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Conservatoire national des arts et métiers, HESAM Université
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Abstract—This paper presents a configurable version of Ex-
treme Bandwidth Extension Network (EBEN), a Generative
Adversarial Network (GAN) designed to improve audio captured
with body-conduction microphones. We show that these micro-
phones significantly reduce environmental noise. However, this
insensitivity to ambient noise is at the expense of the bandwidth
of the voice signal acquired from the wearer of the devices. The
obtained captured signals therefore require the use of signal
enhancement techniques to recover the full-bandwidth speech.
EBEN leverages a configurable multiband decomposition of the
raw captured signal. This decomposition allows the data time
domain dimensions to be reduced and the full band signal to be
better controlled. The multiband representation of the captured
signal is processed through a U-Net-like model, which combines
feature and adversarial losses to generate an enhanced speech
signal. We also benefit from this original representation in the
proposed configurable discriminator architecture. The config-
urable EBEN approach can achieve state-of-the-art enhancement
results on synthetic data with a lightweight generator that allows
real-time processing.

Index Terms—Speech enhancement, PQMF-banks, Bandwidth
extension, Frugal AI, Body-Conduction Microphones

I. INTRODUCTION

Capturing speech involves the use of microphones to trans-
form mechanical vibrations into an electrical signal, later dig-
italized and eventually used for radio communications. Under
quiet conditions, using an airborne-sound microphone near the
speaker’s lips is the most appropriate way to capture clean
speech. Nevertheless, in presence of ambient noise generated
by sources contaminating the sound scene, the speech signal
of interest is altered by the acoustic environment, which also
contributes to air molecules vibration. This situation – which
reduces the intelligibility of communications – is frequently
encountered in industry, on the battlefield or in strong winds.
In extreme cases, operators are even unable to communicate.

Before using any speech enhancement technique, it is worth
pondering the best mechanical signal to rely on in noisy
conditions. There are other choices besides recording airborne
sound pressure, such as the body-conducted inner vibrations
of the speaker. The human body is not as easily moved by
environmental noise as ambient air, due to the high damping of
the transmitted sound wave in the tissues. Therefore, capturing
inner tissues’ vibrations caused by the vocal tract near the
speaker’s head has great potential for improving the signal to
noise ratio when recording speech in noisy environments. This
can be performed with noise-resilient body-conduction micro-
phones (BCM), which allow sensing the internal vibrations
of the equipped person. This family of unconventional voice
pickup systems includes bone conduction transducers [1]–[5],
throat microphones [6], [7] and in-ear microphones [8]–[11].
Studies including [2], [9] and [12] demonstrated that they offer
higher quality and intelligibility in noise than conventional
capture devices. We also conducted our experiment on Section
III-A to determine when it is preferable to use BCMs over a
traditional microphone.

In addition to eliminating external noise pollution, BCMs
are less invasive and compatible with helmets, which are often
required in noisy environments. Similarly, they are suitable for
wearing gas masks or face masks which is not negligible in
times of pandemic. In-ear capture devices are also prone to be
integrated into hearing protection. The protection will isolate
the sensor from the external environment, and the wearer’s
speech capture will be improved. Finally, the broad adoption
of true wireless stereo earbuds and bone conduction earphones
also benefits the development of inner voice capture. Indeed,
those systems are reversible and could be used as BCMs.

Despite many advantages, the usage of BCMs has not yet
been democratized. This can be marginally explained by the
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fact that they are not always necessary (e.g., in a quiet, distant
meeting), but mainly because recordings suffer from reduced
bandwidth. Indeed, mid and high frequencies are missing
due to the intrinsic low-pass characteristics of the biological
pathway. Further processing is then necessary to optimize
the effective bandwidth of the captured speech. Moreover,
other physiological sounds, such as swallowing, blood flow
or any other sound produced by the body, are also picked up
by BCMs and represent a new form of noise contaminating
speech capture.

In simple terms, speech capture in noise can be achieved
either by using airborne speech with a denoising algorithm
or by using a noise-proof body-conduction microphone with
bandwidth extension techniques. The latter is a viable solution
for critical noise levels (≥ 85dB) when differential micro-
phones or directional boom microphones cannot eliminate
high-level surrounding noise. Therefore, this article proposes
an extreme bandwidth extension algorithm for speech signals
captured with noise-resilient body-conduction microphones.

Since the desirable system is a two-way communication
device, this entails real-time execution constraints, i.e. a short
processing time to be indistinguishable from the human ear.
Moreover, edge computations are required to guarantee low
latency, necessitating a light algorithm. These considerations
also match frugal AI requirements. Finally, the developed
model should be robust to speaker identity, physiological and
residues of external noises that would have infiltrated the
microphone.

To meet the expectations of extreme bandwidth extension
and related requirements, research like [4], [13], [14] suggests
that frugal deep learning is an appropriate approach. Indeed,
conventional signal processing methods are able to enhance
frequency content that is already present in the captured signal.
A small amount of denoising must also be done separately,
whereas deep learning offers the ability to carry out those two
tasks simultaneously. On the other hand, massive deep learning
models are not relevant for real-time execution.

Based on the above observations, we developed configurable
EBEN, a new deep learning model inspired by a family of
lightweight convolutional-based encoder-decoder architecture
[13], [15]–[18] to infer mid and high frequencies from speech
containing only low frequencies (extreme bandwidth exten-
sion). We use a generator that maps the degraded speech
signal to an enhanced version. This task is called blind
speech enhancement because we do not use any external
modality (contrary to Seanet [16], which takes advantage
of both airborne speech and accelerometer data). EBEN’s
generator is optimized to produce samples close to the ref-
erence while maintaining a certain degree of naturalness at
different time scales. We still differ from previous work by
using a multiband decomposition performed with Pseudo-
Quadrature Mirror Filters (PQMF) [19]. Combined with some
hypotheses on addressed degradations, this decomposition is
applied to reduce the dimension of input features. In addition,
this alternative representation is useful to focus the signal’s
discrimination solely on high frequency bands.

