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Overworld: Assessing the geometry of the world for Human-Robot
Interaction

Guillaume Sarthou

Abstract—For a robot to interact with humans in a given
environment, a key need is to understand its environment in
terms of the objects composing it, the other agents acting in it,
and the relations between all of them. This capability is often
called the geometrical situation assessment and is mainly related
to spatial reasoning in time.

In this paper, we present Overworld, a novel lightweight and
open-source framework, merging the key features of a decade of
research in the domain. It permanently maintains a geometric
state of the world from the point of view of the robot by
aggregating perceptual information from several sources and
reasoning on them to create a coherent world. Furthermore,
Overworld implements perspective-taking by emulating the hu-
mans’ ability to perceive to estimate the state of the world from
their perspective. Finally, thanks to a strong link with an ontology
framework, it ensures knowledge coherence in the whole robotic
architecture. This work is part of a broader effort to develop
a complete, stable, and shareable decisional robotic architecture
for Human-Robot Interaction.

Index Terms—Multi-Modal Perception for HRI; Human-Robot
Collaboration; Software Architecture for Robotic and Automa-
tion

I. INTRODUCTION

FOR a robot to act on an environment, talk about it, or
take decisions in relation to it, one key quality is the

ability to reason about it. The robot is not omniscient, indeed,
it is limited by the range of its sensors. However, the world
is larger than that and can not be limited for example to a
single image. This means that the robot has to reason in time,
considering the evolution of the percepts. If the robot has no
more data on a given object, it can be because it is out of
its field of view or because it is now occluded by another
one. Considering the presence of humans in the environment,
a third explanation could be that the object has been moved by
a human. At the difference of robots acting alone, the dynamic
of the environment does not only take its origin from the
robot’s activity. The commonly used paradigm “the perception
as an action” used for example in [3] does not hold. The robot
has thus to permanently monitor its environment to allow a
higher decisional level to react to uncontrollable events.

To facilitate the interaction with humans, making it
smoother, more natural, and more efficient, a key capability
of the robot at the situation assessment (SA) level is Visual
Perspective Taking (VPT). It is defined in [18] as “the ability
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to predict the visual experience of another agent”. By doing
so, we are able to estimate if another person can see an object
or not. This ability is the first step to implement Theory of
Mind (ToM) being “the ability to make inferences about what
other people believe to be the case in a given situation” [1]. As
shown in [4], [7], or [28], such an ability allows among other
things the generation of efficient communication avoiding
to consider facts or objects estimated as unknown by the
agent the robot interacts with, or at least different from its
perspective. See [8] for a survey on VPT use in robotics.

Another important challenge in the context of Human-
Robot Interaction (HRI), is to make the robot’s knowledge
shareable with the humans partners. While the robot perceives
the elements of the environment in terms of coordinates,
humans are more likely to observe an environment in terms of
symbolic relations (e.g. “the plate on the table” or “the knife
in your hand”). The robot thus has to be able to extract such
relations from its perception of the environment. More than
allowing verbal interaction, this ability allows the execution
and validation of symbolic task planning where for example
the goal defined at the symbolic level could be to put the knife
at the right of the plate rather than at a precise coordinate.

In this paper, we present Overworld, a novel lightweight,
efficient, and open-source framework, merging the key features
of a decade of research in the domain of geometric situation
assessment for HRI. The main contributions of this work are
an advanced geometrical reasoning process independent of
the used perception modalities, a strong link with an ontology
framework coming with meaning-full symbolic relations
extraction, and parallel representation of worlds, all based
on the VPT principle.

In §II we briefly discuss related work and how our contri-
bution addresses multiple issues at a time. An overview of
the software architecture is then provided in §III before a
focus on the reasoning process in §IV and on the symbolic
facts computation in §V. Finally, §VI presents results on two
different robots performing a benchmark task for HRI and
§VII concludes the paper.

