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Abstract

Elements of the periodic homogenization framework and deep neural network were seamlessly connected for the first time 
to construct a new micromechanics theory for thermoconductive composites called physically informed Deep Homogenization 
Network (DHN). This method utilizes a two-scale expansion of the temperature field of spatially uniform composites i n terms 
of macroscopic and fluctuating c ontributions. T he l atter i s e stimated u sing d eep n eural n etwork l ayers. T he D HN i s trained 
on a set of collocation points to obtain the fluctuating t emperature fi eld ov er th e un it ce ll do main by  mi nimizing a cost 
function given in terms of residuals of strong form steady-state heat conduction governing differential equations. Novel use of 
a periodic layer with several independent periodic functions with adjustable training parameters ensures that periodic boundary 
conditions of temperature and temperature gradients at the unit cell edges are exactly satisfied. A utomatic d ifferentiation is 
utilized to correctly compute the fluctuating temperature gradients. Homogenized properties and local temperature and gradient 
distributions of unit cells reinforced by unidirectional fiber o r w eakened b y a  h ole a re c ompared w ith fi nite-element reference 
results, demonstrating remarkable correlation but without discontinuities associated with temperature gradient distributions in 
the finite-element s imulations. We a lso i llustrate t hat t he D HN e nhanced w ith t ransfer l earning p rovides a  s ubstantially more 
efficient and accurate simulation of multiple random fiber distributions relative to training the network from scratch.

1. Introduction

An objective of micromechanics is to predict the local and homogenized response of composite and heteroge-
neous materials from the knowledge of mechanical and physical properties of the individual phases, in conjunction
with the microstructure characteristics such as the arrangement, shape and orientation of the inclusions [1]. The
advantages of micromechanics are several-fold. The main advantage is that, once the constituent phase properties
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are known, micromechanics allows the prediction of the multi-axial and non-proportional anisotropic response (both
elastic and inelastic) of composites that are often difficult to measure experimentally, hence the cost of laborious
experimental campaigns of composites is significantly reduced [2]. Furthermore, micromechanics simulations
accelerate the development and discovery of engineered materials with target thermo-mechanical and physical prop-
erties for a specific application by selecting candidate materials through a reverse engineering technique. Another
important but thus-far underrated role micromechanics may play is the analysis and optimization of composite
materials or structural components in a multi-scale setting when incorporated into structural analysis tools [3–6].

The central idea of micromechanics theories for heterogeneous media is the determination of the localization
relations, which relate the local stresses or strains per phase to the macroscopic (or applied) stress or strain states.
In general, micromechanics techniques may be divided into three broad categories, cf. Pindera et al. [7]. The first
category includes microstructural-detail-free micromechanics models, which are based on various simplifications of
the material’s microstructure [8,9]. Solutions for displacement and stress fields of an inclusion embedded in an
effective medium, or in a matrix that is further embedded as a whole in an effective medium, are derived to obtain
the closed-form expressions of effective moduli of the material-at-large. These approaches are commonly called the
self-consistent scheme [10], the three-phase model [11], and the Mori–Tanaka method [12,13].

Nonperiodic and periodic micromechanics methodologies accounting for explicit geometric representations
of material microstructures have also been developed to characterize statistically homogeneous and periodic
composites, respectively. The nonperiodic homogenization schemes are based on the representative volume element
(RVE) concept. Effective moduli of the composites are determined by applying homogeneous displacement or
traction boundary conditions, along with the satisfaction of the equivalence of these boundary conditions. The
composite cylinder/sphere assemblage (CCA/CSA) proposed by Hashin and Rosen [14] is perhaps the best-known
in this category. Another well-known RVE-based model is the equivalent inhomogeneity technique proposed by
Mogilevskaya et al. [15].

Alternatively, the periodic homogenization schemes are based on the repeating unit cell (RUC) concept. The
RUC is the basic building block that can be replicated in two or three dimensions to form the entire materials.
The effective or homogenized moduli of the entire array under macroscopic loading are identical to those of an
arbitrary RUC subjected to periodic boundary conditions. The finite-element method is the prevailing technique
because of its ability to model complex microstructures with multiple and arbitrarily shaped inclusions [16–18].
The finite-volume direct averaging micromechanics scheme and its various forms are yet another technique for
the analysis of heterogeneous materials [19–21]. The key feature of the finite-volume method is the satisfaction of
the governing differential equations in an averaged sense in the discretized RUC domain. However, both finite-
element and finite-volume techniques require the discretization of fiber and matrix phases of the unit cell in
the determination of displacement and stress fields, an issue that leads to significant computational costs in the
case of unit cells with multiple random distributions of fibers that require large discretization. The locally exact
homogenization technique (LEHT), developed by Pindera and his coworkers [22,23], employs exact solutions of
governing differential equations via Fourier series representation of displacement fields and the balanced variational
principle to enforce periodic boundary conditions, rather than unit cell discretization used in the finite-element and
finite-volume technique. An important limitation of the LEHT is that only single-inclusion unit cells in square and
hexagonal arrays can be considered. In response to this issue, a hybrid homogenization technique was proposed
to model multiple random fiber distributions [24]. Eigenstrain-based periodic homogenization techniques for
multiphased and multi-inclusion periodic composites have also been developed by Lages and Marques [25,26].
Nevertheless, simulating the random fiber distributions has not been reported yet either. The readers are referred to
the review articles provided by Pindera et al. [7], Saeb et al. [27], and Chen et al. [28] for additional references in
this area.

