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Abstract. Cable-Driven Parallel Robots (CDPRs) are a type of robot
that is growing in popularity for different kinds of applications. However,
the use of cables instead of rigid links makes the modelling of this robot
a complex task, and therefore their trajectory planning and control are
challenging. Assumptions such as inelastic, massless and non-sagging ca-
bles made when the CDPR is small are no longer valid when the robot
becomes large. This paper presents a CDPR dynamic model taking into
account cable elasticity and sagging, and its implementation within an
open-source framework, named SOFA. Finally, the simulation results are
compared to experiments conducted on a suspended CDPR.

Keywords: Cable-Driven Parallel Robots · Dynamic Modeling · Finite
Element Method · Cable Model · Beam Theory

1 Introduction

Cable-Driven Parallel Robots (CDPRs, see Fig. 1) are used to perform opera-
tions in a very large workspace: from the assembly of solar panels [1] to flight
simulators [2], through the development of a large radio telescope [3]. Simulat-
ing this kind of robots is of interest for carrying out potentially dangerous or
time-consuming tests, such as the analysis and prediction of their behaviour,
e.g. during their design and the synthesis of control laws, or to conduct tests
at the safety limits, i.e. failure tests of actuator and cable breakage. It can also
make it possible to estimate certain parameters or variables that cannot be
measured on a real system. To do so, dynamic models that are both precise and
computationally tractable are mandatory.

Several cable models are available in the literature as shown in Fig. 2. A first
level of dynamic modeling is assuming massless, straight or non elastic cables [5,
6]. Some works consider elastic, but massless cables, therefore not undergoing

⋆ This work is supported by both IRT Jules Verne in the framework of the PERFORM
program and the EquipEx+ TIRREX project, grant ANR-21-ESRE-0015.
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Fig. 1: CDPR (CAROCA) located at IRT Jules Verne, from [4].

cable sagging [7]. This may be of interest to model synthetic cables that have
low mass density. In [8], the authors used the assumed mode approach to model
a three degree-of-freedom (DOF) CDPR with sagging and non-elastic cables.
The Irvine model [9] offers the possibility to model faithfully the cable geometry
taking into account cable sag and elasticity, but only in the static case. Besides,
it neglects the bending stiffness of the cable. It is therefore not directly suitable
for dynamic control applications. Recently, a Rayleigh-Ritz cable model that
takes into account the variation in cable mass and stiffness was studied in [10].
However, results are for now limited to a single DOF CDPR.
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Fig. 2: Illustration of different cable models.

It should be noted that few CDPR simulators exist in the literature based
on different cable models. In [11], a massless and inextensible cable model is
implemented in Gazebo and ROS to simulate CDPR dynamic behaviour. Multi-
ple nodes of Reissner beam are used in [12] to model cable elasticity, sag, shear
and torsion in the XDE framework. However, some of the physical parameters
of the cable such as the Young modulus need to be adapted in order to ensure
simulation stability. The simulation time obtained in [12] is slow for testing and
tuning controllers, namely, 10 h to simulate 10 s. CoppeliaSim offers elastic, but
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straight and massless cables [13]. Other frameworks like AGX Dynamics [14]
and MapleSim [15] make it possible to consider elasticity and cable mass with a
lumped parameter discretization.

This work proposes a cable model suitable for CDPR control design. The
proposed dynamic model considers both cable elasticity and sag. This dynamic
model is implemented in SOFA framework [16], which was developed for finite
element modeling and simulation of soft objects. A digital twin of CAROCA, a
CDPR located at IRT Jules Verne, is developed in SOFA. The results from the
simulation with SOFA are compared to the results from simulators developed
with Maplesoft™ MapleSim software.

The paper is organized as follows: Section 2 describes the cable model ob-
tained based on the FEM model of beams in SOFA and its application to a
suspended CDPR. Results from SOFA and MapleSim simulations are compared
with experimental results in Section 3. Conclusions and future work are drawn
in Section 4.

2 CDPR Dynamic Modeling

This section presents the dynamic model of CDPRs including both cable elas-
ticity and sagging. The presented methodology is intended to be as generic as
possible and is valid for all configurations (suspended and fully-constrained), but
will be illustrated throughout the paper with a suspended CDPR. The method
relies on the finite element method (FEM) implemented within the SOFA frame-
work, a physics-based simulation platform that uses FEM to model, simulate,
and control deformable objects.

2.1 FEM Model of Beams in SOFA

This method, first presented for SOFA in [17], relies on a representation based
on three-dimensionnal Timoschenko beam theory [18] and a specific corotational
formulation to account for large displacements [19, 20]. It is implemented within
the BeamAdapter4 plugin of the SOFA framework.