A preliminary version of our research was shared on Arxiv
[20]. The present paper extends this study by tackling more
diverse and realistic degradations, highlighting the usefulness
of BCMs in noise, introducing the configurable aspect of
our approach, and comparing EBEN’s latency and memory
footprint to other previously published networks. The present
paper also proposes an extensive discussion of related work.
Finally, details of the training strategy, architecture, and sta-
tistical analysis of the evaluation survey are presented. The
website https://jhauret.github.io/eben also provides example
audio files to listen to and the source code of EBEN.

The body-conduction microphone studied in this paper is an
in-ear microphone prototype. The few minutes of recordings at
our disposal being insufficient to serve for supervised training,
we instead analyzed bandwidth loss to simulate in-ear-like
degradations on the French Librispeech dataset [21]. Triplet
train/dev/test sets of reference and corrupted speech pairs
were produced to train our model, and several baselines [13],
[14], [16], [22]. We plan to later release a publicly available
dataset of speech capture with BCMs to circumvent the use
of synthetic data.

We point out that focusing on the capture-induced degra-
dation of a specific device does not penalize the generality
of our approach. This family of sensors consistently degrades
speech similarly, acting as a low-pass filter. Variations mainly
occur in cut-off frequency, attenuation, and lack of coherence
at specific frequencies. Thus, it would be enough to have a
matching dataset to address any other system.

In Section II, we review related prior studies, which also
serve as baselines in our comparisons. In Section III we show
that BCMs are more suitable to record speech in noise than
traditional microphones, present the observed degradation with
our in-ear prototype, and describe our protocol to generate
synthetic data. Section IV gives an overview of how the EBEN
model architecture, provides a brief reminder of the PQMF
filterbanks, and an in-depth presentation of the architecture
and loss functions. Section V describes the training pipeline,
experimental results and compares EBEN to other approaches.
Finally, Section VI concludes the paper.

II. RELATED WORK

The earliest speech bandwidth extension algorithms, usually
applied to telephony applications, were performed with pure
signal processing algorithms like spectral folding [23], Linear
Predictive Coding [24], modulation techniques [25], [26] or
non-linear processing [27]. This simple procedure has also
been used in the context of in-ear microphones [9] with
fair results, yet to be improved. This method creates missing
harmonics in the high frequencies but cannot recover missing
formants and fricatives. The earliest data-driven approaches
have subsequently offered a more realistic extension. Those
approaches are composed of several building blocks, including
a statistical model that aims to estimate the high band spectral
envelope. In many cases, this statistical model is one of the
following: codebooks [28], Gaussian Mixture Model [29],
Hidden Markov Model [30] and even some neural networks

https://jhauret.github.io/eben


[31]. Although the quality is generally better with those
methods, overly smoothed spectra are still produced at the
expense of speech naturalness.

Recent advances in neural speech synthesis [14], [32]–
[36] have proven that end-to-end deep learning is state-of-
the-art in terms of simplicity and sample quality. Therefore,
deep learning seems promising to accomplish this extreme
bandwidth extension. Indeed, the ability of neural networks to
extract relevant features for the downstream task will allow the
matching of high and low frequency contents. Raw waveform
input is preferred over handcrafted features like spectrogram,
mel-spectrogram [37], or Mel-frequency cepstral coefficients
(MFCCs) [38] to minimize human processing and let the
network build its representation. This trend is endorsed by
several works in the audio field [39]–[42] and especially for
bandwidth extension (synonym of audio super-resolution) to
avoid rebuilding the phase separately [22], [43]–[45].

The use of raw audio can also be combined with multiband
processing to speed up inference, as in DurIAN [46], MB-
MelGAN [47] or RAVE [48]. The speech signal is therefore
processed at a reduced sampling rate thanks to the decompo-
sition, unlike other super-resolution networks [49], which use
an input signal sampled at the target sampling frequency. To
pursue the objective of fast inference, a fully convolutional
architecture has been preferred like in [22], [32], specifically
U-Net-like as other audio-to-audio tasks [50], [51]. The up-
sampling layers use transposed convolutions [52] instead of
subpixel layers [53]. Transposed convolutions do not produce
checkerboard artifacts when kernel size and strides are chosen
to avoid overlapping disparities, as explained in [54].

In addition, a simple reconstruction loss may be insuffi-
cient for conditional generation, producing unrealistic samples.
As shown in [14], [55]–[57], adversarial networks [58] can
significantly improve the naturalness of the produced sound.
Multiple discriminators are even used in [16], [45], [56]
to focus signal discrimination on different scales. Moreover,
feature matching is also encouraged for the reconstruction loss
because it allows to enhance the produced sound quality in
an end-to-end fashion. Indeed, discriminators’ embeddings are
excelling at building a relevant representation for our problem;
it is therefore consistent to compute distance based on those
features. Alternatives to this approach are either the L1/L2

norms in the time domain, which are misaligned with human
perception, or complex losses like multiscale Short Time
Fourier Transform, which depend on chosen hyperparameters
[22], [59], thus increasing tuning efforts.