In recent years, deep neural networks (DNN) have found vast applications in the modeling of elastic and inelastic
behaviors of materials due to the potential benefits offered by them. In general, deep neural networks aim to establish
a hypothesis function using a series of network layers. These layers are connected via a sequence of linear matrix
multiplication and nonlinear mapping with activation functions in order to obtain the underlying relationship between
the input–output data pairs. The DNN has been demonstrated to be a successful approach in the micromechanical
analysis of lattice structures [29], unidirectional composites [30] and short fiber reinforced composites [31,32],
nanocomposites [33], etc.

The physically informed deep neural network (PINN) model, proposed by Raissi et al. [34], has emerged in recent
years as a viable alternative to the classical numerical solution of the partial differential equations with prescribed



boundary conditions (such as the finite-element, finite difference or finite-volume techniques). The contributions of
Rabczuk and his coworkers [35–38] have spurred extensive applications of PINN theory in the solution of boundary
value problems in mechanics. Different from the conventional techniques for solving Navier’s equations analytically
or numerically, the machine learning approaches use multiple neural network layers to look for functions that satisfy
the governing equations and the specified boundary conditions by minimizing the cost functions [39–43].

Herein, for the first time, elements of the periodic homogenization framework and deep neural network were
employed to construct a new micromechanics theory for thermoconductive periodic composites called physically
informed deep homogenization neural network. In the case of the unit cell problem, the DHN developed herein
aims to look for the fluctuating temperature field that satisfies the strong form heat condition equation and the
periodicity boundary conditions, which differs from any of the aforementioned periodic micromechanics schemes.
Specifically, the DHN deals directly with the minimization of cost functions expressed in terms of the averaged
PDE residuals, which are sampled randomly on a set of collocation points. Therefore, this method does not rely on
conventional computationally extensive mesh discretizations. It should be emphasized that, in the micromechanics
theory, periodicity boundary conditions play a vital role in yielding accurate unit cell solutions. The often-used
penalty method in the PINN approach may easily cause significant errors in the unit cell solution because the
boundary conditions can be only enforced approximately [30]. Therefore, a method for implementing exactly the
periodic boundary, developed by Dong and Ni [44], is adapted to the DHN framework. The main contributions of
the present manuscript include:

• construction of a novel physically informed deep neural network model for the micromechanical analysis of
composites in the periodic homogenization framework

• implementation of exact periodic boundary conditions to infinite order at the unit cell boundaries upon the use
of a periodic layer with a set of periodic functions

• demonstration that the proposed network model, enhanced with transfer learning, is capable of predicting
accurately the local and homogenized response of composites with multiple random inclusions

We note that an alternative approach for solving the unit cell problem with periodicity boundary conditions is
the proper generalized decomposition (PGD) method [45]. The PDG method, however, employs the rectangular
discretization of the unit cell hence it may not be suited for dealing with inclusion with curved surfaces. It
should be also mentioned that the physics-informed deep neural network model developed in this work attempts to
minimize a loss function that is tailored to the underlying differential operator, which is significantly different from
purely data-driven approaches where the machine learning techniques are merely used as a black box [46]. Two
related advantages are the generalizability of the trained network model for the unseen training data and the rapid
convergence of the neural network with a small training dataset.

The rest of the manuscript is organized as follows: Section 2 outlines the theoretical framework for the zeroth-
order periodic homogenization for thermoconductive composites and its finite-element implementation. Section 3
describes the physically informed deep homogenization network developed in this investigation that takes into
account explicitly the periodic boundary conditions required by periodic homogenization. Section 4 presents the
comparison of the predictive capabilities of the developed homogenization scheme and the finite-element method
vis-à-vis the local temperature and temperature gradient distributions and effective thermal conductive coefficient
for unidirectional fiber or porous composites. The effect of network parameters and training dataset size was
studied extensively and the best neural network model was identified. Section 5 illustrates the capabilities of the
developed neural network model, enhanced with transfer learning, for simulating the composites with multiple
random inclusions. A discussion of the proposed technique is presented in Section 6. Section 7 draws the pertinent
conclusions.

2. Periodic homogenization theory for thermoconductive composites

The scope of this section is to define the problem under consideration. Hereafter, some preliminary notes concern-
ing the homogenization theory of thermo-conductive composites and its finite-element formulation are described.



Fig. 1. A multiphase periodic array characterized by the smallest building block or the unit cell.

2.1. Preliminaries

Let us consider a heterogeneous solid reinforced by unidirectional fibers which are embedded in a matrix phase.
If the fibers are periodically dispersed in the matrix, the overall response of the heterogeneous media is identical
to that of a repeating unit cell (RUC) subjected to periodic boundary conditions, as shown in Fig. 1. The latter can
be replicated in two dimensions to form the entire heterogeneous materials.

Following the zeroth-order homogenization theory [6,26,47–49], the local variations of temperature can be
described using a two-scale expansion involving the global and microscopic coordinates, x = (x1, x2, x3) and
y = (y1, y2, y3), representing the averaged T (x) and microstructure-induced fluctuating T̃ (y) contributions,
respectively:

T (x, y) = T (x) + T̃ (y) (1)

In the above equation, T (x) = H i xi (i = 1, 2, 3), H i denotes the macroscopic temperature gradient. T̃ (y) is a
periodic function in y2 − y3 plane. Accordingly, the local temperature gradients are expressed in terms of average
and fluctuating contributions as follows:

H1 = H 1, H2 = H 2 + H̃2 = H 2 +
∂ T̃
∂y2

, H3 = H 3 + H̃3 = H 3 +
∂ T̃
∂y3

(2)

