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Stéphane Crépey∗, Noufel Frikha†, Azar Louzi‡

March 22, 2023

Abstract

We propose a multilevel stochastic approximation (MLSA) scheme for the
computation of the Value-at-Risk (VaR) and the Expected Shortfall (ES) of a
financial loss, which can only be computed via simulations conditional on the
realization of future risk factors. Thus, the problem of estimating its VaR and
ES is nested in nature and can be viewed as an instance of a stochastic approx-
imation problem with biased innovation. In this framework, for a prescribed
accuracy ε, the optimal complexity of a standard stochastic approximation al-
gorithm is shown to be of order ε−3. To estimate the VaR, our MLSA algorithm
attains an optimal complexity of order ε−2−δ, where δ < 1 is some parameter
depending on the integrability degree of the loss, while to estimate the ES, it
achieves an optimal complexity of order ε−2 |ln ε|2. Numerical studies of the
joint evolution of the error rate and the execution time demonstrate how our
MLSA algorithm regains a significant amount of the lost performance due to
the nested nature of the problem.

Keywords: Value-at-Risk, Expected Shortfall, stochastic approximation al-
gorithm, nested Monte Carlo, multilevel Monte Carlo.

MSC: 65C05, 62L20, 62G32, 91Gxx.

1 Introduction

The post-great recession era has witnessed the implementation of multiple risk mea-
sures with the goal of better controlling financial losses. With conservatism and
coherence in mind, [7] triggered a shift from Value-at-Risk (VaR for short) to Ex-
pected Shortfall (ES for short, i.e. the average loss given this loss exceeds the VaR)
as a reference regulatory risk measure. In addition, as far as financial derivatives are
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concerned, the future valuation of the position (which determines the correspond-
ing loss) is defined aBardouFrikhaPagès2009:1s a conditional expectation that, in
the case of exotic products or for nonlinear (such as CVA or FVA) computations
at the portfolio level, can only be computed by numerical simulation. VaR and
ES computations are then nested in nature and a brute force nested Monte Carlo
computational approach à la Gordy and Juneja [18] is too heavy for being usable
in practice. As a shortcut, an estimator of the inner conditional expectation by
regression is implemented in [8] but the resulting regression error is difficult to con-
trol. Adopting the stochastic approximation (SA) viewpoint of [5] (see also [4], [3]
and [11]), itself building on Rockafellar and Uryasev’s [19] representation of the
VaR and ES as the solution of a convex optimization problem, [6] revisits both [18]
and [8] computational strategies under more realistic and easier to check assump-
tions. However, we clarify in the present paper that the complexity of the resulting
stochastic approximation algorithm to reach an accuracy ε is of order ε−3, while
the nonasymptotic error bounds of the regression strategy involve large constants,
so that these regression error bounds are mainly of theoretical interest.

In the present paper, we propose a multilevel stochastic approximation (MLSA
for short) algorithm for the computation of the VaR and the ES of a loss that writes
as a conditional expectation. MLSA algorithm was introduced in [12] as an exten-
sion of the multilevel Monte Carlo path simulation method [15] to the framework
of stochastic optimization by means of stochastic approximation algorithm. It was
then revisited in [10] from a different perspective. We also refer to [13] for the devel-
opment of a Richardson-Romberg stochastic approximation method. However, let
us importantly point out that the uniform mean-reverting assumption on the objec-
tive function as discussed in [12] is generally not satisfied in a VaR and ES setup,
so that one cannot directly guarantee the theoretical performance of the MLSA
scheme for the computation of both risk measures from the results therein. We also
refer to [16] where the authors propose a multilevel Monte Carlo estimator for the
computation of the nested expectation P(E[X|Y ] ≥ 0), as well as a stochastic root-
finding algorithm for the computation of the VaR and ES, but without a theoretical
analysis. Our main contribution is to propose an optimized MLSA algorithm that
achieves theoretical sharp complexities when focusing on either estimating the VaR
or estimating the ES. The VaR focused estimation achieves a complexity of order
ε−2−δ, where δ < 1 is some specific parameter depending on the integrability degree
of the loss. The ES focused estimation attains a complexity of order ε−2 |ln ε|2. The
theoretical analysis is verified numerically on two financial case studies which show a
considerable gain, exponentially increasing as ε goes to 0, in terms of computational
time for the computation of both VaR and ES.

The paper is organized as follows. In Section 2, the problem of computing the
VaR and ES by means of stochastic approximation scheme is presented. Section 3
analyzes the nested SA scheme for the computation of the VaR and ES. Section 4
introduces and analyzes the MLSA algorithm. The theoretical analysis and the gain
in performance achieved by our optimized MLSA scheme are illustrated numerically
in Sections 5 and 6. The proofs of some technical results are given in Appendix.
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2 Problem Statement

2.1 Value-at-Risk and Expected Shortfall

Let (Ω,A,P) be a probability space on which a financial loss X0 ∈ R is defined as

X0 = E[φ(Y, Z)|Y ], (2.1)

where Y ∈ Rd and Z ∈ Rd are two independent random variables, and φ : Rd×Rd →
R is a measurable function such that φ(y, Z) ∈ L1(P) for all y ∈ Rd. Hence, we can
rewrite X0 as follows:

X0 = E[φ(Y,Z)|Y ] = Φ(Y ), (2.2)

with Φ(y) = E[φ(y, Z)], y ∈ Rd. In practice, φ(Y,Z) would model the future cash
flows of a given portfolio, Y would model the dynamics of the portfolio up a certain
point in time, and X0 would model the value of the portfolio at that given point in
time.

Assuming that X0 ∈ L1(P), we are interested in computing the VaR and the
ES of X0 for a given confidence level α ∈ (0, 1). Via e.g. [14] and [1], these risk
measures are defined respectively by

VaR := VaRα(X0) := inf
{
ξ ∈ R : P(X0 ≤ ξ) ≥ α

}
, (2.3)

ES := ESα(X0) :=
1

1− α

∫ 1

α
VaRa(X0) da. (2.4)

2.2 Stochastic Approximation Paradigm

It is well known that VaR and ES are linked via a convex optimization problem
as established by [19]. In order to state precisely this connection, we introduce the
map V0 defined by

V0(ξ) = ξ +
1

1− α
E[(X0 − ξ)+], ξ ∈ R. (2.5)

The proof of the following result can be found in [3, Proposition 2.1].

Lemma 2.1. Suppose that X0 ∈ L1(P) and that the cdf of X0 is continuous. Then
the function V0 is convex, continuously differentiable, lim|ξ|→∞ V0(ξ) =∞ and

argminV0 = {V ′
0 = 0} = {ξ ∈ R : P(X0 ≤ ξ) = α}

is a bounded non-empty interval of R, where V ′
0 is given by

V ′
0(ξ) = E[H1(ξ,X0)], H1(ξ, x) = 1− 1

1− α
1x≥ξ. (2.6)

Furthermore, it holds
ESα(X0) = minV0.

Observe that in general the set argminV0 does not reduce to a singleton. If
the cdf of X0 is increasing then the VaRα(X0) is unique so that argminV0 =
{VaRα(X0)}. Under the approach initiated by [3], in the case of an exactly com-
putable function Φ defined by (2.2), one may compute the couple (VaRα(X0),ESα(X0))
using a two time scale SA algorithm (ξn, Cn)n≥0 with dynamics ξn+1 = ξn − γn+1H1(ξn, X

(n+1)
0 ),

Cn+1 = Cn − 1
n+1H2(ξn, Cn, X

(n+1)
0 ),

(2.7)
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where
H2(ξ, C, x) = C −

(
ξ +

1

1− α
(x− ξ)+

)
. (2.8)

The sequence (X
(n)
0 )n≥1 stands for i.i.d. copies of X0 and (ξ0, C0) is a random

vector independent of (X
(n)
0 )n≥1 satisfying E[|ξ0|2] + E[|C0|2] < ∞. The learning

rate sequence (γn)n≥1 in (2.7) is deterministic, positive, non-increasing and satisfies∑
n≥1

γn =∞ and
∑
n≥1

γ2n <∞. (2.9)

However, in our case, one does not have access to a simulator of the law of X0

given by (2.1) inasmuch as the distribution of φ(Y,Z) conditionally on Y is not
known and an analytical expression of the function Φ in (2.2) is not available.

3 Nested Stochastic Approximation

The above discussion naturally suggests to replace the samples of the random vari-
able X0 by approximate samples in the dynamics (2.7). We first let K0 ∈ N0 and
consider a bias parameter

h =
1

K
∈ H :=

{
1

K
: K ∈ K0N0

}
. (3.1)

We then approximate X0 by the random variable Xh defined by

Xh =
1

K

K∑
k=1

φ(Y,Z(k)), (3.2)

where the sequence (Z(k))1≤k≤K consists of i.i.d. copies of Z and is independent
of Y . In order to simulate Xh, it thus suffices to sample Y then to independently
sample Z(1), . . . , Z(K) and eventually compute Xh as the sample mean (3.2).

In the spirit of the previous section, assuming that Xh ∈ L1(P) and that the cdf
of Xh is continuous, we define the approximating optimization problem

min
ξ∈R

Vh(ξ), (3.3)

where
Vh(ξ) := ξ +

1

1− α
E[(Xh − ξ)+], ξ ∈ R. (3.4)

By applying Lemma 2.1,

argminVh = {V ′
h = 0} ≠ ∅ and Ch

⋆ := ESα(Xh) = minVh.

Moreover, any minimizer ξh⋆ of Vh satisfies

P(Xh ≤ ξh⋆ ) = α. (3.5)

In order to compute the couple (ξh⋆ , C
h
⋆ ), we devise the following two time scale

SA algorithm (ξhn, C
h
n)n≥0 with dynamics ξhn+1 = ξhn − γn+1H1(ξ

h
n, X

(n+1)
h ),

Ch
n+1 = Ch

n − 1
n+1H2(ξ

h
n, C

h
n , X

(n+1)
h ),

(3.6)

4



where (X
(n)
h )n≥1 is a sequence of i.i.d. copies of Xh and (ξh0 , C

h
0 ) is an R2-valued

random variable independent of (X(n)
h )n≥1 satisfying E[|ξh0 |2] + E[|Ch

0 |2] <∞.
Observe that this scheme is nested in nature, in the sense that the update of

the outer layer (ξhn+1, C
h
n+1) at step n + 1 entails simulating the inner layer which

is the Monte Carlo estimator X(n+1)
h given by (3.2). Besides, this numerical scheme

is biased inasmuch as the target of (ξhn, Ch
n)n≥0 is (ξh⋆ , C

h
⋆ ), which hopefully should

converge to (VaRα(X0),ESα(X0)) as H ∋ h ↓ 0.
Algorithm 1 below summarizes the above procedure for approximating the couple

(VaR,ES).

Algorithm 1 Nested SA algorithm for estimating (VaR,ES)

Require: K,N ∈ N0, a positive sequence (γn)1≤n≤N satisfying (2.9)
1: Choose (ξh0 , C

h
0 ) such that E[|ξh0 |2] + E[|Ch

0 |2] <∞
2: for n = 0 . . N − 1 do
3: Simulate Y (n+1) ∼ Y and Z(n+1,1), . . . , Z(n+1,K) iid∼ Z independently of
Y (n+1)

4: X
(n+1)
h ← 1

K

∑K
k=1 φ(Y

(n+1), Z(n+1,k))

5: ξhn+1 ← ξhn − γn+1H1(ξ
h
n, X

(n+1)
h )

6: Ch
n+1 ← Ch

n − 1
n+1H2(C

h
n , ξ

h
n, X

(n+1)
h )

7: end for
8: return The couple (ξhN , C

h
N )

3.1 Convergence Analysis

We here study the nested stochastic approximation scheme (3.6). We first analyze
its bias and then prove an L2(P) error estimate for any fixed integer N ∈ N0. We
eventually analyze the complexity of the algorithm and establish a way to tune the
number of steps N with respect to the bias parameter h ∈ H in order to reach some
prescribed error. For h ∈ H ∪ {0}, we denote by Θh the set of minimizers of Vh

Θh := argminVh, (3.7)

assuming that Xh ∈ L1(P) and that the cdf of Xh is continuous.

Lemma 3.1. Suppose that for any h ∈ H ∪ {0} the random variable Xh ∈ L1(P),
that its cdf FXh

is continuous and that the sequence of random variables (Xh)h∈H
converges in distribution to X0 as H ∋ h ↓ 0. Then, for any sequence (ξh⋆ )h∈H such
that ξh⋆ ∈ argminVh, it holds

dist(ξh⋆ ,Θ0)→ 0 as H ∋ h ↓ 0.

Assume additionally that (Xh)h∈H converges to X0 in L1(P). Then

Ch
⋆ → C⋆ as H ∋ h ↓ 0.

Proof. See Appendix A.

We now introduce the following set of assumptions on the sequence (Xh)h∈H.
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Assumption 1. (i) FXh
admits the following first order Taylor expansion: for

any ξ ∈ R and any h ∈ H,

FXh
(ξ)− FX0(ξ) = v(ξ)h+ ϵ(ξ, h)h, ξ ∈ R,

for some functions v, ϵ(., h) : R→ R satisfying
∫∞
ξ⋆
v(ξ) dξ <∞ and limh↓0 ϵ(ξ⋆, h) =

limh↓0
∫∞
ξ⋆
ϵ(ξ, h) dξ = 0 for any ξ⋆ ∈ Θ0.

(ii) For any h ∈ H ∪ {0}, the random variable Xh admits a density function fXh

with respect to the Lebesgue measure. Moreover, the sequence of density func-
tions (fXh

)h∈H converges locally uniformly towards fX0.

The proposition below quantifies the implicit weak error implied by approximating
the unbiased problem with the biased one, by stating a first order expansion of the
error between (ξh⋆ , C

h
⋆ ) and (ξ⋆, C⋆) in terms of the bias parameter h. Its proof is

postponed to Appendix B.

Proposition 3.1. Suppose that for any h ∈ H ∪ {0} the random variable Xh ∈
L1(P) with continuous cdf FXh

, that the density function fX0 is positive, and that
Assumption 1 is satisfied. Then, for any ξh⋆ ∈ argminVh, as H ∋ h ↓ 0, it holds

ξh⋆ − ξ⋆ = −
v(ξ⋆)

fX0(ξ⋆)
h+ o(h), (3.8)

and

Ch
⋆ − C⋆ = −h

∫ ∞

ξ⋆

v(ξ)

1− α
dξ + o(h). (3.9)

Before dealing with the statistical error, we need a technical lemma. We start
with the following assumption.

Assumption 2. (i) For any R > 0, it holds

inf
h∈H

ξ∈B(ξ⋆,R)

fXh
(ξ) > 0.

(ii) The sequence of density functions (fXh
)h∈H are uniformly bounded and uni-

formly Lipschitz, namely,

sup
h∈H

(
∥fXh

∥∞ + [fXh
]Lip

)
<∞.

We follow a similar strategy to the one developed in [9, Section 2.1], and define,
for h ∈ H, υ ≥ 0 and integer q, the Lyapunov function Lυh,q : R→ R+ given by

Lυh,q(ξ) =
(
Vh(ξ)− Vh(ξh⋆ )

)q
exp

(
υ
(
Vh(ξ)− Vh(ξh⋆ )

))
. (3.10)

The proof of the next result is postponed to Appendix C.

Lemma 3.2. Under Assumption 2, for any h ∈ H, υ ≥ 0 and q ≥ 1:

(i) Lυh,q is twice continuously differentiable on R.
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(ii) For any ξ ∈ R, it holds

V ′
h(ξ)(Lυh,q)′(ξ) ≥ λυh,qLυh,q(ξ),

with

λυh,q :=
3

8
qV ′′

h (ξ
h
⋆ ) ∧ υ

V ′′
h (ξ

h
⋆ )

4

4[V ′′
h ]

2
Lip
.

Let also λh,q := λῡhh,q where ῡh := q2∥V ′′
h ∥∞. Then, for any q ≥ 1

inf
h∈H

λh,q > 0. (3.11)

With the above notations, we also have

Lῡhh,q(ξ) ≤ k
q
α |ξ − ξh⋆ |q exp

( q2

1− α
kα sup

h∈H
∥fXh

∥∞|ξ − ξh⋆ |
)
, (3.12)

with kα := 1 ∨ α
1−α .