Regarding the specific literature on blind (or non-multi
modal) speech enhancement for BCMs, different approaches
adopted classic processing to achieve bandwidth extension [1],
[6], [7], [9]. Subjective quality evaluation and audio field
tendencies have proven those approaches to be inadequate
for this task. Then, neural networks started to be employed,
firstly as a processing block among others [10] to estimate an
enhancement function in a fixed feature domain combined with
time-domain filtering. Subsequent research then began to carry
out the improvement task and ultimately to perform the en-

hancement as end-to-end tasks. Among published manuscripts
on the subject, the works of Yuang Li et al. [4], Hung-Ping Liu
et al. [60], and Dongjing Shan et al. [61] applied this approach
for bone conduction microphones, and Mattes Ohlenbusch et
al. [11] to in-ear microphones. The main drawback of those
approaches relies on the fact that they are based on a pure
reconstructive loss, eventually with a regularization part. As
they expressed in their articles, an audible difference between
the target and the processed signals remains. This statement
may be irrevocable due to the limited information left in the
signal captured by BCMs. However, GANs [62] can produce
realistic signals by slightly deviating from the reference. The
task of speech enhancement for speech capture with body-
conduction microphones is thus complicated. Indeed, [3], [16],
[63] only used BCMs as a conditional signal for enhancement
in a multi-modal framework. Moreover, even if BCMs mainly
capture speech, residues of external and physiological noises
persist [64] and would necessitate denoising. Hopefully, deep
learning models can perform it simultaneously with the band-
width extension. [9] has also proven that the contaminating
noise knowledge was helpful, although we will not capitalise
on this particular knowledge in the present paper.

Lastly, this research field lacks large public corpus using
body-conduction microphones to train deep models reliably.
ABCS corpus [65], composed of air and bone conducted man-
darin speech pairs, which represents 42 hours of recordings is
currently the largest dataset. Another smaller public1 dataset
is SpEAR (Speech in-EAR (SpEAR) database) proposed in
[66] with 25 participants, split in French/English speakers.
Other private datasets emerged, like [4], which introduced 200
minutes of speech recorded via bone conduction. The dataset
was large enough to train on, likely due to their model’s
meager number of parameters (4.5k for the lightest model).
[11] opted for a different strategy with their overall 30 minutes
in-ear captured speech. The limited-size dataset was first used
to simulate meaningful degradations, taking into account the
body-produced noise used to train their model. Finally, they
re-used real data to fine-tune their model’s decoder.

III. IN-EAR MICROPHONE STUDY

The selected BCM is an early prototype of an in-ear MEMS
microphone driven by an STM32 H7 microcontroller [67]
developed by the ISL and Cotral Lab. This device takes
advantage of the speaker’s hearing protection by being placed
inside a custom-molded earplug, which increases commu-
nication capabilities in challenging and noisy environments.
The reference speech signals are captured by a B&K Type
4192 condenser microphone connected to a TEAC LX10 data
recorder. The reference and in-ear signals are recorded at 48
kHz, resampled at 16 kHz and finally synchronized using
cross-correlation.

A. In-noise comparison with traditional microphone

This section aims at justifying that BCMs are more suitable
for noisy environments and at establishing a rough estimate

1freely available upon request from a research institution



of the noise level above which their use should prevail. We
conducted subjective A/B preference tests to compare our in-
ear microphone with a traditional microphone. Comparisons
are performed using raw signals without any enhancement
techniques. We recruited 38 participants and used the GoListen
platform [68] to perform the test. Subjects were asked if
they preferred in-ear or classic recordings for different en-
vironments in an audiometric booth (IAC Acoustics and walls
covered with acoustic foam), and in a reverberant room with
pink noise levels { ∅ ,55dB, 65dB, 75dB, 85dB, 95dB }.
The subjects were split into two groups to assess the audio
samples’ quality and ease of understanding. Obtained results
are presented in Fig. 1.
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Fig. 1: A/B testing results: in-ear vs traditional microphones

According to Fisher’s exact test and a significance rate
of 5%, the obtained results allow us to conclude that the
use of an in-ear microphone is preferred for ease of speech
understanding and sound quality for noise levels of 75 dB or
more. On the other hand, a traditional microphone is endorsed
for ease of understanding and quality for noise levels below
or equal to 55dB. No statistically significant difference can be
drawn for a 65dB noise level.

B. Degradation study

In-ear own voice capture is more adapted for applications
in noisy environments because it mainly contains speech
without external noise. However, the acoustic wave propa-
gation between the vocal tract and the transducers causes
irreversible information loss: practically no relevant speech
signal is picked up above a threshold frequency. Complex
interactions with tissues are also responsible for phase shifts
and anti-resonances.

This phenomenon is further influenced by the occlusion
effect [69] due to the fitting of the individual protectors,
causing speech to resonate inside the ear canal. This aspect
causes an amplification of the remaining signal, leading the
wearer to hear an amplified version of their own voice. The
occlusion effect is therefore the consequence of wearing an
earplug, but it is also necessary in order to obtain an in-

ear signal that is not significantly degraded by environmental
noise.

A first coarse approximation of those degradations can be
modeled by a linear impulse response ψ that allows to estimate
the in-ear signal x from the emitted signal y :

x(t) = (ψ ∗ y)(t) (1)

To evaluate the corresponding transfer function, we simulta-
neously use the in-ear prototype and a regular microphone
placed in front of the speaker’s mouth under noise-free con-
ditions. The absence of noise allows us to consider airborne
speech as the emitted signal. The degradation filter estimates
{Ψ̃i}i∈[1,53] were obtained with cross power spectral densities
{Pyx,i}i∈[1,53] and {Pyy,i}i∈[1,53] approximated by Welch’s
method, Eq. 2. Short Time Fourier Transforms were computed
on 512 samples corresponding to 32 ms for the 16 kHz
sampling rate used during this analysis. Whelch’s method has
a temporal horizon of 1.024 second with a recovery rate of
50%. A Voice Activity Detection (VAD) pre-processing based
on a simple reference’s power thresholding was applied to
select meaningful segments.

Ψ̃i(f) =
Pyx,i(f)

Pyy,i(f)
,∀i ∈ [1, 53] (2)

53 estimates were necessary to produce a robust es-
timation of the transfer function, noted Ψmedian =
median({Ψ̃i}i∈[1,53]), because speech signals are not station-
ary. The analysis was performed on a single-person recording
of 23 seconds after the VAD processing. Ψmedian is plotted in
Fig. 2, surrounded by its 10% and 90% percentiles, illustrated
by IQR80%.
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Fig. 2: Transfer function of the in-ear transducer

The estimated coherence function C̃yx, defined on Eq. 3
and represented on Fig. 3, highlights an absence of causality
between x and y above 3kHz. Hence, Fig. 2 does not make
sense above that frequency. Indeed, humans cannot produce
enough power at high frequencies to measure any transfer
function, and the remaining signal is only a mixture of analog
and digital noise.