It should be noted that ∂ T̃ /∂y1 = 0 since there is no fast variation in the fiber longitudinal direction.
Under steady-state conditions, the heat flux q is related to the temperature gradient using Fourier’s law as:⎡⎢⎢⎣

q1

q2

q3

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
k11 0 0

0 k22 0

0 0 k33

⎤⎥⎥⎦
⎡⎢⎢⎣

H1

H2

H3

⎤⎥⎥⎦ (3)

where k11, k22 and k33 denote the thermal conductivity coefficients for orthotropic materials.
The steady-state heat conduction governing differential equation expressed in terms of fluctuating temperature

reads:

∂

∂y2
k22

(
H 2 +

∂ T̃
∂y2

)
+

∂

∂y3
k33

(
H 3 +

∂ T̃
∂y3

)
= 0 (4)

For a unit cell depicted in Fig. 1, Eq. (4) is solved subject to the periodicity boundary condition of temperature
and its gradients:

T̃ (−a, y3) = T̃ (a, y3) , T̃ (y2, −b) = T̃ (y2, b) (5)
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∂

∂y2
T̃ (−a, y3) =

∂

∂y2
T̃ (a, y3) ,

∂

∂y3
T̃ (y2, −b) =

∂

∂y3
T̃ (y2, b) (6)

where ∀y2 ∈ [−a, a] and ∀y3 ∈ [−b, b]. It should be noted that Eq. (6) ensures that the periodicity of the normal
heat flux density along the unit cell faces in the pertinent direction is satisfied:

Q (S1) + Q (S3) = 0, Q (S2) + Q (S4) = 0 (7)

where Q (Si ) = [q2 · n2 + q3 · n3](i). (n2, n3)
(i) denotes the unit normal vector of the i th unit cell face.

Finally, following the classical homogenization theory, the homogenized constitutive equations of the unit cell
with a volume V , under steady-state conditions, can be expressed in terms of effective constants, designated by an
asterisk, Eq. (8). This equation relates the macroscopic temperature gradient H to the macroscopic heat flux density
q evaluated as volume-averaging of their corresponding local quantities as follows:

q = −k∗
· H (8)

where

q =
1
V

∫
V

qdV, H =
1
V

∫
V

HdV (9)

2.2. Finite-element homogenization

In the finite-element framework [19,50,51], the fluctuating temperature field T̃ (q) can be expressed in terms of
nodal fluctuating temperature and shape function as follows:

T̃ (q)
=

n p∑
p=1

Np (η, ξ) T̃ o(p,q) (10)

where T̃ o(p,q) denotes the nodal fluctuating temperature at the pth node of the qth element. Np (η, ξ) represents
the shape function and n p is the total number of modes in the qth subvolume. Applying the differential operator
∂ = (∂/∂y) to the fluctuating temperature T̃ (q) expressed in terms of nodal temperatures using the matrix notation
T̃ (q) = N(q)T̃o(q), the fluctuating temperature gradient H̃(q) is obtained in the form:

H̃(q)
= ∂N(q)T̃o(q)

= B(q)T̃o(q) (11)

where T̃o(q) =

[
T̃ o(1,q), . . . , T̃ o(n p,q)

]T
. B(q) indicates the temperature–temperature gradient matrix,

B(q)
=
[
∂ Ñ1, . . . , ∂ Ñp, . . . ∂ Ñn p

](q) (12)

with

∂ Ñp =

[
0,

∂ Np

∂y2
,
∂ Np

∂y3

]T

, (13)

which is used to construct the potential energy integral at the element level.
For a thermally conductive unit cell with a volume V , the total potential energy can be expressed as:

π =
1
2

∫
V

HT
: k : HdV +

1
2

∫
V

H̃T
: k : H̃dV +

∫
V

H̃T
: k : HdV − qT

: H · V (14)

Substituting Eq. (11) into Eq. (14) and minimization of the total potential energy with respect to the nodal
temperatures, ∂π/∂T̃o

= 0, yield the global system of equations for the common unknown nodal temperatures:

KT̃o
= F (15)

where

K =

∫
V

BT
: k : BdV,F = −

(∫
V

BT
: kdV

)
H (16)

The local conductivity matrices are assembled to form a global system of equations by enforcing the continuities of
fluctuating temperatures at common nodes of adjacent elements, as well as the periodicity conditions at the mirrored
faces of a repeating unit cell.



3. Physically informed deep homogenization network

The central idea of the physically informed deep homogenization network is to approximate a continuous function
that maps the space coordinates (y2, y3) to the fluctuating temperature T̃ :

T̃ = DHN (y2, y3) , ∀ (y2, y3) ∈ V (17)

for periodic arrays whose microstructural information is incorporated by the spatial dependency of the local
conductivities k22 (y2, y3) and k33 (y2, y3). The unit cell for the periodic arrays is subjected to given macroscopic
temperature gradients H 2 and H 3.