II. RELATED WORK

In robotics, bridging the gap between sensing and delib-
eration (as language or task planning) is a common need.
However, as explained in [10], it often consists of an ad-
hoc integration of processing methods for application-specific
or even scenario-specific approaches. In an architecture, the
design of a hub for sensor fusion and geometric reasoning
aims at proposing a more generic and reusable solution. Such
a solution is known as symbol grounding. It establishes and
maintains a link between what a system can sense and what
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it can reason about. Coradeschi et al. in [5] present a review
of such solutions. Among the reviewed solutions, we can cite
the Grounded Situation Model (GSM) [17] which proposes an
amodal physical representation of the world used to maintain
symbolic beliefs about the objects of the environment and the
robot’s own body.

To pass from a geometric representation to a symbolic one,
spatial reasoning [20] is used. Such abstraction is required
for instance for grounded natural language processing [27]
during Human-Robot Interaction. For example, [25] presented
a spatial reasoner to compute symbolic objects location (e.g
Box isOn Table) as well as relations between objects and
agents (e.g. Box isVisibleBy Bob).

To systematize the bridging between sensing and delib-
eration, Heintz in [9] introduces the notion of knowledge
processing middleware and draws some requirements. Among
them, we can cite the need for a flexible configuration and
reconfiguration or to permit the integration of information
from distributed sources. In addition, he highlights that the
knowledge process has to be decoupled and asynchronous to
a certain degree. Indeed, the direct processing of the sensor
data has to be done at a high frequency to allow among others
filtering or tracking while the symbolic abstraction could be
done at a lower frequency. The processing should thus not
be seen as a continuous stream whose tempo is given by
the sensors. This is particularly true when several sensors
are used at the same time where a full process would be
triggered at each new data of each sensor. DyKnow [11] is
an implementation of such knowledge processing middleware
which has been used in drone applications.

While previous contributions focus only on the robot rep-
resentation of the world, the integration of such a process for
Human-Robot Interaction brings new challenges to be tackled.
Using the notion of VPT, Warnier et al. in [29] estimate the
beliefs of the humans collaborating with the robot to detect
belief divergences and to create an estimate of the humans’
knowledge bases. However, the proposed solution is simplistic
with the use of a single world being the robot representation
and with the use of the assumption that when the human is
present in the scene he notices every action on all objects and
thus knows their new positions even if he cannot see them.
SPARK [19] extends the previous work with more advanced
reasoning on objects’ positions trying to find hypotheses (i.e.
occlusions) to explain why an object is not perceived anymore.
However, even if maintaining separate belief bases, SPARK
still works on a single world representation not allowing a
genuinely independent representation of the human knowl-
edge about the world. With Underworlds [13], Lemaignan
et al. proposed a new paradigm to develop a geometrical
SA for HRI. Through a principle of cascading, Underworlds
allows the representation of multiple parallel representations
of the world. Thanks to this, it allows to handle and to
maintain truly independent models of the environment for each
agent and thus allows the representation of proper false-belief
situations. However, Underworlds comes more as a toolkit
rather than a software even if example clients are available.
As stated by the authors, “it does not provide any intrinsic
high-level processing or reasoning capability”. In addition,

the cascading architecture has the side effect to create a
continuous knowledge stream triggered by each new data from
each sensor. Nevertheless, it allows fast prototyping as shown
in [22] where it has been used to implement simulation-based
physics reasoning but not in real-time and without VPT. It
is thus mainly used to represent and share multiple parallel
representations of the world, to be used by other components.

III. DESIGN AND ARCHITECTURE

Overworld aims at gathering the strengths of the previously
presented contributions to propose an amodal and efficient
solution in addition to provide meaningful geometrical and
spatial reasoning capabilities. In this section, we first present
used types and the knowledge stream with regard to the robotic
architecture Overworld is integrated into. We then give key
details on the specifics of its implementation.

A. Used types

Overworld considers two kinds of entities: the objects and
the body parts.

Entity: An entity is defined by a unique identifier which
can be a “true identifier” if it is a known identifier in the
entire robotic architecture or a “hidden identifier” if it has
been automatically created in Overworld. For example, when
the robot grasps an object, we can perceive that an object exists
in the robot’s gripper but we can not identify it. In this latter
case, we can use a “hidden identifier”. An entity also owns
a pose, a small history of its poses and a shape. The shape
can be defined by basic geometric volume (cube, sphere, or
cylinder) or a mesh (visual and collision mesh), in addition to
a color, rendering texture and scale.

