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Paris, France

ORCID : 0000-0001-6395-634X
eric.bavu@lecnam.net

Abstract—This paper presents a configurable version of Ex-
treme Bandwidth Extension Network (EBEN), a Generative
Adversarial Network (GAN) designed to improve audio captured
with body-conduction microphones. We show that although
these microphones significantly reduce environmental noise, this
insensitivity to ambient noise happens at the expense of the
bandwidth of the speech signal acquired by the wearer of the
devices. The obtained captured signals therefore require the use
of signal enhancement techniques to recover the full-bandwidth
speech. EBEN leverages a configurable multiband decomposition
of the raw captured signal. This decomposition allows the data
time domain dimensions to be reduced and the full band signal
to be better controlled. The multiband representation of the
captured signal is processed through a U-Net-like model, which
combines feature and adversarial losses to generate an enhanced
speech signal. We also benefit from this original representation
in the proposed configurable discriminators architecture. The
configurable EBEN approach can achieve state-of-the-art en-
hancement results on synthetic data with a lightweight generator
that allows real-time processing.

Index Terms—Speech enhancement, PQMF-banks, Bandwidth
extension, Frugal AI, Body-Conduction Microphones

I. INTRODUCTION

Capturing speech involves the use of microphones to trans-
form mechanical vibrations into an electrical signal, later dig-
italized and eventually used for radio communications. Under
quiet conditions, using an airborne-sound microphone near the
speaker’s lips is the most appropriate way to capture clean
speech. Nevertheless, in presence of ambient noise generated
by sources contaminating the sound scene, the speech signal
of interest is altered by the acoustic environment, which also
contributes to air molecules vibration. This situation – which
reduces the intelligibility of communications – is frequently
encountered in industry, on the battlefield or in strong winds.
In extreme cases, operators are even unable to communicate.

Before using any speech enhancement technique, it is
worth pondering the best mechanical signal to rely on in
noisy conditions. There are other choices besides recording
airborne sound pressure, such as the body-conducted inner
vibrations of the speaker. The human body is not as easily
moved by environmental noise as ambient air, due to the
high damping of the transmitted sound wave in the tissues.
Therefore, capturing inner tissues’ vibrations caused by the
vocal tract near the speaker’s head has great potential for
improving the signal to noise ratio when recording speech
in noisy environments. This can be performed with noise-
resilient body-conduction microphones (BCMs), which allow
sensing the internal vibrations of the equipped person. This
family of unconventional voice pickup systems includes bone
conduction transducers [1]–[5], throat microphones [6], [7]
and in-ear microphones mounted in occlusive earplugs offering
hearing protection [8]–[11]. Studies including [2], [9] and [12]
demonstrated that they offer higher quality and intelligibility
in noise than conventional capture devices. We also conducted
our experiment on Sec. III-A to determine when it is preferable
to use a BCM over a traditional microphone.

In addition to eliminating external noise pollution, BCMs
are less invasive and compatible with helmets, which are often
required in noisy environments. Similarly, they are suitable for
wearing gas masks or face masks which is not negligible in
times of pandemic. In-ear capture devices are also prone to
be integrated into hearing protection devices. The protection
will isolate the sensor from the external environment, and the
wearer’s speech capture will be improved. Finally, the broad
adoption of true wireless stereo earbuds and bone conduction
earphones also benefits the development of inner voice capture.
Indeed, those systems are reversible and could be used as
BCMs.



Despite many advantages, the usage of BCMs has not yet
been democratized. This can be marginally explained by the
fact that they are not always necessary (e.g., in a quiet, distant
meeting), but mainly because recordings suffer from reduced
bandwidth. Indeed, mid and high frequencies are missing
due to the intrinsic low-pass characteristics of the biological
pathway. Further processing is then necessary to optimize the
effective bandwidth of the captured speech. Moreover, other
physiological sounds, such as swallowing, blood flow - or
any other sound produced by the body - are also picked up
by BCMs and represent a new form of noise contaminating
speech capture.

In simple terms, speech capture in surrounding noise can
be achieved either by using airborne speech with a denois-
ing algorithm or by using a noise-proof body-conduction
microphone with bandwidth extension techniques. The latter
is a viable solution for critical noise levels (≥ 85dB) when
differential microphones or directional boom microphones
cannot eliminate high-level surrounding noise. Therefore, this
article proposes an extreme bandwidth extension deep neural
network for speech signals captured with noise-resilient body-
conduction microphones.

Since the desirable system could be a two-way communi-
cation device for industrial of military usecases, this entails
real-time execution constraints, i.e. a short processing time to
be indistinguishable from the human ear. Moreover, edge com-
putations are required to guarantee low latency, necessitating
a light algorithm. These considerations also match frugal AI
requirements. Finally, the developed model should be robust to
speaker identity, physiological and residues of external noises
that would have infiltrated the microphone.

To meet the expectations of extreme bandwidth extension
and related requirements, research like [4], [13], [14] suggests
that frugal deep learning is an appropriate approach. Indeed,
compared to conventional signal processing methods that can
only extend existing frequency content, deep learning can re-
generate missing components such as fricatives. Additionally,
deep learning offers the advantage of simultaneous denoising
and signal enhancement, eliminating the need for separate de-
noising procedures. On the other hand, massive deep learning
models are not relevant for real-time execution.

Based on the above observations, we developed configurable
EBEN, a new deep learning model inspired by a family of
lightweight convolutional-based encoder-decoder architecture
[13], [15]–[18] to infer mid and high frequencies from speech
containing only low frequencies (extreme bandwidth exten-
sion). We use a generator that maps the degraded speech
signal to an enhanced version. This task is called blind speech
enhancement because we do not use any external modality
(contrary to Seanet [16], which takes advantage of both
airborne speech and accelerometer data). EBEN’s generator
is optimized to produce samples close to the reference while
maintaining a certain degree of naturalness at different time
scales. We still differ from previous work by using a multiband
decomposition performed with Pseudo-Quadrature Mirror Fil-
ters (PQMF) [19]. Combined with some hypotheses on ad-

dressed degradations, this decomposition is applied to reduce
the dimension of input features, which significantly decreases
the latency and computational load of the network. In addition,
this alternative representation is useful for focusing signal
discrimination solely on high frequency bands.