A feedforward network is constructed by connecting neurons between layers. The parameters of the neural
network θ∗ are determined by minimizing a loss function L

(
T̃
)

with contributions from the PDE residual LP DE
and the penalties representing the periodicity boundary conditions, Lbc1 and Lbc2,

θ∗
= ArgMin L

(
T̃
)

θ

= LP DE + γ1Lbc1 + γ2Lbc2 (18)

where

LP DE =
1
V

∫
V

[
∂

∂y2
k22

(
H 2 +

∂ T̃
∂y2

)
+

∂

∂y3
k33

(
H 3 +

∂ T̃
∂y3

)]2

dV (19)

Lbc1 =
1

2a

∫ a

−a

[
T̃ (y2, −b) − T̃ (y2, b)

]2 dy2 +
1

2b

∫ b

−b

[
T̃ (−a, y3) − T̃ (a, y3)

]2 dy3 (20)

Lbc2 =
1

2a

∫ a

−a

[
∂

∂y3
T̃ (y2, −b) −

∂

∂y3
T̃ (y2, b)

]2

dy2 +
1

2b

∫ b

−b

[
∂

∂y2
T̃ (−a, y3) −

∂

∂y2
T̃ (a, y3)

]2

dy3 (21)

In the above equations, γ1 and γ2 denote the penalty coefficients, which play an indispensable role in yielding a
good neural network solution. Nonetheless, the enforcement of the periodicity conditions in the penalty method is
still only approximate.

Herein, in order to exactly enforce the periodicity boundary conditions given by Eqs. (5) and (6), we employ
the technique developed by Dong and Ni [44] for representing periodic functions. This method is based on
the representation of arbitrary functions with a set of independent sinusoidal functions with adjustable (training)
parameters using a neural network layer. For a periodic function in y2 − y3 plane with periods of 2a and 2b in y2
and y3 directions, respectively, the periodic layer is defined as:

v2i (y2) = σ [A2i cos (ω2 y2 + φ2i ) + c2i ] , 1 ≤ i ≤ m

v3i (y3) = σ [A3i cos (ω3 y3 + φ3i ) + c3i ] , 1 ≤ i ≤ m

q j (y2, y3) = σ

[
m∑

i=1

v2i (y2) W (2)
i j +

m∑
i=1

v3i (y3) W (3)
i j + B j

]
, 1 ≤ j ≤ n

(22)

where

ω2 =
π

a
, ω3 =

π

b
(23)

are constants with prescribed periods 2a and 2b, respectively. σ [·] represent the nonlinear activation function. The
nonlinear activation function ensures that v2i (y2) and v3i (y3) contain not only the frequencies ω2 and ω3, but also
components with higher frequencies with common periods in the pertinent direction. m and n are hyper-parameters
of the periodic layer and q j denotes the output of this layer. The training parameters include:

A2i , A3i , φ2i , φ3i , c2i , c3i , W (2)
i j , W (3)

i j , B j (24)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n.
The output of the periodic layer then passes through multiple sequential residual learning blocks and is finally

summed up in the output layer to calculate the fluctuating temperature T̃ , as shown in Fig. 2. The operations in the
residual block are defined by:

q l
j = σ

(
n∑

i=1

W l
i j q

l−1
j + Bl

j + q l−1
j

)
(25)



Fig. 2. Physically informed deep neural network acting as surrogate homogenization model for periodic microstructured materials.

Within each residual block, the input from the previous layer/block q l−1
j is added up to the output of a weighted

fully connected layer before the application of the activation function to form the residual block output q l
j .

This direct mapping of block input to output, also known as skip connection or shortcut, can help to propagate
input information through a complex network, avoid gradient vanishing problems and present better convergence
performance compared to classical network structures with concatenated fully connected layers. Note that for the
simplicity of the network structure definition, the dimension of the hidden layer in the residual block has been kept
the same as in the periodic layer (n).

The periodic layer defined in Eq. (22) permits the exact satisfaction of periodicity boundary conditions of
fluctuating temperature to infinite order. As such, the penalty terms Eqs. (20) and (21) can be omitted, further
facilitating training and convergence of the neural network model. In summary, the DHN-based neural network
solution is accomplished in several steps:

(1) Selecting a microstructure and macroscopic temperature gradient;
(2) Decomposing the temperature field into averaged and fluctuating contributions using Eq. (1);
(3) Generating collocation points and building the neural network layers;
(4) Evaluating the loss function given by Eq. (19). The periodicity boundary conditions are automatically satisfied

through Eqs. (22) and (23);
(5) Computing the temperature gradients Eq. (2) and heat flux distributions Eq. (3) after the loss function is

minimized;
(6) Computing the homogenized properties Eq. (8).

4. Numerical results

In this section, to demonstrate the predictive capabilities of the neural network-based micromechanics model
developed in this work, the deep homogenization network approach is employed to predict the temperature and
temperature gradient distributions of unit cells containing cylindrical fibers or porosity subjected to periodic
boundary conditions. They are extensively verified against unit cell solutions generated by the in-house finite-
element homogenization technique. For the sake of simplicity, both fiber and matrix are considered isotropic and
their thermal conductive coefficients are k f

= 40 Wm−1K−1 and km
= 10 Wm−1K−1, respectively.

It should be mentioned that an important feature of functions to be estimated through the periodic neural
network approach is that while the fluctuating temperature is continuous within the entire unit cell domain, the
temperature gradients are discontinuous, which marks the boundary of the fibers due to the jump of fiber/matrix
thermal conductivity coefficients. Since the neural network solution is infinitely differentiable, it cannot provide an
exact representation of the functions with discontinuities [30,52]. Therefore, we seek a reasonable approximation



Table 1
Network parameters for choosing the best model.