Object: An object is a specification of an entity. It can
be defined as static and can have a mass. In addition, it can
own what we call Points of Interest (PoI). Each PoI is a set of
points relative to the object which have been used to perceive
the object. Using tags to detect an object, the latter will have
a PoI per tag and each PoI will be composed of the points of
the four corners of the tag. These PoIs will be used to reason
about the object’s visibility.

Body part: A body part is a specification of an entity. It
is defined by a type (e.g. hand, head, torso, or base), a frame
name and the agent name it is related to.

Hand: A hand is a specification of a body part in the
way that it can hold objects.

Agent: An agent is composed of body parts. Only a head
is required to define it. In addition, it has an identifier, a type
(robot or human), and a Field of View1 (FoV).

B. Knowledge stream

Overworld is part of the DACOBOT architecture [24]. It is
strongly linked to the software Ontologenius [23], a semantic
knowledge base dedicated to HRI. Overworld both updates
the knowledge bases and gets from it static knowledge about

1For now the FoV only represents a camera placed on the agents’ head.
Further development should rather describe the agents’ sensors and thus not
requiring robot’s head.
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Fig. 1. A partial view of the knowledge stream among the robotic architecture
using Overworld. Blocks with a dot of the top-left corner are asynchronous
from the block below. The dotted arrow from the Knowledge Bases (KBs) to
the Situation Assessment (SA) represents on-demand abstraction. The dashed
arrow from the SA to the KBs represents queries about the entities to create.

the entities. This second link allows a uniform representation
of knowledge among the entire architecture and eases the
configuration by avoiding hard-coded knowledge or the use
of multiple configuration files with redundant knowledge.

The knowledge stream represented in Fig. 1 is based on the
knowledge processing middleware proposed in [9]. Following
the scheme from bottom to top, data coming from sensors or
perception processes are sent to Overworld where percepts
are first created independently for each sensor. Percepts are
temporary and possibly incomplete representations of entities
of the world. At this level, it can be enriched by static
knowledge coming from the knowledge base. Considering a
perception process based on tags, from the tags’ ids Overworld
can query the KB to fetch the internal unique identifiers (e.g.
tag 24 corresponds to table_1) and the visual and collision
3D models to use, the texture or the color to apply, or the
entity’s mass if some of this information exists. The position
of these percepts can be filtered either to smooth noise or to
discard data when the sensor has moved for example.

From there, data have been processed in parallel and in
an independent way for each input perception process. An
assessment loop (detailed in Sec. IV) periodically pulls all the
percepts of all perception processes and aggregates them to
create entities in the complete representation of the world. For
the entities with no data for a few loops, a geometric reasoning
process tries to find explanations which can be that the entities
are out of the FoV of the sensors or that visual occlusions
exist. Once the world is stabilized, spatial reasoning abstracts
the representation by generating symbolic facts which are sent
to the KB.

In an asynchronous way, the KB runs semantic reasoning to
deduce new facts from the coming ones (e.g. if <A, isOn,
B> then <B, isUnder, A>) and store them all. Finally,

the Supervision or other deliberative processes can either
subscribe to patterns of facts (to avoid continuous pulling)
or perform direct queries. As detailed in Sec. V, some facts
are not required to be computed at each assessment loop and
can be computed on demand.

With the described flow, Overworld allows flexible con-
figuration and reconfiguration with the use of the ontology
and permits the integration of information from distributed
sources as required by [9]. In addition, knowledge processes
are decoupled and asynchronous at some levels to avoid over-
processing while fitting the frequency requirement of each
level of the architecture.

C. Implementation

Overworld is composed of an assessment process per agent
it manages. The main one corresponds to the robot while the
others correspond to the humans the robot interacts with. Each
process is independent of the others and runs in a dedicated
thread. Fig. 2 represents Overworld’s architecture with two
assessment processes.