C̃yx(f) =
|Pyx(f)|2

Pxx(f)Pyy(f)
(3)
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Fig. 3: Coherence function of the in-ear transducer

This shows that the in-ear BCM allows to only capture
relevant speech content inside the ear canal for frequencies
{f | Ψmedian(f) > −20dB, ∀f ∈ R+} i.e. in a range below
2 kHz. Indeed, Fig. 2 indicates that the in-ear microphone ex-
hibits a very high attenuation at mid and high frequencies: no
relevant signal is present in this frequency range. Interestingly,
at very low frequencies, the coherence function in Fig. 3 is
also close to zero, which denotes a lack of correlation between
the two signals. The physiological sounds (e.g. swallowing,
blood flow, tongue clicking, teeth grinding, ...) are responsible
for this phenomenon, as they are only sensed by the in-ear
transducers. A time domain representation of the synchronized
capture in Fig. 4 highlights this difference in the quiet region,
for t > 0.5 s.
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Fig. 4: Time domain representation of speech signals captured
in a quiet environment. Active speech is presented in green
area.

Finally, two anti-resonances are observed in Fig. 3 at 900
Hz and 1700 Hz, corresponding to vibration nodes of the
occluded inner ear and propagation in the bones and tissues

of our subject. It is noteworthy that those observations are not
universal: acoustic paths differ among speakers because their
bone structures are unique, which results in different spectral
properties.

C. Simulation of the dataset

Deep learning-based approaches are only efficient in high
data regimes; a few minutes of in-ear samples are highly
insufficient for supervised training. We therefore opted for a
data augmentation strategy and simulated corrupted wideband
speech from the French Librispeech dataset [21] in an in-ear-
like fashion. In the present paper, we simulated two kind of
transfer functions to filter the clean speech data: Ψfixed and
Ψrandom, jointly plot on Fig. 2.

The fixed degradation Ψfixed is obtained using an autore-
gressive moving-average model. Ψfixed is a 2nd order low-pass
filter with a cutoff frequency of 600 Hz and unitary Q-factor
that is applied using a filtfilt2 procedure to ensure zero phase
shift.

A robustness study is also conducted in part V-D by
applying an ever-changing degradation Ψrandom, which is
constructed to be within the green area of Fig. 2. Ψrandom is
sampled from a log-uniform distribution with IQR80% bounds
and brought to a very low gain above 3kHz with an Hann
apodization function.

In both cases, a gaussian white noise with a power -23 dB
below the low-pass filtered signal is added. This noise intends
to play the role of physiological noise. It is also hiding any
high frequency residues. Those degradations might lack some
realism but still ensure a wide application field for developed
algorithms and the ability to focus on the bandwidth extension
issue. Future works will use a dataset of speech capture with
different BCMs that we plan to release publicly in 2023.

IV. EBEN

A. Pseudo Quadrature Mirror Filter

1) Theory: The Quadrature Mirror Filter (QMF) banks,
introduced in [70], are a set of analysis filters {Hi}i∈[0,M−1]
used to decompose a signal into several non-overlapping chan-
nels of same bandwidth, and synthesis filters {Gi}i∈[0,M−1]
used to recompose the signal afterward. Fig. 5 shows the entire
pipeline. Those filters are obtained from frequency translations
of the same lowpass prototype filter h[n] = Z−1{H(z)}.
A typical frequency response for an M-band Pseudo-QMF
(PQMF) bank is given in Fig. 6.

The reconstruction is exact if {Hi}i∈[0,M−1] and
{Gi}i∈[0,M−1] would have an infinite support. In practice,
this is impossible, but Truong Nguyen proposed a near-
perfect reconstruction in [19] by constraining the prototype
filter to be a linear-phase spectral factor of a 2Mth band
filter, significantly reducing aliasing. In other words, the
analysis and synthesis impulse responses noted respectively
hi[n] = Z−1{Hi(z)} and gi[n] = Z−1{Gi(z)}, are given by
Eq. 4 where N is the filter length.

2consists in applying a digital filter forward and backward to a signal.
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Fig. 6: Frequency response of a PQMF filter bank

{
hi[n] = 2h[n] cos

(
(2i+ 1) π

2M

(
n− N−1

2

)
+ (−1)i π4

)
gi[n] = 2h[n] cos

(
(2i+ 1) π

2M

(
n− N−1

2

)
− (−1)i π4

)
, 0 ≤ n ≤ N − 1, 0 ≤ i ≤M − 1

(4)

Then, Yuan-Pei Lin and PP Vaidyanathan [71] proposed
a more straightforward design methodology by constructing
the prototype from a Kaiser window and filling the following
conditions:
• Make the prototype filter close to zero out of its passband

to minimize the aliasing.

|H(ejω)| ≈ 0 for |ω| > π

M
(5)

• Make the prototype filter close to one into its passband
to minimize the distorsion.

|H(ejω)| ≈ 1 for |ω| < π

M
(6)

Given the desired stopband attenuation and the transi-
tion bandwidth, those requirements directly translate into an
optimization criterion with one-degree of freedom on the
prototype’s cutoff frequency. This criterion is minimized to
find the optimal cutoff frequency for some M and N . In
practice, a convolution kernel of N = 8M is enough to
produce a near-perfect pseudo reconstruction, i.e. SNRdB =

10 log10

(
Psignal

Preconstruction error

)
≈ 55dB.