Network Neurons in
periodic layer

Hidden layers
(excluding the first
periodic layer)

Hidden neurons Trainable
parameters

1 10 3 20 1761
2 30 3 20 2681
3 20 2 20 1801
4 20 3 10 871
5 20 3 20 2221
6 20 3 30 4171
7 20 5 10 1091
8 20 5 20 3061
9 20 5 30 6031

of fiber/matrix thermal conductivity transition. For an N-phase composite, the coordinates of the center of the i th
fiber are given by (o2, o3)

i . The thermal conductivities are artificially smoothened as:

k22 = k33 =

N∑
i=1

c1

⎡⎣c2 + tanh
R −

√(
y2 − oi

2

)2
+
(
y3 − oi

3

)2

δ

⎤⎦+ c3 (26)

In the above equation, if c2 is set to 1 directly, the matrix thermal conductivities are equal to km
22 = km

33 = km
= c3

whereas for the fiber k f
22 = k f

33 = k f
= 2c1 + c3. R denotes the fiber radius. δ denotes the smoothness of the

material transition. In a rough but successful approximation, δ = 0.05R will be used in the following simulation
unless otherwise stated.

4.1. Effect of network hyperparameters

The input dataset size and neural network hyperparameters, namely, the number of hidden layers, the number of
neurons per layer and the activation function, play a critical role in yielding an accurate neural network solution. To
approximate T̃ (y2, y3), we employ a feed-forward deep neural network as shown in Fig. 2. The latter takes a set
of spatial coordinates (y2, y3) and outputs the fluctuating temperature T̃ (y2, y3) distributions that satisfy exactly
the periodicity boundary conditions of the zeroth-order homogenization theory. As described in Section 3, the
second network layer is the periodic layer. In order to highlight the effect of network hyper-parameters on network
performance, we consider 9 neural network architectures which are built with different network depths and hidden
neurons to cover a wide range of parameter space as summarized in Table 1. The hyperbolic tangent function
σ (x) = tanh (x) is always used as an activation function except for the output layer where no activation function
is applied.

As illustrated in Fig. 3, the first investigated problem is a unidirectionally-oriented composite containing 20%
fiber volume fraction, with fiber arranged in a square array, which is subjected to a macroscopic temperature
gradient by H 2 = 1 K/m. The remarkable property mismatch between the constituent phases yields large
variations of temperature and temperature gradient in the vicinity of the fibers (interphase), hence providing a very
demanding test of the correctness and robustness of the neural network approach. A dataset with 10k randomly-
distributed collocation points was generated using the Monte-Calo simulation, with the ranges of each coordinate
in y2, y3 ∈ [−0.5, 0.5]. A test dataset with 280 × 280 unseen grid data was utilized to test the network model.
The neural network was trained on the Google Colab with GPU acceleration, which provides Intel Xeon CPU
@ 2.00 GHz with 1 core, 2 threads, 13 GB RAM and one Tesla T4 GPU of 16 GB RAM, 2560 CUDA Cores
@1250 MHz. The ADAM (adaptive momentum) optimizer is utilized to minimize the loss function expressed in
Eq. (19). The learning rate is prescribed as 0.01 and decays by a factor of 0.5 for each 1000 epoch. For each network
architecture, three training runs were performed with different random seed values for neural network initialization,
to better evaluate the overall performance of each neural network architecture.

The training progress for each network model at multiple restarts is illustrated in Fig. 4. The pointwise loss
distributions for each network model with the lowest overall loss values are compared in Fig. 5. It is evident that



Fig. 3. Collocation point distributions generated using Monte-Carlo simulation for evaluating PDE residuals.

the loss functions for networks 4, 5, 6, 8, and 9 at multiple restarts are less likely to be affected by variations in
the seed values for the neural network weights and biases, while the repeatability of the loss functions for networks
1, 2, 3 and 7 is inferior to the former ones. A close examination of Figs. 4 and 5 reveals that networks 5, 6, 8,
and 9 yield relatively lower overall loss value and loss distributions. In contrast, networks 1 3, 4, and 7 predict
significant loss values in the vicinity of the fiber/matrix interface where the temperature gradients are the highest
due to the fiber/matrix property mismatch. Therefore, networks 5, 6, 8, and 9 retain the most robust candidates for
the considered unit cell solution. Network 8 converges very fast relative to networks 5, 6, and 9 with relatively
smaller training parameters. In what follows, network 8 is chosen for conducting all the simulations in the sequel.

Accurate characterization of temperature field distributions and concomitant identification of maximum tem-
perature that occurs along the fiber/matrix interface in composites play a key role in developing failure criteria
for this type of material. Fig. 6 presents comparison of the full-field fluctuating temperature T̃ and temperature
gradients H̃2 and H̃3 distributions generated by the physically informed DHN and 8-noded FEM methods under
transverse thermal loading by H 2 = 1 K/m. To quantify errors between the deep neural network and finite-element
predictions, the differences between the two approaches are also enclosed in Fig. 6. It should be emphasized that
DHN predictions were evaluated on a separate and hold-out dataset with 280 × 280 grid points that were not used in
the training process. As observed, the fluctuating temperature distributions predicted by the deep neural network and
finite-element techniques show a high level of accordance. Both characters and magnitudes are accurately captured
by the network-based approach with negligible differences in the entire unit cell domain. While the temperature
gradients predicted by the DHN approach are smoothly varying in the vicinity of the fiber/matrix interface region, the
finite-element results exhibit important discontinuities as observed in Fig. 6(b) and (c) despite that the corresponding
temperature fields are continuous. This is because the conventional finite-element method can only satisfy the C0

continuity of the field variables, while the calculated temperature gradients are not necessarily continuous from one
element to another. In contrast, the neural network-based results are infinitely differentiable, satisfying exactly the
continuities of temperature and its gradients. It is worth noting that the solution principles between the finite-element
and deep neural network approaches are fundamentally different. While the minimization of the total potential
energies within the finite-element framework leads to the ultimate satisfaction of the unit cell’s global conservation
with sufficient mesh refinement (weak-form solution), the DHN is based on the direct minimization of the PDE loss
function (strong-form solution), further lending credence to the deep neural network method’s rigorous validation
and the ensuing conclusions.