A set of perception modules is used to fetch data from
the agent’s sensors. These modules are plugins of Overworld
allowing easy addition of new perceptions capabilities and
thus a gain in modularity. A module is dedicated either
to perceive objects or body parts. They are responsible for
percepts creation and filtering as presented in Sec. III-B. To
facilitate its use, Overworld provides three module templates
with protection mechanisms. These templates can respectively

Fig. 2. Schema of Overworld architecture considering one human. Blue
boxes represent perception modules as plugins. They feed the grey boxes
(being perception managers) with percepts which are then used to create a
representation of the world. The human’s perceptions modules are emulations
of the human ability to perceive in the robot’s world.
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be used to subscribe to a ROS topic, synchronized ROS topics,
and the use of standard C++ callbacks.

While the monolithic structure of SPARK [19] pro-
vided good performance, the cascading structure of Under-
worlds [13] brought powerful modularity. With the plugin
solution, Overworld aims at taking the best of both. To select
the modules to be used for a given robot or experiment,
Overworld considers a single configuration file defining the
plugins to instantiate as well as their parameters if needed.
Considering for example a plugin to perceive objects using
the pressure sensors of a robot’s gripper, we can describe in
the configuration file that this plugin has to be loaded twice,
that one is the left gripper with a given pressure threshold and
the other for the right gripper with another pressure threshold.

As illustrated in Fig. 2, the perceptions modules are attached
to perception managers. Overworld has an objects manager,
a humans manager, and a robot manager. At each assessment
loop (detailed in Sec. IV), the managers fetch the percepts
of their modules and run an aggregation algorithm to create
entities from the percepts and update them with the new data.
This step is required as the same entity could have been
perceived by several modules. Considering a robot’s gripper
perception module, it will provide a percept with an hidden
id and a position. At the same time, this object is perceived
by a tag module. As both percepts are at the same position
with comparable volumes, the manager merges them to create
a single entity. When the robot moves its arm and no more
perceives the object by its tag, the manager still knows which
real entity is manipulated and updates its position thanks to
the gripper module.

The managers are also responsible for geometric reasoning.
To do so, they rely on the Bullet2 [6] physics engine. Bullet
works as a server and allows the creation of multiple parallel
worlds. Each assessment process thus owns a world. The three
managers of each process update this world with the newly
created entities and with the updated data.

Thanks to this 3D representation of the world, the assess-
ment process performs spatial reasoning to compute symbolic
facts (detailed in Sec. V) and sends them to the ontology.
In addition, for each human perceived by the robot, the
robot’s assessment process emulates the humans’ ability
to perceive. To do so, it uses the Bullet world to generate
a segmentation image of the world from the point of view
of each human. These images are then used to feed the
perception modules of the humans’ assessment processes. At
the difference of [19] this emulation and the independent
process (and thus reasoning) allows a proper representation
and detection of belief divergence between the robot and the
humans but also between the humans.

IV. INTO THE ASSESSMENT LOOP

In this section, we focus on the reasoning process performed
in the assessment loop. We first detail the geometric reasoning
and then present the use of physics simulation.

2Overworld uses a custom C++ bullet API based on PyBullet.

Fig. 3. Diagram of the geometric reasoning algorithm to manage the objects’
positions. Explanations can be occlusion or grasp detection.

A. Geometric reasoning

Once the percepts of the modules are fetched, the assess-
ment loop is in charge of updating the agent’s representation
of the world. To perform this update, once the aggregation is
done, we follow for each entity of the world the algorithm
represented in Fig. 3.

If the entity has been perceived by one of the modules since
the last loop, the entity is created if it was not already and its
position is updated. If it has not been perceived, we check
if the agent should have been able to perceive it, meaning if
the entity is in the agent’s FoV. If it is not, we can conclude
that this absence of data is normal and we keep the entity’s
last position. This test is based on the entity’s PoIs for those
having some (i.e. is a PoI in the FoV?) and is based on the
eight corners of its bounding box for those not having PoIs
(i.e. is a corner in the FoV?).