(iii) For any ξ ∈ R, it holds

|(Lυh,q)′′(ξ)| ≤ ηυh,q
(
Lυh,q(ξ) + Lυh,q−1(ξ)

)
,

where

ηυh,q := (q ∨ υ)∥V ′′
h ∥∞ + k2αυ(υ ∨ 2) + q

(
2υ ∨ (q− 1)

)(3k2α[V
′′
h ]

2
Lip

V ′′
h (ξ

h
⋆ )

3
∨
3∥V ′′

h ∥2∞
V ′′
h (ξ

h
⋆ )

)
,

In particular, introducing ηh,q := ηῡhh,q, for any q ≥ 1, it holds

|λh,q|2 ≤ ηh,q. (3.13)

and (ηh,q)h∈H satisfies
sup
h∈H

ηh,q <∞. (3.14)

(iv) For any ξ ∈ R, it holds

(ξ − ξh⋆ )2q ≤ κh,q
(
Lυh,q(ξ) + Lυh,2q(ξ)

)
,

where

κh,q :=
3q

V ′′
h (ξ

h
⋆ )

q
∨
32q[V ′′

h ]
2q
Lip

V ′′
h (ξ

h
⋆ )

4q
.

In addition, for all q ≥ 1, the sequence (κh,q)h∈H satisfies

sup
h∈H

κh,q <∞. (3.15)

For any integer q, we let λq := infh∈H λh,q recalling that (λh,q)h∈H is defined as
in Lemma 3.2(ii).
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Theorem 3.1. Suppose that for any h ∈ H ∪ {0} the random variable Xh ∈ L2(P)
and that Assumptions 1 and 2 are satisfied.

Assume that suph∈H E[|ξh0 |2 exp( 4
1−αkα suph∈H ∥fXh

∥∞|ξh0 |)] <∞ and suph∈H E[|Ch
0 |] <

∞. If γn = γ1n
−β, β ∈ (0, 1], with λ1γ1 > 1 if β = 1, then, for any h ∈ H and any

positive integer n, it holds

E[(ξhn − ξh⋆ )2] ≤ K̄
β
h,2γn (3.16)

for some constants K̄β
h,2 satisfying suph∈H K̄

β
h,2 <∞. Moreover, one has

E[|Ch
n − Ch

⋆ |] ≤ C
β
hn

−( 1
2
∧β)

for some constants Cβ
h such that suph∈HC

β
h <∞.

Assume additionally that suph∈H E[|ξh0 |4 exp( 16
1−αkα suph∈H ∥fXh

∥∞|ξh0 |)] < ∞
and suph∈H E[(Ch

0 )
2] < ∞. If γn = γ1n

−β, β ∈ (0, 1], with λ2γ1 > 2 when β = 1,
then, for any h ∈ H and any positive integer n, it holds

E[(ξhn − ξh⋆ )4] ≤ K̄
β
h,4γ

2
n, (3.17)

for some constants K̄β
h,4 satisfying suph∈H K̄

β
h,4 <∞. Besides, one has

E[(Ch
n − Ch

⋆ )
2] ≤ C̄β

hn
−(1∧2β), (3.18)

for some constants C̄β
h such that suph∈H C̄

β
h <∞.

Proof. As we do in the proof of Lemma 3.2 in Appendix C, we drop the superscript
υ from our notation and write Lh,q(ξ) for Lυh,q(ξ).

Step 1. Inequality on E[Lh,q(ξhn)].
We first prove a general inequality on E[Lh,q(ξhn)], for any n ≥ 0 and q ≥ 1. For h ∈
H fixed, we introduce the filtration Fh = (Fh

n )n≥0 with Fh
n = σ(ξh0 , C

h
0 , X

(1)
h , . . . , X

(n)
h ).

Observe now that the dynamics of (ξhn)n≥0 given by the first component of (3.6)
satisfy

ξhn+1 = ξhn − γn+1V
′
h(ξ

h
n)− γn+1e

h
n+1, (3.19)

where
ehn+1 := H1(ξ

h
n, X

(n+1)
h )− V ′

h(ξ
h
n), n ≥ 0, (3.20)

is an (Fh,P)-martingale increment. For q ≥ 1, we test the Lyapunov function of
Lemma 3.2, namely Lh,q = Lῡhh,q with ῡh = q2∥V ′′

h ∥∞, along dynamics (3.19). Using
a second order Taylor expansion, we obtain

Lh,q(ξhn+1) = Lh,q
(
ξhn − γn+1V

′
h(ξ

h
n)− γn+1e

h
n+1

)
= Lh,q(ξhn)− γn+1L′h,q(ξhn)(V ′

h(ξ
h
n) + ehn+1)

+ γ2n+1H1(ξ
h
n, X

(n+1)
h )2

∫ 1

0
(1− t)L′′h,q(tξhn+1 + (1− t)ξhn) dt.

(3.21)

It follows from Lemma 3.2(ii,iii) that

Lh,q(ξhn+1) ≤ Lh,q(ξhn)(1−λυh,qγn+1)−γn+1L′h,q(ξhn)ehn+1+η
υ
h,qγ

2
n+1H1(ξ

h
n, X

(n+1)
h )2×∫ 1

0
(1− t)

(
Lh,q(tξhn+1 + (1− t)ξhn) + Lh,q−1(tξ

h
n+1 + (1− t)ξhn)

)
dt. (3.22)
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Let t ∈ [0, 1]. The mean value theorem guarantees that there exists ξ̃hn(t) ∈ R such
that

Vh(tξ
h
n+1 + (1− t)ξhn) = Vh(ξ

h
n) + tV ′

h(ξ̃
h
n(t))(ξ

h
n+1 − ξhn). (3.23)

From the very definition of H1, it holds (cf (3.6))

|ξhn+1 − ξhn| = γn+1|H1(ξ
h
n, X

(n+1)
h )| ≤ kαγn+1, (3.24)

with kα := α
1−α ∨ 1. Applying the triangle inequality to (3.23), we get

Vh(tξ
h
n+1 + (1− t)ξhn)− Vh(ξh⋆ ) ≤ Vh(ξhn)− Vh(ξh⋆ ) + k2αγn+1. (3.25)

Using the inequality ex ≤ e1x≤1 + xqex1x>1 ≤ e(1 + xqex) and the very definition
of Lh,q, for any ξ ∈ R, we obtain

Lh,0(ξ) ≤ e
(
1 + υqLh,q(ξ)

)
, q ≥ 1. (3.26)

Henceforth, using (3.25) and then (3.26)

Lh,q(tξhn+1 + (1− t)ξhn)
≤

(
Vh(ξ

h
n)− Vh(ξh⋆ ) + k2αγn+1

)q
exp

(
υ
(
Vh(ξ

h
n)− Vh(ξh⋆ ) + k2αγn+1

))
≤ 2q−1 exp

(
υk2αγn+1

)(
Lh,q(ξhn) + k2qα γ

q
n+1Lh,0(ξ

h
n)
)

≤ συα,q
(
Lh,q(ξhn) + γqn+1

)
,

(3.27)

with συα,q := 2q−1 exp(υk2αγ1)
(
(1 + eυqk2qα γ

q
1) ∨ ek2qα

)
. By (3.24),

γ2n+1H1(ξ
h
n, X

(n+1)
h )2 ≤ k2αγ2n+1. (3.28)

Plugging the upper bounds (3.27) and (3.28) into (3.22) we deduce

Lh,q(ξhn+1) ≤ Lh,q(ξhn)(1− λυh,qγn+1 + ζυh,qγ
2
n+1)− γn+1L′h,q(ξhn)ehn+1

+ ζυh,qγ
2
n+1Lh,q−1(ξ

h
n) + ζυh,qγ

q+1
n+1,

(3.29)

with
ζυh,q :=

1

2
ηυh,qk

2
α

(
(γ1σ

υ
α,q + συα,q−1) ∨ συα,q

)
, (3.30)

which, according to the second part of Lemma 3.2(iii), satisfies

ζ∞q := sup
h∈H

ζ ῡhh,q <∞. (3.31)

Note that, since (ehn)n≥1 are (Fh,P)-martingale increments, via the tower law,

E[L′h,q(ξhn)ehn+1] = E
[
L′h,q(ξhn)E[ehn+1|Fh

n ]
]
= 0.

Hence, by taking the expectation in both sides of inequality (3.29),

E[Lh,q(ξhn+1)] ≤ E[Lh,q(ξhn)]
(
1−λυh,qγn+1+ζ

υ
h,qγ

2
n+1

)
+ζυh,qγ

2
n+1E[Lh,q−1(ξ

h
n)]+ζ

υ
h,qγ

q+1
n+1.

(3.32)
Step 2. Inequality on E[Lh,1(ξhn)].
We prove here a sharper upper estimate on E[Lh,1(ξhn)]. Taking q = 1 in (3.32)
and (3.26), we get

E[Lh,1(ξhn+1)] ≤ E[Lh,1(ξhn)]
(
1−λυh,1γn+1+(eυ+1)ζυh,1γ

2
n+1

)
+(e+1)ζυh,1γ

2
n+1. (3.33)
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Denote ζh,q := ζ ῡhh,q. Observe that, since |λh,q|2 ≤ ηh,q, recalling Lemmas 3.2(ii,iii)
and (3.30), we obtain

λh,qγn+1 − (eῡqh + 1)ζh,qγ
2
n+1 ≤

√
ηh,qγn+1 − ηh,qcα,qγ2n+1

=
√
ηh,qγn+1

(
1− cα,q

√
ηh,qγn+1

)
≤ (4cα,q)

−1 ≤ 1

2
,

(3.34)
with cυα,q := (evq + 1)ζh,qη

−1
h,q = 2−1(eυq + 1)(συα,q ∨ (γ1σ

υ
α,q + συα,q−1))k

2
α > 1/2,

cα,q := cῡhα,q, and where we used the fact that the function x(1 − cα,qx) ≤ (4cα,q)
−1

for any x ≥ 0. Hence, 1 − λh,1γn+1 + (eῡqh + 1)ζh,1γ
2
n+1 ≥ 7/8 for any integer n.

Evaluating (3.33) at υ = ῡh, then iterating it n times inequality, we obtain

E[Lh,1(ξhn)] ≤ E[Lh,1(ξh0 )]Π
h,1
1:n + (e + 1)ζh,1

n∑
k=1

γ2k Π
h,1
k+1:n, (3.35)

where

Πh,q
k:n :=

n∏
j=k

(
1− λh,qγj + (eῡqh + 1)ζh,qγ

2
j

)
, q ≥ 1, (3.36)

with the convention
∏

∅ = 1.
We now focus on our specific choice of learning sequence. Let us first assume

that γn = γ1n
−β with γ1 > 0 and β ∈ (0, 1], and let

φη(t) :=

 η−1(tη − 1) η ̸= 0,

ln t+ γE η = 0,
(3.37)

recalling that γE is the Euler-Mascheroni constant.
To deal with the first term in the right hand side of (3.35), we use the simple

bound 1 + x ≤ ex, x ∈ R, to deduce

Πh,q
k+1:n ≤ exp

(
− λh,q

n∑
j=k+1

γj

)
exp

(
(eῡqh + 1)ζh,q

n∑
j=k+1

γ2j

)
,

with the convention
∑

∅ = 0.

Step 2.1.
We here assume that β = 1. Recall that

∑n
j=k+1 γj = γ1

(
ψ(n + 1) − ψ(k + 1)

)
,

where ψ is the digamma function that satisfies

lnx− 1

x
≤ ψ(x) ≤ lnx− 1

2x
, x > 0.

Hence, for 0 ≤ k ≤ n,

n∑
j=k+1

γj ≥ γ1 ln
(n+ 1

k + 1

)
− γ1
n+ 1

+
γ1

2(k + 1)
≥ γ1 ln

(n+ 1

k + 1

)
− γ1

2
,

which in turn yields

Πh,q
k+1:n ≤ exp

(
(eῡqh + 1)ζh,q

π2

6
γ21 +

γ1λh,q
2

) (k + 1)λh,qγ1

(n+ 1)λh,qγ1
. (3.38)
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The above estimate together with a comparison between series and integrals gives,
for p ≥ 0,

n∑
k=1

γpk Π
h,q
k+1:n ≤ γ

p
1 exp

(
(eῡqh+1)ζh,q

π2

6
γ21+

γ1λh,q
2

+ln 2(γ1λh,q∨p)
) φλh,qγ1−p+1(n+ 1)

(n+ 1)λh,qγ1
.

(3.39)
Plugging the estimates (3.38) and (3.39) for q = 1 and p = 2 into (3.35) gives

E[Lh,1(ξhn)] ≤ K̂h,1
E[Lh,1(ξh0 )]
(n+ 1)λh,1γ1

+ K̄h,1

φλh,1γ1−1(n+ 1)

(n+ 1)λh,1γ1
,

where K̂h,1 := exp
(
(eῡh+1)ζh,1

π2

6 γ
2
1+

γ1λh,1

2

)
and K̄h,1 := K̂h,1γ

2
1(e+1)ζh,12

γ1λh,1∨2.

Hence, if λh,1γ1 > 1, recalling (3.37), it holds

E[Lh,1(ξhn)] ≤ K1
h,1γn, (3.40)

with

K1
h,1 := γ−1

1 (K̂h,1E[Lh,1(ξh0 )] + K̄h,1).

Step 2.2.
We now assume that 0 < β < 1. A comparison between series and integrals gives

Πh,q
k+1:n ≤ exp

(
− λh,qγ1

(
φ1−β(n+ 1)− φ1−β(k + 1)

))
× exp

(
22β(eῡqh + 1)ζh,qγ

2
1

(
φ1−2β(n+ 1)− φ1−2β(k + 1)

))
.

(3.41)

We introduce n0 := inf
{
n ∈ N0 : γn ≤

λh,q

2(eῡq
h+1)ζh,q

}
− 1, and remark that for n ≥

n0 + 1, 1− λh,qγn + (eῡqh + 1)ζh,qγ
2
n ≤ 1− λh,q

2 γn. Hence, for p ≥ 0,

n∑
k=1

γpk Π
h,q
k+1:n =

n0∧n∑
k=1

γpk Π
h,q
k+1:n0∧nΠ

h,q
n0∧n+1:n +

n∑
k=n0∧n+1

γpk Π
h,q
k+1:n

≤
( n0∧n∑

k=1

γpk

n0∧n∏
j=k+1

(
1 + (eῡqh + 1)ζh,qγ

2
j

)) n∏
j=n0∧n+1

(
1−

λh,q
2
γj

)
+

n∑
k=1

γpk

n∏
j=k+1

(
1−

λh,q
2
γj

)
.

(3.42)
In order to simplify the first term in the right hand side of the above inequality, we
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write, for p ≥ 2,

n0∧n∑
k=1

γpk

n0∧n∏
j=k+1

(
1 + (eῡqh + 1)ζh,qγ

2
j

)
≤ γp−2

1

n0∧n∑
k=1

γ2k

n0∧n∏
j=k+1

(
1 + (eῡqh + 1)ζh,qγ

2
j

)
=

γp−2
1

(eῡqh + 1)ζh,q

n0∧n∑
k=1

( n0∧n∏
j=k

(
1 + (eῡqh + 1)ζh,qγ

2
j

)
−

n0∧n∏
j=k+1

(
1 + (eῡqh + 1)ζh,qγ

2
j

))

≤ γp−2
1

(eῡqh + 1)ζh,q

n0∧n∏
j=1

(
1 + (eῡqh + 1)ζh,qγ

2
j

)
≤ γp−2

1

(eῡqh + 1)ζh,q
exp

(
(eῡqh + 1)ζh,q

n0∧n∑
j=1

γ2j

)
,

and

n∏
j=n0∧n+1

(
1−

λh,q
2
γj

)
≤ exp

(
−
λh,q
2

n∑
j=1

γj

)
exp

(
λh,q
2

n0∧n∑
j=1

γj

)

≤ exp

(
−
λh,q
2

n∑
j=1

γj

)
exp

(
(eῡqh + 1)ζh,q

n0∧n∑
j=1

γ2j

)
,

where we used the fact that γj ≥ λh,q/(2(eῡ
q
h + 1)ζh,q) for j ≤ n0. Combining the

two preceding estimates and using a comparison between series and integrals, we
deduce, for p ≥ 2,

( n0∧n∑
k=1

γpk

n0∧n∏
j=k+1

(1 + (eῡqh + 1)ζh,qγ
2
j )

) n∏
j=n0∧n+1

(
1−

λh,q
2
γj

)

≤ γp−2
1

(eῡqh + 1)ζh,q
exp

(
2(eῡqh + 1)ζh,q

n0∧n∑
j=1

γ2j

)
exp

(
−
λh,q
2

n∑
j=1

γj

)

≤ γp−2
1

(eῡqh + 1)ζh,q
exp

(
22β+1(eῡqh + 1)ζh,qγ

2
1φ1−2β(n+ 1)

)
exp

(
−
λh,q
2
γ1φ1−β(n+ 1)

)
.