Fig. 4. Effect of network depth and hidden neurons on the network performance.

4.2. Effect of dataset size

To demonstrate the effect of training dataset size on the neural network performance, the best network model
(Network 8) described in Section 4.1 is employed to predict the full-field temperature and its gradient distributions
with three different dataset sizes, namely 2k, 5k, and 15k which were generated with Monte-Carlo simulations.
Fig. 7 illustrates the corresponding performance plots for the selected dataset size for three training attempts. The
training loss function for the dataset with 10k points is also enclosed in Fig. 7 for comparison. Generally speaking,
while the computational cost increases with the size of the dataset, the loss value is lower when more data points
have been used in the training process. It is also clear that the networks trained with 2k and 5k data points are more
likely to be affected by the seed values for the weights and biases relative to the networks trained with 10k and



Fig. 5. Comparison of the PDE residual distributions for different network models.

15k data points at different training attempts. The loss functions obtained from 10k and 15k training data points
are roughly the same with the ultimate loss value of 10k data points even lower than that of 15k data points.

Fig. 8 compares the transverse fluctuating temperature gradient H̃2 distributions for the best neural network model
with different dataset sizes. As observed, the differences between the network results with different dataset sizes are
invisible. It is remarkable how well the DHN approach is capable of capturing the local field concentration with no
signs of overfitting even when using only 2k training data points. Therefore, the small dataset can be used for fast
check of unit cell solution of the heterogeneous microstructures while the large dataset can be used when a reliable
unit cell solution is pursued, albeit at the cost of computational resources. It should be noted that overfitting is a
common issue in the data-driven approach where the model memorizes the data patterns in the training data but
fails to generalize to unseen data. As pointed out by Bajaj et al. [53], the DHN may also encounter an overfitting
issue when the number of parameters for a DHN architecture is much larger than the number of training points. The
present study shows that consistent and reliable results can be obtained even when only 2k collocation points were
employed in the training process. Therefore, for the network with 3061 trainable parameters, the results obtained
from 10k training collocation points, which are sufficiently large to avoid high variance and bias in the results
generated, can be considered free from overfitting issues.



Fig. 6. Comparison of fluctuating temperature and its gradient distributions generated by the DHN and FEM reference solution. It should be
noted that the classical finite element method satisfies only C0 continuities across adjacent elements, hence does not guarantee the continuity
of the temperature gradients.

4.3. Porous media

Next, we compare the predictive capability of the DHN theory with the finite-element homogenization predictions
of the local and homogenized response of porous composites. Fig. 9 illustrates unit cells containing 5% and 50%
of porosity volume fractions, with unidirectionally oriented porosity arranged in a square array. Two datasets with
9.5k and 5k collocation points were generated via Monte-Carlo simulation respectively for 5% and 50% volume
fraction cases by excluding collocation points from the porous phase. What is more, to model the porous inclusion,
c1 = −c3/2 in Eq. (26).

Fig. 10 shows the loss functions for the two porous microstructures with the best network model identified
in the previous subsection, under transverse temperature gradient loading by H 2 = 1 K/m. For both cases, the
loss functions reach relatively low values after 2000 epochs and remain almost constant afterward, indicating the
fast convergence of the neural network models. Comparison of the fluctuating temperature gradient distributions
generated by the DHN and finite-element predictions is compared in Fig. 11. It is observed good agreement between
the proposed theory and the finite-element reference solutions.



Fig. 7. Effect of dataset size on the neural network performance with three training attempts.

The effective thermal conductivities, normalized by the corresponding matrix coefficient, were generated for the
fiber or pore volume fractions V f = 0.05−0.5 in increments of ∆V f = 0.05. The plots of the normalized effective
k∗

22/km as a function of the inclusion volume fraction for the two combinations of fiber/matrix or pore/matrix
properties are shown in Fig. 12, which are generated by the developed DHN theory and finite-element simulations.
The classical Hashin–Shtrikman bounds have also been included in the figure for comparison [54]. As expected,
effective thermal conductivity tends to the fiber/pore property in a nonlinear manner with increasing fiber/pore
volume fraction. The DHN and finite-element techniques predict virtually the same results at the entire volume
fraction range, which fall within the Hashin–Shtrikman bounds, providing additional evidence of the accuracy of
the developed approach.



Fig. 8. Effect of training dataset size on predicted transverse temperature gradient distribution H̃2 (K/m) with imposition of the macroscopic
temperature gradient H2 = 1 K/m.

Fig. 9. Unit cells containing (a) 5% and (b) 50% porosity volume fractions, respectively.



Fig. 10. Comparison of network performance for the porous unit cells with 5% and 50% volume fractions, respectively.

5. Transfer-learning assisted DHN

We further employ the deep homogenization network to conduct numerical experiments to demonstrate the
accuracy and capability of the proposed approach to analyze periodic arrays with locally-irregular fiber distributions,
as well as to understand fiber–fiber interactions in the local field concentration and homogenized behavior. Such
investigation is important in order to interpret accurately the discrepancy of homogenized properties obtained from
experimental data, as well as to design/optimize composite structural components in a multiscale analysis setting.
While simulating random multi-inclusion periodic arrays is typically outside of elasticity-based approaches’ ability,
multi-inclusion unit cells with locally-irregular fiber distributions require extensive mesh refinement in the case of the
finite-element method, which is necessary to capture the local field distributions. Hence the numerical experiments
considered herein highlight the DHN’s special strength among the available methods.

