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Stéphane Crépey∗, Noufel Frikha†, Azar Louzi‡ §
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Abstract

We propose a multilevel stochastic approximation (MLSA) scheme for the computation
of the value-at-risk (VaR) and expected shortfall (ES) of a financial loss, which can only
be computed via simulations conditional on the realization of future risk factors. Thus,
the problem of estimating its VaR and ES is nested in nature and can be viewed as an
instance of stochastic approximation problems with biased innovations. In this framework,
for a prescribed accuracy ε, the optimal complexity of a nested stochastic approximation
algorithm is shown to be of order ε−3. To estimate the VaR, our MLSA algorithm attains
an optimal complexity of order ε−2−δ, where δ < 1 is some parameter depending on the
integrability degree of the loss, while to estimate the ES, it achieves an optimal complexity
of order ε−2| ln ε|2. Numerical studies of the joint evolution of the error rate and the execution
time demonstrate how our MLSA algorithm regains a significant amount of the performance
lost due to the nested nature of the problem.

Keywords. value-at-risk, expected shortfall, stochastic approximation, nested Monte Carlo,
multilevel Monte Carlo, numerical finance.

MSC. 65C05, 62L20, 62G32, 91Gxx.

Introduction

The post-great recession era has witnessed the implementation of multiple risk measures with
the goal of better controlling financial losses. In a spirit of precaution and consistency, the
Fundamental Review of the Trading Book [7] triggered a shift away from the value-at-risk (VaR)
towards the expected shortfall (ES, i.e. the average loss given it exceeds the VaR) as a reference
regulatory risk measure. The future valuation of a position in financial derivatives is defined by
a conditional expectation. In the case of exotic products or non-linear portfolio computations
(e.g. credit or funding valuation adjustments), this future valuation can only be computed by
Monte Carlo simulation. VaR and ES computations on future portfolio losses are thus nested in
nature. A brute force nested Monte Carlo computational approach à la Gordy and Juneja [23]
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may be too heavy for practical use. As a shortcut solution, a regression based estimator for the
inner conditional expectation is implemented by Broadie et al. [9], but the resulting regression
error is difficult to control. Barrera et al. [6] adopt the stochastic approximation (SA) point of
view of Bardou et al. [3] (see also [4, 5, 15]), itself building on top of Rockafellar and Uryasev’s
representation of the VaR and ES as joint solutions to a convex optimization problem [25].
Barrera et al. [6] revisit both Gordy and Juneja’s [23] and Broadie et al.’s [9] computational
strategies under assumptions that are more realistic and easier to check, but we clarify in this
paper that in order to reach an estimation accuracy of order ε, the complexity of the resulting
nested SA algorithm is of order ε−3. As for their regression strategy, its non-asymptotic error
bounds involve some constants that are rather large, which renders them of theoretical interest
only.

In the present paper, we propose a multilevel SA (MLSA) algorithm for the computation of
the VaR and ES of a loss that writes as a conditional expectation. MLSA was introduced by
Frikha [14] as an extension to the SA framework of multilevel Monte Carlo path simulation of
Giles [18]. It was then revisited by Dereich and Müller-Gronbach [12] from the different perspec-
tive of approximating the objective function of an SA problem rather than its solutions. We also
refer to Frikha and Huang [16] for a multi-step Richardson-Romberg stochastic approximation
method. We stress that the uniform mean-reversion assumption on the objective function dis-
cussed by Frikha [14] is generally not satisfied in a VaR-ES setup, so the theoretical performance
of the MLSA scheme applied to both risk measures is not directly guaranteed by the results
therein. We also refer to Giles and Haji-Ali [19] who propose a multilevel Monte Carlo estimator
for the computation of the nested expectation P[E[X|Y ] ≥ 0] as well as a stochastic root finding
algorithm for the computation of the VaR and ES, but do not provide a theoretical analysis of
the latter. Our main contribution is to propose an optimized MLSA algorithm that achieves
sharp theoretical complexities when focusing on estimating either the VaR or the ES. The VaR
focused estimation achieves a complexity of order ε−2−δ, where δ ∈ (0, 1) is some specific pa-
rameter depending on the integrability degree of the loss. The ES focused estimation attains a
complexity of order ε−2| ln ε|2. The theoretical analysis is verified numerically on two financial
case studies that show a considerable gain with respect to the nested SA approach in terms of
computational time needed to estimate the VaR and ES.

The paper is organized as follows. Section 1 presents the problem of computing the VaR and
ES by means of an SA scheme. Section 2 analyzes the nested SA scheme for the computation
of the VaR and ES. Section 3 introduces and analyzes the MLSA algorithm. The theoretical
analysis and the gain in performance achieved by our optimized MLSA scheme are illustrated
numerically in Section 4. The proofs of the technical results are given in appendix form.

1 Baseline Setup

1.1 Value-at-Risk and Expected Shortfall

Let (Ω,A,P) a probability space on which is defined a real-valued financial loss

X0 = E[φ(Y,Z)|Y ], (1.1)

where Y ∈ Rd, Z ∈ Rq are two independent random variables, and φ : Rd × Rq → R is a
measurable function such that φ(Y,Z) ∈ L1(P). Given a portfolio and a time horizon δ > 0,
Y and Z typically model the portfolio’s risk factors respectively up to and beyond δ, φ(Y, Z)
the subsequent portfolio’s future cash flows and X0 the portfolio’s future loss at time δ (see
Sections 4.1 and 4.2.)

Hence, if φ(y, Z) ∈ L1(P) for all y ∈ Rd, we can rewrite X0 as

X0 = E[φ(Y,Z)|Y ] = Φ(Y ), with Φ(y) := E[φ(y, Z)], y ∈ Rd. (1.2)
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We are interested in computing the VaR and ES of X0 at a given confidence level α ∈ (0, 1),
denoted respectively VaRα(X0) and ESα(X0). As per Föllmer and Schied [13] and Acerbi and
Tasche [1], these risk measures are defined by

VaRα(X0) := inf {ξ ∈ R : P[X0 ≤ ξ] ≥ α}, ESα(X0) :=
1

1− α

∫ 1

α
VaRa(X0)da.

1.2 Stochastic Approximation

As established by Rockafellar and Uryasev [25], the VaR and ES are linked by a convex opti-
mization problem. To accurately state this connection, we introduce the mapping

V0(ξ) := ξ +
1

1− α
E[(X0 − ξ)+], ξ ∈ R. (1.3)

If the distribution function FX0 of X0 is continuous, then V0 is continuously differentiable on R
and

V ′
0(ξ) =

1

1− α
(
FX0(ξ)− α

)
, ξ ∈ R.

If X0 admits a continuous density function fX0 , then V0 is twice continuously differentiable on
R with

V ′′
0 (ξ) =

1

1− α
fX0(ξ), ξ ∈ R.

Lemma 1.1 ([5, Proposition 2.1]). Suppose X0 ∈ L1(P) and the distribution function of X0

continuous. Then V0 is convex and continuously differentiable, lim|ξ|→∞ V0(ξ) =∞ and

VaRα(X0) = minArgminV0,

where
ArgminV0 = {V ′

0 = 0} = {ξ ∈ R : P[X0 ≤ ξ] = α}
is a closed bounded non-empty interval of R. Moreover,

V ′
0(ξ) = E[H1(ξ,X0)], where H1(ξ, x) = 1− 1

1− α
1{x≥ξ}, ξ, x ∈ R, (1.4)

and
ESα(X0) = minV0.

In general, the set ArgminV0 does not reduce to a singleton. But if the distribution function
of X0 is increasing then it does and argminV0 = VaRα(X0).

Let ξ0⋆ ∈ ArgminV0 and χ0
⋆ = minV0 = V0(ξ

0
⋆). Under the approach initiated by Bardou et

al. [5], in the case of an exactly computable function Φ in (1.2) and an increasing distribution
function of X0, one may approximate the unique couple (ξ0⋆ , χ

0
⋆) by a sequence (ξ0n, χ

0
n)n≥0 given

by the two-time-scale SA dynamics{
ξ0n+1 = ξ0n − γn+1H1(ξ

0
n, X

(n+1)
0 ),

χ0
n+1 = χ0

n − 1
n+1H2(ξ

0
n, χ

0
n, X

(n+1)
0 ),

(1.5)

where
H2(ξ, χ, x) = χ−

(
ξ +

1

1− α
(x− ξ)+

)
, ξ, χ, x ∈ R.

The sequence (X(n)
0 )n≥1 stands for i.i.d. copies of X0 and (ξ00 , χ

0
0) is a random vector independent

of (X(n)
0 )n≥1 satisfying E[|ξ00 |2] + E[|χ0

0|2] < ∞. The learning rate sequence (γn)n≥1 in (1.5) is
deterministic, positive, non-increasing and such that∑

n≥1

γn =∞,
∑
n≥1

γ2n <∞.
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While such behavior is typical for learning rates in the stochastic approximation literature, it is
not required in our analyses as we allow

∑
n≥1 γ

2
n =∞. See Algorithm 1.

Algorithm 1 SA for estimating (VaR, ES)

Require: N ∈ N, a non-increasing positive sequence (γn)n≥1.
1: Choose (ξ00 , χ

0
0) such that E[|ξ00 |2] + E[|χ0

0|2] <∞
2: for n = 0 . . N − 1 do
3: Simulate X(n+1)

0 ∼ X0 = Φ(Y )

4: ξ0n+1 ← ξ0n − γn+1H1(ξ
0
n, X

(n+1)
0 )

5: χ0
n+1 ← χ0

n − 1
n+1H2(χ

0
n, ξ

0
n, X

(n+1)
0 )

6: end for
7: return (ξ0N , χ

0
N )

Usually however, one does not have access to an exact simulator of X0 as given by (1.1),
inasmuch as the law of φ(Y,Z) conditionally on Y is not known and no analytical expression of
Φ in (1.2) is available.

2 Nested Stochastic Approximation

The above discussion naturally suggests to replace the samples of X0 in the dynamics (1.5) by
approximate samples thereof.

We consider a bias parameter

h =
1

K
∈ H :=

{
1

K
: K ∈ N

}
.

We then approximate X0 by the random variable Xh defined by

Xh =
1

K

K∑
k=1

φ(Y,Z(k)), (2.1)

where the sequence (Z(k))1≤k≤K consists of i.i.d. copies of Z independent of Y . In order to
simulate Xh, it suffices to sample Y , then independently sample (Z(k))1≤k≤K , to eventually
obtain Xh as the sample mean of (φ(Y,Z(k)))1≤k≤K .

In the spirit of the previous section, assuming that the distribution function of Xh is contin-
uous, we define the approximating optimization problem

min
ξ∈R

Vh(ξ), where Vh(ξ) := ξ +
1

1− α
E[(Xh − ξ)+], ξ ∈ R. (2.2)

Since the distribution function FXh
of Xh is continuous, then Vh is continuously differentiable on

R and V ′
h(ξ) =

1
1−α(FXh

(ξ) − α), ξ ∈ R. If Xh admits a continuous density function fXh
, then

Vh is twice continuously differentiable on R and V ′′
h (ξ) =

1
1−αfXh

(ξ), ξ ∈ R.
By Lemma 1.1,

ArgminVh = {V ′
h = 0} ≠ ∅ and χh

⋆ = minVh = Vh(ξ
h
⋆ ).

Moreover, any minimizer ξh⋆ of Vh satisfies P[Xh ≤ ξh⋆ ] = α. If the distribution function of Xh is
increasing, then ξh⋆ = argminVh is uniquely defined.

If the distribution function of Xh is increasing, in order to approximate the unique couple
(ξh⋆ , χ

h
⋆), we devise the following two-time-scale nested SA (NSA) algorithm{

ξhn+1 = ξhn − γn+1H1(ξ
h
n, X

(n+1)
h ),

χh
n+1 = χh

n − 1
n+1H2(ξ

h
n, χ

h
n, X

(n+1)
h ),

(2.3)
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where (X
(n)
h )n≥1 is a sequence of i.i.d. copies of Xh and (ξh0 , χ

h
0) is an R2-valued random variable

independent of (X(n)
h )n≥1 satisfying E[|ξh0 |2] + E[|χh

0 |2] <∞.
This scheme is nested in nature, in the sense that the update of the outer layer (ξhn+1, χ

h
n+1)

at step n+ 1 entails simulating the inner layer X(n+1)
h by Monte Carlo as in (2.1). Besides, this

scheme is biased, as the target of (ξhn, χh
n)n≥0 is (ξh⋆ , χ

h
⋆), which hopefully converges to (ξ0⋆ , χ

0
⋆)

as H ∋ h ↓ 0.
Algorithm 2 summarizes the NSA procedure for approximating (ξ0⋆ , χ

0
⋆).

Algorithm 2 Nested SA for estimating (VaR, ES)

Require: K,N ∈ N, a positive non-increasing sequence (γn)n≥1.
1: Choose (ξh0 , χ

h
0) such that E[|ξh0 |2] + E[|χh

0 |2] <∞
2: for n = 0 . . N − 1 do
3: Simulate Y (n+1) ∼ Y and Z(n+1,1), . . . , Z(n+1,K) i.i.d.∼ Z independently of Y (n+1)

4: X
(n+1)
h ← 1

K

∑K
k=1 φ(Y

(n+1), Z(n+1,k))

5: ξhn+1 ← ξhn − γn+1H1(ξ
h
n, X

(n+1)
h )

6: χh
n+1 ← χh

n − 1
n+1H2(χ

h
n, ξ

h
n, X

(n+1)
h )

7: end for
8: return (ξhN , χ

h
N )

2.1 Convergence Analysis

We study here the NSA scheme (2.3). We first analyze its bias, then prove an L2(P)-error bound
on the iterates, after that analyze its complexity and eventually establish a tuning method for
the number of iterations with respect to the bias parameter h ∈ H in order to achieve some
prescribed error.

For h ∈ H := H ∪ {0}, we denote Θh := ArgminVh, assuming that the distribution function
of Xh is continuous.

Lemma 2.1. Suppose that φ(Y, Z) ∈ L1(P), that for any h ∈ H, the distribution function FXh

is continuous, and that the sequence of random variables (Xh)h∈H converges in distribution to
X0 as H ∋ h ↓ 0. Then

sup
ξ∈Θh

dist(ξ,Θ0)→ 0 as H ∋ h ↓ 0.

Assume additionally that (Xh)h∈H converges to X0 in L1(P). Then

χh
⋆ → χ0

⋆ as H ∋ h ↓ 0.

Proof. See Appendix B.

We introduce the following set of assumptions on the sequence (Xh)h∈H.

Assumption 2.2. (i) For any h ∈ H, FXh
admits the first order Taylor expansion

FXh
(ξ)− FX0(ξ) = v(ξ)h+ w(ξ, h)h, ξ ∈ R,

for some functions v, w(·, h) : R→ R satisfying, for any ξ0⋆ ∈ Θ0,∫ ∞

ξ0⋆

v(ξ)dξ <∞, lim
H∋h↓0

w(ξ0⋆ , h) = lim
H∋h↓0

∫ ∞

ξ0⋆

w(ξ, h)dξ = 0.

(ii) For any h ∈ H, the law of Xh admits a continuous density function fXh
with respect to the

Lebesgue measure. Moreover, the sequence of density functions (fXh
)h∈H converges locally

uniformly towards fX0 .
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Remark 2.3. We refer to Giorgi et al.’s [22, Proposition 5.1(b)] for a result on the satisfaction
of the first part of Assumption 2.2(i). The last part of Assumption 2.2(i) reads also w(ξ0⋆ , h) =∫∞
ξ0⋆
w(ξ, h)dξ = o(1) as H ∋ h ↓ 0, i.e.

FXh
(ξ0⋆)− FX0(ξ

0
⋆) = v(ξ0⋆)h+ o(h),∫ ∞

ξ0⋆

(
FXh

(ξ)− FX0(ξ)
)
dξ = h

∫ ∞

ξ0⋆

v(ξ)dξ + o(h).

Assumption 2.2(ii) is a weakened postulate in comparison with the second part of Giorgi et
al.’s [22, Proposition 5.1(a)].

The proposition below quantifies the weak error implied by approximating the unbiased
problem with the biased one, in the form of a first order expansion in the bias parameter h of
the error between (ξh⋆ , χ

h
⋆) and (ξ0⋆ , χ

0
⋆).

Proposition 2.4. Suppose that φ(Y,Z) ∈ L1(P), that Assumption 2.2 holds, and that the density
function fX0 is positive. Then, as H ∋ h ↓ 0, for any ξh⋆ ∈ Θh,

ξh⋆ − ξ0⋆ = − v(ξ0⋆)

fX0(ξ
0
⋆)
h+ o(h), χh

⋆ − χ0
⋆ = −h

∫ ∞

ξ0⋆

v(ξ)

1− α
dξ + o(h).

Proof. See Appendix C.

Assumption 2.5. (i) For any R > 0,

inf
h∈H

ξ∈B(ξ0⋆,R)

fXh
(ξ) > 0.

(ii) The density functions (fXh
)h∈H are uniformly bounded and uniformly Lipschitz, namely,

sup
h∈H
{∥fXh

∥∞ + [fXh
]Lip} <∞.

Remark 2.6. Assumption 2.5(i) is natural in view of Assumption 2.2(ii) if one assumes the
distribution function FX0 increasing. Assumption 2.5(ii) is in line with Assumption 2.2(ii).

Henceforth, we denote kα := 1∨ α
1−α . Recalling the definition of (λ̄h,q)h∈H in Lemma D.1(iii),

for any positive integer q, we let
λ̄q := inf

h∈H
λ̄h,q. (2.4)

Theorem 2.7. (i) Suppose that φ(Y,Z) ∈ L2(P), that Assumptions 2.2 and 2.5 hold, and that

sup
h∈H

E
[
|ξh0 |2 exp

(
4

1− α
kα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

+ sup
h∈H

E[|χh
0 |] <∞.

If γn = γ1n
−β, β ∈ (0, 1], with λ̄1γ1 > 1 if β = 1, then, for any h ∈ H and any positive

integer n,
E[(ξhn − ξh⋆ )2] ≤ K̄

β
h,2γn, (2.5)

for some constants (K̄β
h,2)h∈H such that suph∈H K̄

β
h,2 <∞. Moreover,

E[|χh
n − χh

⋆ |] ≤
Cβ
h

n
1
2
∧β
,

for some constants (Cβ
h )h∈H such that suph∈HC

β
h <∞.
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(ii) Assume further that

sup
h∈H

E
[
|ξh0 |4 exp

(
16

1− α
kα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

+ sup
h∈H

E[(χh
0)

2] <∞.