(3.43)
We now deal with the second term appearing in the right hand side of (3.42). Since
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(γn)n≥1 is a positive non increasing sequence, for any integer 1 ≤ m ≤ n, it holds
n∑

k=1

γpk

n∏
j=k+1

(
1−

λh,q
2
γj

)
=

m∑
k=1

γpk

n∏
j=k+1

(
1−

λh,q
2
γj

)
+

n∑
k=m+1

γpk

n∏
j=k+1

(
1−

λh,q
2
γj

)
≤

n∏
j=m+1

(
1−

λh,q
2
γj

) m∑
k=1

γpk + γp−1
m

n∑
k=m+1

γk

n∏
j=k+1

(
1−

λh,q
2
γj

)
≤ exp

(
−
λh,q
2

n∑
j=m+1

γj

)
γp−2
1

n∑
k=1

γ2k +
2γp−1

m

λh,q

(
1−

n∏
j=m+1

(
1−

λh,q
2
γj

))

≤ 22βγp1 exp
(
− 2−(β+1)λh,qγ1

(
φ1−β(n)− φ1−β(m)

))
φ1−2β(n+ 1) +

2γp−1
1

λh,qm(p−1)β
.

(3.44)
We now select m = ⌈n/2⌉ and use the inequality φ1−β(n) − φ1−β(n/2) ≥ n1−β/2
for n ≥ 2 which stems from the concavity of φ1−β together with the fact that φ1−β

is non-decreasing. Hence, for any integer n and p ≥ 2,
n∑

k=1

γpk

n∏
j=k+1

(
1−

λh,1
2
γj

)
≤ 22βγp1 exp

(
−2−(β+2)λh,1γ1n

1−β
)
φ1−2β(n+1)+

21+(p−1)βγp−1
1

λh,1n(p−1)β
.

(3.45)
Going back to (3.35), by using on the one hand (3.41) and on the other hand (3.42)
combined with (3.43) and (3.45) for q = 1 and p = 2, we obtain

E[Lh,1(ξhn)] ≤
(
E[Lh,1(ξh0 )] +

e + 1

eῡh + 1

)
× exp

(
22β+1(eῡh + 1)ζh,1γ

2
1φ1−2β(n+ 1)−

λh,1
2
γ1φ1−β(n+ 1)

)
+ (e + 1)ζh,1

(
22βγ21 exp

(
− 2−(β+2)λh,1γ1n

1−β
)
φ1−2β(n+ 1) +

2β+1γ1
λh,1nβ

)
.

(3.46)
Hence, for any β ∈ (0, 1) and any positive integer n,

E[Lh,1(ξhn)] ≤ K
β
h,1γn, (3.47)

with

Kβ
h,1 := γ−1

1

(
E[Lh,1(ξh0 )] +

e + 1

eῡh + 1

)
× sup

n≥1

{
nβ exp

(
22β+1(eῡh + 1)ζh,1γ

2
1φ1−2β(n+ 1)−

λh,1
2
γ1φ1−β(n+ 1)

)}
+(e + 1)ζh,1

(
22βγ1 sup

n≥1

{
nβ exp

(
− 2−(β+2)λh,1γ1n

1−β
)
φ1−2β(n+ 1)

}
+

2β+1

λh,1

)
.

Step 3. Inequality on E[Lh,2(ξhn)].
We now take q = 2 and υ = ῡh in (3.32) and use (3.40) or (3.47). Hence

E[Lh,2(ξhn+1)] ≤ E[Lh,2(ξhn)]
(
1− λh,2γn+1 + ζh,2γ

2
n+1

)
+ ζh,2γ

2
n+1E[Lh,1(ξhn)] + ζh,2γ

3
n+1

≤ E[Lh,2(ξhn)]
(
1− λh,2γn+1 + (eῡ2h + 1)ζh,2γ

2
n+1

)
+ (Kβ

h,1 + 1)ζh,2γ
3
n+1.

(3.48)
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It follows from (3.34) that 1−λh,2γn+1− (eῡ2h+1)ζh,2γ
2
n+1 ≥ 1/2. Iterating n times

inequality (3.48) thus gives

E[Lh,2(ξhn)] ≤ E[Lh,2(ξh0 )]Π
h,2
1:n + (2βKβ

h,1 + 1)ζh,2

n∑
k=1

γ3k Π
h,2
k+1:n. (3.49)

We skip here the computations that are similar to those performed in the previ-
ous step.

Step 3.1.
If γn = γ1n

−1, we obtain:

E[Lh,2(ξhn)] ≤ K̂h,2
E[Lh,2(ξh0 )]
(n+ 1)λh,2γ1

+ K̄h,2

φλh,2γ1−2(n+ 1)

(n+ 1)λh,2γ1
, (3.50)

where K̂h,2 := exp
(
(eῡ2h+1)ζh,2

π2

6 γ
2
1+

γ1λh,2

2

)
and K̄h,2 := K̂h,2γ

3
1(2K

1
h,1+1)ζh,22

γ1λh,2∨3.
Hence, since λh,2 > λh,1 > 1, one has γ1λh,2 > 1 so that for any positive integer n

E[Lh,2(ξhn)] ≤ K1
h,2γn, (3.51)

with

K1
h,2 := γ−1

1

(
K̂h,2E[Lh,2(ξh0 )] + K̄h,2 sup

n≥1

φλh,2γ1−2(n+ 1)

(n+ 1)λh,2γ1−1

)
.

Step 3.2.
Otherwise, if γn = γ1n

−β with β ∈ (0, 1), then it holds

E[Lh,2(ξhn)] ≤
(
E[Lh,2(ξh0 )] +

γ1(2
βKβ

h,1 + 1)

eῡ2h + 1

)
× exp

(
22β+1ζh,2(eῡ

2
h + 1)γ21φ1−2β(n+ 1)−

λh,2
2
γ1φ1−β(n+ 1)

)
+(2βKβ

h,1 + 1)ζh,2

(
22βγ31 exp

(
− 2−(β+2)λh,2γ1n

1−β
)
φ1−2β(n+ 1) +

22β+1γ21
λh,2n2β

)
.

(3.52)
We thus conclude that, for any β ∈ (0, 1) and any positive integer n,

E[Lh,2(ξhn)] ≤ K
β
h,2γn, (3.53)

with

Kβ
h,2 :=

(
γ−1
1 E[Lh,2(ξh0 )] +

2βKβ
h,1 + 1

eῡ2h + 1

)
× sup

n≥1

{
nβ exp

(
22β+1ζh,2(eῡ

2
h + 1)γ21φ1−2β(n+ 1)−

λh,2
2
γ1φ1−β(n+ 1)

)}
+(2βKβ

h,1 + 1)ζh,2

(
γ212

2β sup
n≥1

{
nβ exp

(
− 2−(β+2)λh,2γ1n

1−β
)
φ1−2β(n+ 1)

}
+ γ1

22β+1

λh,2

)
.

Step 4. Inequality on E[(ξhn − ξh⋆ )2].
Combining either estimate (3.40) with (3.51) or estimate (3.47) with (3.53), and
using Lemma 3.2(iv) for q = 1, we conclude

E[(ξhn − ξh⋆ )2] ≤ K̄
β
h,2γn, (3.54)
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with K̄β
h,2 := κh,1(K

β
h,2 + Kβ

h,1) satisfying suph∈H K̄
β
h,2 < ∞ for any β ∈ (0, 1]

since (3.12) implies that

sup
h∈H

E[Lh,q(ξh0 )] ≤ sup
h∈H

E
[
(1 + |ξh0 |2) exp

( 4

1− α
kα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

<∞, q = 1, 2.

Step 5. Inequality on E[|Ch
n − Ch

⋆ |].
We now prove an L1(P) upper estimate for the difference Ch

n − Ch
⋆ , where the

sequence (Ch
n)n≥0 is given by (3.6). Without loss of generality, we here assume

that Ch
0 = 0 inasmuch the general case Ch

0 ̸= 0 is handled in a completely similar
way. Observe that

Ch
n − Ch

⋆ =
1

n

n∑
k=1

(
ξhk−1 +

1

1− α
(X

(k)
h − ξhk−1)

+
)
− Vh(ξh⋆ )

=
1

n

n∑
k=1

εhk +
1

n

n∑
k=1

Vh(ξ
h
k−1)− Vh(ξh⋆ ),

(3.55)

where
{
εhk := ξhk−1+

1
1−α(X

(k)
h − ξ

h
k−1)

+−Vh(ξhk−1), k ≥ 1
}

is a sequence of (Fh,P)-
martingale increments, that is, E[εhk |Fh

k−1] = 0 and

E[|εhk |2|Fh
k−1] ≤

1

(1− α)2
E
[(
(X

(k)
h − ξhk−1)

+ − E[(X(k)
h − ξhk−1)

+|Fh
k−1]

)2∣∣∣Fh
k−1

]
≤ 1

(1− α)2
E
[
((X

(k)
h − ξhk−1)

+)2
∣∣Fh

k−1

]
≤ 3

(1− α)2
(
E[|Xh|2] + (ξhk−1 − ξh⋆ )2 + |ξh⋆ |2

)
.

Using the above estimate together with the Cauchy-Schwarz inequality and (3.16),
we obtain

1

n
E
[∣∣∣∣ n∑

k=1

εhk

∣∣∣∣] ≤ 1

n

( n∑
k=1

E[|εhk |2]
) 1

2

≤
√
3

(1− α)n

(
n
(
sup
h∈H

E[|Xh|2] + sup
h∈H
|ξh⋆ |2

)
+ K̄β

h

n∑
k=2

γk−1 + E[(ξh0 − ξh⋆ )2]
) 1

2

≤
√
3

(1− α)n
1
2

((
sup
h∈H

E[|Xh|2]
1
2 + sup

h∈H
|ξh⋆ |

)
+ (γ1K̄

β
h )

1
2 (1− β)−

1
2n−

β
2 1β∈(0,1)

+ (γ1K̄
β
h )

1
2
(lnn)

1
2

n
1
2

1β=1 +
E[(ξh0 − ξh⋆ )2]

1
2

n
1
2

)
.

For the second term appearing in the right hand side of (3.55), we use a second order
Taylor expansion together with the fact that suph∈H ∥V ′′

h ∥∞ < ∞ and then (3.16).
We obtain

1

n
E
[∣∣∣∣ n∑

k=1

Vh(ξ
h
k−1)− Vh(ξh⋆ )

∣∣∣∣] ≤ ∥V ′′
h ∥∞
2n

n∑
k=1

E[(ξhk−1 − ξh⋆ )2]

≤
∥V ′′

h ∥∞
2

(
E[(ξh0 − ξh⋆ )2]

n
+ γ1K

β
h

(
(1− β)−1n−β1β∈(0,1) +

lnn

n
1β=1

))
.
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Coming back to (3.55) and combining the two previous estimates concludes the
proof.

Step 6. Inequality on E[(ξhn − ξh⋆ )4].
The proof of (3.17) relies on similar arguments as those used for (3.16). We will
thus be brief and omit some technical details. We first note that using either (3.50)
with γ1λh,2 > 2 or (3.52), it holds

E[Lh,2(ξhn)] ≤ K̃
β
h,2γ

2
n, (3.56)

for some constants K̃β
h,2 satisfying suph∈H K̃

β
h,2 < ∞. Then, we take q = 3 and

υ = ῡh in (3.32) and use the previous inequality. Hence,

E[Lh,3(ξhn+1)] ≤ E[Lh,3(ξhn)]
(
1− λh,3γn+1 + ζh,3γ

2
n+1

)
+ ζh,3γ

2
n+1E[Lh,2(ξhn)] + ζh,3γ

4
n+1

≤ E[Lh,3(ξhn)]
(
1− λh,3γn+1 + (eῡ3h + 1)ζh,3γ

2
n+1

)
+ (22βK̃β

h,2 + 1)ζh,3γ
4
n+1,

(3.57)
so that

E[Lh,3(ξhn)] ≤ E[Lh,3(ξh0 )]Π
h,3
1:n + (22βK̃β

h,2 + 1)ζh,3

n∑
k=1

γ4k Π
h,3
k+1:n. (3.58)

Following similar lines of reasoning as those used in Step 2, we conclude that if
γn = γ1n

−β , β ∈ (0, 1], with γ1λh,3 > 2 if β = 1, then it holds

E[Lh,3(ξhn)] ≤ K
β
h,3γ

2
n, (3.59)

for some constants Kβ
h,3 satisfying suph∈HK

β
h,3 <∞.

Finally, we take q = 4 and υ = ῡh in (3.32) and use (3.59). We thus obtain

E[Lh,4(ξhn+1)] ≤ E[Lh,4(ξhn)]
(
1− λh,4γn+1 + ζh,4γ

2
n+1

)
+ ζh,4γ

2
n+1E[Lh,3(ξhn)] + ζh,3γ

5
n+1

≤ E[Lh,4(ξhn)]
(
1− λh,4γn+1 + (eῡ4h + 1)ζh,4γ

2
n+1

)
+ (22βKβ

h,3 + γ1)ζh,4γ
4
n+1,

so that

E[Lh,4(ξhn)] ≤ E[Lh,4(ξh0 )]Π
h,4
1:n + (22βKβ

h,3 + γ1)ζh,4

n∑
k=1

γ4k Π
h,4
k+1:n. (3.60)

In a completely analogous manner, we deduce from the previous inequality that if
γn = γ1n

−β , β ∈ (0, 1], with γ1λh,4 > 2 if β = 1, then for any h ∈ H and any
positive integer n

E[Lh,4(ξhn)] ≤ K
β
h,4γ

2
n, (3.61)

where Kβ
h,4 is a constant satisfying suph∈HK

β
h,4 <∞.

Combining (3.56) with (3.61) as well as Lemma 3.2(iv) with q = 2 and recalling
that λh,4 > λh,2, we eventually conclude that if γn = γ1n

−β , β ∈ (0, 1], with
γ1λh,2 > 2 if β = 1, then for any h ∈ H and any positive integer n,

E[(ξhn − ξh⋆ )4] ≤ K̄
β
h,4γ

2
n (3.62)

holds, where K̄β
h,4 := κh,2(K

β
h,4 + K̃β

h,2) satisfies suph∈H K̄
β
h,4 <∞ for any β ∈ (0, 1]

inasmuch (3.12) implies that

sup
h∈H

E[Lh,q(ξh0 )] ≤ sup
h∈H

E
[
(1 + |ξh0 |4) exp

( 16

1− α
kα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

<∞, q = 3, 4.
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The proof of (3.17) is now complete.

Step 7. Inequality on E[(Ch
n − Ch

⋆ )
2].

Here again assuming that Ch
0 = 0, from the decomposition (3.55) and similar com-

putations to the ones performed in Step 5, we get, for some constants C̄β
h that may

change from line to line,

E[(Ch
n − Ch

⋆ )
2] ≤ C̄β

h

{
1

n2

n∑
k=1

E[|εhk |2] +
1

n2

( n∑
k=1

E
[(
Vh(ξ

h
k−1)− Vh(ξh⋆ )

)2] 1
2

)2}

≤ C̄β
h

{
1

n
+

1

n2

( n∑
k=1

E[(ξhk−1 − ξh⋆ )4]
1
2

)2}

≤ C̄β
h

{
1

n
+

1

n2

( n∑
k=1

γk

)2}

≤
C̄β
h

n1∧2β
,

(3.63)
where the last inequality follows by a comparison between series and integrals for
γn = γ1n

−β , β ∈ (0, 1]. This concludes the proof.

3.2 Complexity Analysis

As a consequence of Proposition 3.1 and Theorem 3.1, if γn = γ1n
−β , β ∈ (0, 1],

with λ1γ1 > 1 if β = 1, then there exists C > 0 such that, for any h ∈ H and any
positive integer n,

E[|ξhn − ξ⋆|] ≤ C
(
h+ n−

β
2
)

and E[|Ch
n − C⋆|] ≤ C

(
h+ n−

1
2
∧β).

The above inequality gives us a heuristic method to balance the bias parame-
ter h ∈ H with respect to the number of steps n in the stochastic approximation
scheme (3.6) to achieve a prescribed error of order ε ∈ (0, 1). Indeed, letting

h = ε and n =
⌈
ε
− 2

β
⌉
,

gives a global L1(P) error of order ε. The corresponding computational cost of the
algorithm is thus given by

Cost = Cnh−1 ∼ Cε−
2
β
−1 as ε ↓ 0,

for some constant C independent of ε. Observe that the minimal computational
cost is of order ε−3 and is achieved if one selects γn = γ1n

−β with β = 1 under the
restriction λ1γ1 > 1.

The next section is devoted to the development of the MLSA algorithm which
is a different approach of constructing estimators of VaR and ES by combining
multiple SA estimates obtained through Algorithm 1 for a geometric sequence of
bias parameters, all the while reducing the complexity of the entailed simulations.