The beam is discretized into N small elements, each of them corresponding
to the one depicted in Fig. 3(a). The motion of the flexible beam is then decom-
posed into two parts, a rigid body motion and a deformation motion, with the
assumption that the deformation remains small at the level of each elements.
The equation of motion of an object according to Newton’s second law is given
by:

Mq̈ = fe(q, q̇) +H(q)λ (1)

where q ∈ Rn is the vector of generalized coordinates, M ∈ Rn×n is the inertia
matrix of the system and fe(q, q̇) : Rn × Rn → Rn gathers external forces.
Finally, H(q) : Rn → Rn×m is the Jacobian matrix that gives the direction of
constraints forces, λ ∈ Rm the vector of Lagrange multipliers corresponding to

4 https://github.com/sofa-framework/BeamAdapter
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the constraints and m is the number of algebric constraints. In the case of a
beam element, q = (qT

a ,q
T
b )

T where indices a and b represent the extremities of
the beam element as shown in Fig. 3(a), qa and qb contain a positional vector
∈ R3 and a rotational term ∈ SO(3) defining the pose of each extremity. M is
given in [18] and depends on the second moments of area Iy and Iz with respect
to the axes y and z respectively, the cable cross section area A, the length of the
beam element L, the second polar moment of area J , and the material density
ρ.
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Fig. 3: Cable discretization.

With the corotational assumption, the deformation in the cable elements is
small locally and the external force can be calculated with the linear relation:

fe(q) = K(u(q)− u(q)) (2)

where u(q) is the deformed configuration of q, u(q) is the rest configuration
of q, both expressed in the local frame, and K is the stiffness matrix given in
Eq. (3).

K =



EA

L

0
12EIz
L3ϕy

0 0
12EIy
L3ϕz

0 0 0
GJ

L
symmetric

0 0 −6EIy
L2ϕz

0
EIyΦpz

Lϕz

0
6EIz
L2ϕy

0 0 0
EIzΦpy

Lϕy

−EA

L
0 0 0 0 0

EA

L

0 −12EIz
L3ϕy

0 0 0 −6EIz
L2ϕy

0
12EIz
L3ϕy

0 0 −12EIy
L3ϕz

0
6EIy
L2ϕz

0 0 0
12EIy
L3ϕz

0 0 0 −GJ

L
0 0 0 0 0

GJ

L

0 0 −6EIy
L2ϕz

0
EIyΦnz

Lϕz
0 0 0

6EIy
L2ϕz

0
EIyΦpz

Lϕz

0
6EIz
L2ϕy

0 0 0
EIzΦny

Lϕy
0 −6EIz

L2ϕy
0 0 0

EIzΦpy

Lϕy



(3)



FEM-based Model of CDPR. 5

where Φpy = 3+ϕy, Φny = 3−ϕy, ϕy = 1+
12EIz
GAsyL2

, Φpz = 3+ϕz, Φnz = 3−ϕz,

ϕz = 1 +
12EIy
GAszL2

, G =
E

2(1 + µ)
, E is the Young’s modulus, µ is the Poisson’s

ration, and Asy and Asz are the actual surfaces of the cable due to shear along
the y and z directions.
In CDPR use cases, the sheering can be neglected and therefore ϕy = ϕz = 1.
The cables have a symmetrical cross-section and therefore Iy = Iz = I. Once
the external force fe(q) is calculated in the local frame, it is transformed to the
global frame using the rotation matrix of the local frame.

The model presented in [18] is used to model beams. However, compared to
beams, a cable can bend more and is unable to withstand compression force.
This difference is mainly due to the second moment of area I that is smaller
for a cable. The structure of the cable used for the CAROCA robot is shown in
Fig. 3(b), it is a two layers concentric contra-helical cable made of steel where
cable strands have opposite lay directions. As shown in [21], when the cable is
straight all the wires are sticking together and act as a one homogeneous body
that can bend around the central axis of the cable. The quadratic moment is
at its maximum Imax. However, when the curvature k of the cable increases
the wires start to slip and eventually at the most extreme case each wire bends
around its own axis. The quadratic moment is then at its minimum Imin defined
as:

Imin = Ic +

ns∑
i=1

Ismin,i cosβs,i (4)

where Ic is the quadratic moment of the steel core around its own axis, Ismin,i is
the minimum quadratic moment of strand i around its own axis calculated with
Eq. (4) after replacing strand with wire, βs,i is the lay angle of strand i and ns

is the number of strands. Then, Imax can be calculated:

Imax = Imin +

a∑
i=1

ni

2
Air

2
i cos

3 βl,i (5)

where ni is the number of strands in layer i, Ai is the cross section area of each
strand in layer i, ri is the radius of layer i, βl,i is the lay angle of the strands in
layer i and a is the number of layers. Note that Imin and Imax are independent
from the curvature of the cable and its tension force value.
To simplify the model, a constant value for I ∈ [Imin, Imax] will be chosen.
Knowing the working region of the cable (e.g. assuming that the curvature will
not reach significant values as much as k = 1m−1), and based on the identi-
fied transition function between EImax and EImin in [21] shown in Fig. 4, the
parameter α = 0.65 is chosen such that:

I = Imin + α(Imax − Imin) (6)
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Fig. 4: Theoretical evolution of bending stiffness EI as function of the curvature k
for different tension T values, based on [21].