In the case the entity is in the agent’s FoV, the latter should
have perceived it. We thus try to find an explanation for this
lack of data. A first explanation could be that the entity is held
by an agent. A second explanation could be that the entity is
occluded by another one. This latter test differs if the entity
has PoIs or not. If it has not, we generate a segmentation
image of the scene from the agent’s perspective. The entity is
thus considered occluded if it does not appear on the image.
For the entities having PoIs, we perform a batch of raycasts
toward the points composing the PoIs in the FoV. If at least
one point of each PoI hits another entity, we conclude that
the entity is occluded. Fig. 4 illustrates such a situation with
a table perceived with two tags which are occluded by a box.
Each tag is a PoI of the table, each having five points. In the
image we see two sets of five raycasts, all hitting the box.

When an explanation is found, the entity is kept in the world
at its last position. Otherwise, we remove it from the world.
The agent thus knows that the entity exists but does not know
its current location.

B. Physics simulation

In a dynamic environment and especially with the presence
of humans, an object can be moved from a visible position to
an occluded one. In the previously studied example, the box
had been moved on the tags but what happens if we put the box
in front of the block aside and then slide the box backwards?
The reasoning process would initially find an explanation but
when we would slide the box, in the robot’s world the block
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would “pass through” the box (as we don’t update its pose).
After that, no occlusion would be found and the block would
be removed. The same would appear when we drop an object
in a box. The last perceived would be above the box, and since
the cube would have fallen, it would thus not be perceived
anymore, and thus be removed from the scene as no occlusion
would be detected between the camera and the last position
of the cube.

Here the issue is that the algorithm does not rely on the
physics of the objects. Physics simulation is commonly used
in robotics to predict the effects of an action [2] but not used
in real-time to understand what is happening. Nevertheless, as
previously explained, [22] has presented a proof of concept for
HRI. In our implementation, rather than constantly simulating
all the objects, we have chosen to only simulate those for
which the search for an explanation is required. This means
that we simulate the occluded objects and the ones that we
would have been removed otherwise. In the first case, it allows
them to react to the movement of other objects like in the
example of the slipped box. For the others, it allows to test if
their physics could lead them to a position where an occlusion
would explain their absence of data. After a few simulation
steps, if we still do not find any explanation, then we finally
remove them. This addition to the previous reasoning process
allows the understanding of more dynamic situations.

V. FROM GEOMETRIC TO SYMBOLIC

We consider two kinds of facts, those computed at each
assessment loop and those computed on demand. For all
the facts having inverses, Overworld only computes one of
them and the other is deduced by the semantic reasoning of
the ontology management system. Additional facts could be
computed in the future.

A. Continuously computed facts

Overworld continuously computes six facts allowing to
trigger higher decisional processes.

isOnTopOf(Object, Support): An object is on
top of another if the second is defined as a support in the
ontology, the lower z (z vertical) coordinate of its Axis Aligned
Bounding Box (AABB) is approximately at the same level as
the upper z coordinate of the support, and the projection of
their AABB on the xy plane are overlapping.

Fig. 4. Third-person view of the robot world in the Bullet GUI. Red lines
are a debug visualization of raycasts performed to detect occlusions between
the robot’s sensor and the PoIs.

isInContainer(Object, Container): An ob-
ject is in another if the second is defined as a container in the
ontology, the lower z coordinate of its AABB is approximately
contained in the z coordinates of the support, and that the
projections of their AABB on the xy plane are overlapping.

isInHand(Pickable, Hand): An object is in a
hand if it is defined as pickable in the ontology and if it is
closer to the hand than a few centimeters. The object is then
attached to the hand to follow its movement and is released
once it is perceived at a different position from the hand.

isPerceiving(Agent, Agent): An agent is per-
ceiving another agent if at least one of the second agent’s body
parts is in the FoV of the first agent.

isLookingAt(Agent, Object): An agent is look-
ing at an object if the object is in the segmentation image
generated from the agent’s point of view.

hasHandMovingToward(Hand, Object): A
hand is moving toward an object if the object is in a cone
oriented by the mean vector resulting from the N last positions
of the hand.