4 Multilevel Stochastic Approximation

The first part explains the construction of the multilevel SA algorithm to approxi-
mate VaR and ES, and the second part provides an analysis of the proposed algo-
rithm on both convergence and complexity aspects.
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Let h ∈ H be a fixed bias parameter and M and L (the number of levels) be
two positive integers such that M ≥ 2. We consider the geometric sequence of bias
parameters

hℓ =
h

M ℓ
, ℓ = 0, . . . , L.

Under Assumptions 1 and 2, letting (ξhℓ
⋆ , C

hℓ
⋆ ) = (argminVhℓ

,minVhℓ
) for ℓ ∈

{0, . . . , L}, we use the following decomposition in telescopic sum

ξhL
⋆ = ξh0

⋆ +
L∑

ℓ=1

ξhℓ
⋆ − ξ

hℓ−1
⋆ , (4.1)

ChL
⋆ = Ch0

⋆ +
L∑

ℓ=1

Chℓ
⋆ − C

hℓ−1
⋆ . (4.2)

In the previous section, we saw how to approximate each pair (ξhℓ
⋆ , C

hℓ
⋆ ) through

Algorithm 1. We let N = (N0, . . . , NL) ∈ NL+1
0 . Following [12], we can define the

following multilevel SA estimators ξML
N and CML

N of ξhL
⋆ and ChL

⋆ :

 ξML
N = ξh0

N0
+
∑L

ℓ=1 ξ
hℓ
Nℓ
− ξhℓ−1

Nℓ
,

CML
N = Ch0

N0
+
∑L

ℓ=1C
hℓ
Nℓ
− Chℓ−1

Nℓ
,

(4.3)

where the initializations (ξh0 , C
h
0 ) are generated such that E[|ξh0 |2] + E[|Ch

0 |2] < ∞,
and the iterates (ξhn, Ch

n)n≥1 are computed using the SA scheme (3.6). However, we
importantly point out that for any fixed level ℓ ∈ {1, . . . , L}, the random variables
(X

(n)
hℓ−1

, X
(n)
hℓ

)1≤n≤Nℓ
used in the SA schemes for the computation of (ξ

hℓ−1

Nℓ
, ξhℓ

Nℓ
),

(C
hℓ−1

Nℓ
, Chℓ

Nℓ
) are iid with the same law as (Xhℓ−1

, Xhℓ
). In particular, one obtains

Xhℓ
from Xhℓ−1

using the identity

Xhℓ
=

1

M
Xhℓ−1

+
1

KM ℓ

KMℓ∑
k=KMℓ−1+1

φ(Y, Z(k)). (4.4)

Algorithm 2 summarizes this process.

Remark 1. Intuitively, the larger the ℓ, the closer the random variables Xhℓ
and

Xhℓ−1
are to X0, so that less iterations Nℓ of the SA scheme (3.6) are required at

level ℓ.

18



Algorithm 2 Multilevel SA algorithm for estimating (VaR,ES)

Require: A number of levels L ≥ 1, a bias parameter h = 1
K , a geometric step size

M ≥ 1, a positive integer sequence N0, . . . , NL, a positive and non-increasing
sequence {γn, 1 ≤ n ≤ maxℓNℓ}.

1: for ℓ = 0 . . L do
2: Set hℓ ← h

Mℓ

3: for j = (ℓ− 1)+, ℓ do
4: Choose (ξ

hj

0 , C
hj

0 ) such that E[|ξhj

0 |2] + E[|Chj

0 |2] <∞
5: end for
6: for n = 0 . . Nℓ − 1 do
7: Simulate Y (n+1) ∼ Y
8: Simulate Z(n+1,1), . . . , Z(n+1,KMℓ) iid∼ Z independently from Y
9: if ℓ = 0 then

10: X
(n+1)
h0

← 1
K

∑K
k=1 φ(Y

(n+1), Z(n+1,k))
11: else
12: X

(n+1)
hℓ−1

← 1
KMℓ−1

∑KMℓ−1

k=1 φ(Y (n+1), Z(n+1,k))

13: X
(n+1)
hℓ

← 1
MX

(n+1)
hℓ−1

+ 1
KMℓ

∑KMℓ

k=KMℓ−1+1 φ(Y
(n+1), Z(n+1,k))

14: end if
15: for j = (ℓ− 1)+ and j = ℓ do
16: ξ

hj

n+1 ← ξ
hj
n − γn+1H1(ξ

hj
n , X

(n+1)
hj

)

17: C
hj

n+1 ← C
hj
n − 1

n+1H2(C
hj
n , ξ

hj
n , X

(n+1)
hj

)
18: end for
19: end for
20: end for
21: ξML

N ← ξh0
N0

+
∑L

ℓ=1 ξ
hℓ
Nℓ
− ξhℓ−1

Nℓ

22: CML
N ← Ch0

N0
+
∑L

ℓ=1C
hℓ
Nℓ
− Chℓ−1

Nℓ

23: return ξML
N and CML

N

4.1 Convergence Analysis

The global error between the multilevel estimator (ξML
N ,CML

N ) and its target (ξ⋆, C⋆)
can be decomposed into a sum of a statistical error and a bias error:

ξML
N − ξ⋆ =

(
ξML
N − ξhL

⋆

)
+ (ξhL

⋆ − ξ⋆),
CML
N − C⋆ =

(
CML
N − ChL

⋆

)
+ (ChL

⋆ − C⋆).

In the following analysis, we quantify each error that appears in the decomposition
above in terms of the parameters of Algorithm 2. We then propose a specific choice
of L and N0, . . . , NL to achieve to achieve some prescribed error. The next result
is inspired from [17, Lemma 5.1, Proposition 5.2] and [6, Lemma A.4]. We provide
the proof in Appendix D for the sake of completeness. The proof of Proposition 4.1
is postponed to Appendix E.

Lemma 4.1. Let X and Y be two real-valued random variables with bounded den-
sities denoted by fX and fY respectively.

(i) Assume that X − Y is in Lp⋆(P) for some p⋆ > 1. Then, for every ξ ∈ R,

E
[∣∣1X>ξ − 1Y >ξ

∣∣] ≤ (
p

p⋆
p⋆+1
⋆ + p

1
p⋆+1
⋆

)(
∥fX∥∞ + ∥fY ∥∞

) p⋆
p⋆+1E[|X − Y |p⋆ ]

1
p⋆+1 .
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(ii) Assume that there exists a positive constant dX,Y such that, for any u ∈ R,

E
[
exp

(
u(X − Y )

)]
≤ exp

(
dX,Y u

2
)
. (4.5)

Then, for every ξ ∈ R,

E
[∣∣1X>ξ − 1Y >ξ

∣∣] ≤ 2
√
dX,Y +

(
∥fX∥∞ + ∥fY ∥∞

)√
2dX,Y ln

(
d−1
X,Y ∨ 1

)
.

Proposition 4.1. (i) Assume that for any h ∈ H, the real-valued random variable
Xh admits a density fXh

, bounded uniformly in h ∈ H.

a. If

E
[∣∣φ(Y,Z)− E[φ(Y,Z)|Y ]

∣∣p⋆] <∞ holds for some p⋆ > 1, (4.6)

then, for any h, h′ ∈ H such that 0 < h ≤ h′ and any ξ ∈ R,

E
[∣∣1Xh>ξ − 1Xh′>ξ

∣∣] ≤ C(h′ − h) p⋆
2(p⋆+1) ,

with C := Bp⋆E
[∣∣φ(Y,Z)−E[φ(Y,Z)|Y ]

∣∣p⋆] 1
p⋆+1 (suph∈H ∥fXh

∥∞)
p⋆

p⋆+1 , where
Bp⋆ is a positive constant which depends only upon p⋆.

b. Assume that there exists a non negative constant Cg <∞ such that, for all
u ∈ R,

E
[
exp

(
u
(
φ(Y, Z)− E[φ(Y,Z)|Y ]

))∣∣Y ]
≤ eCgu2

P-as. (4.7)

Then, for any h, h′ ∈ H such that 0 < h ≤ h′ and any ξ ∈ R,

E
[∣∣1Xh>ξ−1Xh′>ξ

∣∣] ≤ 2
√
Cg(h′ − h)

(
1+sup

h∈H
∥fXh

∥∞
√
2
∣∣ln (Cg(h

′ − h)
)∣∣).

(ii) Define Gℓ := h
− 1

2
ℓ (Xhℓ

−Xhℓ−1
) and let FXhℓ−1

|Gℓ=g : x 7→ P(Xhℓ−1
≤ x |Gℓ =

g), for g ∈ supp(PGℓ
) and ℓ ≥ 1. Assume that the sequence of random variables

(Kℓ)ℓ≥1 defined by Kℓ := Kℓ(Gℓ), where

Kℓ(g) := sup
x ̸=y

∣∣FXhℓ−1
|Gℓ=g(x)− FXhℓ−1

|Gℓ=g(y)
∣∣

|x− y|
, ℓ ≥ 1,

satisfies
sup
ℓ≥1

E[|Gℓ|Kℓ] <∞. (4.8)

Then, it holds

sup
ℓ≥1,ξ∈R

h
− 1

2
ℓ E

[∣∣1Xhℓ
>ξ − 1Xhℓ−1

>ξ

∣∣] <∞.
Remark 2. We point out that if FXhℓ−1

|Gℓ=g is Lipschitz continuous uniformly in
g and ℓ then it follows from (E.2), with h′ = hℓ−1 and h = hℓ, that (4.8) is satisfied.

Assumption 3. There exist C < ∞ and δ > 0 such that, for any h ∈ H and any
compact set K ⊂ R,

sup
ξ∈K
|fXh

(ξ)− fX0(ξ)| ≤ Ch
1
4
+δ.
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We can now state the following result regarding the non-asymptotic L2(P) error of
Algorithm 2.

Theorem 4.1. Suppose that for any h ∈ H ∪ {0} the random variable Xh ∈
L2(P) and that Assumptions 1, 2 and 3 are satisfied. Then, within the frame-
work of Proposition 4.1, if γn = γ1n

−β, β ∈ (0, 1], with λ2γ1 > 2 if β = 1, and
suph∈H E[|ξh0 |4 exp( 16

1−αkα suph∈H ∥fXh
∥∞|ξh0 |)] < ∞, suph∈H E[(Ch

0 )
2] < ∞, then

there exists some constant K < ∞ such that, for any positive integer L and any
N = (N0, . . . , NL) ∈ NL+1

0 ,

E
[(
ξML
N − ξhL

⋆

)2] ≤ K(
γN0 +

( L∑
ℓ=1

γNℓ

)2

+

L∑
ℓ=1

γ
3
2
Nℓ

+

L∑
ℓ=1

γNℓ
ϵ(hℓ)

)
, (4.9)

and

E
[(
CML
N −ChL

⋆

)2] ≤ K(
1

N1∧2β
0

+
L∑

ℓ=1

hℓ
Nℓ

+
L∑

ℓ=1

γ̄Nℓ

Nℓ
ϵ(hℓ)+

L∑
ℓ=1

1

N2
ℓ

Nℓ∑
k=1

γ
3
2
k +

( L∑
ℓ=1

γ̄Nℓ

)2)
,

(4.10)
where γ̄n = n−1

∑n
k=1 γk and

ϵ(hℓ) :=


h

p∗
2(1+p∗)
ℓ if (4.6) is satisfied,

h
1
2
ℓ |lnhℓ|

1
2 if (4.7) is satisfied,

h
1
2
ℓ if (4.8) is satisfied.

(4.11)

Proof. Step 1: Proof of (4.9).
We follow a similar strategy to the one used in [12, Lemma 2.7] and decompose the
dynamics of the sequence (ξhn)n≥0 given by (3.6) as follows:

ξhn+1 − ξh⋆ =
(
1− γn+1V

′′
0 (ξ⋆)

)
(ξhn − ξh⋆ ) + γn+1

(
V ′′
0 (ξ⋆)− V ′′

h (ξ
h
⋆ )
)
(ξhn − ξh⋆ )

+ γn+1r
h
n+1 + γn+1ρ

h
n+1 + γn+1e

h
n+1,

(4.12)

where

rhn+1 := V ′′
h (ξ

h
⋆ )(ξ

h
n − ξh⋆ )− V ′

h(ξ
h
n), (4.13)

ρhn+1 := V ′
h(ξ

h
n)− V ′

h(ξ
h
⋆ )−

(
H1(ξ

h
n, X

(n+1)
h )−H1(ξ

h
⋆ , X

(n+1)
h )

)
, (4.14)

ehn+1 := V ′
h(ξ

h
⋆ )−H1(ξ

h
⋆ , X

(n+1)
h ). (4.15)

Iterating n times (4.12), we obtain

ξhn − ξh⋆ = (ξh0 − ξh⋆ )Π1:n +
n∑

k=1

γkΠk+1:n

(
V ′′
0 (ξ⋆)− V ′′

h (ξ
h
⋆ )
)
(ξhk − ξh⋆ )

+

n∑
k=1

γkΠk+1:nr
h
k +

n∑
k=1

γkΠk+1:nρ
h
k +

n∑
k=1

γkΠk+1:ne
h
k ,

(4.16)

where, for two positive integers i and n,

Πi:n :=

n∏
j=i

(
1− γjV ′′

0 (ξ⋆)
)
,
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with the convention that
∏

∅ = 1.
Using the inequality 1 + x ≤ exp(x) for any x ∈ R, a comparison between series

and integrals and (3.37), we get

|Πi:n| ≤ exp

(
− V ′′

0 (ξ⋆)

n∑
j=i

γj

)
≤ exp(γ1V

′′
0 (ξ⋆)) i

γ1V ′′
0 (ξ⋆)(n+ 1)−γ1V ′′

0 (ξ⋆), β = 1,

exp
(
− γ1V ′′

0 (ξ⋆)
(
φ1−β(n+ 1)− φ1−β(i)

))
, β ∈ (0, 1).

(4.17)

Since γn = γ1n
−β , β ∈ (0, 1] with γ1V

′′
0 (ξ⋆) > γ1λ2 > 1 if β = 1, using (4.17)

and a comparison between series and integrals (with computations similar to those
performed in Step 2 of the proof of Theorem 3.1), we deduce that for any b ≥ 0
and a > 0 such that γ1aV ′′

0 (ξ⋆) > b if β = 1, there exists K <∞ such that for any
integer n

n∑
k=1

γ1+b
k |Πk+1:n|a ≤ Kγbn, (4.18)

as well as
|Π1:n| ≤ Kγn. (4.19)

Using (4.16), the difference between the multilevel SA estimator ξML
N of the VaR

in (4.3) and the solution ξhL
⋆ = argminVhL

can be decomposed as follows:

ξML
N − ξhL

⋆ = ξh0
N0
− ξh0

⋆ +

L∑
ℓ=1

ξhℓ
Nℓ
− ξhℓ

⋆ −
(
ξ
hℓ−1

Nℓ
− ξhℓ−1

⋆

)
= ξh0

N0
− ξh0

⋆ +
L∑

ℓ=1

Aℓ
Nℓ

+Bℓ
Nℓ

+ Cℓ
Nℓ

+Dℓ
Nℓ

+ Eℓ
Nℓ
,

(4.20)

with

Aℓ
n :=

(
ξhℓ
0 − ξ

hℓ
⋆ −

(
ξ
hℓ−1

0 − ξhℓ−1
⋆

))
Π1:n, (4.21)

Bℓ
n :=

n∑
k=1

γkΠk+1:n

{(
V ′′
0 (ξ⋆)− V ′′

hℓ
(ξhℓ

⋆ )
)(
ξhℓ
k − ξ

hℓ
⋆

)
−

(
V ′′
0 (ξ⋆)− V ′′

hℓ−1
(ξ

hℓ−1
⋆ )

)(
ξ
hℓ−1

k − ξhℓ−1
⋆

)}
, (4.22)

Cℓ
n :=

n∑
k=1

γkΠk+1:n

(
rhℓ
k − r

hℓ−1

k

)
, (4.23)

Dℓ
n :=

n∑
k=1

γkΠk+1:n

(
ρhℓ
k − ρ

hℓ−1

k

)
, (4.24)

Eℓ
n :=

n∑
k=1

γkΠk+1:n

(
ehℓ
k − e

hℓ−1

k

)
. (4.25)

We now quantify the contribution of each term appearing in the decomposi-
tion (4.20). We first note that Theorem 3.1 guarantees that the first term satisfies

E
[(
ξh0
N0
− ξh0

⋆

)2] ≤ Kβ
h0
γN0 . (4.26)
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Step 1.1.
From (4.19), for some constant K that may change from line to line

E
[∣∣Aℓ

n

∣∣2] ≤ 2K sup
ℓ≥0

E[|ξhℓ
0 − ξ

hℓ
⋆ |2]γ2n ≤ Kγ2n. (4.27)

Step 1.2.
Let K be a compact set of R containing the sequence (ξhℓ

⋆ )ℓ≥0. For any ℓ ≥ 0, one
has ∣∣V ′′

0 (ξ⋆)− V ′′
hℓ
(ξhℓ

⋆ )
∣∣ ≤ 1

1− α
(∣∣fX0(ξ⋆)− fX0(ξ

hℓ
⋆ )

∣∣+ ∣∣fX0(ξ
hℓ
⋆ )− fXhℓ

(ξhℓ
⋆ )

∣∣)
≤ 1

1− α

(
[fX0 ]Lip|ξhℓ

⋆ − ξ⋆|+ sup
ξ∈K

∣∣fX0(ξ)− fXhℓ
(ξ)

∣∣)
≤ K

(
hℓ + h

1
4
+δ

ℓ

)
≤ Kh(

1
4
+δ)∧1

ℓ ,
(4.28)

where we used Assumptions 2(ii) and 3 together with (3.8). This estimate together
with Theorem 3.1 and (4.18) give

E
[∣∣Bℓ

n

∣∣2] 1
2 ≤ 2

(∣∣V ′′
0 (ξ⋆)− V ′′

hℓ
(ξhℓ

⋆ )
∣∣ ∨ ∣∣V ′′

0 (ξ⋆)− V ′′
hℓ−1

(ξ
hℓ−1
⋆ )

∣∣)
×
( n∑

k=1

γk|Πk+1:n|
(
E[|ξhℓ

k − ξ
hℓ
⋆ |2]

1
2 ∨ E[|ξhℓ−1

k − ξhℓ−1
⋆ |2]

1
2
))

≤ Kh(
1
4
+δ)∧1

ℓ

n∑
k=1

γ
3
2
k |Πk+1:n|

≤ Kγ
1
2
n h

( 1
4
+δ)∧1

ℓ .

