefly explain why. In view of (5.14), assuming instead of (5.18) that f ε 0 L 1 ε, Lemma 23 would imply that E (t) ε. But resorting to E is inadequate. There are two reasons for this :

the quantity E is not conserved when dealing in a wider context than Ũε a , with U ε a as in Definition 21. This is due (in particular) to the influence of the remainder R ε a . In fact, the situation is even more problematic : under the relaxed condition (5.20b), the error term may be of size ε -1 because (5.25) does not hold (with B e replaced by B ε a ) ; -the expression E is not exploitable because f represents a perturbation and, as such (in contrast to f), it is not necessarily sign definite.

Instead of looking at E , we perform usual energy estimates at the level of the system (5.12)- (5.13). With this in mind, we introduce the square of the L 2 -energy of U (t), that is

E(t) := U (t, •) 2 L 2 = R 3 R 3 f (t, x, ξ) 2 dx dξ + R 3 |E(t, x)| 2 dx + R 3 |B(t, x)| 2 dx.
Lemma 24 (L 2 -estimate on the perturbation U ). For all t ≤ T ε , we have

(5.26) E(t) ≤ ε 2 (N 2 0 + N 2 r ) exp t + 4 (L a + 1) t 0 P ∞ (s) 3/2 ds .
Proof. Multiply (5.12) by 2f and integrate on the phase space ; multiply (5.13a) and (5.13b) by respectively 2E and 2B and integrate with respect to dx. By this way, we find that

∂ t E(t) = -2 R 3 R 3 (f F • ∇ ξ f ε a + E • ν(ξ) f ) dx dξ + 2 U, R ε a L 2 ×L 2 .
From (5.4) and Cauchy-Schwarz inequality, we have

| R 3 R 3 (f F • ∇ ξ f ε a + E • ν(ξ) f ) dx dξ| ≤ (L a + 1) R 3 R 3 (|E| + |B|)(s, x) |f (s, x, ξ)| dx dξ ≤ √ 2 (L a + 1) |ξ|≤P (s) dξ 1/2 R 3 (|E| 2 + |B| 2 )(s, x) dx 1/2 E(s) 1/2
≤ 4 (L a + 1) P (s) 3/2 E(s).

After integration in time, there remains

E(t) ≤ E(0) + t 0 R ε a (s, •) 2 L 2 ds + t 0 1 + 4 (L a + 1) P ∞ (s) 3/2 E(s) ds.
Now, it suffices to apply (5.6b) and (5.18) together with Grönwall's inequality.

Starting with f 0 as in (5.16), we have (5.27) P ∞ (0) ≤ 1 + P 0 ≤ I 0 , I 0 := 1 + max (P 0 , P a ) + S h .

Recall that T ε ≤ T a . For T ε small enough, by continuity, we can always assume that (5.28)

P ∞ (t) ≤ 4 I 0 , ∀ t ∈ [0, T ε ].
Then, applying (5.26) with N := (N 2 0 + N 2 r ) 1/2 , restricting T ε ≤ T a again if necessary, we find

E(t) ε 2 N 2 exp 1 + 32 (L a + 1) I 3/2 0 t , ∀ t ∈ [0, T ε ].
Adjust T ∈]0, 1] with 0 < T ≤ T a small enough to be sure that exp 1 + 32 (L a + 1) I 3/2 0 T ≤ 2.

We define T ε ∈]0, 1] as the maximal time less than T leading to (5.28). By construction (5.29)