If γn = γ1n
−β, β ∈ (0, 1], with λ̄2γ1 > 2 when β = 1, then, for any h ∈ H and any positive

integer n,
E[(ξhn − ξh⋆ )4] ≤ K̄

β
h,4γ

2
n, (2.6)

for some constants (K̄β
h,4)h∈H satisfying suph∈H K̄

β
h,4 <∞. Besides,

E[(χh
n − χh

⋆)
2] ≤

C̄β
h

n1∧2β
,

for some constants (C̄β
h )h∈H such that suph∈H C̄

β
h <∞.

Proof. See Appendix D.

2.2 Complexity Analysis

Proposition 2.4 and Theorem 2.7(i) suggest a heuristic to balance the bias parameter h ∈ H with
respect to the number of steps n in (2.3) in order to achieve a prescribed accuracy ε ∈ (0, 1).

Theorem 2.8. Let ε ∈ (0, 1) a prescribed accuracy. Within the framework of Theorem 2.7(i),
setting

h =
1

⌈ε−1⌉
and n =

⌈
ε
− 2

β
⌉

yields a global L1(P) error of order ε. The corresponding computational cost satisfies

CostNSA ≤ Cnh−1 ∼ Cε−
2
β
−1 as ε ↓ 0,

for some constant C independent of ε. The minimal computational cost is of order ε−3 and is
attained for γn = γ1n

−1, i.e. β = 1 under the restriction λ̄1γ1 > 1.

Proof. Following Proposition 2.4 and Theorem 2.7(i), if γn = γ1n
−β , β ∈ (0, 1], with λ̄1γ1 > 1 if

β = 1, then there exists C > 0 such that, for any h ∈ H and any positive integer n,

E[|ξhn − ξ0⋆ |] ≤ C(h+ n−
β
2 ), E[|χh

n − χ0
⋆|] ≤ C(h+ n−

1
2
∧β).

The sought results follow easily from these upper bounds.

Remark 2.9. Barrera et al.’s [6, Algorithm 1] differs from our NSA scheme in two ways. First,
they use a single-time-scale scheme for both the VaR and ES. We use in contrast a two-time-
scale scheme, with a slower and more precise VaR component (independent from the ES) and a
faster ES component. Second, the n-th iteration of their NSA algorithm uses a bias parameter
hn dependent upon n, where (hn)n≥1 tends to 0 as n ↑ ∞, hence building iterates such that
(ξhn

n , χhn
n ) → (ξ0⋆ , χ

0
⋆) as n ↑ ∞. However, their approach results in a substantially increased

complexity. Indeed, in view of Barrera et al.’s [6, Theorem 3.2], the error is of order √γn =

γ
1/2
1 n−β/2, β ∈ (12 , 1], n ≥ 1. For a prescribed accuracy ε > 0, one has to choose n = ⌈ε−2/β⌉.

In [6, Section 3.2] Barrera et al. recommend selecting hn = n−β′ , β′ > β, n ≥ 1. This results
in a complexity of

∑n
k=1 h

−1
k ≤ Cε−2(1+β′)/β , which is optimal when β′ → β = 1, yielding a

complexity of order ε−4. Our NSA algorithm (2.3), in contrast, has an optimal complexity of
order ε−3.

The next section is devoted to the MLSA scheme which combines multiple paired NSA
estimators obtained through a geometric progression of bias parameters in order to reduce the
complexity.
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3 Multilevel Stochastic Approximation

We first explain the construction of the multilevel SA algorithm to approximate the VaR and
ES, then we provide an analysis thereof from both convergence and complexity viewpoints.

Let h0 = 1
K ∈ H be a bias parameter and M and L be two positive integers, with M ≥ 2. L

is called the number of levels. Consider the geometric progression of bias parameters

hℓ =
h0
M ℓ

=
1

KM ℓ
, ℓ ∈ {0, . . . , L}.

Assuming the distribution function of Xhℓ
continuous and increasing for any ℓ ∈ {0, . . . , L}, we

let (ξhℓ
⋆ , χ

hℓ
⋆ ) = (argminVhℓ

,minVhℓ
), ℓ ∈ {0, . . . , L}. We thus have the telescopic decompositions

ξhL
⋆ = ξh0

⋆ +
L∑

ℓ=1

ξhℓ
⋆ − ξ

hℓ−1
⋆ , χhL

⋆ = χh0
⋆ +

L∑
ℓ=1

χhℓ
⋆ − χ

hℓ−1
⋆ .

While the idea of NSA is to put the entirety of the available computational power behind
simulating the quantities on the left hand sides above, MLSA rather simulates the telescopic
decompositions on the right hand sides. It starts by simulating the level 0 terms ξh0

⋆ and χh0
⋆

which are, although of high bias, very fast to estimate. It then simulates independent incremental
error corrections (ξhℓ

⋆ − ξ
hℓ−1
⋆ , χhℓ

⋆ − χ
hℓ−1
⋆ )1≤ℓ≤L to the initial simulations.

In the previous section, we saw how NSA can approximate each pair (ξhℓ
⋆ , χ

hℓ
⋆ ), ℓ ∈ {0, . . . , L}.

Let N = (N0, . . . , NL) ∈ NL+1. Following Frikha [14], we define the multilevel SA estimators
ξML
N and χML

N of ξhL
⋆ and χhL

⋆ by

{
ξML
N = ξh0

N0
+
∑L

ℓ=1 ξ
hℓ
Nℓ
− ξhℓ−1

Nℓ
,

χML
N = χh0

N0
+
∑L

ℓ=1 χ
hℓ
Nℓ
− χhℓ−1

Nℓ
,

(3.1)

where, at any level ℓ ∈ {0, . . . , L}, the initializations (ξhℓ
0 , χ

hℓ
0 ) are generated such that E[|ξhℓ

0 |2]+
E[|χhℓ

0 |2] < ∞, and the iterates (ξhℓ
n , χ

hℓ
n )n≥1 are computed using the NSA scheme (2.3). We

stress that for any fixed level ℓ ∈ {1, . . . , L}, the random variables (X
(n)
hℓ−1

, X
(n)
hℓ

)1≤n≤Nℓ
used to

compute (ξ
hℓ−1

Nℓ
, ξhℓ

Nℓ
) and (χ

hℓ−1

Nℓ
, χhℓ

Nℓ
) are i.i.d. with the same law as (Xhℓ−1

, Xhℓ
), where

Xhℓ−1
=

1

KM ℓ−1

KMℓ−1∑
k=1

φ(Y,Z(k)),

and Xhℓ
is obtained from Xhℓ−1

via

Xhℓ
=

1

M
Xhℓ−1

+
1

KM ℓ

KMℓ∑
k=KMℓ−1+1

φ(Y, Z(k)).

Algorithm 3 summarizes this process.

Remark 3.1. Intuitively, the larger the ℓ, the closer the random variables Xhℓ−1
and Xhℓ

are to
X0 and the lesser iterations Nℓ are required at the level ℓ of the MLSA scheme (3.1) to achieve
a high accuracy. Hence N0 ≥ · · · ≥ NL.
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Algorithm 3 Multilevel SA for estimating (VaR,ES)

Require: A number of levels L ≥ 1, a bias parameter h0 = 1
K ∈ H, a geometric step size M ≥ 2,

positive integers N0, . . . , NL, a positive non-increasing sequence (γn)n≥1.
1: for ℓ = 0 . . L do
2: Set hℓ ← h0

Mℓ

3: for j = (ℓ− 1)+ . . ℓ do
4: Choose (ξ

hj

0 , χ
hj

0 ) such that E[|ξhj

0 |2] + E[|χhj

0 |2] <∞
5: end for
6: for n = 0 . . Nℓ − 1 do
7: Simulate Y (n+1) ∼ Y
8: Simulate Z(n+1,1), . . . , Z(n+1,KMℓ) i.i.d.∼ Z independently from Y (n+1)

9: if ℓ = 0 then
10: X

(n+1)
h0

← 1
K

∑K
k=1 φ(Y

(n+1), Z(n+1,k))
11: else
12: X

(n+1)
hℓ−1

← 1
KMℓ−1

∑KMℓ−1

k=1 φ(Y (n+1), Z(n+1,k))

13: X
(n+1)
hℓ

← 1
MX

(n+1)
hℓ−1

+ 1
KMℓ

∑KMℓ

k=KMℓ−1+1 φ(Y
(n+1), Z(n+1,k))

14: end if
15: for j = (ℓ− 1)+ . . ℓ do
16: ξ

hj

n+1 ← ξ
hj
n − γn+1H1(ξ

hj
n , X

(n+1)
hj

)

17: χ
hj

n+1 ← χ
hj
n − 1

n+1H2(χ
hj
n , ξ

hj
n , X

(n+1)
hj

)
18: end for
19: end for
20: end for
21: ξML

N ← ξh0
N0

+
∑L

ℓ=1 ξ
hℓ
Nℓ
− ξhℓ−1

Nℓ

22: χML
N ← χh0

N0
+
∑L

ℓ=1 χ
hℓ
Nℓ
− χhℓ−1

Nℓ

23: return (ξML
N , χML

N )

3.1 Convergence Analysis

The global error between the multilevel estimator (ξML
N , χML

N ) and its target (ξ0⋆ , χ
0
⋆) can be de-

composed into a sum of a statistical error and a bias error:

ξML
N − ξ0⋆ = (ξML

N − ξhL
⋆ ) + (ξhL

⋆ − ξ0⋆), (3.2)

χML
N − χ0

⋆ = (χML
N − χhL

⋆ ) + (χhL
⋆ − χ0

⋆). (3.3)

In the ensuing analysis, we quantify each error appearing in the decompositions above in terms
of the parameters of (3.1). We then propose an optimal choice for L and N0, . . . , NL to achieve
a given prescribed accuracy.

Proposition 3.2. (i) Assume that the real-valued random variables Xh admit density func-
tions fXh

that are bounded uniformly in h ∈ H.

a. If
E
[
|φ(Y, Z)− E[φ(Y,Z)|Y ]|p⋆

]
<∞ holds for some p⋆ > 1, (3.4)

then, for any h, h′ ∈ H such that 0 ≤ h ≤ h′ and any ξ ∈ R,

E[|1{Xh>ξ} − 1{Xh′>ξ}|] ≤ C(h′ − h)
p⋆

2(p⋆+1) ,

where
C := Bp⋆E

[
|φ(Y, Z)− E[φ(Y,Z)|Y ]|p⋆

] 1
p⋆+1

(
sup
h∈H
∥fXh

∥∞
) p⋆

p⋆+1
,

with Bp⋆ a positive constant that depends only upon p⋆.
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b. Assume that there exists a non-negative constant Cg <∞ such that, for all u ∈ R,

E
[
exp

(
u
(
φ(Y, Z)− E[φ(Y,Z)|Y ]

))∣∣∣Y ]
≤ eCgu2

P-as. (3.5)

Then, for any h, h′ ∈ H such that 0 ≤ h < h′ and any ξ ∈ R,

E[|1{Xh>ξ} − 1{Xh′>ξ}|]

≤ 2
√
Cg(h′ − h)

(
1 + sup

h∈H
∥fXh

∥∞
√
2
∣∣ ln (Cg(h′ − h)

)∣∣).
(ii) Let Gℓ := h

− 1
2

ℓ (Xhℓ
− Xhℓ−1

), and define FXhℓ−1
|Gℓ=g : x 7→ P[Xhℓ−1

≤ x|Gℓ = g], g ∈
supp(PGℓ

), ℓ ≥ 1. Consider the sequence of random variables (Kℓ)ℓ≥1 given by Kℓ :=
Kℓ(Gℓ), where

Kℓ(g) := sup
x ̸=y

|FXhℓ−1
|Gℓ=g(x)− FXhℓ−1

|Gℓ=g(y)|
|x− y|

, ℓ ≥ 1, g ∈ supp(PGℓ
).

Assume that (Kℓ)ℓ≥1 satisfies
sup
ℓ≥1

E[|Gℓ|Kℓ] <∞. (3.6)

Then
sup

ℓ≥1,ξ∈R
h
− 1

2
ℓ E[|1{Xhℓ

>ξ} − 1{Xhℓ−1
>ξ}|] <∞.

Proof. See Appendix G.

Remark 3.3. The scenarios formulated in Proposition 3.2 are ordered by strength. The scenario
(3.4) is already described in Barrera et al.’s [6, Assumption H7], although rather for p⋆ > 2:
our formulation also includes heavy tailed setups where p⋆ < 2. A variant of the Gaussian
concentration scenario (3.5) is stated in Barrera et al.’s [6, Assumption H6]. According to Frikha
and Menozzi [17, Section 1], it suffices that E[exp(u0φ(Y,Z)2)|Y ] be bounded for some u0 > 0
for this condition to hold. Observe that (3.4) follows from (3.5) for any p⋆ > 1 via a power
series expansion of the exponential. The scenario (3.6) is a weakening of Haji-Ali et al.’s [24,
Assumption 2.5] (and Gordy and Juneja’s [23, Assumption 1]). As shown in Section 3.2, it
describes a setup that is computationally optimal. Note that if (g, ℓ) 7→ FXhℓ−1

|Gℓ=g is uniformly
Lipschitz in g and ℓ, then, by (G.4) with h = hℓ and h′ = hℓ−1, (3.6) holds.

Assumption 3.4. There exist C, δ > 0 such that, for any h ∈ H and any compact set K ⊂ R,

sup
ξ∈K
|fXh

(ξ)− fX0(ξ)| ≤ Ch
1
4
+δ.

Remark 3.5. Similarly to the second part of Assumption 2.2(ii), Assumption 3.4 is a weakened
postulate in comparison with Giorgi et al.’s [22, Proposition 5.1(a)].

We state below our main result regarding the non-asymptotic square statistical error of
Algorithm 3.

Theorem 3.6. Suppose that φ(Y, Z) ∈ L2(P) and that Assumptions 2.2, 2.5 and 3.4 hold. Then,
within the framework of Proposition 3.2, if γn = γ1n

−β, β ∈ (0, 1], with λ̄2γ1 > 2 if β = 1, and

sup
h∈H

E
[
|ξh0 |4 exp

(
16

1− α
kα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

+ sup
h∈H

E[(χh
0)

2] <∞,
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then there exists some constant K < ∞ such that for any positive integer L and any N =
(N0, . . . , NL) ∈ NL+1,

E[(ξML
N − ξhL

⋆ )2] ≤ K
(
γN0 +

( L∑
ℓ=1

γNℓ

)2

+
L∑

ℓ=1

γ
3
2
Nℓ

+
L∑

ℓ=1

γNℓ
ϵ(hℓ)

)
, (3.7)

and

E[(χML
N − χhL

⋆ )2]

≤ K
(

1

N1∧2β
0

+
L∑

ℓ=1

hℓ
Nℓ

+
L∑

ℓ=1

γ̄Nℓ

Nℓ
ϵ(hℓ) +

L∑
ℓ=1

1

N2
ℓ

Nℓ∑
k=1

γ
3
2
k +

( L∑
ℓ=1

γ̄Nℓ

)2)
,

(3.8)

where γ̄n = 1
n

∑n
k=1 γk and

ϵ(h) :=


h

p∗
2(1+p∗) if (3.4) is satisfied,

h
1
2 | lnh|

1
2 if (3.5) is satisfied,

h
1
2 if (3.6) is satisfied,

h ∈ H. (3.9)

Proof. See Appendix H.

3.2 Complexity Analysis

Considering the error decompositions (3.2) and (3.3), for h0 ∈ H and M ≥ 2, we rely on the
result above to find the optimal number of levels L ≥ 1 and number of steps Nℓ ≥ 1 at each level
ℓ ∈ {0, . . . , L} of the MLSA scheme (3.1) in order to achieve a prescribed accuracy ε ∈ (0, 1).

Proposition 3.7. Suppose Assumption 2.5(i) satisfied. Let ε ∈ (0, 1) be some prescribed accu-
racy. If h0 > ε, then setting

L =

⌈
lnh0ε

−1

lnM

⌉
achieves a bias error on the estimation of (ξ0⋆ , χ0

⋆) of order ε.

Proof. In view of Proposition 2.4, the bias error of the couple of estimators (ξML
N , χML

N ) is of order
hL. We thus select L ≥ 1 such that hL = h0

ML ≤ ε.

Lemma 3.8. The computational cost of MLSA satisfies

CostMLSA ≤ C
L∑

ℓ=0

Nℓ

hℓ
.

Proof. This follows straight from the scheme (3.1).

Theorem 3.9. Let ε ∈ (0, 1) be some prescribed accuracy. Within the framework of Theorem 3.6,

(i) (VaR focused parametrization) setting

Nℓ =

⌈
(Kγ1)

1
β ε

− 2
β

( L∑
ℓ′=0

h
− β

1+β

ℓ′ ϵ(hℓ′)
1

1+β

) 1
β

h
1

1+β

ℓ ϵ(hℓ)
1

1+β

⌉
, 0 ≤ ℓ ≤ L,

i.e. Nℓ =
⌈(Kγ1)

1
β ε

− 2
β h

1
1+β

(1+ p∗
2(1+p∗)

)

ℓ (
∑L

ℓ′=0 h
1

1+β
(−β+ p∗

2(1+p∗)
)

ℓ′ )
1
β ⌉, case (3.4),

⌈(Kγ1)
1
β ε

− 2
β h

3
2(1+β)

ℓ | lnhℓ|
1

2(1+β) (
∑L

ℓ′=0 h
1−2β
2(1+β)

ℓ′ | lnhℓ′ |
1

2(1+β) )
1
β ⌉, case (3.5),

⌈(Kγ1)
1
β ε

− 2
β h

3
2(1+β)

ℓ (
∑L

ℓ′=0 h
1−2β
2(1+β)

ℓ′ )
1
β ⌉, case (3.6),
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where K is the constant appearing in (3.7), then MLSA achieves a statistical error on the
estimation of ξ0⋆ of order ε. The optimal computational cost of MLSA is achieved when
β = 1, under the constraint λ̄2γ1 > 2, in which case

CostVaR
MLSA ≤ C


ε
−3+ p∗

2(1+p∗) if (3.4) is satisfied,
ε−

5
2 | ln ε|

1
2 if (3.5) is satisfied,

ε−
5
2 if (3.6) is satisfied.

(ii) (ES focused parametrization) under the constraint λ̄2γ1 > 2, setting β = 1 and

Nℓ = ⌈Kε−2Lhℓ⌉ =
⌈
Kε−2

⌈
lnh0ε

−1

lnM

⌉
hℓ

⌉
, 0 ≤ ℓ ≤ L,

where K is the constant appearing in (3.8), then MLSA achieves a statistical error on the
estimation of χ0

⋆ of order ε. The corresponding computational cost satisfies

CostES
MLSA ≤ Cε−2| ln ε|2.