(4.29)

Step 1.3.
Using a first order Taylor expansion together with the uniform Lipschitz regularity
of (fXh

)h∈H and again Theorem 3.1, we get

E
[∣∣rhℓ

k

∣∣2] 1
2 + E

[∣∣rhℓ−1

k

∣∣2] 1
2 ≤

suph∈H [fXh
]Lip

(1− α)
(
E
[(
ξhℓ
k−1 − ξ

hℓ
⋆

)4] 1
2 + E

[(
ξ
hℓ−1

k−1 − ξ
hℓ−1
⋆

)4] 1
2
)

≤ Kγk,

so that

E
[∣∣Cℓ

n

∣∣2] 1
2 ≤

n∑
k=1

γk|Πk+1:n|
(
E
[∣∣rhℓ

k

∣∣2] 1
2 + E

[∣∣rhℓ−1

k

∣∣2] 1
2
)

≤ K
n∑

k=1

γ2k |Πk+1:n|

≤ Kγn,

(4.30)

where we again used (4.18) for the last inequality.

Step 1.4.
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We first note that from the very definition (2.6) of H1 and (3.16)

E
[(
H1(ξ

h
k , X

(k+1)
h )−H1(ξ

h
⋆ , X

(k+1)
h )

)2]
=

1

(1− α)2
E
[∣∣1

X
(k+1)
h >ξhk

− 1
X

(k+1)
h >ξh⋆

∣∣]
=

1

(1− α)2
E
[
E
[
1
ξhk<X

(k+1)
h <ξh⋆

+ 1
ξh⋆<X

(k+1)
h <ξhk

∣∣Fh
k

]]
=

1

(1− α)2
E
[∣∣FXh

(ξhk )− FXh
(ξh⋆ )

∣∣]
≤ suph∈H ∥fXh

∥∞
(1− α)2

E[(ξhk − ξh⋆ )2]
1
2

≤ |Kβ
h |

1
2
suph∈H ∥fXh

∥∞
(1− α)2

γ
1
2
k .

(4.31)

Remark that (ρhℓ
k − ρ

hℓ−1

k )k≥1 is a sequence of martingale increments. Then, recall-
ing (4.31) and using again (4.18), we get

E
[∣∣Dℓ

n

∣∣2] = E
[( n∑

k=1

γkΠk+1:n

(
ρhℓ
k − ρ

hℓ−1

k

))2]

=
n∑

k=1

γ2k |Πk+1:n|2E
[(
ρhℓ
k − ρ

hℓ−1

k

)2]
≤ 2

n∑
k=1

γ2k |Πk+1:n|2
(
E
[∣∣ρhℓ

k

∣∣2]+ E
[∣∣ρhℓ−1

k

∣∣2])
≤ 2

n∑
k=1

γ2k |Πk+1:n|2
(
E
[(
H1(ξ

hℓ
k , X

(k+1)
hℓ

)−H1(ξ
hℓ
⋆ , X

(k+1)
hℓ

)
)2]

+ E
[(
H1(ξ

hℓ−1

k , X
(k+1)
hℓ−1

)−H1(ξ
hℓ−1
⋆ , X

(k+1)
hℓ−1

)
)2])

≤ Kβ
hℓ

n∑
k=1

γ
5
2
k |Πk+1:n|2

≤ Kγ
3
2
n ,

(4.32)

since 2γ1V
′′
0 (ξ⋆) > 3/2. Then, since the random variables (Dℓ

n)1≤ℓ≤L are indepen-
dent and centered, the above estimate yields

E
[( L∑

ℓ=1

Dℓ
Nℓ

)2]
=

L∑
ℓ=1

E
[∣∣Dℓ

Nℓ

∣∣2] ≤ K L∑
ℓ=1

γ
3
2
Nℓ
.

Step 1.5.
We again note that (ehℓ

k − e
hℓ−1

k )k≥1 is a sequence of martingale increments so that

E
[∣∣Eℓ

n

∣∣2] = E
[( n∑

k=1

γkΠk+1:n

(
ehℓ
k − e

hℓ−1

k

))2]

=

n∑
k=1

γ2k |Πk+1:n|2E
[(
ehℓ
k − e

hℓ−1

k

)2]
≤

n∑
k=1

γ2k |Πk+1:n|2E
[(
H1(ξ

hℓ
⋆ , Xhℓ

)−H1(ξ
hℓ−1
⋆ , Xhℓ−1

)
)2]

.

(4.33)
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The last term in the right hand side of the above inequality can be upper-bounded
as follows

E
[(
H1(ξ

hℓ
⋆ , Xhℓ

)−H1(ξ
hℓ−1
⋆ , Xhℓ−1

)
)2]

≤ 2
{
E
[(
H1(ξ

hℓ
⋆ , Xhℓ

)−H1(ξ
hℓ−1
⋆ , Xhℓ

)
)2]

+E
[(
H1(ξ

hℓ−1
⋆ , Xhℓ

)−H1(ξ
hℓ−1
⋆ , Xhℓ−1

)
)2]}

≤ 2

(1− α)2
{
E
[(

1
Xhℓ

>ξ
hℓ
⋆
− 1

Xhℓ
>ξ

hℓ−1
⋆

)2]
+E

[(
1
Xhℓ

>ξ
hℓ−1
⋆

− 1
Xhℓ−1

>ξ
hℓ−1
⋆

)2]}
.

(4.34)

On the one hand, it follows from Proposition 3.1 that

E
[(

1
Xhℓ

>ξ
hℓ
⋆
− 1

Xhℓ
>ξ

hℓ−1
⋆

)2]
= E

[
1
ξ
hℓ−1
⋆ <Xhℓ

<ξ
hℓ
⋆

+ 1
ξ
hℓ
⋆ <Xhℓ

<ξ
hℓ−1
⋆

]
=

∣∣FXhℓ
(ξhℓ

⋆ )− FXhℓ
(ξ

hℓ−1
⋆ )

∣∣
≤ sup

h∈H
∥fXh

∥∞
∣∣ξhℓ

⋆ − ξ
hℓ−1
⋆

∣∣
≤ Khℓ.

(4.35)

On the other hand, Proposition 4.1 yields

E
[(

1
Xhℓ

>ξ
hℓ−1
⋆

− 1
Xhℓ−1

>ξ
hℓ−1
⋆

)2]
≤ Khℓ

ϵ(hℓ), (4.36)

where Khℓ
is a constant satisfying supℓ≥1Khℓ

< ∞, and ϵ(hℓ) is defined in (4.11).
Combining the two previous estimates with (4.34), (4.33) and using (4.18), we get

E
[∣∣Eℓ

n

∣∣2] = E
[( n∑

k=1

γkΠk+1:n

(
ehℓ
k − e

hℓ−1

k

))2]

≤ K
(
hℓ + ϵ(hℓ)

) n∑
k=1

γ2k |Πk+1:n|2

≤ Kϵ(hℓ)γn.

(4.37)

Observe again that the random variables (Eℓ
n)1≤ℓ≤L are independent and centered.

Hence, the above estimate directly yields

E
[( L∑

ℓ=1

Eℓ
Nℓ

)2]
=

L∑
ℓ=1

E
[∣∣Eℓ

Nℓ

∣∣2] ≤ K L∑
ℓ=1

γNℓ
ϵ(hℓ).

Step 1.6.
Gathering the above estimates on each term, we eventually get

E
[(
ξML
N −ξhL

⋆

)2] ≤ K{
γN0+

( L∑
ℓ=1

γNℓ
+γ

1
2
Nℓ
h
( 1
4
+δ)∧1

ℓ

)2

+

L∑
ℓ=1

γ
3
2
Nℓ
+γNℓ

ϵ(hℓ)

}
. (4.38)

From the Cauchy-Schwarz inequality, one gets

L∑
ℓ=1

γ
1
2
Nℓ
h
( 1
4
+δ)∧1

ℓ ≤
( L∑

ℓ=1

γNℓ
h

1
2
ℓ

) 1
2
( L∑

ℓ=1

h
2(δ∧ 3

4
)

ℓ

) 1
2

≤ K
( L∑

ℓ=1

γNℓ
ϵ(hℓ)

) 1
2

(4.39)
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since h
1
2
ℓ ≤ Kϵ(hℓ) and

sup
L≥1

L∑
ℓ=1

h
2(δ∧ 3

4
)

ℓ = sup
L≥1

h2(δ∧
3
4
) 1−M−2(δ∧ 3

4
)L

M2(δ∧ 3
4
) − 1

≤ h2(δ∧
3
4
)

M2(δ∧ 3
4
) − 1

<∞.

Plugging (4.39) into (4.38) concludes the proof of (4.9).

Step 2: Proof of (4.10).

Step 2.1.
We first provide an L2(P)-estimate for the quantity (ξhℓ

n −ξ
hℓ−1
n − (ξhℓ

⋆ −ξ
hℓ−1
⋆ )), n ≥

1. Recalling the decomposition (4.20) and combining (4.27), (4.29), (4.30), (4.32)
and (4.37), we obtain

E
[(
ξhℓ
n − ξ

hℓ−1
n − (ξhℓ

⋆ − ξ
hℓ−1
⋆ )

)2] ≤ K(
γ

3
2
n + γnϵ(hℓ)

)
, n ≥ 1. (4.40)

Step 2.2.
Here again, for sake of simplicity, we assume that Chℓ

0 = 0 for ℓ = 0, · · · , L. The
general case follows from similar arguments. From the second part of Theorem 3.1,
we also get

E
[(
Ch0
N0
− Ch0

⋆

)2] ≤ K

N1∧2β
0

. (4.41)

From the decomposition (3.55) we also readily derive the identity

Chℓ
n − Chℓ

⋆ − (C
hℓ−1
n − Chℓ−1

⋆ )

=
1

n

n∑
k=1

εhℓ
k − ε

hℓ−1
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1

n

n∑
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Vhℓ
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(ξhℓ

⋆ )−
(
Vhℓ−1

(ξ
hℓ−1

k−1 )− Vhℓ−1
(ξ

hℓ−1
⋆ )

)
.

(4.42)
We recall that for each ℓ = 0, . . . , L, (εhℓ

k )1≤k≤n is a sequence of (Fhℓ ,P)-martingale
increments satisfying E

[
εhℓ
k

∣∣Fhℓ
k−1

]
= 0, and

E
[(
εhℓ
k − ε

hℓ−1

k

)2∣∣Fk−1

]
≤ 1

(1− α)2
E
[(
(X

(k)
hℓ
− ξhℓ

k−1)
+ − (X

(k)
hℓ−1
− ξhℓ−1

k−1 )
+
)2∣∣Fk−1

]
≤ 3

(1− α)2
(
E[(Xhℓ

−Xhℓ−1
)2] +

(
ξhℓ
k−1 − ξ

hℓ−1

k−1 − (ξhℓ
⋆ − ξ

hℓ−1
⋆ )

)2
+
(
ξhℓ
⋆ − ξ

hℓ−1
⋆

)2)
≤ K

(
hℓ +

(
ξhℓ
k−1 − ξ

hℓ−1

k−1 − (ξhℓ
⋆ − ξ

hℓ−1
⋆ )

)2)
,

where we used (3.8) and (E.2) with h′ = hℓ−1, h = hℓ and p = 2, for the last
inequality. We now take expectation in both sides of the previous inequality and
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then use (4.40). Hence,

E
[(

1

n

n∑
k=1

εhℓ
k − ε

hℓ−1

k

)2]

=
1

n2

n∑
k=1

E
[(
εhℓ
k − ε

hℓ−1

k

)2]
≤
hℓ + supℓ≥1 E
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ξhℓ
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0 − (ξhℓ
⋆ − ξ
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⋆ )

)2]
n2

+
1

n2
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E
[(
εhℓ
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k

)2]
≤ K

(
1

n2
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hℓ
n

+
1

n2

n∑
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(
γ

3
2
k + γkϵ(hℓ)

))

≤ K
(
hℓ
n

+
1

n2

n∑
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(
γ

3
2
k + γkϵ(hℓ)
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.

(4.43)
Hence, since the random variables

{
1
Nℓ

∑Nℓ
k=1 ε

hℓ
k − ε

hℓ−1

k , ℓ = 1, . . . , L
}

are indepen-
dent and centered, we deduce from the previous inequality

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
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εhℓ
k − ε

hℓ−1

k

)2]
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L∑
ℓ=1

(
hℓ
Nℓ

+
1

N2
ℓ

Nℓ∑
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(
γ

3
2
k + γkϵ(hℓ)

))
. (4.44)

In order to deal with the second term in the right hand side of (4.42), we use
Minkowski’s inequality and a second order Taylor expansion for both terms together
with the fact that suph∈H ∥V ′′

h ∥∞ <∞ and then (3.17). We obtain

E
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1

n
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⋆
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(
1

n
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1
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γk

)
≤ Kγ̄n,

(4.45)
where we used the fact that

∑
k≥1 γk = ∞ for the last inequality. We now come

back to (4.42), use (4.43), (4.45). We thus obtain

E
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Chℓ
Nℓ
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(
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Nℓ
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⋆
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+
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1

Nℓ
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⋆ )−
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(ξ
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(ξ
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≤ K
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+
1
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ℓ
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γ
3
2
k + γkϵ(hℓ) +
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. (4.46)
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Putting together (4.41) and (4.46) concludes the proof of (4.10).

4.2 Complexity Analysis

For a fixed prescribed tolerance level ε ∈ (0, 1), a given h ∈ H and an integer
M ≥ 2, we rely on the above result to choose the number of levels L and the
number of steps N0, . . . , NL in each level in order to achieve a root mean square
error for the computation of the VaR and ES of order ε using Algorithm 2.

In view of Proposition 3.1, the bias of our couple of estimators (ξML
N ,CML

N ) is of
order hL. We thus select L ≥ 1 such that

L =

⌈
lnhε−1

lnM

⌉
⇒ hL =

h

ML
≤ ε. (4.47)

The computational cost of Algorithm 2 is given by

CostML = C
L∑

ℓ=0

Nℓ

hℓ
.

VaR Focused Parametrization. We first focus on estimating the VaR. Simi-
larly to the multilevel Monte Carlo algorithm for the computation of the probability
P(X0 > 0) (see e.g. [16]), it is expected that the leading term in the global L2 er-
ror (4.9) is the last one, namely,

∑L
ℓ=1 γNℓ

ϵ(hℓ). Following this heuristic, in order
to obtain the optimal values for N0, . . . , NL, we minimize the complexity under a
mean square error constraint, namely, we solve the following constrained optimiza-
tion problem

minimizeN0,...,NL>0
∑L

ℓ=0Nℓh
−1
ℓ ,

subject to
∑L

ℓ=0 γNℓ
ϵ(hℓ) = K−1ε2,

where K is the constant appearing in (4.9). Under the assumption that γn = γ1n
−β ,

β ∈ (0, 1], the optimal values for Nℓ, ℓ = 0, . . . , L, are given by

Nℓ =

⌈
(Kγ1)

1
β ε

− 2
β

( L∑
ℓ′=0

h
− β

1+β

ℓ′ ϵ(hℓ′)
1

1+β

) 1
β

h
1

1+β

ℓ ϵ(hℓ)
1

1+β

⌉
,

or Nℓ =

⌈
(Kγ1)

1
β ε

− 2
β h

1
1+β

(1+ p∗
2(1+p∗)

)

ℓ

(∑L
ℓ′=0 h

1
1+β

(−β+ p∗
2(1+p∗)

)

ℓ′

) 1
β
⌉

if (4.6) is satisfied,⌈
(Kγ1)

1
β ε

− 2
β h

3
2(1+β)

ℓ |lnhℓ|
1

2(1+β)

(∑L
ℓ′=0 h

1−2β
2(1+β)

ℓ′ |lnhℓ′ |
1

2(1+β)

) 1
β
⌉

if (4.7) is satisfied,⌈
(Kγ1)

1
β ε

− 2
β h

3
2(1+β)

ℓ

(∑L
ℓ′=0 h

1−2β
2(1+β)

ℓ′

) 1
β
⌉

if (4.8) is satisfied.