E(t) 2 ε 2 N 2 , ∀ t ∈ [0, T ε ] , T ε ≤ T .
The quantity E remains under control (and small) as long as P ∞ is bounded. Remark that the proof of Lemma 24 is simple and that its conclusion (5.29) is not surprising. What is remarkable is the fact that (5.29) is sufficient. Indeed, we do not need to involve costly H s ε -estimates with s > 0 large, as is typical in nonlinear geometric optics (see for instance Chapter 4 in [START_REF] Métivier | The mathematics of nonlinear optics[END_REF]). 5.3. Proof of Theorem 5. We start by interpreting the representation formula in terms of the two parts U ε a and U of U, see (1.19). We still have D = D 0 +D h +D l +D n together with (3.4) where f 0 = f ε a (0, •)+f ε 0 , where the electric field E h is given by (3.3) with E 0 and B 0 as in Definition 21, whereas f = f ε a + f and F = F ε a + F . Now, we can split the D into parts D ε a (with subscript « a » for approximate) coming from U ε a , parts D issued from U ε , as well as bilinear terms. With this in mind, we look at D n as a bilinear product B(F, f) in terms of F (or E and B) and f. We denote by : But we have also to take into account the effect of cross terms, so that 3). To this end, we exploit the tools of Section 4. New difficulties arise due to the presence of additional terms (especially those that have ε -1 in factor), the absence of sign condition on f , and the need to deal with the energy E (instead of E E E or E ). The estimates below are not meant to be optimal (in terms of powers of ε or P ), except for the crucial (singular) contribution B(ν × B ε a , f ), where a compensation between the (possible) large size of B ε a and the L 2 -smallness of f must be implemented. The proof of Theorem 5 is completed in last Paragraph 5.3.4. Recall that 0 ≤ t ≤ T ε ≤ T ≤ min(1, T a ). In view of (3.5), the functions W 0 (s, •) and W l (s, •) are odd (with respect to both variables ω and ξ). It follows that Dε 0a = 0 and Dε la = 0. On the other hand, we can replace W n as indicated in (3.5c), and then integrate by parts with respect to ξ. Since we can assert that Dε na = 0. Briefly, the stationary solution Ũε a = 0 does not contribute to the momentum increment. We find that Dε a = 0. From (5.5), we easily get that |D ε ha | ≤ S h . The most problematic term is D ε na . Decompose F ε a as in (5.11). Exploit again the specific gradient form of W n inside (3.5c) to perform an integration by parts with respect to the variable ξ in order to get 

D ε na = t 0 t r S 2 R 3 s -r 4π ν • Ξ(s) • ν(ξ) + ω 1 + ω • ν(ξ) E ε a + ν(ξ) × B ε a • ∇ ξ f ε a r

5.3.3.

Impact of the perturbed momentum increment D. We assume again that t ≤ T ε . We consider successively D 0 , D l and D n .

• Control of D 0 . From (5.16), (5.17 In brief, we can retain that (5.37) |D| P 3 0 S 0 t 2 + (S 0 + S a ) (1 + t) t 0 P (r) 3 dr.

5.3.4.

Compilation of the preceding estimates. We still have (4.12) for some (y 0 , η 0 ) in the support of f 0 , that is for some η 0 satisfying |η 0 | ≤ max (P a , P 0 ). In view of (5.31) Then, by Grönwall's inequality, the quantity P ∞ (r) remains controlled according to (5.39) P ∞ (t) ≤ F(t) := 2 I 0 e β t ≤ 3 I 0 , ∀ t ∈ [0, T ε ].

If T ε < T ≤ T so that T ε = T ε , due to the definition of T ε just before the line (5.29), we must have P ∞ (T ε ) = 4 I 0 . This is clearly a contradiction with (5.39) for t = T ε = T ε . Necessarily, we must have T ≤ T ε , and (5.39) holds true on [0, T ] as required in Theorem 5. Of course, the function F inside (1.20) depends also on the various parameters † a , S h and † r occurring in Definition 21. However, since the family {U ε a } ε is viewed as being fixed, this influence has not been reported. On the contrary, we can choose any perturbation {f ε 0 } ε as long as it is controlled by P 0 , S 0 and N 0 as indicated in Definition 22. This is why we have highlighted inside (1.20) the impact of (P 0 , S 0 , N 0 ).

2. 4 . 2 . 2 . 4 . 3 .

 42243 Content of Section 4. Section 4 answers the question 1. To this end, in Subsection 4.1, we start by a preparatory work : we tie together the controls of D and P (Paragraph 4.1.1) ; we express the pushforward of the measure ds dω dξ as a density with respect to dx dξ (Paragraph 4.1.2) ; and we introduce useful tools concerning the microlocal weights W (Paragraph 4.1.3) ; this allows (in Subsection 4.1.4) to evaluate the sizes of the W . This leads (in Subsection 4.2) to the study and to the control of weighted integrals. In the end (in Subsection 4.3), this provides key inputs for proving Proposition 10 (which also investigates large time issues). Content of Section 5. Section 5 is devoted to Theorem 5. In Subsection 5.1, we specify the underlying framework : we introduce the notion of well-prepared approximate solutions U ε a (Paragraph 5.1.1) ; we write the equations for the perturbation U (Paragraph 5.1.2) ; and we explain what is meant by compatible initial data f ε 0 (Paragraph 5.1.