A preliminary version of our research was presented at
ICASSP 2023 [20]. The present paper extends the original
study by highlighting the usefulness of BCMs in noise, by
addressing more diverse and realistic degradations, by dis-
cussing the goals and flexibility offered by the configurable
aspect of our approach, and by comparing EBEN’s latency and
memory footprint to other previously published networks. An
extensive discussion of the usefulness of common objective
metrics is also proposed for the specific task of bandwidth
extension, along with a correlation analysis of objective and
neural distances with subjective evaluations. The present paper
also proposes an extensive discussion of related work. Finally,
details of the training strategy, architecture, and statistical
analysis of the evaluation survey are presented. The website
https://jhauret.github.io/eben also provides example audio files
to listen to and the source code of EBEN.

The body-conduction microphone studied in this paper is
an in-ear microphone prototype mounted in an earplug. The
few minutes of recordings at our disposal being insufficient to
serve for supervised training, we instead analyzed bandwidth
loss to simulate in-ear-like degradations on the French Lib-
rispeech dataset [21]. Triplet train/dev/test sets of reference
and corrupted speech pairs were produced to train our model,
and several baselines [13], [14], [16], [22]. We plan to later
release a publicly available dataset of speech capture with
BCMs to circumvent the disadvantages of the use of synthetic
data, which are discussed in Sec. VI-D.

It is worth noting that focusing on the capture-induced
degradation of a specific BCM does not detract from the
generality of the proposed approach. This family of sensors
consistently degrades speech in a similar manner, acting as
a low-pass filter, and adding pysiological and frictional noise
that would not be captured by a conventional microphone.
Variations occur mainly in cut-off frequency, attenuation, and
lack of coherence at certain frequencies. Therefore, a suitable
dataset would be sufficient to address any other capture
system. It is also noteworthy that preliminary experiments have
shown that the EBEN approach performs well at conventional
bandwidth extension (e.g. upsampling 4kHz to 16kHz), which
has been confirmed by listening and metrics.

In Sec. II we review related previous studies, which also
serve as a baseline for our comparisons. In Sec. III, we show
that BCMs are more suitable for recording speech in noise than
traditional microphones, present the observed degradation with
our in-ear prototype, and describe our protocol for generating
synthetic data. Sec. IV provides a brief reminder of the PQMF
bank and a detailed presentation of EBEN architecture and loss
functions. Sec. V describes the training pipeline, experimental
results, and compares EBEN to other approaches. The discus-
sion Sec. VI provides some insights into the EBEN model by
discussing why PQMF bands fit well in the context of real-time

https://jhauret.github.io/eben


BCM speech enhancement and the configurable aspects of the
architecture. This section also includes a statistical analysis
of the correlation between subjective and objective metrics
and discuss the accordance of the synthetic data generation
strategy. Finally, Sec. VII concludes the paper.

II. RELATED WORK

The earliest speech bandwidth extension algorithms, usually
applied to telephony applications, were performed with pure
signal processing algorithms like spectral folding [23], Linear
Predictive Coding [24], modulation techniques [25], [26] or
non-linear processing [27]. This simple procedure has also
been used in the context of in-ear microphones [9] with
fair results, yet to be improved. This method creates missing
harmonics in the high frequencies but cannot recover missing
formants and fricatives. The earliest data-driven approaches
have subsequently offered a more realistic extension. Those
approaches are composed of several building blocks, including
a statistical model that aims to estimate the high band spectral
envelope. In many cases, this statistical model is one of the
following: codebooks [28], Gaussian Mixture Model [29],
Hidden Markov Model [30] and even some neural networks
[31]. Although the quality is generally better with those
methods, overly smoothed spectra are still produced at the
expense of speech naturalness.

Recent advances in neural speech synthesis [14], [32]–[36]
have proven that end-to-end deep learning is state-of-the-art
in terms of simplicity and sample quality. Therefore, deep
learning seems promising to accomplish this extreme band-
width extension task. Indeed, the ability of neural networks to
extract relevant features for the downstream task will allow the
matching of high and low frequency contents. Raw waveform
input is preferred over handcrafted features like spectrogram,
mel-spectrogram [37], or Mel-frequency cepstral coefficients
(MFCCs) [38] to minimize human processing and let the
network build its representation. This trend is endorsed by
several works in the audio field [39]–[42] and especially for
bandwidth extension (synonym of audio super-resolution) to
avoid rebuilding the phase separately [22], [43]–[45].

The use of raw audio can also be combined with multiband
processing to speed up inference, as in DurIAN [46], MB-
MelGAN [47] or RAVE [48]. The speech signal is therefore
processed at a reduced sampling rate thanks to the decompo-
sition, unlike other super-resolution networks [49], which use
an input signal sampled at the target sampling frequency. To
pursue the objective of fast inference, a fully convolutional
architecture has been preferred like in [22], [32], specifically
U-Net-like as other audio-to-audio tasks [50], [51]. The up-
sampling layers use transposed convolutions [52] instead of
subpixel layers [53]. Transposed convolutions do not produce
checkerboard artifacts when kernel size and strides are chosen
to avoid overlapping disparities, as explained in [54].

In addition, a simple reconstruction loss may be insuffi-
cient for conditional generation, producing unrealistic samples.
As shown in [14], [55]–[57], adversarial networks [58] can
significantly improve the naturalness of the produced sound.

Multiple discriminators are even used in [16], [45], [56] to
focus signal discrimination at different time scales. Moreover,
feature matching is also encouraged for the reconstruction
loss because it allows to enhance the produced sound quality
in an end-to-end fashion. Indeed, discriminators’ embeddings
are excelling at building a relevant representation for our
problem; it is therefore consistent to compute distance based
on those features. Alternatives to this approach are either the
L1/L2 norms in the time domain, which are known to be
misaligned with human perception, or complex losses like
multiscale Short Time Fourier Transform, which depend on
chosen hyperparameters [22], [59], thus increasing tuning
efforts.