2) Usage for EBEN: PQMF banks are helpful for a wide
range of tasks, including audio equalization, noise reduction,
or compression, e.g., by reducing the bit rate on sparser bands.
Here, we will use the PQMF analysis outputs to speed up
the inference by taking advantage of the decimation operator.
The multiband representation has the same dimensionality as
the original signal but is condensed along the time axis and
extended along channels, allowing parallel computing. Also,
by the very nature of our problem, some frequency bands of
the input signal do not contain any information, and we can
drop them. Furthermore, generating bands reduces redundancy,
leading again to a reduction in computational complexity.

Finally, it allows the design of discriminators for EBEN that
act only where bandwidth extension is needed.

Along with EBEN source code, we also provide a mod-
ern and efficient implementation of the PQMF analysis and
synthesis with native Pytorch functions, using only strided
convolutions and strided transposed convolutions.

B. Model architecture

1) Generator: Unlike frequency approaches [14], [55],
[72], which require massive 2D convolutional operations to
extract meaningful features from spectrograms or heavy wave-
form approaches [4], [13], [16], [22], [49], [73] which directly
process the audio at the targetted sampling rate, we propose
for EBEN to encapsulate a lightweight U-Net-like generator
between a PQMF analysis layer and a PQMF synthesis layer.
This enclosure reduces the model’s memory footprint by
decreasing the first embedding sample rate by a factor of M .
It also makes it possible to keep only P subbands with voice
content to feed to the first convolution and the last convolution
via the most external skip connection. P must lie between
1 and M . Moreover, the number of encoder/decoder blocks
is reduced to meet the constraints of real-time applications.
Global architecture is exhibited in Fig. 7a and subblocks in
Fig. 7b,7c,7d. Convolutions are intertwined with Leaky ReLU
activation functions with a negative slope of 0.01. The last
non-linearity in the generator is a Hyperbolic tangent placed
right before the PQMF synthesis block, in order to bring
back values between -1 and 1. Skip connections are additive.
We also apply weight normalization [74] on top of every
convolution block with trainable weights, in order to ensure a
fast convergence during training.

2) Discriminators: EBEN’s discriminators directly exploit
the PQMF subbands as inputs without recombining nor upsam-
pling the reconstructed subband signals. We adopt a multiscale
ensemble discriminator approach, inspired by the work of
Kumar et al. in [55], whose inputs are the Q upper bands
of the PQMF decomposition. Due to the divisibility constraint
on the number of input and output channels by the number
of groups, Q must be one of {1, 2, 3, 5, 6, 10, 15}. Like P , it
must also satisfy 1 ≤ Q ≤M . The ensemble of discriminators
analyzes the generated subband signals at different time scales
and helps to increase their quality via the adversarial pro-
cess, even though each discriminator is relatively simple. The
subband discriminators {Dk}k∈[1,2,3] exhibit similar receptive
fields to the original multiscale MelGAN discriminators [55].
Moreover, we combined our PQMF discriminators with the
full scale MelGAN discriminator Dk=0 to ensure coherence
between bands. The exact architecture of discriminators are
displayed in Fig. 7e and Fig. 7f together with their positioning
in the overall system Fig. 7a. We kept Leaky ReLU as an
activation function but used a stronger negative slope of 0.2
to allow for a better gradient transmission to the generator. We
also maintained the weight normalization technique.
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Fig. 7: Architecture of EBEN. ins: input channels. outs: output channels. ks: kernel size



C. Loss functions

At each batch, we train alternatively the ensemble of dis-
criminators {Dk}k∈[0,1,2,3] to minimize LD defined on Eq. 7
and the generator G to minimize LG = LGadv + 100×LGrec
where LGadv and LGrec are respectively defined on Eq. 8
and Eq. 9. Our loss setup is inspired by [16]: LD and LGadv
are a classical hinge loss while LGrec is a feature matching
loss. Using discriminators embeddings for the reconstructive
loss allows focusing on the signal semantic, which is harder
to operate in the time domain because useful information is
drowned out amid useless details.

In the underneath definitions, D(l)
k,t represents the layer l

of the discriminator (among Lk layers) of scale k (among K
scales) at time t. Fk,l and Tk,l are the number of features and
temporal length for given indices. We kept x for in-ear signal
and y for the reference.

LD = Ey

 1

K

∑
k∈[0,3]

1

Tk,Lk
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max(0, 1−Dk,t(y))

+

Ex

 1

K

∑
k∈[0,3]

1

Tk,Lk

∑
t

max(0, 1 +Dk,t(G(x)))


(7)
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(9)

The generator’s loss combination allows to generate audio
samples as close as possible to the reference signal thanks to
LrecG , while remaining creative at high frequencies when no
information is available in the degraded signal (especially for
fricatives) thanks to LadvG .

V. EXPERIMENTS AND EVALUATION

A. Training strategy

We trained different models [13], [14], [16], [22] and the
proposed EBEN model on the French Librispeech [21] dataset
resampled uniformly at 16kHz. Degradations are simulated
using Ψfixed in Sec. V-B and Sec. V-C while Ψrandom is
employed in Sec. V-D. Both degradations were applied on
the fly to create pairs of in-ear captured speech and reference
speech. All the experiments were performed for two days on
a single RTX 2080 Ti GPU with a batch size of 16 and 2-
second samples. Losses are optimized with Adam [75] using a
constant learning rate of 3.10−4 and β = (0.5, 0.9) for EBEN
and optimizers parameter values found in original papers for
the other approaches. No parameter tuning nor early stopping

was performed. The EBEN set of hyperparameters are given
by {N = 32,M = 4, P = 1, Q = 3}. We use M = 4
here because this coarse slicing of the spectra is sufficient to
separate frequency bands containing valuable cues from non-
relevant frequency bands by taking P = 1. Such a reduced
number of frequency bands also allows to reduce the length of
the PQMF kernel for analysis and synthesis stages. The value
Q = 3 has also been chosen because we assume that the first
frequency band does not require substantial enhancement with
the proposed degradation.