Proof. (i) Similarly to the multilevel Monte Carlo algorithm for the computation of the proba-
bility P[X0 > 0] by Giles and Haji-Ali [19], it is expected that the leading term in the global L2

error (3.7) is the last one, namely,
∑L

ℓ=1 γNℓ
ϵ(hℓ). Following this heuristic, in order to obtain the

optimal values for N0, . . . , NL, we minimize the complexity under a mean square error constraint,
namely, we solve {

minimizeN0,...,NL>0
∑L

ℓ=0Nℓh
−1
ℓ ,

subject to
∑L

ℓ=0 γNℓ
ϵ(hℓ) = K−1ε2,

where K is the constant appearing in (3.7).
We can easily check that, with the above choices of L and N0, . . . , NL, the first terms in

(3.7), namely γN0 + (
∑L

ℓ=1 γNℓ
)2 +

∑L
ℓ=1 γ

3
2
Nℓ

, are in O(ε2) as ε ↓ 0. The related complexity
computations are standard and are thereby omitted.

(ii) To parametrize the iterations amounts N0, . . . , NL optimally to compute the ES, we minimize
the complexity of MLSA while constraining the global L2 error of the multilevel ES estimator
(3.8) to an order of ε2. We presume that the leading term of the upper estimate (3.8) is

∑L
ℓ=1

hℓ
Nℓ

,
which we check a posteriori. Hence, we solve{

minimizeN0,...,NL>0
∑L

ℓ=0Nℓh
−1
ℓ ,

subject to
∑L

ℓ=0 hℓN
−1
ℓ = K−1ε2.

Under this parametrization, we check that (
∑L

ℓ=0 γ̄Nℓ
)2 = O(ε2β| ln ε|2(1{β=1}−β)) as ε ↓ 0. Hence,

in order to achieve a mean squared error of order ε2, one has to choose β = 1. One can also
verify that the remaining terms of the upper estimate of (3.8), namely 1

N0
+

∑L
ℓ=1

γ̄Nℓ
Nℓ
ϵ(hℓ) +∑L

ℓ=1
1
N2

ℓ

∑Nℓ
k=1 γ

3
2
k , are of order ε2.

For the VaR estimation, in the best case scenario where (3.6) is satisfied, for a prescribed
accuracy ε, it is possible to estimate the VaR with a complexity in O(ε−

5
2 ) using the multi-

level stochastic approximation approach. This is an order of magnitude lower than the optimal
complexity in O(ε−3) of the nested stochastic approximation approach obtained in Theorem 2.8.

As for the ES estimation, note that the resulting complexity coincides exactly with the
optimal complexity of the standard multilevel Monte Carlo algorithm derived by Giles [18].
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4 Financial Case Studies

We now assess the convergence results of NSA and MLSA numerically. This is done through
stylized financial setups, where the probability measure P in the paper is used for all pricing
and risk computations. For comparative and assessment purposes, the numerical settings we are
interested in allow to retrieve the VaR and ES either analytically or through Algorithms 1, 2
or 3. Recall that real life scenarios nonetheless lack analytical formulas and prohibit the recourse
to Algorithm 1. The code producing the results exhibited in the next sections is available at
github.com/azarlouzi/mlsa.

4.1 European Option

We endorse the stylized financial setup of Giles and Haji-Ali [19, Section 3] and consider an
option with payoff −W 2

T at maturity T = 1, where W is a standard Brownian motion. Assuming
zero interest rates, the value of the option v(t, y) at time t ∈ [0, 1] is given by

v(t, y) = E[−W 2
1 |Wt = y].

Let δ ∈ (0, 1) be a time horizon. We define the loss X0 of the option by

X0 = v(0, 0)− v(δ,Wδ).

Let φ : R2 → R,

φ(y, z) := −(
√
δy +

√
1− δz)2 = −δy2 − 2

√
δ(1− δ)yz − (1− δ)z2, y, z ∈ R.

Then
X0

L
= E[φ(Y,Z)]− E[φ(Y,Z)|Y ] = −1− E[φ(Y,Z)|Y ] = δ(Y 2 − 1), (4.1)

where Y and Z are independent and of law N (0, 1).

Analytical Formulas. The VaR ξ0⋆ at level α ∈ (0, 1) of the loss X0 can be obtained analyti-
cally. It satisfies

1− α = P[X0 > ξ0⋆ ] = P
[
Y 2 > 1 +

ξ0⋆
δ

]
= 2F

(
−
(
1 +

ξ0⋆
δ

) 1
2
)
,

where F is the standard Gaussian distribution function. Hence

ξ0⋆ = δ

{(
F−1

(
1− α
2

))2

− 1

}
. (4.2)

We can also get an analytical formula for the ES χ0
⋆ at level α. Indeed, using the symmetry

of the Gaussian distribution,

χ0
⋆ = E[X0|X0 > ξ0⋆ ] =

δ

1− α
{2E[Y 21{Y >µ}]− (1− α)}, where µ :=

(
1 +

ξ0⋆
δ

) 1
2

.

Integrating by parts,
E[Y 21{Y >µ}] = µf(µ) + F (−µ),

where f denotes the standard Gaussian density function. Hence

χ0
⋆ =

2δ

1− α

(
µf(µ) + F (−µ)− 1− α

2

)
. (4.3)
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Stochastic Approximation. The loss X0
L
= δ(Y 2 − 1) (cf (4.1)) can be simulated directly,

so that Algorithm 1 is applicable. But the goal here is to estimate the values of ξ0⋆ and χ0
⋆

using Algorithms 2 and 3, and to study empirically the influence of the parametrization of
each algorithm on their performances. The exact values obtained with (4.2) and (4.3) serve as
convergence benchmarks.

The loss X0
L
= −1−E[φ(Y,Z)|Y ] can alternatively be approximated, for a given bias param-

eter h = 1
K ∈ H, by

Xh = −1− 1

K

K∑
k=1

φ(Y,Z(k)),

where Y,Z(1), . . . , Z(K) i.i.d.∼ N (0, 1). We can then apply Algorithm 2 or 3 on this basis.

Numerical Results. In the following applications, the confidence level is taken as α = 97.5%
and the time horizon is set to δ = 0.5. This setup yields ξ0⋆ ≈ 2.012 and χ0

⋆ ≈ 2.901 (computed
using the explicit formulas (4.2) and (4.3)). The value of β = 1 is used for the step sequences
(γn)n≥1 since, according to Theorems 2.8 and 3.9, it leads to the optimal complexities for
Algorithms 2 and 3.

Weak error expansion. To showcase the results of Proposition 2.4, we study the linearity
of the errors ξh⋆ − ξ0⋆ and χh

⋆ − χ0
⋆ and the stability of the renormalized errors h−1(ξh⋆ − ξ0⋆) and

h−1(χh
⋆ − χ0

⋆) as H ∋ h ↓ 0. We run Algorithm 2 for multiple values of h ∈ { 1
10 ,

1
20 ,

1
50 ,

1
100 ,

1
200}

and for a very large number of iterationsN = 106. We adopt the step size γn = 0.1/(104+n), with
a smoothing applied to the denominator to avoid instability at early iterations. We average out
200 outcomes (ξh106 , χ

h
106) to form an estimate (ξ̄h106 , χ̄

h
106) of (ξh⋆ , χh

⋆). The left panel of Figure 1
shows the evolution of the quantities ξ̄h106 − ξ

0
⋆ and χ̄h

106 −χ
0
⋆ as h describes { 1

10 ,
1
20 ,

1
50 ,

1
100 ,

1
200},

while the right panel shows the evolution of the corresponding quantities h−1(ξ̄h106 − ξ0⋆) and
h−1(χ̄h

106 − χ
0
⋆).
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Figure 1. Centered and rescaled risk measures for a bias parameter h tending to 0

The left panel plot suggests that, asymptotically as H ∋ h ↓ 0, the quantities ξh⋆ − ξ0⋆ and
χh
⋆ − χ0

⋆ are linear in h. The right panel plot strengthens this observation, demonstrating that
the quantities h−1(ξh⋆ − ξ0⋆) and h−1(χh

⋆ − χ0
⋆) are approximately constant in a neighborhood of

0. This checks empirically the validity of Proposition 2.4 on the weak error expansion.

Comparative study of the complexity. We aim here to compare the performances of Al-
gorithms 1, 2 and 3.
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For Algorithms 1 and 2, we set the step size γn = 1/(100 + n) for the VaR simulation and
γn = 0.1/(2.5×104+n) for the ES simulation. We work under the scenario (3.4) for Algorithm 3,
that clearly holds for any p⋆ > 1, with the particular value p⋆ = 11. We choose M = 2. The VaR
and ES are computed using their respective optimal iterations amounts described in Theorem 3.9.
The remaining hyperparameter setup is provided in Table 1. The (γn)n≥1 given therein for the
VaR estimation were obtained through a full grid search on their parameters.

For each algorithm and each risk measure, we plot on a logarithmic scale the average run
times over 200 runs against the achieved RMSEs, for a prescribed accuracy ε that loops through
{ 1
32 ,

1
64 ,

1
128 ,

1
256 ,

1
512}. We also plot the average run times against the prescribed accuracies ε

themselves. See Figure 2. Table 2 reports the slopes fitted on these curves.
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Figure 2. Performance comparison of Algorithms 1, 2 and 3
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Prescribed
accuracy ε

VaR estimation ES estimation

h0 L γn h0 L γn

1
32

1
16 1 2

2.5×103+n
1
16 1 0.1

104+n

1
64

1
32 1 2

4×103+n
1
32 1 0.1

104+n

1
128

1
32 2 0.75

9×103+n
1
32 2 0.1

104+n

1
256

1
32 3 0.25

104+n
1
32 3 0.1

2×104+n

1
512

1
32 4 0.09

104+n
1
32 4 0.1

2.5×104+n

Table 1. Algorithm 3 parametrization by prescribed accuracy

SA scheme
VaR estimation ES estimation

RMSE Accuracy RMSE Accuracy

Nested SA (Alg. 2) −3.08 −2.98 −2.95 −2.98

Multilevel SA (Alg. 3) −2.76 −3.05 −2.64 −2.90

SA (Alg. 1) −1.99 −2.00 −1.85 −2.00

Table 2. Reported slopes in Figure 2

For the VaR as for the ES, for any given scored RMSE, Algorithm 3 displays an execution
time that is orders of magnitude lower than Algorithm 2. Take an RMSE of order 5 × 10−2.
MLSA computes the VaR in 10−2s, scoring a 10 fold speedup over NSA which computes it in
10−1s. Likewise, to compute the ES, MLSA requires 2 × 10−1s, a 10 fold speedup over NSA
which requires 2s. This corroborates the theoretical optimal complexity of Algorithm 3 that is
significantly lower than that of Algorithm 2 (c.f. Theorems 2.8 and 3.9). Finally, as one would
expect, Algorithm 1 that simulates X0 directly considerably outperforms both Algorithms 2
and 3. The spacing between the SA and NSA curves illustrates the performance gap occurring
when using, in a Robbins-Monro instance, a nested simulation instead of a direct simulation for
the loss. The placement of the MLSA curve in between these two demonstrates the partial yet
significant regain on this performance gap, which is achieved by shifting from the nested to the
multilevel scheme. Note however that the multilevel VaR estimation turned out rather unstable
numerically. Small changes to the step size parametrization may fairly affect the results. To
counter this, a thorough grid search on the parameters of the step size was performed, adding
a non negligible tuning phase to the total execution time. The multilevel ES estimation, by
contrast, is quite robust and requires only minor hyperparameter tuning. Up to a variation range,
the slopes of the RMSE curves in Table 2 reflect the theoretical exponents in the complexity
theorems. The curves of the average execution time as a function of the prescribed accuracy
feature a log-linear behavior, which slopes in Table 2 roughly match the theoretical complexity
exponents in Theorems 2.8 and 3.9.

4.2 Swap on a Rate

We adapt the setup of Albanese et al.’s [2, Section A.1]. Consider a stylized swap of nominal
N̄ , strike S̄ and maturity T̄ on some underlying (FX or interest) rate. This rate follows a
Black-Scholes model (St)t≥0 of risk neutral drift κ̄ and constant volatility σ̄, or in other words,
{Ŝt := e−κ̄tSt, t ≥ 0} follows a Black martingale model of volatility σ̄. Given coupon dates
0 < T1 < · · · < Td = T̄ , the swap pays at Ti the cash flow ∆i(STi−1 − S̄), where ∆i = Ti − Ti−1.
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For t ∈ [0, T̄ ], let ρt = e−rt, for some constant risk-free rate r, and denote it ∈ {1, . . . , d + 1}
the integer that satisfies Tit−1 ≤ t < Tit . The value Pt of the swap at time t ∈ [0, T̄ ] is thus
expressed as

Pt = N̄E
[
ρ−1
t ρTit

∆it(STit−1 − S̄) +
d∑

i=it+1

ρ−1
t ρTi∆i(STi−1 − S̄)

∣∣∣∣St]

= N̄E
[
ρ−1
t ρTit

∆it(e
κ̄Tit−1ŜTit−1 − S̄) +

d∑
i=it+1

ρ−1
t ρTi∆i(e

κ̄Ti−1ŜTi−1 − S̄)
∣∣∣∣Ŝt] (4.4)

= N̄

(
ρ−1
t ρTit

∆it(e
κ̄Tit−1ŜTit−1 − S̄) +

d∑
i=it+1

ρ−1
t ρTi∆i(e

κ̄Ti−1Ŝt − S̄)
)
. (4.5)

We assume the swap is issued at par at time 0, i.e. P0 = 0. Hence

S̄ =

∑d
i=1 ρTi∆ie

κ̄Ti−1∑d
i=1 ρTi∆i

S0. (4.6)

Given some confidence level α ∈ (0, 1), we are interested in computing the risk measures ξ0⋆ :=
VaRα(ρδPδ) and χ0

⋆ := ESα(ρδPδ) of a short position on the swap at some time horizon δ <
mini∆i.

Analytical Formulas. In this lognormal setup, the values of ξ0⋆ and χ0
⋆ can be obtained

analytically.
On the one hand, observing that iδ = 1 and using (4.5) and (4.6),

ρδPδ = N̄A
(
Ŝδ − S0

)
, where A :=

d∑
i=2

ρTi∆ie
κ̄Ti−1 . (4.7)

Hence

1− α = P[ρδPδ > ξ0⋆ ] = P
[
Ŝδ > S0 +

ξ0⋆
N̄A

]
,

thus

ξ0⋆ = N̄AS0

(
exp

(
F−1(α)σ̄

√
δ − σ̄2

2
δ

)
− 1

)
, (4.8)

where F denotes the standard Gaussian distribution function.
On the other hand, setting

ω := S0 +
ξ0⋆
N̄A

, η± :=
1

σ̄
√
δ

(
ln

ω

S0
± σ̄2δ

2

)
,

we obtain

χ0
⋆ = E[ρδPδ|ρδPδ > ξ0⋆ ] =

N̄A

1− α
(
E[Ŝδ1{Ŝδ>ω}]− (1− α)S0

)
,

hence

E[Ŝδ1{Ŝδ>ω}] = S0E
[
exp

(
σ̄
√
δU − σ̄2

2
δ

)
1{U>η+}

]
= S0

(
1− F (η−)

)
,

where U ∼ N (0, 1). Therefore,

χ0
⋆ = N̄AS0

α− F (η−)
1− α

. (4.9)
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Stochastic Approximation. Define X0 := ρδPδ.
Algorithm 1 can be applied to approximate the values of ξ0⋆ and χ0

⋆. Indeed, according to
(4.7),

X0
L
= N̄AS0

(
exp

(
− σ̄2

2
δ + σ̄

√
δU

)
− 1

)
,

where U ∼ N (0, 1).
Algorithms 2 and 3 are also applicable to approximate the values of ξ0⋆ and χ0

⋆. By (4.4) and
(4.6),

X0 = N̄E
[ d∑

i=2

ρTi∆ie
κ̄Ti−1(ŜTi−1 − S0)

∣∣∣∣Ŝδ] L
= E[φ(Y,Z)|Y ], (4.10)

where Y ∈ R and Z = (Z1, . . . , Zd−1) ∈ Rd−1 are independent, with

Y := exp

(
− σ̄2

2
δ + σ̄

√
δU0

)
∼ Ŝδ
S0
,

Z1 := exp

(
− σ̄2

2
(T1 − δ) + σ̄

√
T1 − δU1

)
∼ ŜT1

Ŝδ
,

Zi := exp

(
− σ̄2

2
∆i + σ̄

√
∆iUi

)
∼ ŜTi

ŜTi−1

, 2 ≤ i ≤ d− 1,

φ(y, z) := N̄S0

d∑
i=2

ρTi∆ie
κ̄Ti−1

(
y

i−1∏
j=1

zj − 1

)
, y ∈ R, z = (z1, . . . , zd−1) ∈ Rd−1,

and (Ui)0≤i≤d−1
i.i.d.∼ N (0, 1). For any bias parameter h = 1

K ∈ H, X0 can be approximated using
(4.10).

Numerical Results. We set r = 2%, S0 = 1%, κ̄ = 12%, σ̄ = 20%, ∆i = 3months, T̄ =
1year, δ = 1week and α = 85%. We use the 30/360 day count convention, i.e. 1month = 30 days
and 1 year = 360 days. Finally, we set the nominal N̄ such that each leg of the swap is valued at
1 at time 0, that is

N̄ =
1

S0
∑d

i=1 ρTi∆ieκ̄Ti−1
.

Given the above parameter set, the theoretical values of the VaR and ES obtained with (4.8)
and (4.9) are ξ0⋆ ≈ 219.64 and χ0

⋆ ≈ 333.91.