Regarding the specific literature on blind (or non-multi
modal) speech enhancement for BCMs, different approaches
adopted classic processing to achieve bandwidth extension
[1], [6], [7], [9]. Subjective quality evaluations have proven
those approaches to be inadequate for this task. Then, neural
networks started to be employed, firstly as a processing block
among others [10] to estimate an enhancement function in
a fixed feature domain combined with time-domain filtering.
Subsequent research then began to carry out the improvement
task and ultimately to perform the enhancement as end-to-
end tasks. Among published manuscripts on the subject, the
works of Yuang Li et al. [4], Hung-Ping Liu et al. [60], and
Dongjing Shan et al. [61] applied this approach for bone
conduction microphones, and Mattes Ohlenbusch et al. [11] to
in-ear microphones. The main drawback of those approaches
relies on the fact that they are based on a pure reconstructive
loss, eventually with a regularization part. As they expressed
in their articles, an audible difference between the target
and the processed signals remains. This statement may be
irrevocable due to the limited information left in the signal
captured by BCMs. However, GANs [62] can produce realistic
signals by slightly deviating from the reference. The task of
speech enhancement for speech capture with body-conduction
microphones is thus complicated. Indeed, [3], [16], [63], [64]
only used BCMs as a conditional signal for enhancement in
a multi-modal framework. Moreover, even if BCMs mainly
capture speech, residues of external and physiological noises
persist [65] and would necessitate denoising. Hopefully, deep
learning models can perform the denoising task simultaneously
with the bandwidth extension. [9] has also proven that the
contaminating noise knowledge was helpful, although we will
not capitalise on this particular knowledge in the present paper.

Lastly, this research area lacks large public corpora that use
body-conduction microphones to reliably train deep models.
The ABCS [66] and EMSB1 datasets, which consist of either
bone or in-ear and air-conducted Mandarin speech pairs, are
currently the largest corpora, consisting of 42 hours and 128
hours of speech, respectively. Another smaller public2 dataset
is Speech in-EAR (SpEAR) database proposed in [67] with
25 participants, split in French/English speakers. Other private

1https://github.com/elevoctech/ESMB-corpus
2freely available upon request from a research institution
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datasets emerged, like [4], which introduced 200 minutes
of speech recorded via bone conduction. The dataset was
large enough to train on, likely due to their model’s meager
number of parameters (4.5k for the lightest model). [11] opted
for a different strategy with their overall 30 minutes in-ear
captured speech. The limited-size dataset was first used to
simulate meaningful degradations, taking into account the
body-produced noise used to train their model. Finally, they
re-used real data to fine-tune their model’s decoder.

III. IN-EAR MICROPHONE STUDY

The selected BCM is an early prototype based on a MEMS
microphone (STM MP34DT01) driven by an STM32 H7
microcontroller [68] developed by the ISL and Cotral Lab.
This device takes advantage of the speaker’s hearing protec-
tion by being placed inside a custom-molded earplug, which
increases communication capabilities in challenging and noisy
environments. The reference speech signals are captured by
a B&K Type 4192 condenser microphone connected to a
TEAC LX10 data recorder. The reference and in-ear signals
are recorded at 48 kHz, resampled at 16 kHz and finally
synchronized using cross-correlation. We collected utterances
of the Combescure’s phonetically balanced sentences [69]
from a single speaker.

A. In-noise comparison with traditional microphone

This section aims at justifying that BCMs are more suitable
for noisy environments and at establishing a rough estimate
of the noise level above which their use should prevail. We
conducted subjective A/B preference tests to compare our
in-ear microphone with a traditional microphone. A single
speaker was recorded simultaneously by both microphones
in different acoustic environments, ranging from a quiet
acoustically treated room to a reverberating room with sev-
eral levels of surrounding noise. When surrounding noise is
present, the speaker naturally produces Lombard speech [70].
Comparisons are performed using 7 different utterances from
the Combescure’s sentences [69], which have been recorded
in an audiometric booth (IAC Acoustics and walls covered
with acoustic foam), and in a reverberating room with pink
noise levels { ∅ ,55dB, 65dB, 75dB, 85dB, 95dB } without
any enhancement techniques. We recruited 38 participants
and used the GoListen platform [71] to conduct the test.
Participants were asked whether they preferred in-ear or classic
recordings for all acoustic environments. Participants were
divided into two groups to rate either the quality or the ease
of understanding of the audio samples. Obtained results are
presented in Fig. 1 along with the corresponding p-values for
each A/B comparisons.

According to Fisher’s exact test and a significance rate of
1%, the obtained results allow us to conclude that the use
of an in-ear microphone is preferred for both ease of speech
understanding and sound quality for surrounding noise levels
of 75 dB or more. On the other hand, a traditional microphone
is endorsed for ease of understanding and quality for noise
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Fig. 1: A/B testing results: in-ear vs traditional microphones.
The p-values shown at the top of each bar indicate the
significance of the preferred microphone.

levels below or equal to 55dB. No statistically significant
difference can be drawn for a 65dB noise level.

B. Degradation study

In-ear own voice capture is more adapted for applications in
noisy environments because it mainly contains speech with-
out external noise. However, the acoustic wave propagation
between the vocal tract and the transducers causes irreversible
information loss: almost no relevant speech signal is picked up
above a threshold frequency. Complex interactions with tissues
are also responsible for phase shifts and anti-resonances.

This phenomenon is further influenced by the occlusion
effect [72] due to the fitting of the individual protectors,
causing speech to resonate inside the ear canal. This aspect
causes an amplification of the remaining signal, leading the
wearer to hear an amplified version of their own voice. The
occlusion effect is therefore the consequence of wearing an
earplug, but it is also necessary in order to obtain an in-
ear signal that is not significantly degraded by environmental
noise.