3. 1 .

 1 Prerequisites. In Paragraph 3.1.1, we start by adopting the intrinsic viewpoint of[START_REF] Bouchut | Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system[END_REF][START_REF] Bouchut | Nonresonant smoothing for coupled wave + transport equations and the Vlasov-Maxwell system[END_REF][START_REF] Pallard | Smooth solutions to the relativistic Vlasov-Maxwell system[END_REF] to express D in terms of the microscopic electromagnetic potential. In Paragraph 3.1.2, we recall basic facts about the Radon transform[START_REF] Helgason | The Radon transform, volume 5 of Progress in Mathematics[END_REF].

  ξ) dr dω. • c) Summary. It suffices to plug (3.28) and (3.31) inside (3.11) to get a representation formula for D on the Radon side

4. 1 . 4 . 1 . 1 .

 1411 Preparatory work. In Paragraph 4.1.1, we make the connection between the size P of the momentum spread and quantities D a (derived from the D ). In Paragraph 4.1.2, we take the pushforward of the measure ds dω dξ to recover (modulo a Jacobian) the Liouville measure dx dξ. In Paragraph 4.1.3, we show three lemmas that are helpful in Paragraph 4.1.4 to estimate the weight functions |W |. Control of the momentum spread through the representation formula. By construction, for all (s, x) ∈ [0, t] × R 3 , the momentum support of f(s, x, •) is contained in the ball of radius (4.11)

Lemma 13 .

 13 [by C. Pallard] Let r ∈ R. The map

4. 1 . 4 .

 14 Bounds for the weight functions. The purpose of this paragraph is to evaluate carefully the amplitudes of |W 0 |, |W l |, |W ne | and |W nb |.

4. 2 . 4 . 2

 242 Study of D a ne and D a nb . The expressions D a ne and D a nb with ∈ {e, b} can be viewed as bilinear forms. Indeed, with W a n := |W n | where W n is as in (3.6) together with the conventions G e := |E| and G b := |B|, we have to deal with |ξ|≤ P ∞(r) (J -1/2 W a n f) • (J 1/2 G ) r, X(s) + (s -r)ω, ξ ds dω dξ dr. Lemma 20. [Control of D a n ] For all p ∈]3, +∞], we have

4. 3 .

 3 Proof of Proposition 10. In this section, we work with bounded values of S 0 ∈ R * + , which may go to 0. Let ι ∈]0, 1[. We perform the change of time variable τ := S 1-ι 0 t , P ∞ (τ ) := P ∞ (S ι-1 0 τ ).

-D ε 0a and D 0

 0 the expression D 0 where f 0 is replaced respectively by f ε a (0, •) and f ε 0 ; -D ε ha the expression D h where E h stands for E ε h as in Definition 21 ; -D ε la and D l the expression D l where f 0 is replaced respectively by f ε a and f ε ; -D ε na := B(F ε a , f ε a ) and D n := B(F ε , f ε ) the expression D n where the couple (F, f) is replaced respectively by (F ε a , f ε a ) and (F ε , f ε ). With the above conventions, the contributions to the momentum increment brought by the approximate solution U ε 0a and the perturbation U ε are (5.30) D ε a := D ε 0a + D ε ha + D ε la + D ε na , D := D 0 + D l + D n .

( 5 .

 5 31) D = D ε a + B(F, f ε a ) + B(F ε a , f ) + D. We will estimate separately D ε a (in Paragraph 5.3.1), B(F, f ε a ) and B(F ε a , f ) (in Paragraph 5.3.2), as well as D (in Paragraph 5.3.