We can easily check that, with the above choice of L and N0, . . . , Nℓ, the first terms
in (4.9), namely γN0 +

(∑L
ℓ=1 γNℓ

)2
+
∑L

ℓ=1 γ
3
2
Nℓ

, are O(ε2) as ε ↓ 0.
Standard computations that we omit show that the optimal computational cost

of Algorithm 2 is achieved when β = 1, in which case the complexity is given by

CostML ≤ C


ε
−3+ p∗

2(1+p∗) if (4.6) is satisfied,
ε−

5
2 |ln ε|

1
2 if (4.7) is satisfied,

ε−
5
2 if (4.8) is satisfied.
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Therefore, in the best case where (4.8) is satisfied, for a given target quadratic
error ε2, it is possible to estimate the VaR with a complexity of O(ε−

5
2 ) using

the multilevel stochastic approximation approach, which is lower than the optimal
complexity of O(ε−3) for the nested stochastic approximation approach.

ES Focused Parametrization. A possible approach for parametrizing the amounts
of iterationsN0, . . . , NL optimally to compute the ES would be to choose these quan-
tities to minimize the complexity of Algorithm 1 while constraining the global L2

error of the multilevel ES estimator (4.10) to an order of ε2. We presume that
the leading term of the upper estimate in (4.10) is

∑L
ℓ=1

hℓ
Nℓ

. We will verify this
assumption a posteriori. Under this assumption, we solve the optimization problem

minimizeN0,...,NL>0
∑L

ℓ=0Nℓh
−1
ℓ ,

subject to
∑L

ℓ=0 hℓN
−1
ℓ = K−1ε2.

The optimal values are given by

Nℓ = ⌈Kε−2Lhℓ⌉ =
⌈
Kε−2

⌈ lnhε−1

lnM

⌉
hℓ

⌉
.

Under this parametrization, we check that as ε ↓ 0,
(∑L

ℓ=0 γ̄Nℓ

)2
= O(ε2β |ln ε|2(1β=1−β)).

Hence, in order to achieve a mean squared error of order ε2, one has to choose β = 1.
One can also verify that the remaining terms of the upper estimate of (4.10), namely
1
N0

+
∑L

ℓ=1

γ̄Nℓ
Nℓ
ϵ(hℓ) +

∑L
ℓ=1

1
N2

ℓ

∑Nℓ
k=1 γ

3
2
k , are of order ε2. With this specific choice

of N0, . . . , NL, one achieves a mean squared error of order ε2 for the computation
of the ES, with a complexity of

CostML ≤ Cε−2 |ln ε|2 .

Note that it exactly coincides with the optimal complexity of the standard multi-
level Monte Carlo algorithm derived in [15].

We now assess the above results numerically. This is done in stylized financial
setups, where the probability measure P in the paper is used for all pricing and
risk computations. The code used to produce the results exhibited in the following
sections is available here: github.com/azarlouzi/mlsa.

5 Financial Case Study: Option

We endorse the stylized financial setup of [16, Section 3], considering an option with
payoff −W 2

T at maturity T = 1, where W is a standard Brownian motion. Assuming
zero interest rates, the value of the option v(t, y) at time t ∈ [0, 1] is defined by

v(t, y) = E[−W 2
1 |Wt = y].

Let τ ∈ (0, 1) be a time horizon. We define the loss X0 (in our previous notation)
on the option as

X0 = v(0, 0)− v(τ,Wτ ).

Let φ : R2 → R be the function defined by

φ(y, z) := −
(√
τy +

√
1− τz

)2
= −τy2 − 2

√
τ(1− τ)yz − (1− τ)z2, y, z ∈ R.
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Then

X0
L
= E[φ(Y,Z)]− E[φ(Y,Z)|Y ] = −1− E[φ(Y, Z)|Y ] = τ(Y 2 − 1), (5.1)

where Y and Z are independent and follow a normal distribution N (0, 1).

5.1 Some Analytical Formulas

The VaR ξ⋆ at level α ∈ (0, 1) of the loss X0 can be obtained analytically. It satisfies

1− α = P(X0 > ξ⋆) = P
(
Y 2 > 1 +

ξ⋆
τ

)
= 2F

(
−
(
1 +

ξ⋆
τ

) 1
2
)
,

where F is the standard Gaussian cdf. Hence

ξ⋆ = τ
{(
F−1

(1− α
2

))2
− 1

}
. (5.2)

We can also get an analytical formula for the ES C⋆ at level α. Indeed, using
the symmetry of the Gaussian distribution,

C⋆ = E[X0|X0 > ξ⋆] =
τ

1− α
{
2E

[
Y 21Y >µ

]
− (1−α)

}
, where µ :=

(
1+

ξ⋆
τ

) 1
2
.

Integrating by parts, we obtain

E
[
Y 21Y >µ

]
= µf(µ) + F (−µ),

where f denotes the standard Gaussian pdf. Hence,

C⋆ =
2τ

1− α

(
µf(µ) + F (−µ)− 1− α

2

)
. (5.3)

5.2 Stochastic Approximation

The loss X0
L
= τ(Y 2−1) (cf (5.1)) can be simulated directly. But the goal here is to

estimate the values of ξ⋆ and C⋆ using Algorithms 1 and 2, and to study empirically
the influence of the parametrization of each algorithm in their performances. The
exact values (5.2) and (5.3) are used to evaluate the convergence of the algorithm.

The loss X0
L
= −1−E[φ(Y,Z)|Y ] can be approximated, for a given bias param-

eter h = 1
K ∈ H, by

Xh = −1− 1

K

K∑
k=1

φ(Y,Z(k)),

where Y,Z(1), . . . , Z(K) iid∼ N (0, 1). We can then apply Algorithm 1 or 2 on this
basis.

5.3 Numerical Results

In the following applications, the confidence level is taken equal to α = 97.5% and
the time horizon is set to τ = 0.5. This setup yields ξ⋆ ≈ 2.012 and C⋆ ≈ 2.901. The
value of β = 1 is used for the step sequence (γn)n≥1 since, according to Sections 3.2
and 4.2, it leads to the optimal complexities of Algorithms 1 and 2.
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Weak Error Expansion. To highlight the results of Proposition 3.1, we propose
to study the linearity of the quantities ξh⋆ − ξ⋆ and Ch

⋆ − C⋆ as H ∋ h ↓ 0. We
additionally study the degree of stability of the quantities h−1(ξh⋆−ξ⋆) and h−1(Ch

⋆−
C⋆) as H ∋ h ↓ 0. To do so, we run Algorithm 1 for multiple values of h ∈
{ 1
10 ,

1
20 ,

1
50 ,

1
100 ,

1
200} and for a very large number of iterations N = 106. We use the

outcome of each run (ξh106 , C
h
106) as an estimate of (ξh⋆ , Ch

⋆ ). The value of (ξ⋆, C⋆)
is computed using the explicit formulas (5.2) and (5.3). Finally, we adopt the step
function {γn = 0.1/(104+n), n ≥ 1}, where a smoothing is applied in order to avoid
instability during the first few iterations. The left panel of Figure 1 shows the values
of ξh106 − ξ⋆ and Ch

106 − C⋆ as h varies in { 1
10 ,

1
20 ,

1
50 ,

1
100 ,

1
200}, while the right panel

shows the corresponding values of h−1(ξh106 − ξ⋆) and h−1(Ch
106 − C⋆).
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Figure 1: Centered and rescaled risk measures as the bias parameter goes to 0.

The left panel plot suggests that, asymptotically as H ∋ h ↓ 0, the quantities
ξh⋆−ξ⋆ and Ch

⋆−C⋆ are linear in h. The right panel plot strengthens this observation,
showing that the quantities h−1(ξh⋆ − ξ⋆) and h−1(Ch

⋆ −C⋆) are approximately con-
stant in a neighborhood of 0. This verifies empirically the validity of Proposition 3.1
on the weak error expansion.

Comparative Complexity Study. We aim here to compare the running times
and achieved performances of the scheme (2.7) and Algorithms 1 and 2. The
scheme (2.7) and Algorithm 1 are run with the step function {γn = 0.1/(2.5 ×
104 + n), n ≥ 1}, and with their respective theoretical optimal numbers of itera-
tions. Algorithm 2 is run under Assumption (4.6), that is clearly satisfied for any
p⋆ > 1, with the particular value of p⋆ = 11. We also choose M = 2. As for the
number of iterations in each level, we use the VaR focused parametrization for the
VaR computation, and the ES focused parametrization for the ES computation.
Further parametrization of Algorithm 2 is described in Table 1. For each algorithm,
we plot the average run time against the achieved RMSE for the VaR and ES over
200 runs. The results are reported in Figure 2.

For the VaR as for the ES, we notice that for any given scored RMSE, Algo-
rithm 2 displays an execution time that is orders of magnitude lower than Algo-
rithm 1. This is corroborated by the theoretical optimal complexity of Algorithm 2
that is significantly lower than that of Algorithm 1. Finally, as one would expect,
the scheme (2.7) that simulates X0 directly considerably outperforms both Algo-
rithms 1 and 2. The VaR and ES curves offer an illustration of the performance
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gain achieved by shifting from the nested SA scheme to the multilevel SA scheme.
Indeed, part of the the performance loss occurring when using a nested simulation
instead of a direct simulation of the loss, as illustrated by the performance gap
between the SA scheme and the nested SA scheme, is regained when utilizing the
multilevel SA scheme.

accuracy ε
VaR estimation ES estimation

h L γn h L γn

1
64

1
32 1 0.1

104+n
1
32 1 0.1

104+n

1
128

1
32 2 0.1

104+n
1
32 2 0.1

104+n

1
256

1
32 3 0.1

2×104+n
1
32 3 0.1

2×104+n

1
512

1
32 4 0.1

2.5×104+n
1
32 4 0.1

2.5×104+n

1
1024

1
32 5 0.1

5×104+n
1
32 5 0.1

5×104+n

1
2048

1
16 7 0.1

2×104+n

Table 1: Parametrization of Algorithm 2 for different prescribed accuracies.
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Figure 2: Performance comparison of Scheme (2.7) and Algorithms 1 and 2.

6 Financial Case Study: Swap

We adapt the setup of [2, Section A.1]. Consider a long position on a stylized
swap with nominal N̄ , strike S̄ and maturity T̄ on some underlying (FX or interest
rate) rate. This rate follows a Black-Scholes model (St)t≥0 of risk neutral drift κ̄
and volatility σ̄, so that

{
Ŝt := e−κ̄tSt, t ≥ 0

}
follows a Black martingale model of

volatility σ̄. Given times 0 = T0 < T1 < · · · < Td = T̄ , the swap pays at the positive
coupon dates Ti > 0 the cash flows ∆i(STi−1 − S̄), where ∆i = Ti − Ti−1. For
t ∈ [0, T̄ ], let ρt = e−rt, for some constant risk-free rate r, and let it ∈ {1, . . . , d+1}
denote the integer that satisfies Tit−1 ≤ t < Tit . The value Pt of the swap at time
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t ∈ [0, T̄ ] is thus expressed as

Pt = N̄ E
[
ρ−1
t ρTit

∆it(STit−1 − S̄) +
d∑

i=it+1

ρ−1
t ρTi∆i(STi−1 − S̄)

∣∣∣∣St]

= N̄ E
[
ρ−1
t ρTit

∆it

(
eκ̄Tit−1ŜTit−1 − S̄

)
+

d∑
i=it+1

ρ−1
t ρTi∆i

(
eκ̄Ti−1ŜTi−1 − S̄

)∣∣∣∣Ŝt]
(6.1)

= N̄

(
ρ−1
t ρTit

∆it

(
eκ̄Tit−1ŜTit−1 − S̄

)
+

d∑
i=it+1

ρ−1
t ρTi∆i

(
eκ̄Ti−1Ŝt − S̄

))
. (6.2)

We assume the swap issued at par at time 0, i.e. P0 = 0, hence

S̄ =

∑d
i=1 ρTi∆ie

κ̄Ti−1∑d
i=1 ρTi∆i

S0. (6.3)

Given some confidence level α ∈ (0, 1), we are interested in the risk measures ξ⋆ :=
VaRα(ρδPδ) and C⋆ := ESα(ρδPδ) of the position at some time horizon δ < ∆.

6.1 Some Analytical Formulas

In this lognormal setup, the values of ξ⋆ and C⋆ can be obtained analytically. On
the one hand, observe that iδ = 1 and, using (6.2) and (6.3),

ρδPδ = N̄A
(
Ŝδ − S0

)
, where A :=

d∑
i=2

ρTi∆ie
κ̄Ti−1 . (6.4)

Hence
1− α = P(ρδPδ > ξ⋆) = P

(
Ŝδ > S0 +

ξ⋆
N̄A

)
,

thus

ξ⋆ = N̄AS0

(
exp

(
F−1(α)σ̄

√
δ − σ̄2

2
δ
)
− 1

)
, (6.5)

where F denotes the standard Gaussian cdf. On the other hand, set

ω := S0 +
ξ⋆
N̄A

, η± :=
1

σ̄
√
δ

(
ln

ω

S0
± σ̄2δ

2

)
.

We can then write

C⋆ = E[ρδPδ|ρδPδ > ξ⋆] =
N̄A

1− α
(
E
[
Ŝδ1Ŝδ>ω

]
− (1− α)S0

)
.

Note that

E
[
Ŝδ1Ŝδ>ω

]
= S0E

[
exp

(
σ̄
√
δU − σ̄2

2
δ
)
1U>η+

]
= S0(1− F (η−)),

where U ∼ N (0, 1). Therefore,

C⋆ = N̄AS0
α− F (η−)

1− α
. (6.6)
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6.2 Stochastic Approximation

Define now X0 := ρδPδ. The scheme (2.7) can be applied to approximate the values
of ξ⋆ and C⋆. Indeed, according to (6.4),

X0
L
= N̄AS0

(
exp

(
− σ̄2

2
δ + σ̄

√
δU

)
− 1

)
, (6.7)

where U is a standard Gaussian variable. Going back to (6.1) and using (6.3) yields

X0 = N̄ E
[ d∑

i=2

ρTi∆ie
κ̄Ti−1

(
ŜTi−1 − S0

)∣∣∣∣Ŝδ] L
= E[φ(Y,Z)|Y ], (6.8)

where Y is a real valued random variable, Z = (Z1, . . . , Zd−1) is an Rd−1-valued
random variable given by

Y := exp
(
− σ̄2

2
δ + σ̄

√
δU0

)
∼ Ŝδ
S0
,

Z1 := exp
(
− σ̄2

2
(T1 − δ) + σ̄

√
T1 − δU1

)
∼ ŜT1

Ŝδ
,

Zi := exp
(
− σ̄2

2
∆i + σ̄

√
∆iUi

)
∼ ŜTi

ŜTi−1

, 2 ≤ i ≤ d− 1,

φ(y, z) := N̄S0

d∑
i=2

ρTi∆ie
κ̄Ti−1

(
y

i−1∏
j=1

zj − 1
)
, y ∈ R, z = (z1, . . . , zd−1) ∈ Rd−1,

where (Ui)0≤i≤d−1 are iid random variables with law N (0, 1). Note that Y and Z
are independent. Algorithms 1 and 2 are hence applicable to approximate the values
of ξ⋆ and C⋆.

6.3 Numerical Results

We set r = 2%, S0 = 1%, κ̄ = 12%, σ̄ = 20%, ∆i = 3months, T̄ = 1year,
δ = 1week = 7days and α = 85%. We use the 30/360 day count convention, so
that 1month = 30 days and 1 year = 360 days. Finally, we set the nominal N̄ such
that the value of each leg of the swap is equal to 1 at time 0, that is,

N̄ =
1

S0
∑d

i=1 ρTi∆ieκ̄Ti−1
.

Given the above set of parameters, the theoretical values of the VaR and ES obtained
with (6.5) and (6.6) are ξ⋆ ≈ 219.64 and C⋆ ≈ 333.91.