2.2 Application to CDPRs

In CDPRs, the cables are attached at one end to the platform using spherical
joint-equivalent connectors and are rolled at the other end around the winches.
The cables can be oriented by passing through pulleys to change the CDPR
configuration from suspended to fully-constrained. In addition to cables, pulleys
and winches have an influence on the full model of the CDPR. Their impact
varies depending on their dimensions and the friction they induce. To get the full
CDPR model, each cable is modeled by Eq. (1) where the constraints represent
the connection between the cable and the platform, and its contact with the
pulley and the winch. The spherical joint does not transmit torque, therefore only
position constraints are applied. A 6-DOF, 2-DOF, and 1-DOF dynamic models
for the platform, the pulley, and the winch, respectively are implemented. The
cable/pulley, cable/winch and gearhead frictions are neglected. In the following
section, the different simulations are compared with the experimental results.

3 Comparison with Existing Simulators

3.1 Modeled robot

For this first trial, the implemented model in SOFA described in Sec. 2.1 is
compared to other state-of-the-art models (”Rope” and ”Cable” described in
Sec. 3.2) of the simulation software MapleSim, and to real-robot measurements
from the CAROCA experimental platform (see Fig. 1). It is a suspended CDPR
with 8 cables allowing 6-DOF for the platform. Steel cables (see Fig. 3(b)) are
used, they can withstand significant tensions (10 kN), but can present significant
sags given their mass. The working area of the robot is 7 m × 4 m × 3 m. The
moving platform’s dimensions are 1.5 m × 1.5 m × 1 m, and it weighs 366 kg.
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3.2 MapleSim

The MapleSim [15] software provides some tools to model cable-driven robots
including cable models, pulleys, and winches. This framework provides three
possible models : rope, chain and cable. Rope is the simplest one where only the
elasticity is considered, and cable is the most accurate where elasticity and sag-
ging are considered. The rope model is made up of two massless nodes connected
by a spring and a damper. The cable model relies on [22], where the cable is
discretized into N equidistant nodes, being connected with each other by springs
and dampers. Moreover, the cable mass is spread along the nodes. These first
trials proposed in this paper are dedicated to these two models, they will serve
as a reference to compare with SOFA’s implemented cable model’s results.

3.3 Definition of scenario

The pick-and-place trajectory used to compare the simulators with respect to
the experimental results is depicted in Figs. 5 and 6. Using an ideal cable model
(massless and rigid), an inverse geometric model (IGM) and an inverse kinematic
model (IKM) allow to find the desired joint space, i.e. the winches, angular
position θd and velocity θ̇d, as shown in Fig. 7. Then, a PD controller is used
to calculate the winch torques τw and track the reference trajectory. Controller
gains in simulators are tuned slightly different than the robot as they must
compensate for the friction [6].
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Fig. 5: Reference Cartesian trajectory of the robot platform.

3.4 Simulation Results

The parameters needed to simulate the models (BeamAdapter in SOFA, rope
and cable in MapleSim) and their values are shown in Table 1. Ca is the cable’s
axial damping and dr is its bending damping ratio. As said before, the sheer is
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ẋ, ẏ, ż
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Table 1: Tuning parameters associated to each cable model.

Models

Parameters
E

(×1011Pa)
µ

A
(×10−5m2)

ρ (kgm−3)
Ca

(×109Nsm−1)
dr α

BeamAdapter 1.022 0.28 2.1488 7850 - - 0.65
Rope 1.022 - 2.1488 - 22.8 - -
Cable 1.022 - 2.1488 7850 22.8 0.12 -

negligible in CDPR applications and so the precision of Poisson’s ratio’s value
has no impact on the simulation.

The first ten seconds of simulations have been cut on the results depicted
in Figs. 8 to 11 ; they are associated to the initialisation of the robot, where
the platform is kept at the initial target Cartesian position. This transitory
behaviour before reaching the static equilibrium is not of interest. Then, the 30s
trajectory shown in Fig. 5 is applied.
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The measured cable tensions at the platform from both frameworks are com-
pared to the experimental measures of the force sensors located between the
cables and the moving-platform (MP). The resulting plots for cables 6 and 7 are
shown in Fig. 8. The remaining six cables behave in a similar manner.
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Fig. 8: Comparison between simulated and measured cable tensions.