5. 3 . 1 .:= t 0 S 2 R 3 W 0 3 W 3 W

 31023033 Control of the approximate momentum increment D ε a . For illustrative purposes, we first examine the case of Dε a , which is D ε a with U ε a ≡ Ũε a . Then, we turn to the general situation. • Study of Dε a . When U ε a ≡ Ũε a with Ũε a as in (1.17), as already seen, we have E ε h ≡ 0 and therefore Dε ha ≡ 0. Coming back to (3.4), we have to deal with Dε 0a (s, ω, ξ) M(ε, ξ ) ds dω dξ, l (s, ω, ξ) M(ε, ξ ) ds dω dξ dr, n (r, s, ω, ξ) • ν(ξ) × B e (x) M(ε, ξ ) ds dω dξ dr.

(5. 32 )

 32 ∇ ξ • ν(ξ) × B e (x) M(ε, ξ ) = ν(ξ) × B e (x) • ∇ ξ M(ε, ξ ) = 0,

s S 0 ds dξ P 3 0 S 0 t 2 .• 0 PJJ - 1 2 dr t 0 E(r) 1 / 2 P 2 J - 1 2 t 0 P

 320120122120 Control of D l . Using(5.24), and then (4.21) together with Lemma 15, we can be satisfied with|D l | t 0 t r |ξ|≤P(r)(S 0 + S a ) ds dξ dr (S 0 + S a ) t t (r) 3 dr.• Control of D n . Recall that D n = B(E, f )+B(ν ×B, f ).We handle below B(E, f ), the case of B(ν ×B, f ) being completely similar. By Cauchy-Schwarz inequality, we have|D n | ≤ |E r, X(s) + (s -r)ω | 2 ds dω dξ |W ne | 2 f 2 ds dω dξ 1/(r) 3/2 (S 0 + S a ) |W ne | 2 dω ds dξ 1/2dr.With P a replaced by P (r), we carry on with (5.34). Then, from (5.29), we get|D n | ε N (S 0 + S a ) t 1/(r) 3 dr.

0 P 0 P

 00 ε a )| + |B(F ε a , f )| + |D|. From (5.33), (5.35), (5.36) and (5.37), together with the definition of I 0 inside (5.27), we can easily infer that P ∞ (t) ≤ I 0 + C t + Č t ∞ (r) 3 dr, where the constants C and Č depend only on L a , H a , the S , the P and the N . Introduce β := 16 Č I 2 0 , T := min T , I 0 / C, (ln 3 -ln 2)/β , T ε := min (T ε , T ).Taking into account (5.28), we can assert thatP ∞ (t) ≤ 2 I 0 + β t ∞ (r) dr , ∀ t ∈ [0, T ε ].

  1.2.2. Perturbation theory. The realistic plasmas always include a larger or smaller part of matter which is out of equilibrium and which may have destabilizing effects (like electron beams). Such aspects can be taken into account by introducing some f ε 0 ≡ 0 inside (1.18). Assumption 4. The family {f ε 0 } ε is compatible in the sense of Definition 22. Basically, Assumption 4 means that we impose (1.9)-(1.10) uniformly on {f ε 0 } ε , and moreover that we add the L 2 -smallness condition (5.18) which is calibrated by N 0 given in Definition 22. Below, we fix the values of P 0 ∈ R

* + , S 0 ∈ R * + and N 0 ∈ R * + occurring in Definition 22, and we select {f ε 0 } ε accordingly. Then, we seek the solution to (1.2)-(1.3) in the form (1.19)

  Then, in Paragraph 3.3.3, we draw the conclusions. 3.3.1. The Radon side picture. Introduce v(t, ω, p, ξ)

3.1, we express D in terms of ∂ 2 pp g. In Paragraph 3.3.2, we exploit (3.17) to exhibit adequate oscillatory integrals.

  4.2.1. Study of D a 0 . By definition, D a 0 is built on U 0 . It is therefore a known quantity. Still, it is interesting to estimate D a 0 to see how this works and to have access to its time behavior. Lemma 17. [Control of D a 0 ] For all p ∈]2, +∞], we have

	(4.26)

  Let p > 3. For small values of S 0 , we can exploit (4.25) to replace E E E 0 by S 0 . With this in mind, we combine (4.14) with (4.26), (4.29), (4.31) and (4.32) to see that

  is strongly oscillating in both time, space and momentum ; the directions Ξ ε a /|Ξ ε a | are rapidly oscillating, but not Ξ ε a . Let us consider the frozen version FD ε a of D, which is

