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Mental disorders are among the top most demanding challenges in world-wide

health. A large number of mental disorders exhibit pathological rhythms, which

serve as the disorders characteristic biomarkers. These rhythms are the targets for

neurostimulation techniques. Open-loop neurostimulation employs stimulation

protocols, which are rather independent of the patients health and brain state

in the moment of treatment. Most alternative closed-loop stimulation protocols

consider real-time brain activity observations but appear as adaptive open-

loop protocols, where e.g., pre-defined stimulation sets in if observations fulfil

pre-defined criteria. The present theoretical work proposes a fully-adaptive

closed-loop neurostimulation setup, that tunes the brain activities power spectral

density (PSD) according to a user-defined PSD. The utilized brain model is

non-parametric and estimated from the observations via magnitude fitting

in a pre-stimulus setup phase. Moreover, the algorithm takes into account

possible conduction delays in the feedback connection between observation and

stimulation electrode. All involved features are illustrated on pathological α- and

γ-rhythms known from psychosis. To this end, we simulate numerically a linear

neural population brain model and a non-linear cortico-thalamic feedback loop

model recently derived to explain brain activity in psychosis.
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1. Introduction

Electrical neurostimulation is an old human idea, and has been a well-established
therapy for mental disorders for few decades. Caius Plinius during Antiquity and Scribonius
Largus, who lived in the first century AD, proposed respectively contacts with the Electric
ray (Torpedo Fish) for the treatment of post-partum pain and severe headaches. In the
19th century, electrical stimulation was commonly prescribed by neurologists for nervous
disease (Edel and Caroli, 1987). Today, various electrical stimulation techniques exist to
modulate neuronal systems and novel techniques for an optimal clinical treatment of a
specific pathology gain more and more attention (Sun and Morrell, 2014; Chen et al., 2022).
They could be used as an additional therapeutic lever or as an alternative to pharmacological
medication, thus representing a hope for pharmaco-resistant forms of disease.
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Brain oscillations result from coordinated electrical neuronal
tissues activity within and between structures and networks.
Implicated in various neural processes, such as perception,
attention and cognition, their disruption yields pathological
rhythms, which reflect abnormal activity of the implicated brain
network, notably at the cellular and molecular level (Basar,
2013). These pathological rhythms serve as good biomarkers for
neuropathologies. For instance, neurophysiological studies
have revealed that a large number of mental disorders
exhibit pathological rhythms, which do not occur in healthy
patients (Schulman et al., 2011). Neurostimulation techniques have
identified such pathological rhythms as good stimulation targets
for the treatment of brain oscillatory disorders. Neurostimulation
induces electric currents in neuronal tissue. Depending on
the stimulation protocol, i.e. the temporal stimulation current
shape, its duration and pause and the number of repetitions,
neurostimulation can lead to neural plasticity effects or to
pacemaker-like brain stimulation, respectively.

For example, Deep Brain Stimulation (DBS) is an invasive
technique and proposed for patients suffering from severe
pharmaco-resistant Parkinson’s disease (PD) or obsessive-
compulsive disorders. In PD patients aberrant hypersynchronicity
and hyperactivity in the β-frequency band (12–30 Hz) of the
basal ganglia-thalamocortical network can be addressed by
the pharmacological medication (e.g. Levodopa) or DBS. The
conventional DBS protocols focus on the subthalamic nucleus or
globus pallidus stimulation continuously at a temporally constant
frequency about 130 Hz. The suppression of the pathological
beta oscillations was correlated with improving motor symptoms
(Kühn et al., 2008). Recent techniques (Hosain et al., 2014;
Fleming et al., 2020) propose to apply an adaptive closed-loop
stimulation protocol based on observed intracranial brain activity.
In addition to this intracranial neurostimulation technique,
transcranial electrical stimulation (TES) and transcranial magnetic
stimulation (TMS) are non-invasive neuromodulation approaches
in which, respectively, a low electrical current and a magnetic field
are applied to the cortical tissues. The TES current modalities
include direct currents (tDCS), i.e. constant currents, alternating
current (tACS), i.e. typically oscillatory currents, and random
noise-shape currents (tRNS), which typically includes frequencies
above the β-frequency band. It was shown that tDCS can improve
cognitive performance in healthy subjects (Brunelin et al., 2012)
and patients (Stagg et al., 2018) and it is applied as a therapeutic
means to target brain network dysfunctions, such as Attention-
Deficit/Hyperactivity Disorder (Nejati et al., 2020) and major
depressive disorder (Bennabi and Haffen, 2018).