A first coarse approximation of those degradations can be
modeled by a linear impulse response ψ that allows to estimate
the in-ear signal x from the emitted signal y :

x(t) = (ψ ∗ y)(t) (1)

To evaluate the corresponding transfer function, we simulta-
neously use the in-ear prototype and a regular microphone
placed in front of the speaker’s mouth under noise-free con-
ditions. The absence of noise allows us to consider airborne
speech as the emitted signal. The degradation filter estimates
{Ψ̃i}i∈[1,53] were obtained with cross power spectral densities
{Pyx,i}i∈[1,53] and {Pyy,i}i∈[1,53] approximated by Welch’s
method [73], Eq. 2. Short Time Fourier Transforms were com-
puted on 512 samples corresponding to 32 ms for the 16 kHz
sampling rate used during this analysis. Welch’s method has
a temporal horizon of 1.024 second with a recovery rate of
50%. A Voice Activity Detection (VAD) pre-processing based



on a simple reference’s power thresholding was applied to
select meaningful segments. The reference and in-ear signals
were normalized before calculating the cross power spectral
densities because the in-ear microphone is not calibrated.
Therefore, the shape of the transfer function is correct as a
function of frequency, but the absolute amplitude does not
reflect differences in sound pressure.

Ψ̃i(f) =
Pyx,i(f)

Pyy,i(f)
,∀i ∈ [1, 53] (2)

53 estimates were necessary to produce a robust es-
timation of the transfer function, noted Ψraw median =
median({Ψ̃i}i∈[1,53]), because speech signals are not station-
ary. The analysis was performed on a single-person recording
of 23 seconds after the VAD processing, corresponding to 10
utterances of Combescure’s sentences [69]. As Ψraw median

is still noisy we performed a smoothing step to obtain
Ψsmoothed median which is plotted in Fig. 2, surrounded by
its 10% and 90% percentiles, illustrated by IQR80%.
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The estimated coherence function C̃yx, defined on Eq. 3
and represented on Fig. 3, highlights an absence of causality
between x and y above 3kHz. Hence, Fig. 2 does not make
sense above that frequency.

C̃yx(f) =
|Pyx(f)|2

Pxx(f)Pyy(f)
(3)

This shows that the in-ear BCM allows to only capture
relevant speech content inside the ear canal for frequencies
{f | Ψsmoothed median(f) > −20dB, ∀f ∈ R+} i.e. in a
range below 2 kHz. Indeed, Fig. 2 indicates that the in-ear
microphone exhibits a very high attenuation at mid and high
frequencies: no relevant signal is present in this frequency
range. Interestingly, at very low frequencies i.e. below 80
Hz, the coherence function in Fig. 3 is also close to zero,
which denotes a poor correspondance between the two signals.
The physiological sounds (e.g. swallowing, blood flow, tongue
clicking, teeth grinding) are responsible for this phenomenon,
as they are only sensed by the in-ear transducers. Some
additional phenomenons like microphonics and movement
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Fig. 3: Coherence function of the in-ear transducer

artifacts may also occur. A time domain representation of the
synchronized capture in Fig. 4 highlights this difference in
the quiet region, for t > 0.5 s. For the [80, 300] Hz range, the
occlusion effect and small shifts in formant frequencies may
occur.
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Fig. 4: Time domain representation of speech signals captured
in a quiet environment. Active speech is presented in green
area.

Finally, two anti-resonances are observed in Fig. 3 at 900
Hz and 1700 Hz, corresponding to vibration nodes of the
occluded ear canal and propagation in the bones and tissues
of our subject. It is noteworthy that those observations are not
universal: acoustic paths differ among speakers because their
bone and biological tissue structures are unique - as well as
their ear canal geometries and properties - which results in
different spectral properties.

C. Simulation of the dataset

Deep learning-based approaches are only efficient in large
data regimes; the few minutes of in-ear samples currently
available to us are highly insufficient for supervised training.
Therefore, we adopted a simulated corrupted wideband speech
from the French Librispeech dataset [21] in an in-ear-like



fashion, along with a data augmentation strategy. In the present
paper, we simulated two kind of transfer functions to filter the
clean speech data: Ψfixed and Ψrandom which are jointly plot
on Fig. 2.

In both cases, a gaussian white noise with a power -23 dB
below the low-pass filtered signal is added. This noise intends
to play the role of physiological noise. It is also masking any
high frequency residues.

Ψfixed: This fixed degradation, used in Sec. V, is obtained
using an autoregressive moving-average model. Ψfixed is a
2nd order low-pass filter with a cutoff frequency of 600 Hz
and unitary Q-factor that is applied using a filtfilt3 procedure
to ensure zero phase shift.

Ψrandom: This ever-changing degradation is constructed to
fall within the green area of Fig. 2. It is more realistic as
it fits better to Ψsmoothed median and has some randomness.
Indeed, Ψrandom is sampled from a log-uniform distribution
with IQR80% bounds and brought to a very low gain above
3kHz with an Hann apodization function. We will use this
transfer function in Sec. VI-D to discuss the limitations of the
linear time-invariant modeling of the in-ear degradation.

Those simulated degradations might lack some realism but
still ensure a wide application field for developed algorithms
and the ability to focus on the bandwidth extension issue.
Naturally, this simulation approach would involve minimizing
the disparity between the simulated and real data; however,
this process is highly time-consuming and does not guarantee
improved performance. Addressing this discrepancy would
require incorporating additional speakers, surpassing our cur-
rent assumption of a linear impulse response, and adopting
complex physical models, such as in [74]. Moreover, it would
necessitate the realistic blending of pre-recorded physiological
noises with speech signals. Instead, we have opted for a
simpler yet adequately challenging degradation approach to
compare various methods. In parallel, we are focusing on
collecting a substantial dataset of speech capture with different
BCMs for a subsequent study. Once this dataset is complete,
the step of enhancing simulation relevance will be bypassed.

IV. EBEN

A. Theory of Pseudo Quadrature Mirror Filter

The Quadrature Mirror Filter (QMF) banks, introduced
in [75], are a set of analysis filters {Hi}i∈[0,M−1] used to
decompose a signal into several non-overlapping channels
of same bandwidth, and synthesis filters {Gi}i∈[0,M−1] used
to recompose the signal afterward. Fig. 5 shows the entire
pipeline. Those filters are obtained from frequency translations
of the same low-pass prototype filter h[n] = Z−1{H(z)}.
A typical frequency response for an M-band Pseudo-QMF
(PQMF) bank is given in Fig. 6.