It appears that the plots of both models in MapleSim are almost identical.
This is probably due to the weight of the cable being insufficient to make a
difference under the current cable tension between the massless (rope) and non-
massless (cable) models, and therefore the cables are almost straight. A small
oscillation for the rope model is noticed, the PD controller gains might be high for
this model. The plots of SOFA’s model match those of MapleSim. However, these
three models have the following divergence with the experimental results. On one
side, tensions in cables 2, 4, 6, and 8 match the experiment measurements. On
the other side, they converge to a value different from the measured one in cables
1, 3, 5, and 7. This causes high Relative Root Mean Squared Errors (RRMSE)
of some simulated cables tensions with respect to the the experiment (> 20%)
as can be seen in Fig. 9. The order of the cables and winches is given in Fig. 6.
The SOFA model has slightly lower RRMSE mean value compared to MapleSim.
As a first explanation, because of the redundancy of actuation, multiple set of
cables tensions can result in the same platform position. A common distribution
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algorithm should be implemented in the three simulators and the experimental
setup to handle this aspect.
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Fig. 9: RRMSE (%) for each cable tension.

As for the winches, the angular position of winch 6 is shown in Fig. 10. The
plots of the remaining 7 being similar.
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Fig. 10: Angular position of winch 6.

Contrary to the cables tensions, the plots of the three simulated models
match the experimental measurements. This is due to the controller being im-
plemented in the joint space and not considering the cable tension. This can be
seen in Fig. 11 where all RRMSE are very small (< 5%) with respect to the the
experiment, with a slight advantage in mean value for MapleSim models.

The simulation time for every model varies and is given in Table 2. The solver
used in MapleSim is a variable step solver (Rosenbrock). In SOFA, a fixed step
solver was used (implicit Euler) with a time step of dt equal to 0.005s.

Ultimately, the SOFA model presents a computational burden far less impor-
tant than the Maplesim cable model, while it permits to simulate more internal
degrees of freedom; 294 nodes in SOFA versus 7 in MapleSim.

As the mass of the cable increases (longer cables or heavier material), the
applied motor torque must be increased to keep the cables as straight as possible.
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Fig. 11: RRMSE (%) for each winch angular position.

Table 2: Simulation time for different models.
MapleSim rope MapleSim cable Sofa model

Time 20 min 12 h 45 min

Nevertheless, this might not be possible because of security or power consump-
tion limit. To verify the capacity of the proposed simulator to model the sagging,
another simulation was run where the winch 1 was locked at its initial position.
The MP pose and the shape of the cables at the end of the simulation are
illustrated in Fig. 12.

Fig. 12: The pose of the platform and the state of the cables (sagging) at t = 30s
when winch 1 is locked.

The rolled cable on winch 1 has an important sagging. The rolled cable on
winch 5 shows also non negligible sagging due to the orientation of the platform
that makes the attach point closer than the planed one. These very first results
demonstrate that the SOFA model makes it possible to simulate important cable
sagging. Further tests will be conducted on the robot to evaluate the precision
of the simulation’s sag.
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The attached video in SOFA shows the vibrations of the cables but not
much sagging in the first simulation. The sagging appears clearly in the second
simulation. It can be found online at: https://youtu.be/uUwP0CZeMqo.

4 Conclusion and Perspectives

This paper dealt with the modeling and simulation of cable-driven parallel
robots (CDPRs). Specifically, the model sought must account for the effects
of cable sag and elasticity. Although ambitious in terms of the realism targeted,
the complexity of the model must remain limited. The approach followed is that
of the use of three-dimensional beam theory [18] and corotational method [19].
The model was implemented using finite element method within a physics-based
simulation platform, the SOFA framework. To evaluate the proposed model,
the simulation results were compared with real data obtained on the CAROCA
CDPR experimental platform, but also with other simulation results obtained
from a model implemented using MapleSim software and the MapleSim Ropes
and Pulleys Library. The cable tensions, as well as the angular positions of the
winches were compared. The proposed model was implemented in SOFA and
proved to be as accurate as the model implemented in MapleSim. It should
be noted that it is faster than the MapleSim cable model, but slower than the
MapleSim massless rope model. Therefore, it is more advantageous in applica-
tions where sag is greater.

The perspectives relate to the use of other cable models [23, 24], still within
the SOFA framework, to model CDPRs. In particular, the theory of Cosserat [24]
will be considered to model the cables. Finally, the code of the simulator will be
available in open source.
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