Although the neurostimulation techniques mentioned above
may permit to alleviate mental disorder patients from symptoms,
the success rate of these treatments is still limited (Nasr et al., 2022).
This underperformance results from non-optimal choices of the
stimulation protocol originating from the lack of understanding
of the underlying neural response to stimulations and the non-
patient specific stimulation protocol. In other words, typically
the stimulation protocol (including size, duration, repetition
cycle of the stimulation signal) is open-loop, i.e. pre-defined by
the clinician based on heuristic criteria before the stimulation
starts (Paulus, 2011). This non-optimal approach is inferior to

so-called closed-loop techniques, which automatically adapt to the
patients current brain/health state. Such an adaptive, or closed-
loop, approach has been introduced for intracranial (Hartshorn
and Jobst, 2018; Prosky et al., 2021; Stanslaski et al., 2022) and
transcranial stimulation (Tervo et al., 2022) and has been shown to
improve neurostimulation in major depression patients (Scangos
et al., 2021), epilepsy (Haeusermann et al., 2023) and affective
and anxiety disorders (Guerrero Moreno et al., 2021). These
proposed closed-loop methods are adaptive in the sense that a
pre-defined stimulation signal is applied when observed brain
activity fulfills certain criteria, such as passing an amplitude or
power threshold. While this adaptive approach improves existing
open-loop methods, the pre-defined stimulation signal may still
be non-optimally chosen. Recently proposed methods produce
better results by using reference signal tracking control schemes
such as proportional integral (PI) controller (Westover et al.,
2015; Bolus et al., 2018; Su et al., 2019; Zhu et al., 2021), linear
quadratic regulator (LQR) (Yang et al., 2018, 2019; Bolus et al.,
2021) or model predictive control (MPC) (Fang and Yang, 2022,
2023) which uses an LQR in a MPC framework. However this
form of control requires to pre-define a reference signal which
is often non-trivial to provide in a patient specific manner.
Furthermore, because of the stochastic nature of brain signals,
forcing the resting state signal to follow a reference signal with its
own independent noise creates an unnecessary constraint for the
stimulation signal whenwe only want to regulate the power in given
frequency bands.

We propose to estimate a stimulation signal on the basis of
observed brain activity without the need to track a reference signal.
The target stimulation signal is computed directly via a linear
controller synthesized using a user-defined filter that encodes the
desired frequency-domain modifications. We argue that it is the
natural choice for a closed-loop optimization in the presence of
pathological rhythms: typically the pathology is identified by an
abnormal power in a certain frequency band and the closed-loop
control aims to modify this power value in such a way that the final
brain activity power spectral distribution resembles the distribution
of a healthy subject. Examples are pathological too strong β-rhythm
magnitudes in Parkinson’s disease (Martin et al., 2018) and too
weak α-rhythm (Howells et al., 2018) and too strong γ-rhythm in
schizophrenia (Y et al., 2015). This approach implies the hypothesis
that modifying the observed pathological brain rhythms of a
patient to resemble brain rhythms of a healthy subject renders the
patients brain state and improves the patients health situation. This
assumption was motivated by the impressive improving impact of
DBS in psychiatric disorders (Holtzheimer and Mayberg, 2011).

Technically, the proposed method aims to reshape the spectral
distribution of observed data, such as electroencephalographic data
(EEG). For illustration, we consider pathological brain rhythms
observed in psychosis in the α- (Howells et al., 2018) and γ-
band (Leicht et al., 2015). Our method relies on the extraction
and the filtering in real-time of the brain resting state activity
signal, using the EEG and an estimated brain response model.
The underlying brain model is fully non-parametric and estimated
from observed resting state EEG. Moreover, we consider the
fact that the closed-loop feedback exhibits a certain conduction
delay between measurement and stimulation. This conduction
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delay results from the transmission delay in the hardware and
the numerical computation time of the stimulation signal. Very
first estimates of this delay time are in the range of few tens of
milliseconds (Private communication, Isope, 2020), i.e. in the range
of EEG signal time scales. Consequently, the present feedback delay
in real-world systems may affect the methods performance. Fang
and Yang (2022) presents a method to increase the robustness
of an adaptive closed-loop controller against delay by reducing
the sensitivity of the closed-loop to high frequency disturbances.
However, while this decreases generally the error in the closed-loop
output, this also prevents to apply the control signal specifically to
high frequency ranges like the γ-range. To our best knowledge,
the present study is the first providing a method to effectively
compensate the frequency-domain errors created by the feedback
delay in closed-loop neurostimulation systems without sacrificing
the controllability of high frequency ranges.