The reconstruction is exact if {Hi}i∈[0,M−1] and
{Gi}i∈[0,M−1] have an infinite support. In practice, this
is impossible, but Truong Nguyen proposed a near-perfect
reconstruction in [19] by constraining the prototype filter

3consists in applying a digital filter forward and backward to a signal.
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to be a linear-phase spectral factor of a 2Mth band
filter, significantly reducing aliasing. In other words, the
analysis and synthesis impulse responses noted respectively
hi[n] = Z−1{Hi(z)} and gi[n] = Z−1{Gi(z)}, are given by
Eq. 4 where N is the filter length.

{
hi[n] = 2h[n] cos

(
(2i+ 1) π

2M

(
n− N−1

2

)
+ (−1)i π4

)
gi[n] = 2h[n] cos

(
(2i+ 1) π

2M

(
n− N−1

2

)
− (−1)i π4

)
, 0 ≤ n ≤ N − 1, 0 ≤ i ≤M − 1

(4)

Then, Yuan-Pei Lin and PP Vaidyanathan [76] proposed
a more straightforward design methodology by constructing
the prototype from a Kaiser window and filling the following
conditions:
• Make the prototype filter close to zero out of its passband

to minimize the aliasing.

|H(ejω)| ≈ 0 for |ω| > π

M
(5)

• Make the prototype filter close to one into its passband
to minimize the distorsion.

|H(ejω)| ≈ 1 for |ω| < π

M
(6)

Given the desired stopband attenuation and transition band-
width, these requirements directly translate into a one-degree-
of-freedom optimization criterion at the prototype’s cutoff fre-
quency. This criterion is minimized to find the optimal cutoff
frequency for some M and N . Also note that although minimal
band overlap implies very low reconstruction error, it is not
equivalent; in fact, phase opposition phenomena between the
bands also contribute to the elimination of redundant content
in the synthesis phase. In practice, a kernel size of N = 8M
is sufficient for pseudo-perfect reconstruction (signal-to-error
ratio of 55 dB), and a kernel size of N = 128M is sufficient
for pseudo-perfect separation of frequency content between
bands. In this article, we have used a convolution kernel of
N = 8M , which is fast to compute and sufficient to separate
frequency content.



B. Model architecture

1) Generator: Unlike frequency approaches [14], [55],
[77], which require massive 2D convolutional operations to
extract meaningful features from spectrograms or heavy wave-
form approaches [4], [13], [16], [22], [49], [78] which directly
process the audio at the targetted sampling rate, we propose
for EBEN to encapsulate a lightweight U-Net-like generator
between a PQMF analysis layer and a PQMF synthesis layer.
This enclosure reduces the model’s memory footprint by
decreasing the first embedding sample rate by a factor of M .
It also makes it possible to keep only P subbands with voice
content to feed to the first convolution and the last convolution
via the most external skip connection. P must lie between
1 and M . Moreover, the number of encoder/decoder blocks
is reduced to meet the constraints of real-time applications.
Global architecture is exhibited in Fig. 7a and subblocks in
Fig. 7b,7c,7d. Convolutions are intertwined with Leaky ReLU
activation functions with a negative slope of 0.01. The last
non-linearity in the generator is a Hyperbolic tangent placed
right before the PQMF synthesis block, in order to bring
back values between -1 and 1. Skip connections are additive.
We also apply weight normalization [79] on top of every
convolution block with trainable weights, in order to ensure
a fast convergence during training. Altogether, the EBEN
generator is configured by M : the number of PQMF bands and
P : the number of bands from which information is extracted.

2) Discriminators: EBEN’s discriminators directly exploit
the PQMF subbands as inputs without recombining nor upsam-
pling the reconstructed subband signals. We adopt a multiscale
ensemble discriminator approach, inspired by the work of
Kumar et al. in [55], whose inputs are the Q upper bands of the
PQMF decomposition, similarly to [80]. Due to the divisibility
constraint on the number of input and output channels by the
number of groups, Q must be one of {1, 2, 3, 5, 6, 10, 15}.
Like P , it must also satisfy 1 ≤ Q ≤ M . The ensemble
of discriminators analyzes the generated subband signals at
different time scales and helps to improve their quality via
the adversarial process, even though each discriminator is
relatively simple. The subband discriminators {Dk}k∈[1,2,3]
exhibit similar receptive fields to the original multiscale Mel-
GAN discriminators [55]. Moreover, we combined our PQMF
discriminators with the full scale MelGAN discriminator Dk=0

to ensure coherence between bands. The exact architecture of
discriminators are displayed in Fig. 7e and Fig. 7f together
with their positioning in the overall system Fig. 7a. We kept
Leaky ReLU as an activation function but used a stronger
negative slope of 0.2 to allow for a better gradient transmission
to the generator. We also maintained the weight normalization
technique. Overall, the EBEN discrimators are configured
by M : the number of PQMF bands and Q: the number of
enhanced subbands.

C. Loss functions

At each batch, we train alternatively the ensemble of dis-
criminators {Dk}k∈[0,1,2,3] to minimize LD defined on Eq. 7
and the generator G to minimize LG = LGadv + 100×LGrec

where LGadv and LGrec are respectively defined on Eq. 8 and
Eq. 9. Our loss setup is inspired by [16]: LD and LGadv are
a classical hinge loss while LGrec is a feature matching loss.
Using discriminators embeddings for the reconstructive loss
allows focusing on the semantic of the signal, which is harder
to operate in the time domain because useful information is
drowned out amid useless details.

In the underneath definitions, D(l)
k,t represents the layer l

of the discriminator (among Lk layers) of scale k (among K
scales) at time t. Fk,l and Tk,l are the number of features and
temporal length for given indices. We kept x for in-ear signal
and y for the reference.