Comparative study of the complexity. For the stochastic approximation of these quan-
tities, we use the step sizes γn = 100/n, for the SA scheme and γn = 50/n for the nested SA
scheme. We run these schemes with their respective optimal iterations amounts. As for the
multilevel SA scheme, we work under the scenario (3.4) with p⋆ = 4, which is tuned using a
grid search. The VaR and ES are simulated using their respective optimal amounts of iterations
N0, . . . , NL. For each prescribed accuracy ε ∈ { 1

32 ,
1
64 ,

1
128 ,

1
256 ,

1
512}, we perform a grid search

to tune the intial bias parameter h0 (giving the number of levels L) and the step sizes (γn)n≥1.
Table 3 lists the ensuing parametrizations by prescribed accuracy. Figure 3 plots, on a loga-
rithmic scale, the joint evolution of the realized RMSE and the average execution time over 200
runs of each SA scheme, for an accuracy ε varying in { 1

32 ,
1
64 ,

1
128 ,

1
256 ,

1
512}. The second row of

Figure 3 displays the realized RMSE as a function of the prescribed accuracy. Table 3 reports
the regressed slopes on these curves as depicted in dashed lines on Figure 3.
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Figure 3. Performance comparison of Algorithms 1, 2 and 3

Prescibed
accuracy ε

VaR estimation ES estimation

h0 L γn h0 L γn

1
32

1
8 2 6

10+n
1
8 2 5

10+n

1
64

1
16 2 20

500+n
1
16 2 20

500+n

1
128

1
16 3 21

103+n
1
16 3 20

500+n

1
256

1
16 4 20

2×103+n
1
16 4 20

750+n

1
512

1
16 5 21

3×103+n
1
32 4 50

2×103+n

Table 3. Algorithm 3 parametrization by prescribed accuracy
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SA scheme
VaR estimation ES estimation

RMSE Accuracy RMSE Accuracy

Nested SA (Alg. 2) −3.75 −3.00 −3.11 −3.00

Multilevel SA (Alg. 3) −4.50 −2.93 −2.35 −2.51

SA (Alg. 1) −1.57 −2.00 −1.99 −2.00

Table 4. Reported slopes in Figure 3

We observe in the top panels of Figure 3 that the multilevel SA scheme significantly outper-
forms the nested SA scheme in terms of computational time and achieved error rate. Indeed, for a
target RMSE of order 10 for the VaR, MLSA is 103 times faster than NSA as the former executes
on average in approximately 10−2s while the latter executes in 10s. Similarly, for an RMSE of
order 10 for the ES, MLSA is 10 times faster than NSA as the former executes on average in
10s while the latter executes in 102s. These results are very promising, as they apply to a more
realistic scenario than the previous section. Eventually, the standard Robbins-Monro algorithm,
that is only applicable if the loss X0 is directly simulatable, outperforms both Algorithms 2 and 3
as expected. As indicated in the previous case study, the in-between positioning of the MLSA
curve relatively to the two other ones depicts the partial regain by the multilevel scheme of the
performance lost due to the nested simulation of X0. Once again, we point out that MLSA
exhibits some numerical instability when simulating the VaR, while it remains very robust when
simulating the ES. The VaR multilevel scheme is non-linearly sensitive to the parameterization
of the step sizes (γn)n≥1. In contrast, the ES multilevel scheme is significantly more stable with
respect to potential mistuning of the step sizes (γn)n≥1.

Within a variation range of order ±0.2, the RMSE slopes reported in Table 4 roughly match
the exponents of the complexities in Theorems 2.8 and 3.9. The VaR focused MLSA slope may
be improved with deeper hyperparameter tuning. This costly hyperparameter tuning phase is
in fact an effect of the constraint λ̄2γ1 > 2 on the optimal choice β = 1 as stressed in the VaR
focused theorem 3.9(i). Although λ̄2 is explicit in (2.4), it is tedious to compute, hence the
necessary upstream tuning phase.

The bottom panels of Figure 3 display a quasi-log-linear dependency of the average execution
time with respect to the prescribed accuracy. The corresponding slopes in Table 4 match quite
accurately the theoretical exponents from the complexity Theorems 2.8 and 3.9.

Conclusion

In this work, we presented a stochastic approximation instance which solution retrieves the
VaR and ES of the loss of a financial derivatives portfolio. This loss, however, can only be
simulated in a nested Monte Carlo fashion. A naively nested algorithm performs one inner
simulation layer within each outer update of a stochastic approximation scheme. A single (bias)
parameter allows to control simultaneously the bias, the iterations amount and the complexity of
the nested algorithm. But, considering a prescribed accuracy ε, this algorithm can only optimally
achieve a complexity of order ε−3. Our multilevel algorithm combines multiple paired estimates
obtained by a geometric progression of biased nested schemes, in a manner that reduces the
overall simulation complexity.

According to user intent, whether it is to simulate the VaR or the ES, our theoretical study
identifies two corresponding optimal parameterizations. The VaR focused parameter setup re-
sults optimally in a complexity of order ε−2−δ, where δ ∈ (0, 1) is a specific parameter that
depends on the integrability degree of the loss, while the ES focused parameter setup yields a
complexity of order ε−2| ln ε|2. These complexities are attained for a step size that is propor-
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tional to 1
n , albeit at the cost of a non trivial constraint on the proportionality factor. The

empirical studies highlight the clear overperformance of the multilevel algorithm over the nested
one. They demonstrate how, in situations where the inner simulations cannot be shortcutted
by explicit formulas, utilizing the multilevel scheme results in a partial yet significant regain
on the performance gap between the nested SA scheme and the classical (non-nested) Robbins-
Monro scheme. This finding is of great interest when the latter scheme does not apply. The
numerics have also underlined some degree of instability of MLSA when estimating the VaR,
while they highlighted high robustness when estimating the ES. The former behavior is in line
with the aforementioned proportionality factor constraint on the step sizes. As the ES is in-
creasingly replacing the VaR as a fundamental financial risk measure, our ES focused multilevel
algorithm, running in O(ε−2| ln ε|2) for a prescribed accuracy ε, should be of practical value for
risk management.

As a followup to this paper, we have looked into complementing our non asymptotic error
controls with asymptotic error distributions via central limit theorems [11]. We have also studied
therein the Polyak-Ruppert variants of the NSA and MLSA methods as a means to rid the com-
putationally optimal case of the non trivial constraint on the learning rate. Antithetic multilevel
schemes are known to reduce the variances of the paired estimators within each independent level
of MLSA [20, 21, 8, 26]. This incentivizes future research in this direction. A natural question
that arises from our study is whether, in the case of the VaR estimation, one could simply close
the performance gap between the multilevel scheme and the classical Robbins-Monro scheme. A
possible line of research in this direction would be to explore the added benefit of an adaptive
selection of inner samples at each level of MLSA as proposed by Giles and Haji-Ali [19]. Eventu-
ally, in order to build stronger estimators, one could investigate other aggregation methods such
as the multi-step Richardson-Romberg extrapolation of Frikha and Huang [16].

A Appendix

B Proof of Lemma 2.1

Step 1. Accumulation points of (ξh⋆ )h∈H.
Let h ∈ H. By Lemma 1.1, the set Θh is a closed non-empty bounded interval that coincides
with the set of roots of V ′

h.
Since (Xh)h∈H converges in distribution to X0 as H ∋ h ↓ 0, the sequence of distribution

functions (FXh
)h∈H converges pointwise on R towards FX0 as H ∋ h ↓ 0. The distribution func-

tion FX0 being continuous, the second Dini theorem implies that (FXh
)h∈H converges uniformly

on R towards FX0 as H ∋ h ↓ 0. According to the definition of the functions (V ′
h)h∈H, it follows

that (V ′
h)h∈H converges uniformly on R towards V ′

0 . For any ξh⋆ ∈ Θh, h ∈ H, one has

|V ′
0(ξ

h
⋆ )| = |V ′

0(ξ
h
⋆ )− V ′

h(ξ
h
⋆ )| ≤ sup

ξ∈R
|V ′

0(ξ)− V ′
h(ξ)|.

Let ξ̄h⋆ = argmaxξ∈Θh
dist(ξ,Θ0). Since limH∋h↓0 supξ∈R |V ′

0(ξ)− V ′
h(ξ)| = 0, we eventually get

lim
H∋h↓0

V ′
0(ξ̄

h
⋆ ) = 0. (B.1)

{V ′
0 = 0} being bounded according to Lemma 1.1, we deduce that the sequence (ξ̄h⋆ )h∈H is

bounded. Using (B.1) and the continuity of V ′
0 , any accumulation point ξ̄0⋆ of the sequence

(ξ̄h⋆ )h∈H satisfies V ′
0(ξ̄

0
⋆) = 0 so that ξ̄0⋆ ∈ Θ0 and

lim
H∋h↓0

dist(ξ̄h⋆ ,Θ0) = 0.
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Step 2. Limit of (χh
⋆)h∈H.

We now assume that (Xh)h∈H converges to X0 in L1(P). By Lemma 1.1, for any h ∈ H,

|χh
⋆ − χ0

⋆| = |min
ξ
Vh(ξ)−min

ξ
V0(ξ)| ≤ max

ξ
|(Vh − V0)(ξ)| ≤

1

1− α
E[|Xh −X0|],

so that limH∋h↓0 χ
h
⋆ = χ0

⋆.

C Proof of Proposition 2.4

Step 1. Asymptotic expansion of ξh⋆ as H ∋ h ↓ 0.
Since the density function fX0 of X0 is positive, the set Θ0 = ArgminV0 = {ξ0⋆} is a singleton
so that, by Lemma 2.1, ξh⋆ → ξ0⋆ as H ∋ h ↓ 0. Also note that

FXh
(ξh⋆ )− FXh

(ξ0⋆) = α− FXh
(ξ0⋆) = FX0(ξ

0
⋆)− FXh

(ξ0⋆). (C.1)

On the one hand, as H ∋ h ↓ 0, by Assumption 2.2(i),

FX0(ξ
0
⋆)− FXh

(ξ0⋆) = −v(ξ0⋆)h+ o(h), as H ∋ h ↓ 0. (C.2)

On the other hand, a first order Taylor expansion with integral remainder gives

FXh
(ξh⋆ )− FXh

(ξ0⋆) = (ξh⋆ − ξ0⋆)
∫ 1

0
fXh

(
tξ0⋆ + (1− t)ξh⋆

)
dt. (C.3)

Since limH∋h↓0 ξ
h
⋆ = ξ0⋆ and, by Assumption 2.2(ii), (fXh

)h∈H converges locally uniformly towards
the positive density function fX0 ,

∫ 1
0 fXh

(tξ0⋆ + (1 − t)ξh⋆ )dt > 0 for h ∈ H small enough and
limh↓0

∫ 1
0 fXh

(tξ0⋆ + (1− t)ξh⋆ )dt = fX0(ξ
0
⋆). Combining (C.1), (C.2) and (C.3), we deduce

h−1(ξh⋆ − ξ0⋆) = −
v(ξ0⋆)∫ 1

0 fXh
(tξ0⋆ + (1− t)ξh⋆ )dt

+ o(1)

= − v(ξ0⋆)

fX0(ξ
0
⋆)

+ o(1) as H ∋ h ↓ 0.

Step 2. Asymptotic expansion of χh
⋆ as H ∋ h ↓ 0.

Going back to the definitions of the functions (Vh)h∈H in (1.3) and (2.2), one has

χh
⋆ − χ0

⋆ = Vh(ξ
h
⋆ )− V0(ξ0⋆)

= E[Xh|Xh > ξh⋆ ]− E[X0|X0 > ξ0⋆ ]

=
1

1− α
(E[Xh1{Xh>ξh⋆ }]− E[X01{X0>ξ0⋆}])

=
1

1− α

(∫ ∞

ξh⋆

ξdFXh
(ξ)−

∫ ∞

ξ0⋆

ξdFX0(ξ)

)
=

1

1− α

(∫ ξ0⋆

ξh⋆

ξfXh
(ξ)dξ +

∫ ∞

ξ0⋆

ξd(FXh
− FX0)(ξ)

)
.

(C.4)

On the one hand, via a change of variable and Proposition 2.4,∫ ξ0⋆

ξh⋆

ξfXh
(ξ)dξ = (ξ0⋆ − ξh⋆ )

∫ 1

0

(
tξh⋆ + (1− t)ξ0⋆

)
fXh

(
tξh⋆ + (1− t)ξ0⋆

)
dt

= v(ξ0⋆)ξ
0
⋆h+ o(h).

(C.5)
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On the other hand, for h ∈ H, integrating by parts yields∫ ∞

ξ0⋆

ξdFXh
(ξ) = −

[
ξ
(
1− FXh

(ξ)
)]∞

ξ0⋆
+

∫ ∞

ξ0⋆

(
1− FXh

(ξ)
)
dξ

= ξ0⋆
(
1− FXh

(ξ0⋆)
)
+

∫ ∞

ξ0⋆

(
1− FXh

(ξ)
)
dξ,

hence ∫ ∞

ξ0⋆

ξd(FXh
− FX0)(ξ) = ξ0⋆

(
FX0(ξ

0
⋆)− FXh

(ξ0⋆)
)
+

∫ ∞

ξ0⋆

(
FX0(ξ)− FXh

(ξ)
)
dξ.

By plugging the first order Taylor expansion of FXh
− FX0 in Assumption 2.2(i) into the right

hand side of the above identity, we obtain∫ ∞

ξ0⋆

ξd(FXh
− FX0)(ξ) = −

(
ξ0⋆v(ξ

0
⋆) +

∫ ∞

ξ0⋆

v(ξ)dξ

)
h+ o(h). (C.6)

Eventually, by combining (C.4), (C.5) and (C.6),

χh
⋆ − χ0

⋆ = −h
∫ ∞

ξ0⋆

v(ξ)

1− α
dξ + o(h), as H ∋ h ↓ 0.

D Proof of Theorem 2.7

We follow a strategy similar to the one developed in [10, Section 2.1] and define, for h ∈ H,
µ ≥ 0 and an integer q, the Lyapunov function Lµh,q : R→ R+ given by

Lµh,q(ξ) =
(
Vh(ξ)− Vh(ξh⋆ )

)q
exp

(
µ
(
Vh(ξ)− Vh(ξh⋆ )

))
, ξ ∈ R. (D.1)

Hereafter, we denote µh,q = q2∥V ′′
h ∥∞ and L̄h,q = L

µh,q

h,q , h ∈ H, q a positive integer.

Lemma D.1. Under Assumption 2.5, for any h ∈ H, µ ≥ 0 and q ≥ 1,

(i) Lµh,q is twice continuously differentiable on R.

(ii) for any ξ ∈ R,

L̄h,q(ξ) ≤ kqα|ξ − ξh⋆ |q exp
(

q2

1− α
kα sup

h∈H
∥fXh

∥∞|ξ − ξh⋆ |
)
.

(iii) for any ξ ∈ R,

V ′
h(ξ)(L

µ
h,q)

′(ξ) ≥ λµh,qL
µ
h,q(ξ), where λµh,q :=

3

8
qV ′′

h (ξ
h
⋆ ) ∧ µ

V ′′
h (ξ

h
⋆ )

4

4[V ′′
h ]

2
Lip
.

Let λ̄h,q := λ
µh,q

h,q . Then infh∈H λ̄h,q > 0.

(iv) for any ξ ∈ R,
|(Lµh,q)

′′(ξ)| ≤ ηµh,q
(
Lµh,q(ξ) + L

µ
h,q−1(ξ)

)
,

where

ηµh,q := (q ∨ µ)∥V ′′
h ∥∞ + k2αµ(µ ∨ 2) + q

(
2µ ∨ (q − 1)

)(3k2α[V
′′
h ]

2
Lip

V ′′
h (ξ

h
⋆ )

3
∨
3∥V ′′

h ∥2∞
V ′′
h (ξ

h
⋆ )

)
.

Besides, introducing η̄h,q := η
µh,q

h,q , one has |λ̄h,q|2 ≤ η̄h,q and suph∈H η̄h,q <∞.
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(v) for any ξ ∈ R,

(ξ − ξh⋆ )2q ≤ κh,q
(
Lµh,q(ξ) + L

µ
h,2q(ξ)

)
, where κh,q :=

3q

V ′′
h (ξ

h
⋆ )

q
∨
32q[V ′′

h ]
2q
Lip

V ′′
h (ξ

h
⋆ )

4q
.

Moreover, suph∈H κh,q <∞.

Proof. See Appendix E.

The next result concerns our special choice of learning sequence.

Lemma D.2. Let

φη(t) :=

{
η−1(tη − 1), η ̸= 0,

ln t+ γE , η = 0,
(D.2)

where γE is the Euler-Mascheroni constant. Let γn = γ1n
−β, γ1 > 0, β ∈ (0, 1], and, for

0 ≤ k ≤ n,

Πk+1:n :=
n∏

j=k+1

(1− λγj + ζγ2j ),

where λ, ζ are some positive parameters, with the convention
∏

∅ = 1. Assume that 1 − λγn +
ζγ2n > 0 for any positive integer n. Then, for n ≥ 2,

(i) for any 0 ≤ k ≤ n,

Πk+1:n ≤


exp(ζ π2

6 γ
2
1 +

γ1λ
2 ) (k+1)λγ1

(n+1)λγ1
, β = 1,

exp(−λγ1(φ1−β(n+ 1)− φ1−β(k + 1)))

× exp(22βζγ21(φ1−2β(n+ 1)− φ1−2β(k + 1))), β ∈ (0, 1).

(ii) for any p ≥ 2,

n∑
k=1

γpkΠk+1:n ≤γ
p
1 exp(ζ

π2

6 γ
2
1 +

γ1λ
2 + ln 2(γ1λ ∨ p))

φλγ1−p+1(n+1)

(n+1)λγ1
, β = 1,

22βγp1 exp(−2−(β+2)λγ1n
1−β)φ1−2β(n+ 1) +

21+(p−1)βγp−1
1

λn(p−1)β , β ∈ (0, 1).

Proof. See Appendix F.

As in the proof of Lemma D.1 in Appendix E, we drop the superscript µ from our notation
and write Lh,q(ξ) for Lµh,q(ξ). For any h ∈ H, we introduce the filtration Fh = (Fh

n )n≥0, where

Fh
n = σ(ξh0 , χ

h
0 , X

(1)
h , . . . , X

(n)
h ), n ≥ 0. Throughout, we fix h ∈ H a bias parameter, q a positive

integer and µ > 0.

Step 1. General inequality on E[Lh,q(ξhn)].
We first prove a general inequality on E[Lh,q(ξhn)], n ≥ 0. We decompose the dynamics of (ξhn)n≥0,
given by the first component of (2.3), into

ξhn+1 = ξhn − γn+1V
′
h(ξ

h
n)− γn+1e

h
n+1, (D.3)

where
ehn+1 := H1(ξ

h
n, X

(n+1)
h )− V ′

h(ξ
h
n), n ≥ 0,

24



is an (Fh,P)-martingale increment. We test the Lyapunov function Lh,q along the dynamics
(D.3). Via a second order Taylor expansion,

Lh,q(ξhn+1) = Lh,q
(
ξhn − γn+1V

′
h(ξ

h
n)− γn+1e

h
n+1

)
= Lh,q(ξhn)− γn+1L′h,q(ξhn)(V ′

h(ξ
h
n) + ehn+1)

+ γ2n+1H1(ξ
h
n, X

(n+1)
h )2

∫ 1

0
(1− t)L′′h,q

(
tξhn+1 + (1− t)ξhn

)
dt.

It follows from Lemmas D.1(iii,iv) that

Lh,q(ξhn+1)

≤ Lh,q(ξhn)(1− λ
µ
h,qγn+1)− γn+1L′h,q(ξhn)ehn+1 + ηµh,qγ

2
n+1H1(ξ

h
n, X

(n+1)
h )2

×
∫ 1

0
(1− t)

(
Lh,q

(
tξhn+1 + (1− t)ξhn

)
+ Lh,q−1

(
tξhn+1 + (1− t)ξhn

))
dt.