Fig. 13 illustrates four microstructural realizations of multi-inclusion periodic arrays containing 20% total fiber
volume fractions characterized by regular (Fig. 13a) and locally irregular (Fig. 13b, c, d) fiber distributions. For the
regularly spaced fiber arrays, four fibers were created and displaced at the center in a 2 × 2 subdomain. The random
fiber distributions were produced by displacing the fiber centers randomly using the Monte-Carlo simulation and
constraints were imposed to prevent fiber from overlapping or being displaced too close in order to avoid numerical
issues. Moreover, the fibers at the unit cell edges were cut precisely and moved to the opposite unit cell faces so that
complete fibers can be obtained that strictly satisfy periodicity constraints. All fibers have the same radius and the
unit cell’s overall dimensions have been normalized as in the single inclusion case in Section 4. A dataset with 40k
data points was generated such that the data point density for each of the 2 × 2 subdomains remains the same as in
Section 4. As before, a macroscopic temperature gradient by H 2 = 1 K/m is imposed in the transverse direction.

The small fiber diameter relative to the unit cell’s overall dimension and the complex microstructures pose new
challenges to the DHN convergence due to the important fiber–fiber interactions which lead to more significant
variations of temperature field and temperature gradient distributions. To address this issue, the transfer learning
technique was introduced in this section to facilitate neural network convergence, as well as to ensure correct local
temperature and gradient field can be obtained. The central idea of the transfer learning assisted DHN is motivated
by the fact that increasing smoothness of the fiber/matrix thermal conductivity transition promotes lower values
of loss values with the same training epochs but without altering the fundamental characters and magnitudes of
the temperature and temperature gradient distributions. Fig. 14(a) depicts the thermal conductivity distributions
for Microstructure #2 with the smoothness parameter δ = 0.1R, which is employed as a source model to train
the periodic network. Fig. 14(b) illustrates the thermal conductivity distributions for Microstructure #2 with the
smoothness parameter δ = 0.05R, which is the target model whose solution is closer to the real scenario. Two
identical neural network models, namely the source and target models, are built. The DHN is first employed to
train the source model to obtain the response of periodic arrays. Then, it is assumed that the trained source model
contains the common knowledge of the temperature field and gradients that can be applied to the target model



Fig. 11. Comparison of fluctuating temperature gradient distribution (K/m) generated by the DHN and FEM reference solution for two
porous unit cells with 5% and 50% volume fractions, respectively.

(since the temperature field and gradients are not fundamentally altered in the case of different material transition
parameters). Therefore, the weights and biases of the pre-trained source models can be utilized as prior knowledge
to initialize the network for the target models. As will be shown in the sequel, the rate of convergence of the neural
network model with transfer learning is much faster than that trained directly from scratch.

Comparison of the training performance of the four microstructural realizations for the source and target models
is shown in Fig. 15. The loss functions by training directly the target model with random seed values are plotted
in each subfigure for comparison. It is evident that the direct training on the target models over 15 000 epochs
for Microstructures #1, #2, and #3 yield significantly high loss values, indicating that reliable unit cell solutions
may have not been obtained. In contrast, the training on the source models always retains the lowest loss values
for each microstructural realization because these cases are less demanding due to the smoother material transition.
The subsequent training on the target models with the help of transfer learning demonstrates the effectiveness of the
developed framework, that is, the loss values of the transfer learning target models are always lower than training
neural networks from scratch because the weights and biases of the former models are more effective.



Fig. 12. Comparison of the homogenized thermoconductive coefficient as a function of fiber or porosity volume fraction predicted by the
DHN method against the FEM and the Hashin–Shtrikman bounds of Willis [54].

Fig. 16 compares the transverse fluctuating temperature gradient H̃2 distributions generated by training the source
model, the target model with transfer learning, the target model from scratch, and the finite-element gold solution
for the selected periodic array (Microstructure #2). As anticipated, the overall temperature distributions predicted
by the source model and the target model with transfer learning remain virtually the same over the entire unit cell
domain. The small differences between the source model and target model with transfer learning predictions along
the fiber/matrix interface are due to the differences in the smoothness of the material transition, illustrating that
the DHN is sufficiently sensitive to correctly capture this small effect. The result obtained from the target model
with transfer learning matches very well the finite-element reference solution, and the distributions themselves are
nearly identical, providing concrete support for the developed transfer-learning DHN approach. In contrast, training
the source model from scratch produces a drastically different local temperature gradient distribution from the
finite-element reference solution, indicating that the training of DHN from scratch failed in this loading scenario.

Fig. 17 presents comparison of local fluctuating temperature distributions T̃ (K) for all the considered microstruc-
tures generated by the DHN with transfer learning and the finite-element referenced results with the imposition of
a unit transverse temperature gradient H 2 = 1 K/m. The correlations between the two approaches are remarkable.
Particularly worthy of mentioning is that the temperature field is smoothly varying without any discontinuities
even at the fiber/matrix interface. Figs. 18 and 19 show differences in resulting fluctuating temperature gradients
H̃2 (K/m) and H̃3 (K/m) distributions obtained by the DHN and finite-element reference results, respectively. As
before, the DHN produces markedly smoother temperature gradient distributions along the fiber/matrix interface than
the FEM, but the characters remain the same for all the microstructures. Away from the interfaces, the differences
in temperature gradients predicted by the two approaches vanish in the presented figures.