B. Objective evaluation

1) Speech quality metrics: To evaluate the model per-
formances, Tab. I highlights several objective metrics: Per-
ceptual Evaluation of Speech Quality (PESQ) [76], Scale-
Invariant Signal-to-Distortion Ratio (SI-SDR) [77] and Short-
Time Objective Intelligibility (STOI) [78], which have all been
computed on the test set for each model. Speech enhancement
being a one-to-many problem, these results should be analyzed
cautiously. Indeed, a plausible signal with perfect intelligi-
bility but still different from reference would be misjudged
by the metrics. Note that these metrics are intrusive, since
they require groundtruth audio. Generally speaking, speech
quality assessment is still lacking non subjective and non
comparative evaluation metrics. This observation is confirmed
by [79] which points out that current objective metrics are
questionable. Works like Noresqa [80] attempted to introduce
some non intrusive metrics, but our investigations revealed that
they were inefficient for our specific degradation.

Speech
Metrics PESQ SI-SDR STOI

Simulated In-ear 2.42 (0.34) 8.4 (3.7) 0.83 (0.05)
Audio U-net [22] 2.24 (0.49) 11.9 (3.7) 0.87 (0.04)
Hifi-GAN v3 [14] 1.32 (0.16) -25.1 (11.4) 0.78 (0.04)
Seanet [16] 1.92 (0.48) 11.1 (3.0) 0.89 (0.04)
Streaming-Seanet [13] 2.01 (0.46) 11.2 (3.6) 0.89 (0.04)
EBEN (ours) 2.08 (0.45) 10.9 (3.3) 0.89 (0.04)

TABLE I: PESQ/SI-SDR/STOI on test set. Significantly best
values (acceptance=0.05) are in bold.

Even though purely reconstructive approaches have a clear
advantage when evaluated on comparative metrics, Kuleshov’s
model [22] does not prevail on STOI, which is the metric that
is the most correlated with human evaluation for our specific
task, as shown in V-C. Looking at these results, we could
say that best performing models for STOI are either Seanet,
Streaming-Seanet or EBEN.

2) Frugality study: Enhancing performances need to be
qualified by the model’s latency and heaviness to take deep
learning from hype to real-world applications. Indeed, the
bandwidth extension is applicable for a two-way communi-
cation device, if latency is roughly smaller than 20 ms as
claimed in [81]. The total number of parameters influencing
the memory space should also be reduced. Therefore, we
reported on Tab. II :



• Pgen: The total number of parameters for the generator,
including non-trainable parameters like PQMF-bank for
EBEN. For other methods, preprocessing parameters like
the mel windows are not counted.

• Pdis: The total number of parameters for discriminators.
• τ : The latency corresponding to the generator’s forward

pass during inference (no gradients are calculated). We
carefully synchronized GPU to account for any asyn-
chronous execution and chose the fastest kernels by
enabling the cudnn benchmark. The reported measures
are averaged over 10000 points.

• δ: The maximum memory allocation
used during inference measured with
torch.cuda.max_memory_allocated.

δ and τ are given for a single one-second sample.

Speech
Parameters

Pgen Pdis τ (ms) δ (MB)

Audio U-net [22] 71.0 M ∅ 37.5 1117.3
Hifi-GAN v3 [14] 1.5 M 70.7 M 3.1 22.2
Seanet [16] 8.3 M 56.6 M 13.1 89.2
Streaming-Seanet [13] 0.7 M 56.6 M 7.5 10.9
EBEN (ours) 1.9 M 27.8 M 4.3 20.0

TABLE II: Parameters, latencies and memory usage of models

Tab. II nuances the simple study of model parameters.
Indeed, neither τ nor δ linearly depends on the number
of parameters. They are also influenced by models’ depth,
embedding width, and hyperparameters that will, for instance,
determine the choice of the convolution algorithm (Winograd,
FFT, GEMM). Thanks to the reduction operated by PQMF
filtering, EBEN is the lightest and one of the fastest networks
proportionally to its parameters.

C. Subjective evaluation

1) Visual inspection of spectrograms: To visually assess
and compare the obtained results with each trained model,
Fig. 8 shows some spectrograms obtained from the testing set.
It can be observed that a purely reconstructive approach [22]
is not sufficient to produce high frequencies. Indeed, when
low frequency information is insufficient, the model predicts
the mean of speech signals, which is zero. Among generative
approaches, our method is competitive. Indeed, EBEN recon-
structs a fair amount of formants and minimizes artifacts. As a
comparison, Hifi-GAN v3 [14] and Streaming-Seanet [13] are
not as efficient for harmonic reconstruction. Seanet [16]seems
to be the closest to the reference’s spectrogram. All approaches
were able to get rid of the additive Gaussian noise. Some ad-
ditional zoomable spectrograms confirming these observations
are available at https://jhauret.github.io/eben/.

2) MUSHRA study: We conducted a subjective comparative
evaluation of the different trained models using the MUltiple
Stimuli with Hidden Reference and Anchor [82] (MUSHRA)
methodology. According to the MUSHRA specification, a rat-
ing scale ranging from 0 to 100 has been used; the higher, the
better. A total of 56 samples were rated by participants, corre-
sponding to 7 audios enhanced by five different networks, plus

the hidden reference and a hidden low anchor (corresponding
to an untrained EBEN network) and the simulated in-ear
signal. Participants were recruited by e-mail to complete one of
two available tests on the GoListen platform [68] : MUSHRA-
Q which allows to rank methods for produced sound quality,
and MUSHRA-U, which aims at ranking methods for ease of
speech understanding. Ease of understanding is linked with
notions of phonetic confusion and intelligibility, while audio
quality reflects the naturalness and listening comfort. For both
tests, we collected the participants hearing condition and the
type of sound reproduction system of the participants to retain
69 participants over 88 for MUSHRA-U and 66 over 82
for MUSHRA-Q. We also followed the two post-screening
phases recommended by the International Telecommunication
Union (ITU) [82], to only retain subjects producing consistent
gradings :
• Stage 1 post-screening: A listener should be excluded

from the aggregated responses if he or she rates the
hidden reference condition for at least 15% of the test
items lower than a score of 90.