(D.4)

Let t ∈ [0, 1]. The mean value theorem guarantees that there exists ξ̃hn(t) ∈ R such that

Vh
(
tξhn+1 + (1− t)ξhn

)
= Vh(ξ

h
n) + tV ′

h

(
ξ̃hn(t)

)
(ξhn+1 − ξhn). (D.5)

From (1.4) and (2.3),

|ξhn+1 − ξhn| = γn+1|H1(ξ
h
n, X

(n+1)
h )| ≤ kαγn+1, (D.6)

with kα = α
1−α ∨1. Hence, applying the triangle inequality to (D.5), recalling that Vh is minimal

at ξh⋆ ,
0 ≤ Vh

(
tξhn+1 + (1− t)ξhn

)
− Vh(ξh⋆ ) ≤ Vh(ξhn)− Vh(ξh⋆ ) + k2αγn+1. (D.7)

Using the inequality ex ≤ e1{x≤1} + xqex1{x>1} ≤ e(1 + xqex), x ∈ R, and (D.1), for any ξ ∈ R,

Lh,0(ξ) ≤ e
(
1 + µqLh,q(ξ)

)
. (D.8)

Thus, using (D.7) then (D.8),

Lh,q
(
tξhn+1 + (1− t)ξhn

)
≤

(
Vh(ξ

h
n)− Vh(ξh⋆ ) + k2αγn+1

)q
exp

(
µ
(
Vh(ξ

h
n)− Vh(ξh⋆ ) + k2αγn+1

))
≤ 2q−1 exp

(
µk2αγn+1

)(
Lh,q(ξhn) + k2qα γ

q
n+1Lh,0(ξ

h
n)
)
≤ σµq

(
Lh,q(ξhn) + γqn+1

)
,

(D.9)

where
σµq := 2q−1 exp(µk2αγ1)

(
(1 + eµqk2qα γ

q
1) ∨ ek2qα

)
≥ 2q−1.

Besides, by (D.6),
γ2n+1H1(ξ

h
n, X

(n+1)
h )2 ≤ k2αγ2n+1. (D.10)

Plugging the upper bounds (D.9) and (D.10) into (D.4) yields

Lh,q(ξhn+1) ≤ Lh,q(ξhn)(1− λ
µ
h,qγn+1 + ζµh,qγ

2
n+1)− γn+1L′h,q(ξhn)ehn+1

+ ζµh,qγ
2
n+1Lh,q−1(ξ

h
n) + ζµh,qγ

q+1
n+1,

(D.11)

with
ζµh,q :=

1

2
ηµh,qk

2
α

(
(γ1σ

µ
q + σµq−1) ∨ σ

µ
q

)
, (D.12)

which, according to the second part of Lemma D.1(iv), satisfies

ζ̄q := sup
h∈H
{ζ̄h,q := ζ

µh,q

h,q } <∞.

25



Since (ehn)n≥1 are (Fh,P)-martingale increments, via the tower law,

E[L′h,q(ξhn)ehn+1] = E
[
L′h,q(ξhn)E[ehn+1|Fh

n ]
]
= 0.

Hence, taking the expectation in both sides of inequality (D.11),

E[Lh,q(ξhn+1)] ≤ E[Lh,q(ξhn)](1−λ
µ
h,qγn+1 + ζµh,qγ

2
n+1)

+ ζµh,qγ
2
n+1E[Lh,q−1(ξ

h
n)] + ζµh,qγ

q+1
n+1.

(D.13)

Step 2. Inequality on E[L̄h,1(ξhn)].
We prove here a sharper upper estimate on E[Lh,1(ξhn)]. Taking q = 1 in (D.13) and (D.8), we
get

E[Lh,1(ξhn+1)] ≤ E[Lh,1(ξhn)]
(
1− λµh,1γn+1 + (eµ+ 1)ζµh,1γ

2
n+1

)
+ (e + 1)ζµh,1γ

2
n+1. (D.14)

Using (D.12), that |λ̄h,q|2 ≤ η̄h,q by Lemma D.1(iii) and that x(1− cx) ≤ (4c)−1, x ∈ R, c > 0,

λ̄h,qγn+1 − (eµqh,q + 1)ζ̄h,qγ
2
n+1 ≤

√
η̄h,qγn+1 − η̄h,q c̄h,qγ2n+1

=
√
η̄h,qγn+1(1− c̄h,q

√
η̄h,qγn+1) ≤

1

4c̄h,q
≤ 1

2
,

(D.15)

where, recalling that µ > 0, kα ≥ 1 and σµh,q ≥ 2q−1,

cµh,q := (eµq + 1)
ζµh,q
ηµh,q

=
1

2
(eµq + 1)k2α

(
(γ1σ

µ
q + σµq−1) ∨ σ

µ
q

)
>

1

2
, c̄h,q := c

µh,q

h,q .

Hence, for q = 1,

1− λ̄h,1γn+1 + (eµh,1 + 1)ζ̄h,1γ
2
n+1 ≥

1

2
.

Evaluating (D.14) at µ = µh,1 and iterating n times the inequality yields

E[L̄h,1(ξhn)] ≤ E[L̄h,1(ξh0 )]Π
h,1
1:n + (e + 1)ζ̄h,1

n∑
k=1

γ2kΠ
h,1
k+1:n,

where

Πh,q
k:n :=

n∏
j=k

(
1− λ̄h,qγj + (eµqh,q + 1)ζ̄h,qγ

2
j

)
,

with the convention
∏

∅ = 1.
If β = 1, invoking Lemma D.2 with p = 2 gives

E[L̄h,1(ξhn)] ≤ K̂h,1
E[L̄h,1(ξh0 )]
(n+ 1)λh,1γ1

+ K̄h,1

φλh,1γ1−1(n+ 1)

(n+ 1)λh,1γ1
,

where

K̂h,1 := exp

(
(eµh,q + 1)ζh,1

π2

6
γ21 +

γ1λ̄h,1
2

)
, K̄h,1 := K̂h,1γ

2
1(e + 1)ζ̄h,12

γ1λ̄h,1∨2.

Hence, if λ̄h,1γ1 > 1, recalling (D.2),

E[L̄h,1(ξhn)] ≤ K1
h,1γn, (D.16)

with K1
h,1 := γ−1

1 (K̂h,1E[L̄h,1(ξh0 )] + K̄h,1).
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Otherwise, if β ∈ (0, 1), applying Lemma D.2 with p = 2 yields

E[L̄h,1(ξhn)] ≤
(
E[L̄h,1(ξh0 )] +

e + 1

eµh,1 + 1

)
× exp

(
22β+1(eµh,1 + 1)ζ̄h,1γ

2
1φ1−2β(n+ 1)−

λ̄h,1
2
γ1φ1−β(n+ 1)

)
+ (e + 1)ζ̄h,1

(
22βγ21 exp(−2−(β+2)λ̄h,1γ1n

1−β)φ1−2β(n+ 1) +
2β+1γ1
λ̄h,1nβ

)
.

Hence, for any β ∈ (0, 1) and any positive integer n,

E[L̄h,1(ξhn)] ≤ K
β
h,1γn, (D.17)

with

Kβ
h,1 := γ−1

1

(
E[Lh,1(ξh0 )] +

e + 1

eµh,1 + 1

)
× sup

n≥1

{
nβ exp

(
22β+1(eµh,1 + 1)ζ̄h,1γ

2
1φ1−2β(n+ 1)−

λ̄h,1
2
γ1φ1−β(n+ 1)

)}
+ (e + 1)ζ̄h,1

(
22βγ1 sup

n≥1
{nβ exp(−2−(β+2)λ̄h,1γ1n

1−β)φ1−2β(n+ 1)}+ 2β+1

λ̄h,1

)
.

Step 3. Inequality on E[L̄h,2(ξhn)].
Take now q = 2 and µ = µh,2 in (D.13). Using either (D.16) or (D.17),

E[L̄h,2(ξhn+1)]

≤ E[L̄h,2(ξhn)](1− λ̄h,2γn+1 + ζ̄h,2γ
2
n+1) + ζ̄h,2γ

2
n+1E[Lh,1(ξhn)] + ζ̄h,2γ

3
n+1

≤ E[L̄h,2(ξhn)]
(
1− λ̄h,2γn+1 + (eµ2h,2 + 1)ζ̄h,2γ

2
n+1

)
+ (2βe4Kβ

h,1 + 1)ζ̄h,2γ
3
n+1.

(D.18)

From (D.15),

1− λ̄h,2γn+1 − (eµ2h,2 + 1)ζ̄h,2γ
2
n+1 ≥

1

2
.

Hence, iterating n times inequality (D.18),

E[L̄h,2(ξhn)] ≤ E[L̄h,2(ξh0 )]Π
h,2
1:n + (2βe4Kβ

h,1 + 1)ζ̄h,2

n∑
k=1

γ3kΠ
h,2
k+1:n.

If γn = γ1n
−1, by Lemma D.2 for p = 2,

E[L̄h,2(ξhn)] ≤ K̂h,2
E[L̄h,2(ξh0 )]
(n+ 1)λ̄h,2γ1

+ K̄h,2

φλ̄h,2γ1−2(n+ 1)

(n+ 1)λ̄h,2γ1
, (D.19)

where

K̂h,2 := exp

(
(eµ2h,2 + 1)ζ̄h,2

π2

6
γ21 +

γ1λ̄h,2
2

)
, K̄h,2 := K̂h,2γ

3
1(2e

4K1
h,1 + 1)ζ̄h,22

γ1λ̄h,2∨3.

Since λ̄h,2 > λ̄h,1 > 1, one has γ1λ̄h,2 > 1, so that for any positive integer n,

E[L̄h,2(ξhn)] ≤ K1
h,2γn, (D.20)

with

K1
h,2 := γ−1

1

(
K̂h,2E[L̄h,2(ξh0 )] + K̄h,2 sup

n≥1

φλ̄h,2γ1−2(n+ 1)

(n+ 1)λ̄h,2γ1−1

)
.
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Otherwise, if γn = γ1n
−β with β ∈ (0, 1), recalling Lemma D.2 with p = 2,

E[L̄h,2(ξhn)] ≤
(
E[L̄h,2(ξh0 )] +

γ1(2
βKβ

h,1 + 1)

eµ2h,2 + 1

)
× exp

(
22β+1ζ̄h,2(eµ

2
h,2 + 1)γ21φ1−2β(n+ 1)−

λ̄h,2
2
γ1φ1−β(n+ 1)

)
+ (2βKβ

h,1 + 1)ζ̄h,2

(
22βγ31 exp(−2−(β+2)λ̄h,2γ1n

1−β)φ1−2β(n+ 1) +
22β+1γ21
λ̄h,2n2β

)
.

(D.21)

Thus, for any β ∈ (0, 1) and any positive integer n,

E[L̄h,2(ξhn)] ≤ K
β
h,2γn, (D.22)

with

Kβ
h,2 :=

(
γ−1
1 E[L̄h,2(ξh0 )] +

2βKβ
h,1 + 1

eµ2h,2 + 1

)
× sup

n≥1

{
nβ exp

(
22β+1ζ̄h,2(eµ

2
h,2 + 1)γ21φ1−2β(n+ 1)−

λ̄h,2
2
γ1φ1−β(n+ 1)

)}
+ (2βKβ

h,1 + 1)

× ζ̄h,2
(
γ212

2β sup
n≥1

{
nβ exp(−2−(β+2)λ̄h,2γ1n

1−β)φ1−2β(n+ 1)
}
+ γ1

22β+1

λ̄h,2

)
.

Step 4. Upper bound on E[(ξhn − ξh⋆ )2].
Combining either the estimates (D.16) with (D.20) or (D.17) with (D.22), then invoking Lemma D.1(v)
with q = 1, we conclude

E[(ξhn − ξh⋆ )2] ≤ K̄
β
h,2γn,

with K̄β
h,2 := κh,1(K

β
h,2 +Kβ

h,1) satisfies suph∈H K̄
β
h,2 < ∞ for any β ∈ (0, 1]. This follows from

that, for q = 1, 2,

sup
h∈H

E[L̄h,q(ξh0 )] ≤ sup
h∈H

E
[
(1 + |ξh0 |2) exp

(
4

1− α
kα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

<∞,

recalling Lemma D.1(ii).

Step 5. Upper bound on E[|χh
n − χh

⋆ |].
We now prove an L1(P) upper estimate for the difference χh

n − χh
⋆ , n ≥ 1, (χh

n)n≥0 being given
by (2.3). Without loss of generality, we assume χh

0 = 0, inasmuch as the general case χh
0 ̸= 0 is

handled similarly. Observe that

χh
n − χh

⋆ =
1

n

n∑
k=1

(
ξhk−1 +

1

1− α
(X

(k)
h − ξhk−1)

+

)
− Vh(ξh⋆ )

=
1

n

n∑
k=1

εhk +
1

n

n∑
k=1

Vh(ξ
h
k−1)− Vh(ξh⋆ ),

(D.23)

where

εhk := ξhk−1 +
1

1− α
(X

(k)
h − ξhk−1)

+ − Vh(ξhk−1), k ≥ 1, (D.24)
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is a sequence of (Fh,P)-martingale increments, that is, E[εhk |Fh
k−1] = 0. Note that

E[|εhk |2|Fh
k−1] ≤

1

(1− α)2
E
[(
(X

(k)
h − ξhk−1)

+ − E[(X(k)
h − ξhk−1)

+|Fh
k−1]

)2∣∣Fh
k−1

]
≤ 1

(1− α)2
E
[(
(X

(k)
h − ξhk−1)

+
)2∣∣Fh

k−1

]
≤ 3

(1− α)2
(
E[|Xh|2] + (ξhk−1 − ξh⋆ )2 + |ξh⋆ |2

)
.

Using the above upper estimate, the Cauchy-Schwarz inequality and (2.5),

1

n
E
[∣∣∣∣ n∑

k=1

εhk

∣∣∣∣] ≤ 1

n

( n∑
k=1

E[|εhk |2]
) 1

2

≤
√
3

(1− α)n

(
n
(
sup
h∈H

E[|Xh|2] + sup
h∈H
|ξh⋆ |2

)
+ K̄β

h

n∑
k=2

γk−1 + E[(ξh0 − ξh⋆ )2]
) 1

2

≤
√
3

(1− α)n
1
2

((
sup
h∈H

E[|Xh|2]
1
2 + sup

h∈H
|ξh⋆ |

)
+ (γ1K̄

β
h )

1
2

1

(1− β)
1
2n

β
2

1{β∈(0,1)}

+ (γ1K̄
β
h )

1
2
(lnn)

1
2

n
1
2

1{β=1} +
E[(ξh0 − ξh⋆ )2]

1
2

n
1
2

)
.

For the second term appearing on the right hand side of (D.23), we use a second order Taylor
expansion, that suph∈H ∥V ′′

h ∥∞ <∞ by Assumption 2.5(ii) and (2.5). Thus

1

n
E
[∣∣∣∣ n∑

k=1

Vh(ξ
h
k−1)− Vh(ξh⋆ )

∣∣∣∣] ≤ ∥V ′′
h ∥∞
2n

n∑
k=1

E[(ξhk−1 − ξh⋆ )2]

≤
∥V ′′

h ∥∞
2

(
E[(ξh0 − ξh⋆ )2]

n
+ γ1K

β
h

(
1

(1− β)nβ
1{β∈(0,1)} +

lnn

n
1{β=1}

))
.

Injecting the two previous estimates into (D.23) concludes the proof.

Step 6. Second inequality on E[L̄h,2(ξhn)].
The proof of (2.6) relies on similar arguments to those employed for (2.5). For the sake of brevity,
we omit some technical details. Using either (D.19), recalling that γ1λ̄h,2 > 2, or (D.21),

E[L̄h,2(ξhn)] ≤ K̃
β
h,2γ

2
n, (D.25)

for some constants (K̃β
h,2)h∈H satisfying suph∈H K̃

β
h,2 <∞.

Step 7. Inequality on E[L̄h,3(ξhn)].
Then, setting q = 3 and µ = µh,3 in (D.13) and utilizing the previous inequality,

E[L̄h,3(ξhn+1)]

≤ E[L̄h,3(ξhn)](1− λ̄h,3γn+1 + ζ̄h,3γ
2
n+1) + ζ̄h,3γ

2
n+1E[Lh,2(ξhn)] + ζ̄h,3γ

4
n+1

≤ E[L̄h,3(ξhn)]
(
1− λ̄h,3γn+1 + (eµ3h,3 + 1)ζ̄h,3γ

2
n+1

)
+ (22βe

9
4 K̃β

h,2 + 1)ζ̄h,3γ
4
n+1,

so that

E[L̄h,3(ξhn)] ≤ E[L̄h,3(ξh0 )]Π
h,3
1:n + (22βe

9
4 K̃β

h,2 + 1)ζ̄h,3

n∑
k=1

γ4kΠ
h,3
k+1:n.
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Following similar lines of reasoning as those used in Step 2, we conclude that if γn = γ1n
−β ,

β ∈ (0, 1], with γ1λ̄h,3 > 2 if β = 1, then

E[L̄h,3(ξhn)] ≤ K
β
h,3γ

2
n, (D.26)

for some constants (Kβ
h,3)h∈H satisfying suph∈HK

β
h,3 <∞.

Step 8. Inequality on E[L̄h,4(ξhn)].
Finally, we take q = 4 and µ = µh,4 in (D.13) and use (D.26) to obtain

E[L̄h,4(ξhn+1)]

≤ E[L̄h,4(ξhn)](1− λ̄h,4γn+1 + ζh,4γ
2
n+1) + ζ̄h,4γ

2
n+1E[Lh,3(ξhn)] + ζ̄h,3γ

5
n+1

≤ E[L̄h,4(ξhn)]
(
1− λ̄h,4γn+1 + (eµ4h,4 + 1)ζ̄h,4γ

2
n+1

)
+ (22βe

16
9 Kβ

h,3 + γ1)ζ̄h,4γ
4
n+1,

so that

E[L̄h,4(ξhn)] ≤ E[L̄h,4(ξh0 )]Π
h,4
1:n + (22βe

16
9 Kβ

h,3 + γ1)ζ̄h,4

n∑
k=1

γ4kΠ
h,4
k+1:n.

Analogously, we deduce from the previous inequality that if γn = γ1n
−β , β ∈ (0, 1], with γ1λ̄h,4 >

2 if β = 1, then for any h ∈ H and any positive integer n,

E[L̄h,4(ξhn)] ≤ K
β
h,4γ

2
n, (D.27)

where (Kβ
h,4)h∈H are constants that satisfy suph∈HK

β
h,4 <∞.