B. On demand facts

Facts with high dynamics and requiring instance compu-
tations can be computed on demand. For now, Overworld
implements the computation of the facts isAtLeftOf and
isInFrontOf. While [25] implements a simplified version
by only considering these relations between the agents and the
objects, Overworld comes with a meaningful implementation
of these facts, based on the theory proposed in [16].

Following the principle of “thinking for speaking” [26],
Levelt explains that such relations should be computed in
a way that they will be understood. These relations can be
computed with regard to three systems. The absolute uses the
north-south dimension and is neither relative to the speaker’s
nor the object’s coordinate system. The intrinsic perspective
system uses the objects’ intrinsic axis if some exist. For
example, in most cultures, we assume a front and upward axis
for a chair or a car. We can thus compute spatial relations using
their coordinate system. Finally, the pragmatics perspective
systems use the agents’ orientation to compute relations.
Following the VPT principle, these relations will thus differ
depending on each agent. While the absolute system is rarely
used, in most cultures, none of the others is dominant over the
others.

Levelt also explains that while converseness (i.e. the inverse
of a relation) and transitivity hold in the pragmatics and
absolute system, they do not in the intrinsic one. From the
experiments presented in [15], we can also notice the principle
of canonical orientation explaining that if an object with an
intrinsic axis is not in its canonical orientation, it cannot be
used as a perspective system. In a simplified definition, an
object is in a canonical orientation if its upward axis is aligned
with the absolute system’s upward axis. In other words, if a
chair is placed on one of its sides, it can not be used to refer to
another object using the intrinsic system. Finally, as already
used in [25] with the relation isNextTo, the size of the
objects has an impact on the relation computation. Where two
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TABLE I
SUMMARY OF COMPARISON BETWEEN OVERWORLD AND UNDERWORLDS OVER TWO BENCHMARKS.

Situation 1 Situation 2

Frequency Positions before
grasping

Positions during
grasping

Positions after
dropping Frequency Positions Perspective

estimation
Underworlds 8 Hz Fluctuating Correct Missing 3.5 Hz Fluctuating Correct
Overworld 20 Hz Correct Correct Correct 13 Hz Correct Correct

houses spaced of 5 meters are next to each other, two pens
also spaced of 5 meters are not next to each other. Because the
relations isAtLeftOf and isInFrontOf are only used for
near objects, their sizes have to be considered.

Overworld implements the computation of the relations
isAtLeftOf and isInFrontOf in the intrinsic and prag-
matic systems by following all the presented principles. While
the intrinsic systems are used identically for all the agents’
worlds, the pragmatic system is only related to the world
owner. However, as all the worlds feed a dedicated ontology,
the robot can still use PT by reasoning on the agents’ estimated
knowledge base.

To make these facts available to the rest of the architecture
in a transparent way, Overworld takes advantage of Ontologe-
nius (the semantic knowledge base) by providing a reasoner in
the form of a plugin. The reasoner runs before each query to
Ontologenius and if the query involves relations computable
by Overworld, it computes them on demand before answering
the query3.

VI. RESULTS

Overworld has been successfully integrated into the DA-
COBOT robotic architecture and tested on two robots (Pr2 and
Pepper) to pass the Director Task [24]. The implementation
on Pr2 has been used with object detection based on tags
and the robot grippers, and human detection based on external
motion capture. The implementation on Pepper has been used
only with tags for the objects and computer vision [12] to
detect the humans.As illustrated in Fig. 5, the test of the
Director Task is interesting to assess the usability of such a SA
software as it requires a meaningful and stable computation of
facts to generate and understand verbal instructions, as well as
precise position management to allow the robot to effectively
grasp objects. In addition, to generate efficient communication,

3For efficiency issues, Overworld is not requested to recompute the facts
under a given duration corresponding to its assessment loop.

Fig. 5. A third-person view of the real setup from the robot side (left
image) and the corresponding estimation of the human’s representation of the
situation (right image). The robot has estimated that the human cannot know
that a block exists in the left-top box (red circle).

this task requires ToM and thus VPT to estimate the others’
knowledge about the world.