• Stage 2 post-screening: Exclude subjects whose individ-
ual grades fall outside 1.5 × the upper or lower bound
of the IQR of the aggregated listeners for at least 25%
of the test items.

After applying those two criteria, we retain 47/88 for
MUSHRA-U and 43/82 for MUSHRA-Q. The overall age
repartition is as follows: 37% are below 27 years old, 24% are
above 50, and 39% between 27 and 50 years old. We found no
statistically significant differences in ratings between the age
categories. The distribution of obtained gradings are shown
Fig. 9 and Fig. 10.

The statistical distributions have been studied using a non-
parametric Friedmann Analysis of Variance to confirm the
statistical significance of the results. The obtained p-values
are lower than 1e−20, demonstrating that there are significant
differences, both in terms of quality and intelligibility among
tested approaches. This made it possible to perform a post-
hoc Nemenyi-Friedmann analysis, in order to assess the 2-
to-2 independence of the distributions. The obtained results
demonstrate that the EBEN approach is ranked first ex-
aequo with Seanet for both aspects(no statistical significant
difference between EBEN and Seanet, p-value > 0.5), and
that both methods are both significantly better ranked than
the Streaming Seanet method, both for quality and ease of
comprehension (p-value < 0.005).

D. Real data test and robustness

To assess the bandwidth extension robustness performed by
EBEN, we compared two trained models on their ability to
enhance real audio captured with the prototype (same audios
used in Sec. III-B). The first model is the one discussed in
Sec. V-B and Sec. V-C and has been trained to reverse the
Ψfixed degradation, while the second model is trained on
Ψrandom. Results are shown Tab. III.

The obtained results reveal that neither of the two models
is able to generate a speech signal with a better STOI than the

https://jhauret.github.io/eben/


0.2 0.6
0

1000

2000

3000

4000

5000

6000

7000

8000

0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6
−80

−70

−60

−50

−40

−30

−20

−10

0

−80

−70

−60

−50

−40

−30

−20

−10

0

−80

−70

−60

−50

−40

−30

−20

−10

0

−80

−70

−60

−50

−40

−30

−20

−10

0

−80

−70

−60

−50

−40

−30

−20

−10

0

−80

−70

−60

−50

−40

−30

−20

−10

0

−80

−70

−60

−50

−40

−30

−20

−10

0

Time (seconds) Time (seconds) Time (seconds) Time (seconds) Time (seconds) Time (seconds) Time (seconds)

Fr
eq

ue
nc

y 
(H

z)
Simulated In-ear Audio U-Net V.Kuleshov Hifigan.v3 J.Kong Seanet M.Tagliasacchi Streaming-Seanet Y.Li EBEN Ours Reference

Fig. 8: Spectrograms of various bandwidth extension models sandwiched by the simulated in-ear and the reference signals.
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Fig. 9: MUSHRA-U : statistical distributions of scores ob-
tained with a MUSHRA procedure for the ranking of perceived
ease of understanding across trained models.

Speech STOI
In-ear enhanced via EBEN trained on Ψfixed 0.51
In-ear enhanced via EBEN trained on Ψrandom 0.53
Raw In-ear 0.56

TABLE III: EBEN’s ability to enhance real data according to
different training sets

initially captured signal. This poor enhancement performance
is attributable to the complex degradation that cannot be
accurately simulated by a linear transfer function. Rather,
the degradation is likely to be non-linear and the additive
physiological noise time-dependent, making the assumption
of a linear time-invariant system untrue in practice.

Still, results also suggest that the model trained on Ψrandom

performs better for unseen, authentic, and person-dependant
degradations. This behaviour is further corroborated by listen-
ing to the produced audios. A suitable training set is therefore
necessary and may not be attained through simulations, since
the complexity of the human anatomy and the randomness
of physiological noises prohibit the production of a suitable
simulation model. The data-driven very nature of deep learning
suggesting that the training set should be based on real data
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Fig. 10: MUSHRA-Q : statistical distributions of scores ob-
tained with a MUSHRA procedure for the ranking of perceived
sound quality across trained models.

: we are therefore in the process of building and releasing a
complete BCM recordings dataset in a near future.

VI. CONCLUSION

We presented Configurable EBEN: a state-of-the-art,
real-time compatible, and lightweight neural network
architecture to address the problem of unimodal enhancement
of speech signals captured with noise-resilient body-
conduction microphones. The main challenge encountered
with these unconventional microphones is the need to
achieve a bandwidth extension of the raw captured signals.
We therefore designed EBEN to be fully configurable
for the bandwidth enlargement needed. We specificlaly
proposed a multiband approach, where the enhancement is
solely conditioned on the first P informative bands, and the
adversarial training is mainly targeted to the last Q bands over
a total of M bands through newly designed discriminators.
Furthermore, this multiband decomposition – which is using
Pseudo Quadrature Mirror Filter bank – enables a reduction
of the feature’s dimensionality from the very first layer of the
encoder. This benefits streaming compatibility, because fewer



computations are required during the forward pass and reduce
data redundancy. Those findings are supported by extensive
experimentions and comparisons with existing models. Those
experiments demonstrate that EBEN is competitive in many
aspects, including enhancement performances, latency, and
memory footprint. EBEN is ready to be trained on a real
BCMs dataset.
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A. de Brébisson, Y. Bengio, and A. C. Courville, “Melgan: Generative
adversarial networks for conditional waveform synthesis,” Advances in
neural information processing systems, vol. 32, 2019.