LD = Ey

 1

K

∑
k∈[0,3]

1

Tk,Lk

∑
t

max(0, 1−Dk,t(y))

+

Ex

 1

K

∑
k∈[0,3]

1

Tk,Lk

∑
t

max(0, 1 +Dk,t(G(x)))


(7)

LadvG = Ex

 1

K

∑
k∈[0,3]

1

Tk,Lk

∑
t

max(0, 1−Dk,t(G(x)))


(8)

LrecG = Ex

 1

K

∑
k∈[0,3]
l∈[1,Lk[

1

Tk,lFk,l

∑
t

‖D(l)
k,t(y)−D(l)

k,t(G(x))‖L1


(9)

The generator’s loss combination allows to generate audio
samples as close as possible to the reference signal thanks to
LrecG , while remaining creative at high frequencies when no
information is available in the degraded signal (especially for
fricatives) thanks to LadvG .

V. EXPERIMENTS AND EVALUATION

A. Training strategy

We trained different models [13], [14], [16], [22] and the
proposed EBEN model on the French Librispeech [21] dataset
resampled uniformly at 16kHz to reverse the Ψfixed degrada-
tion applied on the fly. All the experiments were performed
for two days on a single RTX 2080 Ti GPU with a 16 batch
size of 2-second randomly sliced audio, corresponding to 13
epochs for the EBEN model. Losses are optimized with Adam
[81] using a constant learning rate of 3e−4 and β = (0.5, 0.9)
for EBEN and optimizers parameter values found in original
papers for the other approaches. No parameter tuning nor early
stopping was performed. The EBEN set of hyperparameters
is given by {M = 4, P = 1, Q = 3}. We use M = 4
here because this coarse slicing of the spectra is sufficient to
separate frequency bands containing valuable cues from non-
relevant frequency bands by taking P = 1. Such a reduced
number of frequency bands also allows to reduce the length
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Fig. 7: Architecture of EBEN. ins: input channels. outs: output channels. ks: kernel size



of the PQMF kernel for the analysis and synthesis stages. The
value Q = 3 was also chosen because we assume that the first
frequency band does not require significant enhancement with
the proposed degradation.

B. Objective evaluation

1) Speech quality metrics: To evaluate the model perfor-
mances, Tab. I highlights several objective metrics: Perceptual
Evaluation of Speech Quality (PESQ) [82], Scale-Invariant
Signal-to-Distortion Ratio (SI-SDR) [83], Short-Time Objec-
tive Intelligibility (STOI) [84] and Noresqa-MOS (N-MOS)
[85], which was a much better candidate than Noresqa [86]
for this kind of degradation. All the metrics have been com-
puted on the test set for each benchmarked model. Speech
enhancement being a one-to-many problem, these results
should be analyzed cautiously. Indeed, a plausible signal
with perfect intelligibility but still different from reference
would be misjudged by the metrics. Note that these metrics
are intrusive, since they require groundtruth audio. Generally
speaking, speech quality assessment still lacks objective and
non-intrusive evaluation metrics, although recent work such as
[86] may be part of the solution. This observation is confirmed
by [87] which points out that current objective metrics are
questionable.

Speech
Metrics PESQ SI-SDR STOI N-MOS

Simulated In-ear 2.42 (0.34) 8.4 (3.7) 0.83 (0.05) 2.57 (0.58)
Audio U-net [22] 2.24 (0.49) 11.9 (3.7) 0.87 (0.04) 2.59 (0.44)
Hifi-GAN v3 [14] 1.32 (0.16) -25.1 (11.4) 0.78 (0.04) 3.70 (0.68)
Seanet [16] 1.92 (0.48) 11.1 (3.0) 0.89 (0.04) 4.25 (0.28)
Streaming-Seanet [13] 2.01 (0.46) 11.2 (3.6) 0.89 (0.04) 3.91 (0.60)
EBEN (ours) 2.08 (0.45) 10.9 (3.3) 0.89 (0.04) 4.02 (0.39)

TABLE I: PESQ/SI-SDR/STOI on test set. Significantly best
values (acceptance=0.05) are in bold.

Even though purely reconstructive approaches have a clear
advantage when evaluated on comparative metrics, Kuleshov’s
model [22] does not prevail on STOI, which is the comparative
metric that is the most correlated with human evaluation for
our specific task, as shown in VI-C. Looking at these results,
we could say that best performing models for STOI are either
Seanet, Streaming-Seanet or EBEN.

2) Frugality study: Enhancing performances need to be
qualified by the model’s latency and heaviness to take deep
learning from hype to real-world applications. Indeed, the
bandwidth extension is applicable for a two-way communi-
cation device, if latency is roughly smaller than 20 ms as
claimed in [88]. The total number of parameters influencing
the memory space should also be reduced. Therefore, we
reported on Tab. II :
• Pgen: The total number of parameters for the generator,

including non-trainable parameters like PQMF-bank for
EBEN. For other methods, preprocessing parameters like
the mel windows are not counted.

• Pdis: The total number of parameters for discriminators.
• τ : The latency corresponding to the generator’s forward

pass during inference (no gradients are calculated). We

carefully synchronized GPU to account for any asyn-
chronous execution and chose the fastest kernels by
enabling the cudnn benchmark. The reported measures
are averaged over 10000 points.

• δ: The maximum memory allocation
used during inference measured with
torch.cuda.max_memory_allocated.

δ and τ are given for a single one-second sample.

Speech
Parameters

Pgen Pdis τ (ms) δ (MB)

Audio U-net [22] 71.0 M ∅ 37.5 1117.3
Hifi-GAN v3 [14] 1.5 M 70.7 M 3.1 22.2
Seanet [16] 8.3 M 56.6 M 13.1 89.2
Streaming-Seanet [13] 0.7 M 56.6 M 7.5 10.9
EBEN (ours) 1.9 M 27.8 M 4.3 20.0

TABLE II: Parameters, latencies and memory usage of models

Tab. II nuances the simple study of model parameters.
Indeed, neither τ nor δ linearly depends on the number
of parameters. They are also influenced by models’ depth,
embedding width, and hyperparameters that will, for instance,
determine the choice of the convolution algorithm (Winograd,
FFT, GEMM). Thanks to the reduction operated by PQMF
filtering, EBEN is the lightest proportionally to its parameters
and one of the fastest networks. It is also more than 3 times
faster to infer and 4 times lighter than Seanet [16].