Step 9. Upper bound on E[(ξhn − ξh⋆ )4].
By (D.25), (D.27) and Lemma D.1(v) with q = 2, recalling that λ̄h,4 > λ̄h,2, we conclude that if
γn = γ1n

−β , β ∈ (0, 1], with γ1λ̄h,2 > 2 if β = 1, then for any h ∈ H and any positive integer n,

E[(ξhn − ξh⋆ )4] ≤ K̄
β
h,4γ

2
n,

where K̄β
h,4 := κh,2(K

β
h,4 + K̃β

h,2) satisfies suph∈H K̄
β
h,4 <∞, β ∈ (0, 1], as Lemma D.1(ii) implies

that, for q = 3, 4,

sup
h∈H

E[L̄h,q(ξh0 )] ≤ sup
h∈H

E
[
(1 + |ξh0 |4) exp

(
16

1− α
kα sup

h∈H
∥fXh

∥∞|ξh0 |
)]

<∞.

Step 10. Upper bound on E[(χh
n − χh

⋆)
2].

Assuming here again that χh
0 = 0, from the decomposition (D.23) and similar computations to

the ones performed in Step 5, we get that for some constants (C̄β
h )h∈H that may change from

line to line,

E[(χh
n − χh

⋆)
2] ≤ C̄β

h

(
1

n2

n∑
k=1

E[|εhk |2] +
1

n2

( n∑
k=1

E[(Vh(ξhk−1)− Vh(ξh⋆ ))2]
1
2

)2)

≤ C̄β
h

(
1

n
+

1

n2

( n∑
k=1

E[(ξhk−1 − ξh⋆ )4]
1
2

)2)
≤ C̄β

h

(
1

n
+

1

n2

( n∑
k=1

γk

)2)
≤

C̄β
h

n1∧2β
,

where the last inequality follows by a comparison between series and integrals for γn = γ1n
−β ,

β ∈ (0, 1]. This concludes the proof.
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E Proof of Lemma D.1

Throughout, we consider q ≥ 1, h ∈ H and µ ≥ 0. We drop the superscript µ from our notation
and write Lh,q(ξ) for Lµh,q(ξ).

(i) From the definition (D.1), Lh,q is continuously differentiable and satisfies

L′h,q(ξ) = qV ′
h(ξ)Lh,q−1(ξ) + µV ′

h(ξ)Lh,q(ξ)

= Lh,q−1(ξ)V
′
h(ξ)

(
q + µ

(
Vh(ξ)− Vh(ξh⋆ )

))
.

(E.1)

One may differentiate again the above identity. If q ≥ 2,

L′′h,q(ξ) = Lh,q−2(ξ)V
′
h(ξ)

2
(
q − 1 + µ

(
Vh(ξ)− Vh(ξh⋆ )

))(
q + µ

(
Vh(ξ)− Vh(ξh⋆ )

))
+ Lh,q−1(ξ)V

′′
h (ξ)

(
q + µ

(
Vh(ξ)− Vh(ξh⋆ )

))
+ Lh,q−1(ξ)µV

′
h(ξ)

2.
(E.2)

If q = 1,
L′′h,1(ξ) =

(
V ′′
h (ξ) + 2µV ′

h(ξ)
2
)
Lh,0(ξ) +

(
µ2V ′

h(ξ)
2 + µV ′′

h (ξ)
)
Lh,1(ξ). (E.3)

All in all, for all q ≥ 1, Lh,q is twice continuously differentiable.

(ii) The upper estimate follows directly from the fact that, for any ξ ∈ R,

Vh(ξ)− Vh(ξh⋆ ) = (ξ − ξh⋆ )
∫ 1

0
V ′
h

(
ξh⋆ + t(ξ − ξh⋆ )

)
dt,

hence, since ∥V ′
h∥∞ ≤ kα, Vh(ξ)− Vh(ξh⋆ ) ≤ kα|ξ − ξh⋆ |.

The remaining properties of Lemma D.1 are trivially satisfied for ξ = ξh⋆ . We thus assume,
without loss of generality, that ξ ̸= ξh⋆ in the rest of the proof. We let

εh :=
V ′′
h (ξ

h
⋆ )

[V ′′
h ]Lip

. (E.4)

Finally, denote Ih := [ξh⋆ − εh, ξh⋆ + εh].

(iii) Step 1. Preliminaries.
From (E.1) and the relation Lh,q−1(ξ) = (Vh(ξ)− Vh(ξh⋆ ))−1Lh,q(ξ), we have

L′h,q(ξ) = Lh,q(ξ)V ′
h(ξ)

(
q

Vh(ξ)− Vh(ξh⋆ )
+ µ

)
,

so that

L′h,q(ξ)V ′
h(ξ) ≥

(
qV ′

h(ξ)
2

Vh(ξ)− Vh(ξh⋆ )
∨ µV ′

h(ξ)
2

)
Lh,q(ξ). (E.5)

Let us establish a lower bound for the parenthesised factor above. Since V ′
h(ξ

h
⋆ ) = 0, a first order

Taylor expansion writes

V ′
h(ξ) = (ξ − ξh⋆ )

∫ 1

0
V ′′
h

(
ξh⋆ + t(ξ − ξh⋆ )

)
dt

= V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ ) + (ξ − ξh⋆ )

∫ 1

0

(
V ′′
h

(
ξh⋆ + t(ξ − ξh⋆ )

)
− V ′′

h (ξ
h
⋆ )
)
dt,

(E.6)
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which, combined with the fact that V ′′
h = (1− α)−1fXh

≥ 0 and the triangle inequality yields

|V ′
h(ξ)| ≥ V ′′

h (ξ
h
⋆ )|ξ − ξh⋆ | −

1

2
[V ′′

h ]Lip(ξ − ξh⋆ )2. (E.7)

Step 2. Case where ξ ∈ Ih.
If ξ ∈ Ih, the above inequality yields

V ′
h(ξ)

2 ≥ 1

4
V ′′
h (ξ

h
⋆ )

2(ξ − ξh⋆ )2. (E.8)

Now, recalling that V ′
h(ξ

h
⋆ ) = 0, a second order Taylor expansion gives

Vh(ξ)− Vh(ξh⋆ ) =
1

2
V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ )2

+ (ξ − ξh⋆ )2
∫ 1

0
(1− t)

(
V ′′
h

(
ξh⋆ + t(ξ − ξh⋆ )

)
− V ′′

h (ξ
h
⋆ )
)
dt,

(E.9)

so that
Vh(ξ)− Vh(ξh⋆ ) ≤

1

2
V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ )2 +

1

6
[V ′′

h ]Lip|ξ − ξh⋆ |3.

Hence, if ξ ∈ Ih, the above inequality implies

Vh(ξ)− Vh(ξh⋆ ) ≤
2

3
V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ )2. (E.10)

Plugging (E.8) and (E.10) into (E.5), recalling that V ′′
h (ξ

h
⋆ ) = (1−α)−1fXh

(ξh⋆ ) > 0 by Assump-
tion 2.5(i),

L′h,q(ξ)V ′
h(ξ) ≥

qV ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )
Lh,q(ξ) ≥

3

8
qV ′′

h (ξ
h
⋆ )Lh,q(ξ). (E.11)

Step 3. Case where ξ /∈ Ih.
Assume now ξ /∈ Ih, say ξ > ξh⋆ + εh. The case ξ < ξh⋆ − εh is similar and is omitted. Since V ′

h

is non-decreasing, V ′
h(ξ

h
⋆ + εh) ≥ V ′

h(ξ
h
⋆ ) = 0 and, evaluating (E.7) at ξh⋆ + εh and recalling the

definition (E.4),

V ′
h(ξ) ≥ V ′

h(ξ
h
⋆ + εh) ≥ V ′′

h (ξ
h
⋆ )εh −

1

2
[V ′′

h ]Lipε
2
h =

V ′′
h (ξ

h
⋆ )

2

2[V ′′
h ]Lip

.

Plugging this into (E.5), for any ξ > ξh⋆ + εh,

L′h,q(ξ)V ′
h(ξ) ≥ µLh,q(ξ)V ′

h(ξ)
2 ≥ µ

V ′′
h (ξ

h
⋆ )

4

4[V ′′
h ]

2
Lip
Lh,q(ξ). (E.12)

The above inequality is valid also if ξ < ξh⋆ − εh.

Step 4. Conclusion.
Combining (E.11) and (E.12),

L′h,q(ξ)V ′
h(ξ) ≥

(
3

8
qV ′′

h (ξ
h
⋆ ) ∧ µ

V ′′
h (ξ

h
⋆ )

4

4[V ′′
h ]

2
Lip

)
Lh,q(ξ) = λµh,qLh,q(ξ), ξ ∈ R.

By Lemma 2.1, there exists R > 0 such that ξh⋆ ∈ B(ξ0⋆ , R), h ∈ H. By Assumption 2.5,

inf
h∈H

V ′′
h (ξ

h
⋆ ) ≥

1

1− α
inf
h∈H

ξ∈B(ξ0⋆,R)

fXh
(ξ) > 0, inf

h∈H

1

[V ′′
h ]Lip

=
1− α

suph∈H [fXh
]Lip

> 0
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and, by Assumption 2.5(i), infh∈H ∥V ′′
h ∥∞ = (1−α)−1 infh∈H ∥fXh

∥∞ > 0. Thus infh∈H λ̄h,q > 0.

(iv) Step 1. Case where q ≥ 2.
Assume first that q ≥ 2. Through (E.2) and the relation

Lh,q−1(ξ) = (Vh(ξ)− Vh(ξh⋆ ))−1Lh,q(ξ),

one has

L′′h,q(ξ) = Lh,q−1(ξ)

(
qV ′′

h (ξ) +
q(q − 1)V ′

h(ξ)
2

Vh(ξ)− Vh(ξh⋆ )

)
+ Lh,q(ξ)

(
µV ′′

h (ξ) + µ2V ′
h(ξ)

2 + 2qµ
V ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )

)
.

(E.13)

Step 1.1. Sub-case where ξ ∈ Ih.
Applying the triangle inequality to (E.9) yields

Vh(ξ)− Vh(ξh⋆ ) ≥
1

2
V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ )2 −

1

6
[V ′′

h ]Lip|ξ − ξh⋆ |3. (E.14)

Hence, if ξ ∈ Ih, |ξ − ξh⋆ | ≤ εh so that the above inequality and (E.4) yield

Vh(ξ)− Vh(ξh⋆ ) ≥
1

3
V ′′
h (ξ

h
⋆ )(ξ − ξh⋆ )2. (E.15)

Moreover, using (E.6) and that ∥V ′′
h ∥∞ = (1− α)−1∥fXh

∥∞ <∞ by Assumption 2.5(ii),

V ′
h(ξ)

2 ≤ ∥V ′′
h ∥2∞(ξ − ξh⋆ )2.

Combining the previous two inequalities, if ξ ∈ Ih,

V ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )
≤

3∥V ′′
h ∥2∞

V ′′
h (ξ

h
⋆ )

. (E.16)

Step 1.2. Sub-case where ξ /∈ Ih.
Assume now ξ /∈ Ih, say ξ > ξh⋆ + εh. The case ξ < ξh⋆ − εh is treated similarly and is hereby
omitted. Using that Vh is increasing on [ξh⋆ ,∞), evaluating (E.14) at ξh⋆ + εh and recalling (E.4),
we obtain

Vh(ξ)− Vh(ξh⋆ ) ≥ Vh(ξh⋆ + εh)− Vh(ξh⋆ ) ≥
V ′′
h (ξ

h
⋆ )

3

3[V ′′
h ]

2
Lip
,

This inequality together with the fact that ∥V ′
h∥∞ ≤ kα give, for any ξ > ξh⋆ + εh,

V ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )
≤

3k2α[V
′′
h ]

2
Lip

V ′′
h (ξ

h
⋆ )

3
. (E.17)

The above upper estimate holds too if ξ < ξh⋆ + εh.

Step 1.3. Sub-conclusion.
(E.16) and (E.17) show that, for any ξ ̸= ξh⋆ ,

V ′
h(ξ)

2

Vh(ξ)− Vh(ξh⋆ )
≤

3k2α[V
′′
h ]

2
Lip

V ′′
h (ξ

h
⋆ )

3
∨
3∥V ′′

h ∥2∞
V ′′
h (ξ

h
⋆ )

=: νh. (E.18)

Combining (E.13) and (E.18), recalling that ∥V ′
h∥∞ ≤ kα,

|L′′h,q(ξ)| ≤
(
(q ∨ µ)∥V ′′

h ∥∞ + µ2k2α + q
(
2µ ∨ (q − 1)

)
νh

)(
Lh,q(ξ) + Lh,q−1(ξ)

)
.
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Step 2. Case where q = 1.
If q = 1, since ∥V ′

h∥∞ ≤ kα, (E.3) directly gives

|L′′h,1(ξ)| ≤
(
(µ ∨ 1)∥V ′′

h ∥∞ + µ(µ ∨ 2)k2α
)(
Lh,0(ξ) + Lh,1(ξ)

)
.

Step 3. Conclusion.
Combining the last two inequalities, we conclude that for all q ≥ 1 and all ξ ̸= ξh⋆ ,

|L′′h,q(ξ)| ≤
(
(q ∨ µ)∥V ′′

h ∥∞ + µ(µ ∨ 2)k2α + q
(
2µ ∨ (q − 1)

)
νh

)
×
(
Lh,q(ξ) + Lh,q−1(ξ)

)
.

The property |λ̄h,q|2 ≤ η̄h,q is a straightforward consequence of the definitions of λ̄h,q and
η̄h,q.

By Assumption 2.5(ii),

sup
h∈H
∥V ′′

h ∥∞ =
suph∈H ∥fXh

∥∞
1− α

<∞, sup
h∈H

[V ′′
h ]Lip =

suph∈H [fXh
]Lip

1− α
<∞. (E.19)

Moreover, since (ξh⋆ )h∈H converges to ξ0⋆ asH ∋ h ↓ 0, there exists R > 0 such that ξh⋆ ∈ B(ξ0⋆ , R),
h ∈ H. Thus, by Assumption 2.5(i),

sup
h∈H

1

V ′′
h (ξ

h
⋆ )
≤ 1− α

inf h∈H
ξ∈B(ξ0⋆,R)

fXh
(ξ)

<∞. (E.20)

Coming back to (E.18), the two results above show that suph∈H νh <∞. Eventually,

sup
h∈H

{
η
µh,q

h,q = (q ∨ µh,q)∥V ′′
h ∥∞ + µh,q(µh,q ∨ 2)k2α + q

(
2µh,q ∨ (q − 1)

)
νh

}
<∞.

(v) On Ih, (E.15) shows that every ξ ̸= ξh⋆ satisfies

(ξ − ξh⋆ )2q ≤
3q

V ′′
h (ξ

h
⋆ )

q

(
Vh(ξ)− Vh(ξh⋆ )

)q ≤ 3q

V ′′
h (ξ

h
⋆ )

q
Lh,q(ξ). (E.21)

Outside of Ih, say if ξ > ξh⋆ + εh (the case ξ < ξh⋆ − εh is similar), given that Vh is increasing
on [ξh⋆ ,∞), by (E.14) and (E.4),

Vh(ξ)− Vh(ξh⋆ ) ≥ Vh(ξh⋆ + εh)− Vh(ξh⋆ )

≥ (ξ − ξh⋆ )
(
1

2
V ′′
h (ξ

h
⋆ )εh −

1

6
[V ′′

h ]Lipε
2
h

)
= (ξ − ξh⋆ )

V ′′
h (ξ

h
⋆ )

2

3[V ′′
h ]Lip

,

hence

(ξ − ξh⋆ )2q ≤
32q[V ′′

h ]
2q
Lip

V ′′
h (ξ

h
⋆ )

4q

(
Vh(ξ)− Vh(ξh⋆ )

)2q ≤ 32q[V ′′
h ]

2q
Lip

V ′′
h (ξ

h
⋆ )

4q
Lh,2q(ξ). (E.22)

The above upper bound holds also if ξ < ξh⋆ − εh. Putting together (E.21) and (E.22), for any
ξ ̸= ξh⋆ ,

(ξ − ξh⋆ )2q ≤
(

3q

V ′′
h (ξ

h
⋆ )

q
∨
32q[V ′′

h ]
2q
Lip

V ′′
h (ξ

h
⋆ )

4q

)(
Lh,q(ξ) + Lh,2q(ξ)

)
= κh,q

(
Lh,q(ξ) + Lh,2q(ξ)

)
.

Relations (E.19) and (E.20) yield suph∈H κh,q <∞.
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F Proof of Lemma D.2

Let n ≥ 2, 0 ≤ k ≤ n and p ≥ 2. Using the bound 1 + x ≤ ex, x ∈ R,

Πk+1:n ≤ exp

(
− λ

n∑
j=k+1

γj

)
exp

(
ζ

n∑
j=k+1

γ2j

)
,

with the convention
∑

∅ = 0.

Step 1. Case where β = 1.
Step 1.1. Inequality on Πk+1:n.
Note that

n∑
j=k+1

γj = γ1
(
ψ(n+ 1)− ψ(k + 1)

)
,

where ψ is the digamma function that satisfies

lnx− 1

x
≤ ψ(x) ≤ lnx− 1

2x
, x > 0.

Hence
n∑

j=k+1

γj ≥ γ1 ln
(
n+ 1

k + 1

)
− γ1
n+ 1

+
γ1

2(k + 1)
≥ γ1 ln

(
n+ 1

k + 1

)
− γ1

2
,

yielding

Πk+1:n ≤ exp

(
ζ
π2

6
γ21 +

γ1λ

2

)
(k + 1)λγ1

(n+ 1)λγ1
.

Step 1.2. Inequality on
∑n

k=1 γ
p
kΠk+1:n.

The above estimate, together with a comparison between series and integrals, give

n∑
k=1

γpkΠk+1:n ≤ γp1 exp
(
ζ
π2

6
γ21 +

γ1λ

2
+ ln 2(γ1λ ∨ p)

)
φλγ1−p+1(n+ 1)

(n+ 1)λγ1
.

Step 2. Case where β ∈ (0, 1).
Step 2.1. Inequality on Πk+1:n.
A comparison between series and integrals gives

Πk+1:n ≤ exp
(
− λγ1

(
φ1−β(n+ 1)− φ1−β(k + 1)

))
× exp

(
22βζγ21

(
φ1−2β(n+ 1)− φ1−2β(k + 1)

))
.

Step 2.2. Inequality on
∑n

k=1 γ
p
kΠk+1:n.

Introduce n0 := inf{n ∈ N : γn ≤ λ/(2ζ)} − 1. Observe that

1− λγn + ζγ2n ≤ 1− λ

2
γn, n ≥ n0 + 1,

so that

n∑
k=1

γpkΠk+1:n =

n0∧n∑
k=1

γpkΠk+1:n0∧nΠn0∧n+1:n +
n∑

k=n0∧n+1

γpkΠk+1:n

≤
( n0∧n∑

k=1

γpk

n0∧n∏
j=k+1

(1 + ζγ2j )

) n∏
j=n0∧n+1

(
1− λ

2
γj

)
+

n∑
k=1

γpk

n∏
j=k+1

(
1− λ

2
γj

)
.