[56] S. Kim and V. Sathe, “Bandwidth extension on raw audio via generative
adversarial networks,” arXiv preprint arXiv:1903.09027, 2019.

[57] S. E. Eskimez, K. Koishida, and Z. Duan, “Adversarial training for
speech super-resolution,” IEEE Journal of Selected Topics in Signal
Processing, vol. 13, no. 2, pp. 347–358, 2019.

[58] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial networks,”
Communications of the ACM, vol. 63, no. 11, pp. 139–144, 2020.

[59] B. Feng, Z. Jin, J. Su, and A. Finkelstein, “Learning bandwidth expan-
sion using perceptually-motivated loss,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 606–610.

[60] H.-P. Liu, Y. Tsao, and C.-S. Fuh, “Bone-conducted speech enhancement
using deep denoising autoencoder,” Speech Communication, vol. 104,
pp. 106–112, 2018.

[61] D. Shan, X. Zhang, C. Zhang, and L. Li, “A novel encoder-decoder
model via ns-lstm used for bone-conducted speech enhancement,” IEEE
Access, vol. 6, pp. 62 638–62 644, 2018.

[62] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[63] M. Wang, J. Chen, X. Zhang, Z. Huang, and S. Rahardja, “Multi-modal
speech enhancement with bone-conducted speech in time domain,”
Applied Acoustics, vol. 200, p. 109058, 2022.

[64] R. E. Bouserhal, P. Chabot, M. Sarria-Paja, P. Cardinal, and J. Voix,
“Classification of nonverbal human produced audio events: a pilot study,”
2018.

[65] M. Wang, J. Chen, X.-L. Zhang, and S. Rahardja, “End-to-end multi-
modal speech recognition on an air and bone conducted speech corpus,”
IEEE/ACM Transactions on Audio, Speech, and Language Processing,
pp. 1–12, 2022.

[66] R. E. Bouserhal, A. Bernier, and J. Voix, “An in-ear speech database
in varying conditions of the audio-phonation loop,” The Journal of the
Acoustical Society of America, vol. 145, no. 2, pp. 1069–1077, 2019.

[67] “BIONEAR outstanding hearing for 4.0 professionals,” https://www.
cotral-communication.com/en/industry.html, accessed: 2022-10-10.

[68] D. Barry, Q. Zhang, P. W. Sun, and A. Hines, “Go listen: an end-to-
end online listening test platform,” Journal of Open Research Software,
vol. 9, no. 1, 2021.

[69] M. K. Brummund, F. Sgard, Y. Petit, and F. Laville, “Three-dimensional
finite element modeling of the human external ear: Simulation study of
the bone conduction occlusion effect,” The Journal of the Acoustical
Society of America, vol. 135, no. 3, pp. 1433–1444, 2014.

[70] J. Rothweiler, “Polyphase quadrature filters–a new subband coding
technique,” in ICASSP’83. IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 8. IEEE, 1983, pp. 1280–1283.

[71] Y.-P. Lin and P. Vaidyanathan, “A kaiser window approach for the
design of prototype filters of cosine modulated filterbanks,” IEEE signal
processing letters, vol. 5, no. 6, pp. 132–134, 1998.

[72] M. Lagrange and F. Gontier, “Bandwidth extension of musical audio
signals with no side information using dilated convolutional neural
networks,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp.
801–805.

[73] J. Su, Y. Wang, A. Finkelstein, and Z. Jin, “Bandwidth extension is
all you need,” in ICASSP 2021-2021 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021, pp.
696–700.

[74] T. Salimans and D. P. Kingma, “Weight normalization: A simple repa-
rameterization to accelerate training of deep neural networks,” Advances
in neural information processing systems, vol. 29, 2016.

[75] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[76] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Per-
ceptual evaluation of speech quality (pesq)-a new method for speech
quality assessment of telephone networks and codecs,” in 2001 IEEE
international conference on acoustics, speech, and signal processing.
Proceedings (Cat. No. 01CH37221), vol. 2. IEEE, 2001, pp. 749–752.

[77] J. Le Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “Sdr–half-baked
or well done?” in ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp.
626–630.

[78] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
time objective intelligibility measure for time-frequency weighted noisy
speech,” in 2010 IEEE international conference on acoustics, speech
and signal processing. IEEE, 2010, pp. 4214–4217.

[79] A. Vinay and A. Lerch, “Evaluating generative audio systems and their
metrics,” arXiv preprint arXiv:2209.00130, 2022.

[80] P. Manocha, B. Xu, and A. Kumar, “Noresqa: A framework for speech
quality assessment using non-matching references,” Advances in Neural
Information Processing Systems, vol. 34, 2021.

[81] N. Lezzoum, G. Gagnon, and J. Voix, “Echo threshold between passive
and electro-acoustic transmission paths in digital hearing protection
devices,” International Journal of Industrial Ergonomics, vol. 53, pp.
372–379, 2016.

[82] R. BS.1534-3, “Method for the subjective assessment of intermediate
quality level of audio systems,” International Telecommunication Union
Radiocommunication Assembly, 2015.

http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://www.cotral-communication.com/en/industry.html
https://www.cotral-communication.com/en/industry.html

	I Introduction
	II Related work
	III In-ear microphone study
	III-A In-noise comparison with traditional microphone
	III-B Degradation study
	III-C Simulation of the dataset

	IV EBEN
	IV-A Pseudo Quadrature Mirror Filter
	IV-A1 Theory
	IV-A2 Usage for EBEN

	IV-B Model architecture
	IV-B1 Generator
	IV-B2 Discriminators

	IV-C Loss functions

	V Experiments and evaluation
	V-A Training strategy
	V-B Objective evaluation
	V-B1 Speech quality metrics
	V-B2 Frugality study

	V-C Subjective evaluation
	V-C1 Visual inspection of spectrograms
	V-C2 MUSHRA study

	V-D Real data test and robustness

	VI Conclusion
	References