C. Subjective evaluation

1) Visual inspection of spectrograms: To visually assess
and compare the obtained results with each trained model,
Fig. 8 shows some spectrograms obtained from the testing set.
It can be observed that a purely reconstructive approach [22]
is not sufficient to produce high frequencies. Indeed, when
low frequency information is insufficient, the model predicts
the mean of speech signals, which is zero. Among generative
approaches, our method is competitive. Indeed, EBEN recon-
structs a fair amount of formants and minimizes artifacts. As a
comparison, Hifi-GAN v3 [14] and Streaming-Seanet [13] are
not as efficient for harmonic reconstruction. Seanet [16]seems
to be the closest to the reference’s spectrogram. All approaches
were able to get rid of the additive Gaussian noise. Some ad-
ditional zoomable spectrograms confirming these observations
are available at https://jhauret.github.io/eben/.

2) MUSHRA study: We conducted a subjective comparative
evaluation of the different trained models using the MUltiple
Stimuli with Hidden Reference and Anchor [89] (MUSHRA)
methodology. According to the MUSHRA specification, a
rating scale ranging from 0 to 100 has been used; the
higher, the better. A total of 56 samples were rated by
170 participants, corresponding to 7 audios enhanced by five
different networks, plus the hidden reference and a hidden
low anchor (corresponding to an untrained EBEN network)
and the simulated in-ear signal. Participants were recruited by
e-mail to complete one of two available tests on the GoListen
platform [71] : MUSHRA-Q which allows to rank methods
for produced sound quality, and MUSHRA-U, which aims at

https://jhauret.github.io/eben/
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Fig. 8: Spectrograms of various bandwidth extension models sandwiched by the simulated in-ear and the reference signals.

ranking methods for ease of speech understanding. Ease of
understanding is linked with notions of phonetic confusion
and intelligibility (but is not equivalent to standard listening
test to assess intelligibility, such as the Modified Rhyme Test
[90]), while audio quality reflects the naturalness and listening
comfort. For both tests, we recorded participants’ hearing
status and type of sound reproduction system to retain 69
participants over 88 for MUSHRA-U and 66 over 82 for
MUSHRA-Q. We also followed the two post-screening phases
recommended by the International Telecommunication Union
(ITU) [89] to retain only participants who provided consistent
ratings:

• Stage 1 post-screening: A listener should be excluded
from the aggregated responses if he or she rates the
hidden reference condition for at least 15% of the test
items lower than a score of 90.

• Stage 2 post-screening: Exclude subjects whose
individual grades fall outside 1.5 × the upper or
lower bound of the IQR of the aggregated listeners for
at least 25% of the test items.

After applying those two criteria, we retain 47/88 for
MUSHRA-U and 43/82 for MUSHRA-Q. The overall age
repartition is as follows: 37% are below 27 years old, 24% are
above 50, and 39% between 27 and 50 years old. We found no
statistically significant differences in ratings between the age
categories. The distribution of obtained gradings are shown
Fig. 9 and Fig. 10.

The statistical distributions have been studied using a non-
parametric Friedmann Analysis of Variance to confirm the
statistical significance of the results. The obtained p-values
are lower than 1e−20, demonstrating that there are significant
differences, both in terms of quality and intelligibility among
tested approaches. This made it possible to perform a post-
hoc Nemenyi-Friedmann analysis, in order to assess the 2-to-2
independence of the distributions. The obtained results show
that the EBEN approach ranks first ex aequo with Seanet in
terms of quality and ease of understanding (no statistically
significant difference between EBEN and Seanet, p-value
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Fig. 9: MUSHRA-U : statistical distributions of scores ob-
tained with a MUSHRA procedure for the ranking of perceived
ease of understanding across trained models.

> 0.5) and that these two methods significantly outperform
the second best approach Streaming Seanet (p-value < 0.005).

VI. DISCUSSION

A. PQMF insights

PQMF banks are helpful for a wide range of tasks, including
audio equalization, noise reduction, or compression, e.g., by
reducing the bit rate on sparser bands. This work has used
the PQMF analysis outputs to speed up the inference by
taking advantage of the decimation operator. The multiband
representation has the same dimensionality as the original
signal but is condensed along the time axis and extended
along channels, allowing parallel computing. Also, by the very
nature of our problem, some frequency bands of the input
signal do not contain any information, and we can drop them.
Furthermore, generating bands reduces redundancy, leading
again to a reduction in computational complexity. Finally, it
allows the design of discriminators for EBEN that act only
where bandwidth extension is needed.

Along with EBEN source code, we also provide a mod-
ern and efficient implementation of the PQMF analysis and
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Fig. 10: MUSHRA-Q : statistical distributions of scores ob-
tained with a MUSHRA procedure for the ranking of perceived
sound quality across trained models.

synthesis with native Pytorch functions, using only strided
convolutions and strided transposed convolutions.

B. EBEN’s Configurability

We called our work ” Configurable” because several aspects
of EBEN’s architecture can be adapted to address different
BCM degradations. The corresponding hyperparameters are:
• M : The number of PQMF bands. It has a direct impact

on the width of each band’s frequency bandwidth. Higher
values of this parameter enable finer control over the
bands, enhancing precision. Furthermore, it influences
the downsampling factor. Raising the number of bands
reduces the computational burden on the network, but
it may result in some loss of temporal resolution. As
pointed in [91], downsampling proves to be the most
effective option when finetuning models for faster in-
ference, as it offers significant computational gains with
minimal performance trade-offs. Moreover, when the
number of bands is considerably large, the empirical
equation N = 8M may require a convolution in the
Fourier domain.