(F.1)
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We simplify the first term on the right hand side of the inequality above. We have
n0∧n∑
k=1

γpk

n0∧n∏
j=k+1

(1 + ζγ2j ) ≤ γ
p−2
1

n0∧n∑
k=1

γ2k

n0∧n∏
j=k+1

(1 + ζγ2j )

=
γp−2
1

ζ

n0∧n∑
k=1

( n0∧n∏
j=k

(1 + ζγ2j )−
n0∧n∏
j=k+1

(1 + ζγ2j )

)

≤ γp−2
1

ζ

n0∧n∏
j=1

(1 + ζγ2j ) ≤
γp−2
1

ζ
exp

(
ζ

n0∧n∑
j=1

γ2j

)
,

and
n∏

j=n0∧n+1

(
1− λ

2
γj

)
≤ exp

(
− λ

2

n∑
j=1

γj

)
exp

(
λ

2

n0∧n∑
j=1

γj

)

≤ exp

(
− λ

2

n∑
j=1

γj

)
exp

(
ζ

n0∧n∑
j=1

γ2j

)
,

where we used that γj ≥ λ/(2ζ) for j ≤ n0. Combining the two preceding estimates and using a
comparison between series and integrals,( n0∧n∑

k=1

γpk

n0∧n∏
j=k+1

(1 + ζγ2j )

) n∏
j=n0∧n+1

(
1− λ

2
γj

)

≤ γp−2
1

ζ
exp

(
2ζ

n0∧n∑
j=1

γ2j

)
exp

(
− λ

2

n∑
j=1

γj

)

≤ γp−2
1

ζ
exp

(
22β+1ζγ21φ1−2β(n+ 1)

)
exp

(
− λ

2
γ1φ1−β(n+ 1)

)
.

Next, we deal with the second term appearing in the right hand side of (F.1). Since (γn)n≥1 is
a positive non-increasing sequence, for any integer 1 ≤ m ≤ n, it holds

n∑
k=1

γpk

n∏
j=k+1

(
1− λ

2
γj

)

=
m∑
k=1

γpk

n∏
j=k+1

(
1− λ

2
γj

)
+

n∑
k=m+1

γpk

n∏
j=k+1

(
1− λ

2
γj

)

≤
n∏

j=m+1

(
1− λ

2
γj

) m∑
k=1

γpk + γp−1
m

n∑
k=m+1

γk

n∏
j=k+1

(
1− λ

2
γj

)

≤ exp

(
− λ

2

n∑
j=m+1

γj

)
γp−2
1

n∑
k=1

γ2k +
2γp−1

m

λ

(
1−

n∏
j=m+1

(
1− λ

2
γj

))

≤ 22βγp1 exp
(
− 2−(β+1)λγ1

(
φ1−β(n)− φ1−β(m)

))
φ1−2β(n+ 1) +

2γp−1
1

λm(p−1)β
.

Select m = ⌈n/2⌉. By the concavity and the non-decreasing monotony of φ1−β , for n ≥ 2,

φ1−β(n)− φ1−β(n/2) ≥ n1−β/2.

Hence, for any integer n,
n∑

k=1

γpk

n∏
j=k+1

(
1− λ

2
γj

)

≤ 22βγp1 exp(−2
−(β+2)λγ1n

1−β)φ1−2β(n+ 1) +
21+(p−1)βγp−1

1

λn(p−1)β
.
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G Proof of Proposition 3.2

The next result draws inspiration from [22, Lemma 5.1 and Proposition 5.2] and [6, Lemma A.4].

Lemma G.1. Let X and Y be two real-valued random variables with bounded density function
denoted fX and fY respectively.

(i) Assume that X − Y is in Lp⋆(P) for some p⋆ > 1. Then, for every ξ ∈ R,

E[|1{X>ξ}−1{Y >ξ}|] ≤ (p
p⋆

p⋆+1
⋆ + p

1
p⋆+1
⋆ )(∥fX∥∞ + ∥fY ∥∞)

p⋆
p⋆+1E[|X − Y |p⋆ ]

1
p⋆+1 .

(ii) Assume that there exists a positive constant dX,Y such that for any u ∈ R,

E
[
exp

(
u(X − Y )

)]
≤ exp(dX,Y u

2). (G.1)

Then, for any ξ ∈ R,

E[|1{X>ξ} − 1{Y >ξ}|] ≤ 2
√
dX,Y + (∥fX∥∞ + ∥fY ∥∞)

√
2dX,Y ln(d−1

X,Y ∨ 1).

Proof. Let ξ ∈ R. For any δ > 0,

E[|1{X>ξ} − 1{Y >ξ}|] = E[1{X>ξ}1{Y≤ξ} + 1{Y >ξ}1{X≤ξ}]

= P[Y ≤ ξ < X] + P[X ≤ ξ < Y ]

= P[Y ≤ ξ, ξ + δ < X] + P[Y ≤ ξ < X ≤ ξ + δ]

+ P[X ≤ ξ, ξ + δ < Y ] + P[X ≤ ξ < Y ≤ ξ + δ]

≤ P[X − Y > δ] + P[X − Y < −δ]
+ P[ξ < X ≤ ξ + δ] + P[ξ < Y ≤ ξ + δ]

≤ P[X − Y > δ] + P[X − Y < −δ] + δ(∥fX∥∞ + ∥fY ∥∞).

(G.2)

(i) By (G.2),

E[|1{X>ξ} − 1{Y >ξ}|] ≤ P[|X − Y | > δ] + δ(∥fX∥∞ + ∥fY ∥∞)

≤ E[|X − Y |p⋆ ]
δp⋆

+ δ(∥fX∥∞ + ∥fY ∥∞).

A straightforward optimization yields the choice

δ =
p⋆

1
p⋆+1E[|X − Y |p⋆ ]

1
p⋆+1

(∥fX∥∞ + ∥fY ∥∞)
1

p⋆+1

,

giving the first result.

(ii) By (G.2), the exponential Markov inequality and (G.1), for any u ≥ 0,

E[|1{X>ξ} − 1{Y >ξ}|] ≤ P[X − Y > δ] + P[−(X − Y ) > δ] + δ(∥fX∥∞ + ∥fY ∥∞)

≤ exp(−uδ)
(
E
[
exp

(
u(X − Y )

)]
+ E

[
exp

(
− u(X − Y )

)])
+ δ(∥fX∥∞ + ∥fY ∥∞)

≤ 2 exp(dX,Y u
2 − uδ) + δ(∥fX∥∞ + ∥fY ∥∞).

The right hand side of the above inequality above is minimized in u for δ/(2dX,Y ), yielding

E[|1{X>ξ} − 1{Y >ξ}|] ≤ 2 exp

(
− δ2

4dX,Y

)
+ δ(∥fX∥∞ + ∥fY ∥∞).
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Evaluating the right hand side of the previous inequality at

δ =
√
2dX,Y ln (d−1

X,Y ∨ 1)

gives

E[|1{X>ξ} − 1{Y >ξ}|] ≤ 2
√
dX,Y +

√
2(∥fX∥∞ + ∥fY ∥∞)

√
dX,Y ln (d−1

X,Y ∨ 1),

eventually completing the proof of the second result.

Let h, h′ ∈ H. Without loss of generality and to avoid trivialities, we assume 0 ≤ h < h′. We
study separately the cases 0 < h < h′ and 0 = h < h′.

The proof of the point (i)a is inspired from [22, Lemma 3.2].

(i)a. Assume that

E
[
|φ(Y, Z)− E[φ(Y,Z)|Y ]|p

]
<∞ for some p ≥ 1.

Then, for h = 1
K ∈ H,

E[|Xh −X0|p] ≤
1

K

K∑
k=1

E
[
|φ(Y, Z(k))− E[φ(Y, Z)|Y ]|p

]
= E

[
|φ(Y,Z)− E[φ(Y,Z)|Y ]|p

]
.

Case 1. 0 < h < h′.
Introduce φ̃(Y,Z) := φ(Y,Z)− E[φ(Y, Z)|Y ] and take h = 1

K < h′ = 1
K′ . Then

Xh −Xh′ = h

K∑
k=K′+1

φ̃(Y,Z(k)) + (h− h′)
K′∑
k=1

φ̃(Y,Z(k)), (G.3)

so that by the triangle inequality,

E[|Xh −Xh′ |p]
1
p ≤ hE

[∣∣∣∣ K∑
k=K′+1

φ̃(Y,Z(k))

∣∣∣∣p] 1
p

+ (h′ − h)E
[∣∣∣∣ K′∑

k=1

φ̃(Y,Z(k))

∣∣∣∣p] 1
p

.

By the tower law and the Burkholder-Davis-Gundy inequality,

E[|Xh −Xh′ |p]
1
p ≤ BpE

[
|φ(Y,Z)− E[φ(Y, Z)|Y ]|p

] 1
p
(
h(K −K ′)

1
2 + (h′ − h)K ′ 12

)
≤ BpE

[
|φ(Y,Z)− E[φ(Y, Z)|Y ]|p

] 1
p (h′ − h)

1
2

((
h

h′

) 1
2

+

(
1− h

h′

) 1
2
)

≤
√
2BpE

[
|φ(Y, Z)− E[φ(Y,Z)|Y ]|p

] 1
p (h′ − h)

1
2 .

(G.4)

Case 2. 0 < h.
Note that, for h = 1

K ∈ H,

Xh −X0 =
1

K

K∑
k=1

(
φ(Y,Z(k))− E[φ(Y,Z)|Y ]

)
=

1

K

K∑
k=1

φ̃(Y,Z(k)).

Since (φ̃(Y,Z(k)))1≤k≤K is a martingale increment sequence conditionally on Y , using successively
the tower’s law, the Burkholder-Davis-Gundy inequality and the triangle inequality, we obtain

E[|Xh −X0|p]
1
p = hE

[∣∣∣∣ K∑
k=1

φ̃(Y,Z(k))

∣∣∣∣p] 1
p

≤ ChE
[∣∣∣∣ K∑

k=1

φ̃(Y,Z(k))2
∣∣∣∣ p2 ] 1

p

≤ CE[|φ̃(Y,Z)|p]
1
ph

1
2 .
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We conclude the proof of the first point by applying Lemma G.1(i) with p = p⋆.

(i)b. Case 1. 0 < h < h′.
Coming back to the decomposition (G.3), using that (φ̃(Y, Z(k)))1≤k≤K are independent condi-
tionally to Y and (3.5),

E
[
exp

(
u(Xh −Xh′)

)∣∣Y ]
= E

[
exp

(
uhφ̃(Y, Z)

)∣∣Y ]K−K′
E
[
exp

(
u(h− h′)φ̃(Y, Z)

)∣∣Y ]K′

≤ exp

(
Cgu

2h2
(
1

h
− 1

h′

))
exp

(
Cgu

2 (h− h′)2

h′

)
= exp

(
Cg(h

′ − h)u2
)
.

Case 2. 0 < h.
Let h = 1

K ∈ H. Via the independence of the sequence (φ̃(Y,Z(k)))1≤k≤K conditionally to Y
and the Gaussian concentration assumption,

E
[
exp

(
u(Xh −X0)

)∣∣Y ]
= E

[
exp

(
uh

K∑
k=1

φ̃(Y, Z(k))

)∣∣∣∣Y ]
= E

[
exp

(
uhφ̃(Y,Z)

)∣∣Y ]K ≤ exp(Cgu
2h).

Taking the expectation on both sides of the above inequalities and setting X = Xh, Y = Xh′

and dX,Y = Cg(h
′−h) in the first case, and X = Xh, Y = X0 and dX,Y = Cgh in the second case,

guarantee the condition (G.1). We eventually conclude the proof by applying Lemma G.1(ii).

(ii) We first write

E[|1{Xhℓ
>ξ} − 1{Xhℓ−1

>ξ}|] = P[Xhℓ−1
≤ ξ < Xhℓ

] + P[Xhℓ
≤ ξ < Xhℓ−1

]. (G.5)

Introducing the random variable Gℓ,

P[Xhℓ−1
≤ ξ < Xhℓ

] = P[Xhℓ−1
≤ ξ < Xhℓ−1

+ h
1
2
ℓ Gℓ]

= P[Xhℓ−1
≤ ξ < Xhℓ−1

+ h
1
2
ℓ Gℓ, Gℓ > 0]

= E
[
P[ξ − h

1
2
ℓ Gℓ < Xhℓ−1

≤ ξ,Gℓ > 0|Gℓ]
]

= E
[
1{Gℓ>0}

(
FXhℓ−1

|Gℓ
(ξ)− FXhℓ−1

|Gℓ
(ξ − h

1
2
ℓ Gℓ)

)]
.

The P-as-Lipschitz regularity of FXhℓ−1
|Gℓ

yields

P[Xhℓ−1
≤ ξ < Xhℓ

] ≤ h
1
2
ℓ E[G

+
ℓ Kℓ].

Similarly

P[Xhℓ
≤ ξ ≤ Xhℓ−1

] ≤ h
1
2
ℓ E[G

−
ℓ Kℓ].

Coming back to (G.5) and summing up the two preceding inequalities yields

E[|1{Xhℓ
>ξ} − 1{Xhℓ−1

>ξ}|] ≤ h
1
2
ℓ E[|Gℓ|Kℓ],

completing the proof.
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H Proof of Theorem 3.6

Throughout, K designates a constant that may change from line to line.

Step 1. Study of ξML
N − ξ

hL
⋆ .

We follow a similar strategy to the one used in [14, Lemma 2.7] and decompose the dynamics of
the sequence (ξhn)n≥0 given by (2.3) into

ξhn+1 − ξh⋆ =
(
1− γn+1V

′′
0 (ξ

0
⋆)
)
(ξhn − ξh⋆ ) + γn+1

(
V ′′
0 (ξ

0
⋆)− V ′′

h (ξ
h
⋆ )
)
(ξhn − ξh⋆ )

+ γn+1r
h
n+1 + γn+1ρ

h
n+1 + γn+1e

h
n+1,

(H.1)

where

rhn+1 := V ′′
h (ξ

h
⋆ )(ξ

h
n − ξh⋆ )− V ′

h(ξ
h
n),

ρhn+1 := V ′
h(ξ

h
n)− V ′

h(ξ
h
⋆ )−

(
H1(ξ

h
n, X

(n+1)
h )−H1(ξ

h
⋆ , X

(n+1)
h )

)
,

ehn+1 := V ′
h(ξ

h
⋆ )−H1(ξ

h
⋆ , X

(n+1)
h ).

Iterating n times (H.1),

ξhn − ξh⋆ = (ξh0 − ξh⋆ )Π1:n +
n∑

k=1

γkΠk+1:n(V
′′
0 (ξ

0
⋆)− V ′′

h (ξ
h
⋆ ))(ξ

h
k − ξh⋆ )

+
n∑

k=1

γkΠk+1:nr
h
k +

n∑
k=1

γkΠk+1:nρ
h
k +

n∑
k=1

γkΠk+1:ne
h
k ,

(H.2)

where, for two positive integers i and n,

Πi:n :=
n∏

j=i

(
1− γjV ′′

0 (ξ
0
⋆)
)
,

with the convention that
∏

∅ = 1.
Using the inequality 1+x ≤ ex, x ∈ R, a comparison between series and integrals and (D.2),

|Πi:n| ≤ exp

(
− V ′′

0 (ξ
0
⋆)

n∑
j=i

γj

)

≤

{
exp(γ1V

′′
0 (ξ

0
⋆))i

γ1V ′′
0 (ξ0⋆)(n+ 1)−γ1V ′′

0 (ξ0⋆), β = 1,

exp(−γ1V ′′
0 (ξ

0
⋆)(φ1−β(n+ 1)− φ1−β(i))), β ∈ (0, 1).

(H.3)

Since γn = γ1n
−β , β ∈ (0, 1] with γ1V

′′
0 (ξ

0
⋆) > γ1λ̄2 > 1 if β = 1, using (H.3) and a compari-

son between series and integrals (with computations similar to those performed in the proof of
Lemma D.2), we deduce that for any b ≥ 0 and a > 0 such that γ1aV ′′

0 (ξ
0
⋆) > b if β = 1, there

exists K <∞ such that for any integer n

n∑
k=1

γ1+b
k |Πk+1:n|a ≤ Kγbn, (H.4)

as well as
|Π1:n| ≤ Kγn. (H.5)

Via (H.2), for ℓ ∈ {1, . . . , L},

ξhℓ
n − ξhℓ

⋆ − (ξ
hℓ−1
n − ξhℓ−1

⋆ ) = Aℓ
n +Bℓ

n + Cℓ
n +Dℓ

n + Eℓ
n, (H.6)
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where

Aℓ
n :=

(
ξhℓ
0 − ξ

hℓ
⋆ − (ξ

hℓ−1

0 − ξhℓ−1
⋆ )

)
Π1:n,

Bℓ
n :=

n∑
k=1

γkΠk+1:n

{(
V ′′
0 (ξ

0
⋆)− V ′′

hℓ
(ξhℓ

⋆ )
)
(ξhℓ

k − ξ
hℓ
⋆ )

−
(
V ′′
0 (ξ

0
⋆)− V ′′

hℓ−1
(ξ

hℓ−1
⋆ )

)
(ξ

hℓ−1

k − ξhℓ−1
⋆ )

}
,

Cℓ
n :=

n∑
k=1

γkΠk+1:n(r
hℓ
k − r

hℓ−1

k ),

Dℓ
n :=

n∑
k=1

γkΠk+1:n(ρ
hℓ
k − ρ

hℓ−1

k ),

Eℓ
n :=

n∑
k=1

γkΠk+1:n(e
hℓ
k − e

hℓ−1

k ).

Hence, the difference between the multilevel SA estimator ξML
N of the VaR in (3.1) and the solution

ξhL
⋆ = argminVhL

can be decomposed into

ξML
N − ξhL

⋆ = ξh0
N0
− ξh0

⋆ +

L∑
ℓ=1

ξhℓ
Nℓ
− ξhℓ

⋆ − (ξ
hℓ−1

Nℓ
− ξhℓ−1

⋆ )

= ξh0
N0
− ξh0

⋆ +
L∑

ℓ=1

Aℓ
Nℓ

+Bℓ
Nℓ

+ Cℓ
Nℓ

+Dℓ
Nℓ

+ Eℓ
Nℓ
.

(H.7)

We now quantify the contribution of each term appearing in the decomposition (H.7).

Step 1.1. Study of ξh0
N0
− ξh0

⋆ .
Theorem 2.7(i) guarantees

E[(ξh0
N0
− ξh0

⋆ )2] ≤ KγN0 .