We note that an important advantage of the proposed DHN method over the finite-element homogenization
technique lies in the manner of satisfying the periodicity boundary conditions. In the former case, the periodic
layer in the DHN framework ensures that the periodicity boundary conditions of both temperature and temperature
gradient (or heat flux) are satisfied exactly (or to the machine precision) along the unit cell opposite edges, as
presented in Fig. 20(a) and (b), respectively. In the latter case, the periodicity conditions are applied only to the
external nodal temperatures of the unit cell.

We end this section by summarizing the hyperparameters for reproducing various results presented in the present
work, including the network architecture, activation function, optimizer type, training dataset size, and the number
of epochs, etc., as shown in Table 2. We emphasize that the same network architecture identified in Section 4.1 has
been utilized for generating all the numerical cases in the subsequent sections.



Fig. 13. Unit cells containing 20% fiber volume fraction characterized by regular and locally-irregular fiber distributions (only 5k collocation
points were plotted for visualization purpose).

6. Discussion

Despite the rapid advance in the micromechanics and homogenization theories of heterogeneous media in the past
two decades, the search for ideal micromechanics models continues. Elements of the zeroth-order homogenization
theory and physically informed deep neural network were seamlessly connected to construct a new micromechanics
technique for the micromechanical analysis of thermoconductive composites with regular or locally-irregular fiber



Fig. 14. Comparison of thermal conductivity distributions for the selected microstructure #2: (a) source model and (b) target model.

Table 2
Summary of the hyperparameters for reproducing the various results presented in this work.

Fig. 6 Fig. 11 Fig. 17

Neurons in the periodic layer 20 20 20

Hidden layers 5 5 5

Hidden neurons 20 20 20

Activation function σ (x) = tanh (x) σ (x) = tanh (x) σ (x) = tanh (x)

Learning rate 0.01 and decaying by a
factor of 0.5 for every
1000 epoch

0.01 and decaying by a
factor of 0.5 for every
1000 epoch

0.01 and decaying by a
factor of 0.5 for every
1000 epoch

Optimizer Adam Adam Adam

Training dataset size 10k 9.5k (v f = 5%)
5k (v f = 50%)

40k

Testing dataset size 280 × 280 280 × 280 280 × 280

Number of epochs 10k 10k 15k

distributions. Novel use of a periodic layer makes possible the exact and automatic imposition of periodicity
boundary conditions to infinite order in a pointwise sense, circumventing incorporating a penalty term that represents
the residual norm of the boundary conditions into the loss function. In contrast, in the finite-element approach, the
periodicity conditions are only enforced on the external nodal temperature of the unit cell.

The second advantage lies in the mesh-free nature of the neural network approach. Specifically, the spatial
coordinates for training a network model can be collected randomly using Monte-Carlo simulation over the unit
cell domain. Hence, the conventional unit cell mesh discretization, which may be computationally extensive and
cumbersome in the case of multiple random fiber distribution, is eliminated.

Another important advantage of the proposed theory is that, intrinsically, the neural network solution is infinitely
differentiable. Therefore, both fluctuating temperature and its gradients are continuous and smoothly varying over the
unit cell domain. The primal finite-element method, however, can only satisfy the temperature continuity condition



Fig. 15. Comparison of the loss functions for four different microstructural realizations for the source model, target model and direct training
model.

between the adjacent elements while the calculated temperature gradients are not necessarily continuous from one
element to another.

7. Summary and conclusions

A novel physics-informed neural network-based homogenization theory was developed within the zeroth-
order homogenization framework for continuum micromechanical analysis of thermoconductive composites with



Fig. 16. Comparison of fluctuating temperature gradients H̃2 (K/m) predicted by (a) source model; (b) target model; (c) direct training; (d)
FEM model.

unidirectional fiber-reinforced or porous composites with random fiber distributions. This theory employs a two-
scale expansion of the temperature field of spatially uniform composites in terms of macroscopic and fluctuating
contributions. The latter is solved using the feed-forward neural network layers by minimizing a cost function given
by the residuals of the steady-state heat conduction governing equation evaluated over a set of training data points.
The periodicity boundary conditions are automatically and exactly satisfied in a novel manner with the help of a
periodic layer involving a set of periodic functions and nonlinear activation functions.

Extensive numerical experiments were conducted to illustrate the effect of neural network hyper-parameters and
dataset size on neural network performance. The accuracy of the homogenized properties and local temperature
and gradient distributions of unit cells reinforced by a unidirectional fiber or weakened by a porosity generated
by the proposed theory is demonstrated by comparison with the finite-element simulations. The network-based
homogenization approach is further enhanced with the transfer learning technique, enabling the efficient and accurate
simulation of random fiber distributions where periodicity boundary conditions are more important.

The marriage of the physics-informed deep neural network model and the homogenization theory offers many
possibilities for further extension and investigation. For instance, it remains to be an open question if the developed
approach is also applicable to solving mechanical problems involving multiple PDEs (hence multiple loss terms).
The developed approach also motivates the extension to three-dimensional periodic composites with arbitrarily
shaped and oriented inclusions.



Fig. 17. Comparison of fluctuating temperature distribution T̃ (K) generated by the DHN and FEM reference solution for different
microstructures.

Fig. 18. Comparison of fluctuating temperature gradient H̃2 (K/m) distribution generated by the DHN and FEM reference solution for
uniform fiber arrangement.



Fig. 19. Comparison of fluctuating temperature gradient H̃3 (K/m) distribution generated by the DHN and FEM reference solution for
uniform fiber arrangement.

Fig. 20. Comparison of fluctuating temperature and its gradients along the unit cell boundaries, illustrating the exact satisfaction of periodicity
boundary conditions.
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