• P : The number of informative PQMF bands sent to
the generator. Given the sampling frequency Fs and the
cutoff frequency of the low-pass filter Fc, the factor P

M
should be just above the reduced cutoff frequency of
the degradation 2Fc

Fs
. In this way, all the information

remaining in the low-pass filtered signal is captured
and the high-frequency noise is discarded. We carried
out several ablation studies with EBEN, by varying the
number of P bands for the specific degradation described
in this article, using a constant number of bands Q
sent to the discriminators. By performing these ablation
studies, we were able to determine that the inclusion of
informationless bands significantly degrades the objective
metrics obtained for the enhanced signals when some
high-frequency noise is present, but has a minimal effect
when the noise is absent. For a pure bandwidth extension

task from Fc = 4 kHz to Fc = 16 kHz, when there
is absolutely no content above the initial half sampling
frequency, a value of P = 1 is also enough to obtain
excellent results (STOI = 0.93 / N-MOS = 4.23 on
test set after enhancement). Those conclusions of course
heavily depend on the kind of degradation, which further
highlights the benefits of a configurable approach.

• Q: The number of PQMF bands sent to the discrimina-
tors to be refined. In fact, the very first bands should
contain clean low frequencies of the speech signal and
would only require a slight modification by the MelGAN
discriminator to suppress physiological noise. On the
contrary, the last bands, which suffer from information
loss, must be filled by the generator network, pushed to
do so thanks to the PQMF discriminators. We also carried
out several ablation studies with EBEN, by varying Q
in [1; 3] for a fixed value of P = 1. This study allows
to draw a clear relationship between the degree of band
refinement and the corresponding enhancement perfor-
mance: as the number of refined bands decreases, the
enhancement performance diminishes accordingly. We
believe that discriminator configurability is once again
beneficial for specific enhancement objectives in targeted
frequency bands. Indeed, some BCMs exhibit a very
sharp rolloff. In these cases, P and Q should be chosen
to be complementary. On the other hand, other kinds
of BCMs exhibit a smaller high-frequency rolloff. In
such scenarios, EBEN’s configurability allows Q to be
chosen so that the frequency bands input to the PQMF
discriminators overlap with the P frequency bands fed
to the generator. This design allows to refine the upper
bands that are degraded, even if there is still some residual
speech content that can be useful to the generator for the
bandwidth extension task.

C. Correlation between subjective and objective metrics

General purpose intrusive (or comparative) metrics for as-
sessing speech intelligibility and quality are far from perfect.
However, the existing literature still relies on those common
set of metrics for evaluation purposes for lack of anything
better. In the present study for example, the PESQ metric ranks
the Audio U-net [22] approach as the best method, which
contradicts the results obtained with subjective evaluation.
Having MUSHRA test results and the various metrics at our
disposal enables us to perform a correlation analysis between
the objective metrics and the subjective tests, in order to
provide an overview of which metrics are best/less suited to
the bandwidth extension task. The results are shown in Fig .11.

We can deduce from the coefficients shown in Fig .11
that SI-SDR and PESQ are not suitable to evaluate the
quality of bandwidth extension methods because of their poor
correlation with MUSHRA. On the other hand, this analysis
allows to conclude that STOI and Noresqa-MOS are two
relevant indicators. Hence, the pseudo-ranking of the relevance
level of the metrics for our specific use case is Noresqa-
MOS≈STOI>>SI-SDR>PESQ. It is also noteworthy that



Fig. 11: Pearson product-moment correlation coefficients of
objective and subjective metrics

Noresqa-MOS is more correlated with MUSHRA-Q than with
MUSHRA-U. This seems logical since Noresqa-MOS is built
to predict quality.

D. Accordance of the synthetic data generation

In this part, we would like to reflect on the relevance of the
generated synthetic data to tackle some real in-ear captured
speech. To do this, we used two EBEN models with the
same configuration. One was trained to reverse the Ψfixed

degradation and discussed in V, while the other was trained on
Ψrandom which is closer to the real degradation by design. We
chose EBEN among the other approaches, but this section is
independent to the model choice. Although we have selected
two models that perform well with in-distribution data, the
results obtained on Tab. III show that neither model is able to
significantly enhance the raw in-ear speech signal according
to objective metrics.

Speech PESQ SI-SDR STOI N-MOS
In-ear enhanced via EBEN
trained on Ψfixed

1.16 -37.4 0.51 3.82

In-ear enhanced via EBEN
trained on Ψrandom

1.28 -41.6 0.53 3.80

Raw In-ear 1.5 -37.0 0.56 3.33

TABLE III: EBEN’s ability to enhance real data according to
different training sets

Efforts to get closer to Ψsmoothed median for Ψrandom

did not pay off because the complex degradation cannot be
accurately simulated by a linear transfer function. Rather,
the degradation is likely non-linear. Moreover, the additive
physiological and frictional noise is time-dependent, making
the assumption of a linear time-invariant system untrue in
practice. Therefore, instead of investing a significant amount of
time and effort to create a suitable simulation model, we will
try to use real data in our future works. Indeed, the data-driven
nature of deep learning suggests that the training set should
be based on real data: we are in the process of building and
releasing a complete BCM recording dataset.

VII. CONCLUSION

We presented Configurable EBEN: a state-of-the-art, real-
time compatible, and lightweight neural network architecture
to address the problem of unimodal enhancement of speech
signals captured with noise-resilient body-conduction micro-
phones. The main challenge encountered with these uncon-
ventional microphones is the need to achieve a bandwidth
extension of the raw captured signals. We therefore designed
EBEN to be fully configurable for the bandwidth enlarge-
ment needed. We specifically proposed a multiband approach,
where the enhancement is solely conditioned on the first
P informative bands, and the adversarial training is mainly
targeted to enhance Q bands over a total of M bands through
newly designed discriminators. Furthermore, this multiband
decomposition – which is using Pseudo Quadrature Mirror
Filter bank – enables a reduction of the feature dimensionality
from the very first layer of the encoder. This benefits streaming
compatibility, because fewer computations are required during
the forward pass and reduce data redundancy. Those findings
are supported by extensive experimentation and comparisons
with existing models. These experiments demonstrate that
EBEN is competitive in many aspects, including enhancement
performance, latency, and memory footprint. EBEN is there-
fore a good compromise between frugal AI requirements and
speech enhancement performance; ready to be trained on a
real BCMs dataset.
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