Step 1.2. Study of
∑L

ℓ=1A
ℓ
Nℓ

.
From (H.5),

E[|Aℓ
n|2] ≤ 2K sup

ℓ≥0
E[|ξhℓ

0 − ξ
hℓ
⋆ |2]γ2n ≤ Kγ2n. (H.8)

Hence, by the triangle inequality,

E
[( L∑

ℓ=1

Aℓ
Nℓ

)2] 1
2

≤ K
L∑

ℓ=1

γNℓ
.

Step 1.3. Study of
∑L

ℓ=1B
ℓ
Nℓ

.
By Lemma 2.1, (ξhℓ

⋆ )ℓ≥0 is bounded. Let K be a compact set of R containing the sequence
(ξhℓ

⋆ )ℓ≥0. For any ℓ ≥ 0,

|V ′′
0 (ξ

0
⋆)− V ′′

hℓ
(ξhℓ

⋆ )| ≤ 1

1− α
(|fX0(ξ

0
⋆)− fX0(ξ

hℓ
⋆ )|+ |fX0(ξ

hℓ
⋆ )− fXhℓ

(ξhℓ
⋆ )|)

≤ 1

1− α

(
[fX0 ]Lip|ξhℓ

⋆ − ξ0⋆ |+ sup
ξ∈K
|fX0(ξ)− fXhℓ

(ξ)|
)

≤ K(hℓ + h
1
4
+δ

ℓ ) ≤ Kh(
1
4
+δ)∧1

ℓ ,
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where we used Assumptions 2.5(ii) and 3.4 together with Proposition 2.4. Using this estimate,
Theorem 2.7(i) and (H.4),

E[|Bℓ
n|2]

1
2 ≤ 2(|V ′′

0 (ξ
0
⋆)− V ′′

hℓ
(ξhℓ

⋆ )| ∨ |V ′′
0 (ξ

0
⋆)− V ′′

hℓ−1
(ξ

hℓ−1
⋆ )|)

×
( n∑

k=1

γk|Πk+1:n|(E[|ξhℓ
k − ξ

hℓ
⋆ |2]

1
2 ∨ E[|ξhℓ−1

k − ξhℓ−1
⋆ |2]

1
2 )

)

≤ Kh(
1
4
+δ)∧1

ℓ

n∑
k=1

γ
3
2
k |Πk+1:n| ≤ Kγ

1
2
n h

( 1
4
+δ)∧1

ℓ .

(H.9)

Therefore, by the triangle inequality,

E
[( L∑

ℓ=1

Bℓ
Nℓ

)2] 1
2

≤ K
L∑

ℓ=1

γ
1
2
Nℓ
h
( 1
4
+δ)∧1

ℓ .

Step 1.4. Study of
∑L

ℓ=1C
ℓ
Nℓ

.
Using a first order Taylor expansion, the uniform Lipschitz regularity of (fXh

)h∈H under As-
sumption 2.5(ii) and Theorem 2.7(ii),

E[|rhℓ
k |

2]
1
2 + E[|rhℓ−1

k |2]
1
2

≤
suph∈H [fXh

]Lip

(1− α)
(
E[(ξhℓ

k−1 − ξ
hℓ
⋆ )4]

1
2 + E[(ξhℓ−1

k−1 − ξ
hℓ−1
⋆ )4]

1
2
)
≤ Kγk.

Hence, reusing (H.4),

E[|Cℓ
n|2]

1
2 ≤

n∑
k=1

γk|Πk+1:n|
(
E[|rhℓ

k |
2]

1
2 + E[|rhℓ−1

k |2]
1
2
)
≤ K

n∑
k=1

γ2k |Πk+1:n| ≤ Kγn. (H.10)

Thus, by the triangle inequality,

E
[( L∑

ℓ=1

Cℓ
Nℓ

)2] 1
2

≤ K
L∑

ℓ=1

γNℓ
.

Step 1.5. Study of
∑L

ℓ=1D
ℓ
Nℓ

.
By the definition (1.4) of H1 and (2.5)

E
[(
H1(ξ

h
k , X

(k+1)
h )−H1(ξ

h
⋆ , X

(k+1)
h )

)2]
=

1

(1− α)2
E[|1{X(k+1)

h >ξhk}
− 1{X(k+1)

h >ξh⋆ }
|]

=
1

(1− α)2
E
[
E[1{ξhk<X

(k+1)
h <ξh⋆ }

+ 1{ξh⋆<X
(k+1)
h <ξhk}

|Fh
k ]
]

=
1

(1− α)2
E[|FXh

(ξhk )− FXh
(ξh⋆ )|] ≤

suph∈H ∥fXh
∥∞

(1− α)2
E[(ξhk − ξh⋆ )2]

1
2

≤ K suph∈H ∥fXh
∥∞

(1− α)2
γ

1
2
k .

(H.11)

Observe that (ρhℓ
k − ρ

hℓ−1

k )k≥1 is a sequence of (Fhℓ ,P)-martingale increments. Thus, recalling
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that 2γ1V
′′
0 (ξ

0
⋆) >

3
2 , by (H.11) and (H.4),

E[|Dℓ
n|2] = E

[( n∑
k=1

γkΠk+1:n(ρ
hℓ
k − ρ

hℓ−1

k )

)2]

=
n∑

k=1

γ2k |Πk+1:n|2E[(ρhℓ
k − ρ

hℓ−1

k )2]

≤ 2
n∑

k=1

γ2k |Πk+1:n|2(E[|ρhℓ
k |

2] + E[|ρhℓ−1

k |2])

≤ 2
n∑

k=1

γ2k |Πk+1:n|2
(
E
[(
H1(ξ

hℓ
k , X

(k+1)
hℓ

)−H1(ξ
hℓ
⋆ , X

(k+1)
hℓ

)
)2]

+ E
[(
H1(ξ

hℓ−1

k , X
(k+1)
hℓ−1

)−H1(ξ
hℓ−1
⋆ , X

(k+1)
hℓ−1

)
)2])

≤ K
n∑

k=1

γ
5
2
k |Πk+1:n|2 ≤ Kγ

3
2
n .

(H.12)

Hence, since the random variables (Dℓ
n)1≤ℓ≤L are independent and centered, the above estimate

yields

E
[( L∑

ℓ=1

Dℓ
Nℓ

)2]
=

L∑
ℓ=1

E[|Dℓ
Nℓ
|2] ≤ K

L∑
ℓ=1

γ
3
2
Nℓ
.

Step 1.6. Study of
∑L

ℓ=1E
ℓ
Nℓ

.

Note again that (ehℓ
k − e

hℓ−1

k )k≥1 is a sequence of (Fhℓ ,P)-martingale increments, so that

E[|Eℓ
n|2] = E

[( n∑
k=1

γkΠk+1:n

(
ehℓ
k − e

hℓ−1

k

))2]
=

n∑
k=1

γ2k |Πk+1:n|2E[(ehℓ
k − e

hℓ−1

k )2]

≤
n∑

k=1

γ2k |Πk+1:n|2E
[(
H1(ξ

hℓ
⋆ , Xhℓ

)−H1(ξ
hℓ−1
⋆ , Xhℓ−1

)
)2]

.

(H.13)

The last term on the right hand side above can be upper bounded by

E
[(
H1(ξ

hℓ
⋆ , Xhℓ

)−H1(ξ
hℓ−1
⋆ , Xhℓ−1

)
)2]

≤ 2
(
E
[(
H1(ξ

hℓ
⋆ , Xhℓ

)−H1(ξ
hℓ−1
⋆ , Xhℓ

)
)2]

+ E
[(
H1(ξ

hℓ−1
⋆ , Xhℓ

)−H1(ξ
hℓ−1
⋆ , Xhℓ−1

)
)2])

≤ 2

(1− α)2
(
E[(1{Xhℓ

>ξ
hℓ
⋆ } − 1{Xhℓ

>ξ
hℓ−1
⋆ }

)2]

+ E[(1
{Xhℓ

>ξ
hℓ−1
⋆ }

− 1
{Xhℓ−1

>ξ
hℓ−1
⋆ }

)2]
)
.

(H.14)

On the one hand, by Proposition 2.4,

E[(1{Xhℓ
>ξ

hℓ
⋆ } − 1{Xhℓ

>ξ
hℓ−1
⋆ }

)2] = E[1
{ξ

hℓ−1
⋆ <Xhℓ

<ξ
hℓ
⋆ }

+ 1
{ξhℓ⋆ <Xhℓ

<ξ
hℓ−1
⋆ }

]

= |FXhℓ
(ξhℓ

⋆ )− FXhℓ
(ξ

hℓ−1
⋆ )| ≤ sup

h∈H
∥fXh

∥∞|ξhℓ
⋆ − ξ

hℓ−1
⋆ | ≤ Khℓ.

On the other hand, Proposition 3.2 yields

E[(1
{Xhℓ

>ξ
hℓ−1
⋆ }

− 1
{Xhℓ−1

>ξ
hℓ−1
⋆ }

)2] ≤ Kϵ(hℓ),
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where Khℓ
is a constant satisfying supℓ≥1Khℓ

<∞, and ϵ(hℓ) is defined in (3.9). Combining the
two previous estimates, recalling (H.13), (H.14) and (H.4),

E[|Eℓ
n|2] = E

[( n∑
k=1

γkΠk+1:n(e
hℓ
k − e

hℓ−1

k )

)2]

≤ K
(
hℓ + ϵ(hℓ)

) n∑
k=1

γ2k |Πk+1:n|2 ≤ Kϵ(hℓ)γn.
(H.15)

Observe again that the random variables (Eℓ
n)1≤ℓ≤L are independent and centered. Hence, the

above estimate directly yields

E
[( L∑

ℓ=1

Eℓ
Nℓ

)2]
=

L∑
ℓ=1

E[|Eℓ
Nℓ
|2] ≤ K

L∑
ℓ=1

γNℓ
ϵ(hℓ).

Step 1.7. Conclusion.
Gathering the previous estimates on each term of (H.7),

E[(ξML
N − ξhL

⋆ )2] ≤ K
(
γN0 +

( L∑
ℓ=1

γNℓ
+ γ

1
2
Nℓ
h
( 1
4
+δ)∧1

ℓ

)2

+
L∑

ℓ=1

γ
3
2
Nℓ

+ γNℓ
ϵ(hℓ)

)
. (H.16)

From the Cauchy-Schwarz inequality and the fact that h
1
2
ℓ ≤ Kϵ(hℓ),

L∑
ℓ=1

γ
1
2
Nℓ
h
( 1
4
+δ)∧1

ℓ ≤
( L∑

ℓ=1

γNℓ
h

1
2
ℓ

) 1
2
( L∑

ℓ=1

h
2(δ∧ 3

4
)

ℓ

) 1
2

≤ K
( L∑

ℓ=1

γNℓ
ϵ(hℓ)

) 1
2

, (H.17)

where we used that
∑∞

ℓ=1 h
2(δ∧ 3

4
)

ℓ =
h
2(δ∧ 3

4 )

0

M2(δ∧ 3
4 )−1

<∞. Plugging (H.17) into (H.16) concludes the

proof of (3.7).

Step 2. Study of χML
N − χ

hL
⋆ .

For the sake of simplicity, we assume χhℓ
0 = 0, ℓ ∈ {0, . . . , L}. The general case follows from

similar arguments. Recalling the definition (D.24), we derive form the decomposition (D.23)

χhℓ
n − χhℓ

⋆ − (χ
hℓ−1
n − χhℓ−1

⋆ )

=
1

n

n∑
k=1

εhℓ
k − ε

hℓ−1

k +
1

n

n∑
k=1

Vhℓ
(ξhℓ

k−1)− Vhℓ
(ξhℓ

⋆ )−
(
Vhℓ−1

(ξ
hℓ−1

k−1 )− Vhℓ−1
(ξ

hℓ−1
⋆ )

)
.

Thus

χML
N − χhL

⋆ = χh0
N0
− χh0

⋆ +

L∑
ℓ=1

χhℓ
Nℓ
− χhℓ

⋆ − (χ
hℓ−1

Nℓ
− χhℓ−1

⋆ )

= χh0
N0
− χh0

⋆ +
L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

εhℓ
k − ε

hℓ−1

k

+

L∑
ℓ=1

1

Nℓ

Nℓ∑
k=1

Vhℓ
(ξhℓ

k−1)− Vhℓ
(ξhℓ

⋆ )−
(
Vhℓ−1

(ξ
hℓ−1

k−1 )− Vhℓ−1
(ξ

hℓ−1
⋆ )

)
.

(H.18)

Step 2.1. Study of χh0
N0
− χh0

⋆ .
By Theorem 2.7(ii),

E[(χh0
N0
− χh0

⋆ )2] ≤ K

N1∧2β
0

. (H.19)
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Step 2.2. Study of
∑L

ℓ=1
1
Nℓ

∑Nℓ
k=1 ε

hℓ
k − ε

hℓ−1

k .
Via the definition (D.24), the 1-Lipschitz property of x 7→ x+, x ∈ R, the fact that E[(Xhℓ

−
Xhℓ−1

)2] ≤ Khℓ by (G.4) with p = 2, and the fact that |ξhℓ
⋆ − ξ

hℓ−1
⋆ | ≤ Khℓ by Proposition 2.4,

E[(εhℓ
k − ε

hℓ−1

k )2|Fk−1] =
1

(1− α)2
Var

(
(X

(k)
hℓ
− ξhℓ

k−1)
+ − (X

(k)
hℓ−1
− ξhℓ−1

k−1 )
+
∣∣Fk−1

)
≤ 1

(1− α)2
E
[(
X

(k)
hℓ
− ξhℓ

k−1 − (X
(k)
hℓ−1
− ξhℓ−1

k−1 )
)2∣∣Fk−1

]
≤ 3

(1− α)2
(
E[(Xhℓ

−Xhℓ−1
)2] +

(
ξhℓ
k−1 − ξ

hℓ−1

k−1 − (ξhℓ
⋆ − ξ

hℓ−1
⋆ )

)2
+ (ξhℓ

⋆ − ξ
hℓ−1
⋆ )2

)
≤ K

(
hℓ +

(
ξhℓ
k−1 − ξ

hℓ−1

k−1 − (ξhℓ
⋆ − ξ

hℓ−1
⋆ )

)2)
.

(H.20)

We seek an L2(P)-estimate for the quantity (ξhℓ
k − ξ

hℓ−1

k − (ξhℓ
⋆ − ξ

hℓ−1
⋆ )). By the decomposition

(H.6), using (H.8), (H.9), (H.10), (H.12) and (H.15), we obtain

E
[(
ξhℓ
k − ξ

hℓ−1

k − (ξhℓ
⋆ − ξ

hℓ−1
⋆ )

)2] ≤ K(
γ

3
2
k + γkϵ(hℓ)

)
. (H.21)

Recall that, for each ℓ ∈ {1, . . . , L}, (ehℓ
k − e

hℓ−1

k )1≤k≤n are (Fhℓ ,P)-martingale increments.
Hence, taking the expectation on both sides of the inequality (H.20), using (H.21) and the fact
that, by assumption and Lemma 2.1, supℓ≥0 E[|ξ

hℓ
0 |] + |ξ

hℓ
⋆ | <∞,

E
[(

1

n

n∑
k=1

εhℓ
k − ε

hℓ−1

k

)2]
=

1

n2

n∑
k=1

E[(εhℓ
k − ε

hℓ−1

k )2]

≤ 1

n2

(
hℓ + sup

ℓ≥1
E
[(
ξhℓ
0 − ξ

hℓ−1

0 − (ξhℓ
⋆ − ξ

hℓ−1
⋆ )

)2])
+

1

n2

n∑
k=2

E[(εhℓ
k − ε

hℓ−1

k )2]

≤ K
(

1

n2
+
hℓ
n

+
1

n2

n∑
k=1

γ
3
2
k + γkϵ(hℓ)

)
≤ K

(
hℓ
n

+
1

n2

n∑
k=1

γ
3
2
k + γkϵ(hℓ)

)
.

Thus, the random variables ( 1
Nℓ

∑Nℓ
k=1 ε

hℓ
k − ε

hℓ−1

k )1≤ℓ≤L being independent and centered,

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

εhℓ
k − ε

hℓ−1

k

)2]
=

L∑
ℓ=1

E
[(

1

Nℓ

Nℓ∑
k=1

εhℓ
k − ε

hℓ−1

k

)2]

≤ K
L∑

ℓ=1

(
hℓ
Nℓ

+
1

N2
ℓ

Nℓ∑
k=1

γ
3
2
k + γkϵ(hℓ)

)
.

(H.22)

Step 2.3. Study of
L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

Vhℓ
(ξhℓ

k−1)− Vhℓ
(ξhℓ

⋆ )−
(
Vhℓ−1

(ξ
hℓ−1

k−1 )− Vhℓ−1
(ξ

hℓ−1
⋆ )

)
.

We deal now with the last term on the right hand side of (H.18). Using Minkowski’s inequality,
a second order Taylor expansions of Vhℓ

and Vhℓ−1
, that V ′

hℓ
(ξhℓ

⋆ ) = 0, that suph∈H ∥V ′′
h ∥∞ <∞

by Assumption 2.5(ii), (2.6) and that
∑

k≥1 γk =∞,

E
[(

1

n

n∑
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(ξhℓ
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(
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(ξ
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⋆ )
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2

≤ K
(
1

n
+

1

n− 1

n∑
k=2

E[(ξhℓ
k−1 − ξ
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⋆ )4]

1
2 + E[(ξhℓ−1

k−1 − ξ
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⋆ )4]

1
2

)

≤ K
(
1

n
+

1

n− 1

n−1∑
k=1

γk

)
≤ Kγ̄n.
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Thus

E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

Vhℓ
(ξhℓ

k−1)− Vhℓ
(ξhℓ

⋆ )−
(
Vhℓ−1

(ξ
hℓ−1

k−1 )− Vhℓ−1
(ξ

hℓ−1
⋆ )

))2] 1
2

≤ K
L∑

ℓ=1

γ̄Nℓ
. (H.23)

Step 2.4. Conclusion.
Coming back to (H.18), by (H.19), (H.22) and (H.23),

E[(χML
N − χhL

⋆ )2] ≤ 3

(
E[(χh0

N0
− χh0

⋆ )2] + E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1
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k − ε

hℓ−1

k

)2]

+ E
[( L∑

ℓ=1

1

Nℓ

Nℓ∑
k=1

Vhℓ
(ξhℓ

k−1)− Vhℓ
(ξhℓ

⋆ )−
(
Vhℓ−1

(ξ
hℓ−1

k−1 )− Vhℓ−1
(ξ

hℓ−1
⋆ )

))2])

≤ K
( L∑

ℓ=1

hℓ
Nℓ

+
1

N2
ℓ

Nℓ∑
k=1

γ
3
2
k + γkϵ(hℓ) +

( L∑
ℓ=1

γ̄Nℓ

)2)
.

This concludes the proof of (3.8).
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