Comparative Complexity Study. For the stochastic approximation of these
quantities, we use the step function {γn = 100/n, n ≥ 1} for the SA scheme, and
{γn = 50/n, n ≥ 1} for the nested SA scheme. We also run these schemes with
their optimal numbers of iterations. To apply the multilevel SA scheme, we work
under Assumption (4.6), with p⋆ = 8. The VaR and ES are simulated using their
respective optimal amounts of iterations N0, . . . , NL. For each prescribed accuracy
ε ∈ {18 ,

1
32 ,

1
128 ,

1
256 ,

1
512}, we adapt the hyperparameter setup by performing a grid

search on the bias parameter h, the number of levels L and the step sequence
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(γn)n≥1. Table 2 lists these parametrizations by accuracy. Figure 3 plots the joint
evolution of the realized RMSEs and the average execution times over 200 runs of
each SA scheme, as the accuracy ε varies in {18 ,

1
32 ,

1
128 ,

1
256 ,

1
512}.

We observe in Figure 3 that the multilevel SA scheme for the VaR and ES
significantly outperforms the nested SA scheme in terms of computational time and
achieved error rate. Indeed, for a given target RMSE of order 10, the MLSA scheme
for the VaR has a computational time of order 10−2 seconds, while the nested SA
scheme has one of order 10 seconds. Similarly, for the ES, an RMSE of 10 is achieved
by the nested SA scheme in 102 seconds, while it is attained by the multilevel SA
scheme in only 10 seconds. These results are very promising, as they apply to a
more realistic scenario than the previous case study. Eventually, as expected, the
standard Robbins-Monro algorithm, that is only applicable if the loss X0 is directly
simulatable, outperforms both Algorithms 1 and 2. Again, as we have pointed out in
the previous case study, the curves show how one can regain some of the performance
loss due to nested simulation of the loss X0 by implementing a multilevel SA scheme.

accuracy ε
VaR estimation ES estimation

h L γn h L γn

1
8

1
4 1 10

n
1
4 1 10

n

1
32

1
8 2 5

10+n
1
8 2 5

10+n

1
128

1
16 3 20

500+n
1
16 3 20

500+n

1
256

1
16 4 20

103+n
1
16 4 25

500+n

1
512

1
32 4 25

750+n
1
32 4 50

2×103+n

Table 2: Parametrization of Algorithm 2 for different prescribed accuracies.
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Figure 3: Performance comparison of Scheme (2.7) and Algorithms 1 and 2.

7 Conclusion

In this work, we presented a stochastic approximation problem which solution re-
trieves the Var and ES of the loss on a financial derivatives portfolio. The loss of
the portfolio, however, can only be simulated in a nested Monte Carlo fashion. A
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naively nested algorithm performs one inner simulation layer within each update
of a stochastic gradient descent scheme. A single (bias) parameter allows control-
ling both the bias and the complexity of the nested algorithm. But, considering a
prescribed error ε, this algorithm can only optimally achieve a complexity of order
ε−3. Our MLSA algorithm combines multiple estimates obtained by the nested ap-
proach for different bias parameters, while reducing the overall complexity of the
total entailed simulations.

According to the intent of the user of this algorithm, whether it is to simulate the
VaR or the ES, our complexity study shows that there are two corresponding sets
of optimal parameters. The VaR focused parameter setup results in a complexity of
order ε−2−δ, where δ < 1 is some specific parameter depending on the integrability
degree of the loss while the ES focused parameterization yields a complexity of order
ε−2 |ln ε|2. The numerical studies highlight the overperformance of the multilevel
algorithm, with a performance gap that widens exponentially as the prescribed
accuracy ε goes to 0. The study of the joint evolution of the RMSE and the average
execution time demonstrates how, in situations where the inner simulations can
be shortcutted by explicit formulas, utilizing the multilevel scheme results in a
partial, nonetheless significant, performance regain with respect to some classical
(non-nested) Robbins-Monro scheme. This finding is of great interest especially
when the latter scheme does not apply.

A first question that arises from our study is whether, in the case of the VaR es-
timation, one could simply close the performance gap between the multilevel scheme
and the classical Robbins-Monro scheme. Besides, in order to build a stronger esti-
mator, one could investigate other aggregation methods than the multilevel scheme.
A couple of possible ways that may deserve further exploration are the multistep
Richardson-Romberg extrapolation method [13] and the adaptive selection the num-
ber of inner samples on each multilevel sample as proposed in [16]. Finally, one could
look at how to complement our nonasymptotic error controls with asymptotic error
distribution results such as central limit theorems.

A Proof of Lemma 3.1

Step 1: Cluster points of (ξh⋆ )h∈H.
Let h ∈ H ∪ {0}. By Lemma 2.1, the set Θh is a non empty bounded interval that
coincides with the set of roots of V ′

h.
Since (Xh)h∈H converges in distribution towards X0 as H ∋ h ↓ 0, the sequence

of cdf functions (FXh
)h∈H converges pointwise on R towards FX0 as H ∋ h ↓ 0.

The cdf FX0 being continuous, the second Dini theorem implies that (FXh
)h∈H

converges uniformly on R towards FX0 as H ∋ h ↓ 0. According to the definition
of the functions V ′

h, h ∈ H ∪ {0}, it follows that (V ′
h)h∈H converges uniformly on R

towards V ′
0 . For any ξh⋆ ∈ Θh, h ∈ H, one has

|V ′
0(ξ

h
⋆ )| = |V ′

0(ξ
h
⋆ )− V ′

h(ξ
h
⋆ )| ≤ sup

ξ∈R
|V ′

0(ξ)− V ′
h(ξ)|. (A.1)

Since limh↓0 supξ∈R |V ′
0(ξ)− V ′

h(ξ)| = 0, we eventually get

lim
h↓0

V ′
0(ξ

h
∗ ) = 0. (A.2)

We thus deduce from (2.6) that the sequence (ξh⋆ )h∈H is bounded. Using (A.2) and
the continuity of V ′

0 , any valeur d’adhérence ξ0⋆ of the sequence (ξh⋆ )h∈H satisfies
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V ′
0(ξ

0
⋆) = 0 so that ξ0⋆ ∈ Θ0 and

lim
h↓0

dist(ξh⋆ ,Θ0) = 0. (A.3)

Step 2: Limit of (Ch
⋆ )h∈H.

We now assume that (Xh)h∈H converges to X0 in L1(P). By Lemma 2.1, for any
h ∈ H ∪ {0},

|Ch
⋆ − C⋆| = |min

ξ
Vh(ξ)−min

ξ
V0(ξ)| ≤ max

ξ
|(Vh − V0)(ξ)| ≤

1

1− α
E[|Xh −X0|],

so that
lim
h↓0

Ch
⋆ = C⋆.

B Proof of Proposition 3.1

We first observe that since the density function fX0 of X0 is positive the set Θ0 =
argminV0 = {ξ⋆} is a singleton so that it follows from Lemma 3.1 that ξh⋆ → ξ⋆ as
H ∋ h ↓ 0.

Step 1: Asymptotic expansion of ξh⋆ as H ∋ h ↓ 0.
Now observe that

FXh
(ξh⋆ )− FXh

(ξ⋆) = α− FXh
(ξ⋆) = FX0(ξ⋆)− FXh

(ξ⋆). (B.1)

On the one hand, as H ∋ h ↓ 0, Assumption 1(i) gives

FX0(ξ⋆)− FXh
(ξ⋆) = −v(ξ⋆)h+ o(h), as H ∋ h ↓ 0. (B.2)

On the other hand, a first order Taylor expansion with integral remainder gives

FXh
(ξh⋆ )− FXh

(ξ⋆) = (ξh⋆ − ξ⋆)
∫ 1

0
fXh

(tξ⋆ + (1− t)ξh⋆ ) dt. (B.3)

Since limh↓0 ξ
h
⋆ = ξ⋆ and, by Assumption 1(ii), (fXh

)h∈H converges locally uniformly
towards the positive density function fX0 , we deduce that

∫ 1
0 fXh

(tξ⋆+(1−t)ξh⋆ ) dt >
0 for h ∈ H small enough and limh↓0

∫ 1
0 fXh

(tξ⋆ + (1− t)ξh⋆ ) dt = fX0(ξ⋆). Combin-
ing (B.1), (B.2) and (B.3), we thus deduce

h−1(ξh⋆−ξ⋆) = −
v(ξ⋆)∫ 1

0 fXh
(tξ⋆ + (1− t)ξh⋆ ) dt

+o(1) = − v(ξ⋆)

fX0(ξ⋆)
+o(1) as H ∋ h ↓ 0.

Step 2: Asymptotic expansion of Ch
⋆ as H ∋ h ↓ 0.

Going back to the definitions of the functions V0 and Vh in (2.5) and (3.4), one has

Ch
⋆ − C⋆ = Vh(ξ

h
⋆ )− V0(ξ⋆)

= E[Xh|Xh > ξh⋆ ]− E[X0|X0 > ξ⋆]

=
1

1− α

(
E[Xh1Xh>ξh⋆

]− E[X01X0>ξ⋆ ]

)
=

1

1− α

(∫ ∞

ξh⋆

ξ dFXh
(ξ)−

∫ ∞

ξ⋆

ξ dFX0(ξ)

)
=

1

1− α

(∫ ξ⋆

ξh⋆

ξfXh
(ξ) dξ +

∫ ∞

ξ⋆

ξ d(FXh
− FX0)(ξ)

)
.

(B.4)
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On the one hand, combining a change of variable with (3.8) yields∫ ξ⋆

ξh⋆

ξfXh
(ξ) dξ = (ξ⋆ − ξh⋆ )

∫ 1

0
(tξh⋆ + (1− t)ξ⋆)fXh

(tξh⋆ + (1− t)ξ⋆) dt

= v(ξ⋆)ξ⋆h+ o(h).

(B.5)

On the other hand, for h ∈ H ∪ {0}, by integrating by parts, we get∫ ∞

ξ⋆

ξ dFXh
(ξ) = −

[
ξ
(
1− FXh

(ξ)
)]∞

ξ⋆
+

∫ ∞

ξ⋆

(
1− FXh

(ξ)
)
dξ

= ξ⋆
(
1− FXh

(ξ⋆)
)
+

∫ ∞

ξ⋆

(
1− FXh

(ξ)
)
dξ,

(B.6)

so that∫ ∞

ξ⋆

ξ d(FXh
−FX0)(ξ) = ξ⋆

(
FX0(ξ⋆)−FXh

(ξ⋆)
)
+

∫ ∞

ξ⋆

(
FX0(ξ)−FXh

(ξ)
)
dξ. (B.7)

We now plug the first order Taylor expansion of FXh
−FX0 in Assumption 1(i) into

the right hand side of the above identity. We obtain∫ ∞

ξ⋆

ξ d(FXh
− FX0)(ξ) = −

(
ξ⋆v(ξ⋆) +

∫ ∞

ξ⋆

v(ξ)dξ

)
h+ o(h). (B.8)

Eventually, combining the results from (B.4), (B.5) and (B.8), we conclude

Ch
⋆ − C⋆ = −h

∫ ∞

ξ⋆

v(ξ)

1− α
dξ + o(h), as H ∋ h ↓ 0. (B.9)

C Proof of Lemma 3.2

Throughout this proof, we consider q ≥ 1, h ∈ H and υ ≥ 0. We drop the super-
script υ from our notation and write Lh,q(ξ) for Lυh,q(ξ).

(i) From definition (3.10), the function Lh,q is continuously differentiable and satis-
fies

L′h,q(ξ) = qV ′
h(ξ)Lh,q−1(ξ)+υV

′
h(ξ)Lh,q(ξ) = Lh,q−1(ξ)V

′
h(ξ)

(
q+υ

(
Vh(ξ)−Vh(ξh⋆ )

))
.

(C.1)
If q ≥ 2, one may again differentiate both sides of the above identity to deduce that
Lh,q is twice continuously differentiable with

L′′h,q(ξ) = Lh,q−2(ξ)V
′
h(ξ)

2
(
q − 1 + υ

(
Vh(ξ)− Vh(ξh⋆ )

))(
q + υ

(
Vh(ξ)− Vh(ξh⋆ )

))
+ Lh,q−1(ξ)V

′′
h (ξ)

(
q + υ

(
Vh(ξ)− Vh(ξh⋆ )

))
+ Lh,q−1(ξ)υV

′
h(ξ)

2.
(C.2)

If q = 1, we obtain

L′′h,1(ξ) =
(
V ′′
h (ξ) + 2υV ′

h(ξ)
2
)
Lh,0(ξ) +

(
υ2V ′

h(ξ)
2 + υV ′′

h (ξ)
)
Lh,1(ξ). (C.3)

Therefore, for all q ≥ 1, Lh,q is twice continuously differentiable.
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Observe that the remaining properties of Lemma 3.2 are trivially satisfied for
ξ = ξh⋆ . We thus assume that ξ ̸= ξh⋆ for the rest of the proof. We let

εh :=
V ′′
h (ξ

h
⋆ )

[V ′′
h ]Lip

=
fXh

(ξh⋆ )

[fXh
]Lip

, (C.4)

where we used the fact that
V ′′
h (ξ) =

fXh
(ξ)

1− α
. (C.5)

Finally, we denote by Ih the interval given by

Ih :=
[
ξh⋆ − εh, ξh⋆ + εh

]
. (C.6)

(ii) From (C.1) and the relation Lh,q−1(ξ) = (Vh(ξ)−Vh(ξh⋆ ))−1Lh,q(ξ), we have that

L′h,q(ξ) = Lh,q(ξ)V ′
h(ξ)

{
q

Vh(ξ)− Vh(ξh⋆ )
+ υ

}
, (C.7)

so that

L′h,q(ξ)V ′
h(ξ) ≥

{
qV ′

h(ξ)
2

Vh(ξ)− Vh(ξh⋆ )
∨ υV ′

h(ξ)
2

}
Lh,q(ξ). (C.8)

We now establish a lower bound for the term inside the parentheses on the right
hand side of the above inequality. Since V ′

h(ξ
h
⋆ ) = 0, a first order Taylor expansion

gives

V ′
h(ξ) = V ′′

h (ξ
h
⋆ )(ξ − ξh⋆ ) + (ξ − ξh⋆ )

∫ 1

0

(
V ′′
h (ξ

h
⋆ + t(ξ − ξh⋆ ))− V ′′

h (ξ
h
⋆ )
)
dt, (C.9)

which, combined with the fact that V ′′
h ≥ 0 and the triangle inequality, yields

|V ′
h(ξ)| ≥ V ′′

h (ξ
h
⋆ )|ξ − ξh⋆ | −

1

2
[V ′′

h ]Lip(ξ − ξh⋆ )2. (C.10)

If ξ ∈ Ih, the above inequality directly gives

V ′
h(ξ)

2 ≥ 1

4
V ′′
h (ξ

h
⋆ )

2(ξ − ξh⋆ )2. (C.11)

Now, a second order Taylor expansion gives

Vh(ξ)−Vh(ξh⋆ ) =
1

2
V ′′
h (ξ

h
⋆ )(ξ−ξh⋆ )2+(ξ−ξh⋆ )2

∫ 1

0
(1−t)

(
V ′′
h (ξ

h
⋆+t(ξ−ξh⋆ ))−V ′′

h (ξ
h
⋆ )
)
dt,

(C.12)
so that

Vh(ξ)− Vh(ξh⋆ ) ≤
1

2
V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ )2 +

1

6
[V ′′

h ]Lip|ξ − ξh⋆ |3. (C.13)

Hence, if ξ ∈ Ih, the above inequality implies

Vh(ξ)− Vh(ξh⋆ ) ≤
2

3
V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ )2. (C.14)

Plugging (C.11) and (C.14) into (C.8), we conclude

L′h,q(ξ)V ′
h(ξ) ≥

qLh,q(ξ)V ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )
≥ 3

8
qV ′′

h (ξ
h
⋆ )Lh,q(ξ), ξ ∈ Ih. (C.15)
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Assume now that ξ /∈ Ih, say ξ > ξh⋆ + εh. The case ξ < ξh⋆ − εh is treated similarly
and is omitted. Since V ′

h is non decreasing, we get that V ′
h(ξ

h
⋆ + εh) ≥ V ′

h(ξ
h
⋆ ) = 0,

and also that

V ′
h(ξ) ≥ V ′

h(ξ
h
⋆ + εh) ≥ V ′′

h (ξ
h
⋆ )εh −

1

2
[V ′′

h ]Lipε
2
h =

V ′′
h (ξ

h
⋆ )

2

2[V ′′
h ]Lip

, (C.16)

where we evaluated (C.10) at ξh⋆ + εh ∈ Ih for the last inequality. Plugging this
inequality into (C.8), we obtain

L′h,q(ξ)V ′
h(ξ) ≥ υLh,q(ξ)V ′

h(ξ)
2 ≥ υ

V ′′
h (ξ

h
⋆ )

4

4[V ′′
h ]

2
Lip
Lh,q(ξ), (C.17)

for any ξ > ξh⋆ + εh. The above inequality is still valid if ξ < ξh⋆ − εh.
Hence, combining (C.15) and (C.17) yield

L′h,q(ξ)V ′
h(ξ) ≥

{
3

8
qV ′′

h (ξ
h
⋆ ) ∧ υ

V ′′
h (ξ

h
⋆ )

4

4[V ′′
h ]

2
Lip

}
Lh,q(ξ), ξ ∈ R. (C.18)

By Lemma 3.1, there exists R̃ > 0 such that, ∀h ∈ H, ξh⋆ ∈ B(ξ⋆, R̃). Assump-
tions 2(i) and 2(ii) imply that

inf
h∈H

V ′′
h (ξ

h
⋆ ) ≥

1

1− α
inf
h∈H

ξ∈B(ξ⋆,R̃)

fXh
(ξ) > 0, (C.19)

and
inf
h∈H

1

[V ′′
h ]Lip

≥ 1− α
suph∈H [fXh

]Lip
> 0, (C.20)

which eventually gives (3.11). The upper-estimate (3.12) follows directly from the
fact that for any ξ ∈ R, Vh(ξ)−Vh(ξh⋆ ) ≤ kα|ξ− ξh⋆ | recalling that kα = 1∨ α

1−α and
the very definition of υh.