  • Study of D ε a . Let U ε a be an approximate solution in the sense of Definition 21. From (4.20) and (4.21) together with Lemma 15, using (5.2) and (5.3a), we can assert that

	t		t	t	
	|D ε 0a |	s S a ds dξ P 3 a S a t 2 ,	|D ε la |		S a ds dξ dr P 3 a S a t 2 .
	0	|ξ|≤Pa	0	r	|ξ|≤Pa

  From Lemmas 15 and 16 together with (5.2), (5.3b),(5.4) and (5.10), we can assert that -r) S r + 2 (1 + S a ) L a ds dξ dr P 3 a S r + 2 (1 + S a ) L a t 3 . S h + P 3 a S a t 2 + P 3 a S r + 2 (1 + S a ) L a t 3 .5.3.2.Influence of the frozen bilinear terms B(F, f ε a ) and B(F ε a , f ). We assume here that t ≤ T ε . • Control of B(F, f ε a ). We can use(5.11) to get B(F,f ε a ) = B(E, f ε a ) + B(ν × B, f ε a ). From (5.2) and (5.3a), it is clear that a J -1/2 |W ne | J 1/2 |E|r, X(s) + (s -r)ω ds dω dξ dr |W ne | 2 ds dω dξ From (4.16) and (4.22) together with Lemma 15, since s -r appears in factor inside W n ≡ W ne , we have (5.34) |W ne | 2 ds dω dξ ≤ Thus, coming back to (5.29), we recover that |B(E, f ε a )| S a P 3 a t 3/2 ε. Since |ν × B| ≤ |B|, the same argument applies to B(ν × B, f ε a ). Thus, we can retain that (5.35) |B(F, f ε a )| S a P 3 a N t 3/2 ε S a P 3 a N t. |W ne | 2 ds dω dξ

			t	t				
	|D ε na | (s In the end, there remains 0 r |ξ|≤Pa			
	(5.33)	|D ε t a | |B(E, f ε t a )| ≤ 0 r S 2 |ξ|≤Pa S a P 3/2 0 a t E(r) 1/2		r	t	S 2 |ξ|≤Pa	J -1 1/2	dr.
		r	t	S 2 |ξ|≤Pa	J -1 t r	|ξ|≤Pa	S 2	dω ξ 2 1 + ω • ν(ξ)	2 ds dξ
									t
									ds dξ t P 3 a .
									r	|ξ|≤Pa
						t		t
					0	t	r	t	S 2 R 3	J -1 1/2
					0		r		S 2 |ξ|≤P (r) t
						×		
								r	S 2 R 3
	Knowing (5.29), we obtain that			
	(5.36)	|B(F ε a , f )| (ε S				

, X(s) + (s -r)ω, ξ ds dω dξ dr.

S

• Control of B(F ε a , f ). From (5.3b) and (5.3c), we can infer that

|B(F ε a , f )| ≤ (S a + ε -1 H a )

|W ne | |f | r, X(s) + (s -r)ω, ξ ds dω dξ dr

(S a + ε -1 H a ) J f 2 r, X(s) + (s -r)ω, ξ ds dω dξ 1/2

dr.

With P a replaced by P (r), we proceed as in

(5.34) 

to find that

|B(F ε a , f )| (S a + ε -1 H a ) t 0 t 1/2 P (r) 3/2 E(r) 1/2 dr. a + H a ) N t 1/2 t 0 P (r)

3/2 dr (S a + H a ) N t + t 0 P (r) 3 dr .

  , this gives rise toP ∞ (t) ≤ 1 + max P a , P 0 + |D ε a | + |B(F, f ε a )| + |B(F ε a , f )| + |D|.

	By construction, we have
	(5.38)

P(t) ≤ max P a , P (t) , P (t) ≤ max P a , P(t) , and similar inequalities concerning P ∞ (t) and P ∞ (t). In particular

P ∞ (t) ≤ max P a , P ∞ (t) ≤ 1 + max P a , P 0 + |D ε a | + |B(F, f

This argument has been reported to us by Nicolas Besse. Observe that the information (4.6) is crucial to recover the H 1 -regularity. It is missing in the case of the weak solutions provided by DiPerna-Lions[START_REF] Diperna | Global weak solutions of Vlasov-Maxwell systems[END_REF] 
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