To go further, we proposed two new benchmark situations4.
• The first consist of the robot picking a block and then

dropping it in a box. The human partner then reverts the
box to make the block fall on the table before sliding
the box (and thus pushing the block) until this latter falls
on the ground. This first situation evaluates the percepts’
aggregation and the geometric reasoning with physics
simulation. Indeed, initially, the robot perceives the block
with a tag modality. Once picked, the tag becomes hidden
and the robot has to use its gripper sensors to detect
that the object is in the gripper. Finally, for the rest of
the manipulation, the block is no more perceived and its
position has to be estimated with geometric reasoning
with physics simulation.

• The second situation consists of two humans around the
DT setup. One is on the robot’s side while the other is
in front of the robot. The second human then moves to
the robot side to discover a previously hidden block. This
second situation mainly evaluates the software scalability
(with 13 objects and 2 humans) as well as the VPT.
This means that three worlds have to be maintained
simultaneously and that two perspectives have to be
computed.

Both Overworld and Underworlds have been tested against
these benchmarks using a rosbag to provide them with iden-
tical inputs. As Underworlds is a toolkit not implementing
high-level reasoning, we used the implementation developed
to prototype Overworld. This implementation is based on an
existing one [21] proposed by Underworlds’s authors to ensure
a correct software architecture. The tested Underworlds im-
plementation integrates reasoning on objects without physics
simulation. We have to note that Underworlds messages ex-
changed between worlds had to be modified to support PoI.
The same symbolic facts were computed by both software.
SPARK had not been tested as it is no longer available with
features shown in its related works. As explained in [14], it
was able to run at 10Hz without physics simulation.

The first benchmark is passed by Overworld at 20Hz with a
correct object position estimation and VPT. Underworlds runs
it at 8Hz with several objects disappearances due to difficulties
to synchronize data. Furthermore, once picked by the robot, the
block position was no more estimated. The second benchmark
is passed by Overworld and Underworlds respectively at 13Hz
and 3.5Hz. Both positions’ estimations were correct as the
robot is only a spectator of a static situation and uses a single
perception capability. We see that Overworld is at least twice

4Available at https://gitlab.laas.fr/gsarthou/overworld benchmark

https://gitlab.laas.fr/gsarthou/overworld_benchmark
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faster as Underworlds and is less impacted by scaling up the
complexity. These results are summarized in Tab. I.

Additional results are available in the attached video5.

VII. CONCLUSION

In this paper, we have presented Overworld, our geometrical
SA system for HRI. We exposed how its architecture and its
integration into a robotic architecture allow to build a coherent
knowledge processing middleware with a strong and bidirec-
tional link to an ontology easing the system configuration and
adding semantic reasoning on top of the spatial reasoning.
The configurable plugin system has been shown to facilitate
the system extension with new perception capabilities and to
allow its use on several robotic platforms. For the community
to use it, some can either implement their own perception
modules or take existing ones to match their robot perception
capabilities and then take advantage of all Overworld reason-
ing mechanisms.

With the current contribution, we have also highlighted
advanced reasoning capabilities both in terms of geometri-
cal reasoning to create a coherent world and in terms of
meaningful symbolic relations extractions. Finally, we have
demonstrated that Overworld can maintain several parallel
representations of the world to implement ToM through the
use of VPT. In addition to the ability to emulate the human
ability to perceive, we have shown that Overworld allows a
proper false-belief representation.

Even if we have successfully gathered decades of research
on SA for HRI, Overworld could be brought far ahead in future
work. Where some reasoning processes focus on the agents’
FoV underlying the use of a single visual sensor, we want
to integrate a fine representation of the agents’ sensors and
integrating them into the reasoning process. Such addition will
lead to a finer representation of the used modules to perceive
a given entity allowing more precise reasoning.

For now, Overworld uses the convenient and efficient 4x4
transformation matrix to represent the entities’ position in
the world. However, we could gain with explicit management
of uncertainties especially when the same entity is perceived
by several perception modules at the time. We thus plan to
integrate a position representation with a covariance matrix
for the next developments.

In an effort to share this work with the robotics community,
a website6 and the code7 are available.
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