(iii) We first assume that q ≥ 2. It follows from (C.2) and the relation Lh,q−1(ξ) =
(Vh(ξ)− Vh(ξh⋆ ))−1Lh,q(ξ) that

L′′h,q(ξ) = Lh,q−1(ξ)

{
qV ′′

h (ξ) +
q(q − 1)V ′

h(ξ)
2

Vh(ξ)− Vh(ξh⋆ )

}
+ Lh,q(ξ)

{
υV ′′

h (ξ) + υ2V ′
h(ξ)

2 + 2qυ
V ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )

}
.

(C.21)

The triangle inequality applied to (C.12) yields

Vh(ξ)− Vh(ξh⋆ ) ≥
1

2
V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ )2 −

1

6
[V ′′

h ]Lip|ξ − ξh⋆ |3. (C.22)

Hence, if ξ ∈ Ih the above inequality directly yields

Vh(ξ)− Vh(ξh⋆ ) ≥
1

3
V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ )2. (C.23)

Moreover, since V ′
h(ξ

h
⋆ ) = 0 and V ′′

h is bounded,

V ′
h(ξ)

2 ≤ ∥V ′′
h ∥2∞(ξ − ξh⋆ )2. (C.24)
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Combining (C.23) and (C.24) yields

V ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )
≤

3∥V ′′
h ∥2∞

V ′′
h (ξ

h
⋆ )

, ξ ∈ Ih. (C.25)

Assume now that ξ /∈ Ih, say ξ > ξh⋆ + εh. The case ξ < ξh⋆ − εh can be treated
similarly and is thus omitted. Observe that Vh is increasing on [ξh⋆ ,∞). Given that
for all t ∈ [0, 1], ξh⋆ + tεh ∈ Ih, evaluating (C.10) for ξ = ξh⋆ + tεh, for t ∈ [0, 1], we
obtain

Vh(ξ)− Vh(ξh⋆ ) ≥ Vh(ξh⋆ + εh)− Vh(ξh⋆ )

= εh

∫ 1

0
V ′
h(ξ

h
⋆ + tεh) dt

≥ 1

2
V ′′
h (ξ

h
⋆ )ε

2
h −

1

6
[V ′′

h ]Lipε
3
h

=
V ′′
h (ξ

h
⋆ )

3

3[V ′′
h ]

2
Lip
,

by (C.4). Using this inequality together with the fact that

∥V ′
h∥∞ ≤ 1 ∨ α

1− α
=: kα, (C.26)

we deduce
V ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )
≤

3k2α[V
′′
h ]

2
Lip

V ′′
h (ξ

h
⋆ )

3
, (C.27)

for any ξ > ξh⋆ + εh. The above estimate still holds for ξ < ξh⋆ + εh.
From (C.25) and (C.27), setting

νh :=
3k2α[V

′′
h ]

2
Lip

V ′′
h (ξ

h
⋆ )

3
∨
3∥V ′′

h ∥2∞
V ′′
h (ξ

h
⋆ )

, (C.28)

we get:
V ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )
≤ νh, (C.29)

for any ξ ̸= ξh⋆ . Combining (C.21) with (C.29) yields

|L′′h,q(ξ)| ≤
{
(q ∨ υ)∥V ′′

h ∥∞ + υ2k2α + q
(
2υ ∨ (q − 1)

)
νh
}(
Lh,q(ξ) + Lh,q−1(ξ)

)
.

(C.30)
Now if q = 1. From (C.3), we directly get

|L′′h,1(ξ)| ≤
{
(υ ∨ 1)∥V ′′

h ∥∞ + υ(υ ∨ 2)k2α
}(
Lh,0(ξ) + Lh,1(ξ)

)
. (C.31)

Therefore, combining the last two inequalities, we conclude that, for all q ≥ 1
and ξ ̸= ξh⋆ ,

|L′′h,q(ξ)| ≤
{
(q ∨ υ)∥V ′′

h ∥∞ + υ(υ ∨ 2)k2α + q
(
2υ ∨ (q − 1)

)
νh
}(
Lh,q(ξ) + Lh,q−1(ξ)

)
.

(C.32)
Inequality (3.13) for υ = ῡh := q2∥V ′′

h ∥∞ is easily verified using the very defini-
tions of λυh,q and ηυh,q. Also, note that

sup
h∈H
∥V ′′

h ∥∞ =
1

1− α
sup
h∈H
∥fXh

∥∞ <∞, (C.33)
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while Assumption 2(ii) gives

sup
h∈H

[V ′′
h ]Lip =

1

1− α
sup
h∈H

[fXh
]Lip <∞. (C.34)

Moreover, since (ξh⋆ )h∈H converges to ξ⋆ as H ∋ h ↓ 0, there exists R̃ > 0 such that,
∀h ∈ H, ξh⋆ ∈ B(ξ⋆, R̃). Thus, using Assumption 2(i), we get

sup
h∈H

1

V ′′
h (ξ

h
⋆ )
≤ 1− α

inf h∈H
ξ∈B(ξ⋆,R̃)

fXh
(ξ)

<∞. (C.35)

Coming back to (C.28) and combining (C.33), (C.34) and (C.35) we obtain

sup
h∈H

νh <∞. (C.36)

Eventually, properties (C.33) and (C.36) show that

sup
h∈H

{
ηῡhh,q := (q ∨ ῡh)∥V ′′

h ∥∞ + ῡh(ῡh ∨ 2)k2α + q
(
2ῡh ∨ (q − 1)

)
νh

}
<∞. (C.37)

(iv) On Ih, relation (C.23) shows that

(ξ − ξh⋆ )2q ≤
3q

V ′′
h (ξ

h
⋆ )

q

(
Vh(ξ)− Vh(ξh⋆ )

)q ≤ 3q

V ′′
h (ξ

h
⋆ )

q
Lh,q(ξ). (C.38)

Outside of Ih, say for ξ > ξh⋆ + εh (the case of ξ < ξh⋆ − εh is similarly treated),
since V ′

h is increasing and nonnegative on [ξh⋆ ,∞), one obtains

∀t ∈ [0, 1], V ′
h(ξ

h
⋆ + t(ξ − ξh⋆ )) ≥ V ′

h(ξ
h
⋆ + tεh), (C.39)

and since for all t ∈ [0, 1], ξh⋆ + tεh ∈ Ih, (C.10) gives

Vh(ξ)− Vh(ξh⋆ ) = (ξ − ξh⋆ )
∫ 1

0
V ′
h(ξ

h
⋆ + t(ξ − ξh⋆ ))dt

≥ (ξ − ξh⋆ )
∫ 1

0
V ′
h(ξ

h
⋆ + tεh)dt

≥ (ξ − ξh⋆ )
{
1

2
V ′′
h (ξ

h
⋆ )εh −

1

6
[V ′′

h ]Lipε
2
h

}
= (ξ − ξh⋆ )

V ′′
h (ξ

h
⋆ )

2

3[V ′′
h ]Lip

.

(C.40)

Hence

(ξ − ξh⋆ )2q ≤
32q[V ′′

h ]
2q
Lip

V ′′
h (ξ

h
⋆ )

4q

(
Vh(ξ)− Vh(ξh⋆ )

)2q ≤ 32q[V ′′
h ]

2q
Lip

V ′′
h (ξ

h
⋆ )

4q
Lh,2q(ξ), (C.41)

for any ξ > ξh⋆ + εh. The above estimate still holds if ξ < ξh⋆ − εh. Putting
together (C.38) and (C.41), one gets

(ξ − ξh⋆ )2q ≤
{

3q

V ′′
h (ξ

h
⋆ )

q
∨
32q[V ′′

h ]
2q
Lip

V ′′
h (ξ

h
⋆ )

4q

}(
Lh,q(ξ) + Lh,2q(ξ)

)
. (C.42)

for any ξ ̸= ξh⋆ .
Relations (C.34) and (C.35) yield (3.15).
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D Proof of Lemma 4.1

The proof of the point (i) is inspired from [17, Lemma 5.1].

(i) Let ξ ∈ R. For any δ > 0, it holds

E[|1X>ξ − 1Y >ξ|] = E[1X>ξ1Y≤ξ + 1Y >ξ1X≤ξ]

= P(Y ≤ ξ < X) + P(X ≤ ξ < Y )

= P(Y ≤ ξ, ξ + δ < X) + P(Y ≤ ξ < X ≤ ξ + δ)

+ P(X ≤ ξ, ξ + δ < Y ) + P(X ≤ ξ < Y ≤ ξ + δ)

≤ P(X − Y > δ) + P(X − Y < −δ)
+ P(ξ < X ≤ ξ + δ) + P(ξ < Y ≤ ξ + δ)

≤ P(|X − Y | > δ) + δ
(
∥fX∥∞ + ∥fY ∥∞

)
≤ E[|X − Y |p⋆ ]

δp⋆
+ δ

(
∥fX∥∞ + ∥fY ∥∞

)
.

(D.1)

We come back to (D.1). Under the current assumptions, after a straightforward
optimization, we take

δ =
p⋆

1
p⋆+1E[|X − Y |p⋆ ]

1
p⋆+1(

∥fX∥∞ + ∥fY ∥∞
) 1

p⋆+1

. (D.2)

Injecting the above value of δ in the right hand side of (D.1) gives the first result.

(ii) Under the current Gaussian concentration assumption, we first employ the ex-
ponential Markov inequality and then (4.5), so that, for any δ > 0 and any u ≥ 0,

E[|1X>ξ − 1Y >ξ|] ≤ P(X − Y > δ) + P(−(X − Y ) > δ) + δ
(
∥fX∥∞ + ∥fY ∥∞

)
≤ exp(−uδ)

(
E[exp(u(X − Y ))] + E[exp(−u(X − Y ))]

)
+ δ

(
∥fX∥∞ + ∥fY ∥∞

)
≤ 2 exp(dX,Y u

2 − uδ) + δ
(
∥fX∥∞ + ∥fY ∥∞

)
.

(D.3)
The first term appearing in the right hand side of the above inequality above is
minimized in u for δ/(2dX,Y ), in which case the inequality becomes

E[|1X>ξ − 1Y >ξ|] ≤ 2 exp
(
− δ2

4dX,Y

)
+ δ

(
∥fX∥∞ + ∥fY ∥∞

)
. (D.4)

Evaluating the right hand side of the previous inequality at

δ =
√

2dX,Y ln (d−1
X,Y ∨ 1)

eventually gives

E[|1X>ξ − 1Y >ξ|] ≤ 2
√
dX,Y +

√
2
(
∥fX∥∞ + ∥fY ∥∞

)√
dX,Y ln (d−1

X,Y ∨ 1). (D.5)

This completes the proof of the second result.

E Proof of Proposition 4.1

The proof of the point (i)a is inspired from [17, Lemma 3.2].
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(i)a. Assume that E
[∣∣φ(Y, Z)− E[φ(Y,Z)|Y ]

∣∣p] <∞ for some p ≥ 1. Then,

E[|Xh−X0|p] ≤
1

K

K∑
k=1

E
[∣∣φ(Y, Z(k))−E[φ(Y,Z)|Y ]

∣∣p] = E
[∣∣φ(Y,Z)−E[φ(Y, Z)|Y ]

∣∣p].
Hence, introducing φ̃(Y,Z) := φ(Y,Z)− E[φ(Y,Z)|Y ] and assuming that h = 1

K ≤
h′ = 1

K′ , one has

Xh −Xh′ = h
K∑

k=K′+1

φ̃(Y,Z(k)) + (h− h′)
K′∑
k=1

φ̃(Y,Z(k)), (E.1)

so that, by the triangle inequality,

E[|Xh −Xh′ |p]
1
p ≤ hE

[∣∣∣∣ K∑
k=K′+1

φ̃(Y,Z(k))

∣∣∣∣p] 1
p

+ (h′ − h)E
[∣∣∣∣ K′∑

k=1

φ̃(Y,Z(k))

∣∣∣∣p] 1
p

.

Using the tower law property of conditional expectation and Burkholder-Davis-
Gundy’s inequality we obtain

E[|Xh −Xh′ |p]
1
p ≤ Bp E

[∣∣φ(Y,Z)− E[φ(Y, Z)|Y ]
∣∣p] 1

p
(
h(K −K ′)

1
2 + (h′ − h)K ′ 12

)
≤ Bp E

[∣∣φ(Y,Z)− E[φ(Y, Z)|Y ]
∣∣p] 1

p (h′ − h)
1
2

(( h
h′

) 1
2
+
(
1− h

h′

) 1
2
)

≤
√
2Bp E

[∣∣φ(Y,Z)− E[φ(Y,Z)|Y ]
∣∣p] 1

p (h′ − h)
1
2 .

(E.2)
We then conclude the proof of the first point by applying Lemma 4.1(i) for p = p⋆.

(i)b. We go back to the decomposition (E.1), use the fact that the random variables
φ̃(Y,Z(k)), k = 1, . . . ,K, are independent conditionally to Y , and then use (4.7):

E
[
exp

(
u(Xh −Xh′)

)∣∣Y ]
= E

[
exp

(
uhφ̃(Y,Z)

)∣∣Y ]K−K′
E
[
exp

(
u(h− h′)φ̃(Y,Z)

)∣∣Y ]K′

≤ exp
(
Cgu

2h2
(1
h
− 1

h′

))
exp

(
Cgu

2 (h− h′)2

h′

)
= exp

(
Cg(h

′ − h)u2
)
.

Taking expectation in both sides of the above inequality guarantees that (4.5) is
satisfied with X = Xh, Y = Xh′ and dX,Y = Cg(h

′ − h). We eventually conclude
the proof by applying Lemma 4.1(ii).

(ii) We first write

E
[∣∣1Xhℓ

>ξ − 1Xhℓ−1
>ξ

∣∣] = P(Xhℓ−1
≤ ξ < Xhℓ

) + P(Xhℓ
≤ ξ < Xhℓ−1

). (E.3)

Introducing the random variable Gℓ, it holds

P(Xhℓ−1
≤ ξ < Xhℓ

) = P
(
Xhℓ−1

≤ ξ < Xhℓ−1
+ h

1
2
ℓ Gℓ

)
= P

(
Xhℓ−1

≤ ξ < Xhℓ−1
+ h

1
2
ℓ Gℓ, Gℓ > 0

)
= E

[
P
(
ξ − h

1
2
ℓ Gℓ < Xhℓ−1

≤ ξ,Gℓ > 0
∣∣Gℓ

)]
= E

[
1Gℓ>0

(
FXhℓ−1

|Gℓ
(ξ)− FXhℓ−1

|Gℓ
(ξ − h

1
2
ℓ Gℓ)

)]
.

(E.4)
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The P-as-Lipschitz regularity of FXhℓ−1
|Gℓ

now yields

P(Xhℓ−1
≤ ξ < Xhℓ

) ≤ h
1
2
ℓ E[G

+
ℓ Kℓ].

A similar argument gives

P(Xhℓ
≤ ξ ≤ Xhℓ−1

) ≤ h
1
2
ℓ E[G

−
ℓ Kℓ].

Coming back to (E.3) and summing up the two preceding inequalities yields

E
[∣∣1Xhℓ

>ξ − 1Xhℓ−1
>ξ

∣∣] ≤ h 1
2
ℓ E[|Gℓ|Kℓ],

which completes the proof.
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