The remaining article is organized as follows: Section 2 presents
the neurostimulation setup and the closed-loop circuit studied in
the rest of this paper. Then, we propose a model-based controller
design to apply desired modifications to the observed activity
signal. Subsequently, we propose a model estimation method to
extract the brain input response model needed for the controller
design. Later, we address the problem of the closed-loop delay
by designing an additional system to approximate the future
values of the observations. Finally, we present two brain models,
which illustrate and validate the proposed method. Then, Section
3 presents the simulation results of our circuits, including the
accuracy of the model estimation step and the delay compensation.
Lastly, in Section 4, we discuss the results of the method presented
in the paper compared to the state of the art, mention limitations
and pinpoint some perspectives and possible experimental tests.

2. Materials and methods

2.1. Simulated neurostimulation

Webuild a theoretical plant as a circuit containing a stimulation
element and an observation element, both connected to the
model brain system under study. In real practice, the stimulation
element corresponds to the neurostimulation device, such as a
TES system or a TMS coil. In contrast, the observation element
may represent electro-/magneto-encephalographic electrodes (in
the following called EEG) or electrodes observing Local Field
Potential. We define the time-dependent functions u :R → R and
y :R → R as the input stimulation current and the output EEG
signal, respectively.

If no input current is applied, the output is a non-zero
stochastic signal y0 corresponding to the measured resting state
EEG activity and a non-zero neurostimulation current alters the
output signal as a linear response. This alteration is caused by a
change in the brain activity in response to the neurostimulation
input and a direct measurement of the input current. The latter is
undesirable as it is not correlated with brain dynamics but only with
neurostimulation and measurement devices. In the following, we
assume that observations include brain dynamics correlated output
only while direct current measurements are filtered out. A method

to remove the direct current measurement from the EEG signal is
discussed in Section 4.

Then, we define the plant P as the system that takes u as its
input and generates an output y which is equal to y0 when no
input is applied. By modeling the dynamics of P , our goal is a
neurostimulation signal u that causes predetermined changes in the
spectral power amplitude of the output signal y. In our case, the goal
is to increase the activity in the alpha band (8−12 Hz) and decrease
the activity in the gamma band (25− 55 Hz) motivated by aberrant
power spectrummagnitudes in schizophrenia (Howells et al., 2018;
Martin et al., 2018). A possible experimental setup involving our
method is sketched in Figure 1A.

2.2. Linear time invariant model

We assume that the observed output response to a small
neurostimulation input u is linear and time-invariant (LTI). This
assumption is supported by multiple results across literature
(Popivanov et al., 1996; Liu et al., 2010; Kim and Ching, 2016).
Thus, there is an underlying LTI system G that produces an output
yu for any given input u. For this system, we can define a function
g :R → R, which is the output produced by the plant input
response system G in response to a unit impulse signal δ(t) where
t ∈ R is the time elapsed since the start of the signal. This function
g is also called the unit impulse response of G and we have

yu(t) = g(t) ∗ u(t) : =
∫ +∞

−∞

g(t′)u(t − t′)dt′.

with time t and ∗ denotes the convolution over time. It leads to the
total plant output

y(t) = y0(t)+ yu(t) = y0(t)+ g(t) ∗ u(t). (1)

With this choice of model, the contribution of the
neurostimulation response to the total output is purely additive,
allowing us to focus the analysis on G, which represents the
neurostimulation response part of the plant system. We also see
that y0, the resting state activity, contains the stochastic part of the
output, while yu can be predicted for any known input signal u if
we have a model for the system G. A method to estimate the plant
input response model G is presented in Section 2.4.

2.3. Closed-loop control

In this section, we suppose that the function g is known. The
estimation of g will be the aim of Section 2.4.

To close the loop, we generate the plant input signal u as the
output of a linear controllerK in response to the plant output y

u(t) = k(t) ∗ y(t),

where k :R → R is the unit impulse response of the controller K.
We can now rewrite Eq. (1) as

y(t) = y0(t)+ g(t) ∗ k(t) ∗ y(t). (2)
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FIGURE 1

Closed-loop neurostimulation setup. (A) The di�erent steps of our method in a possible experimental setup. First, the clinician specifies the desired

frequency domain modifications to apply e.g. increase α-activity and decrease γ-activity. Second, the brain input response model is fitted to the

measured EEG signal in order to match as closely as possible the current brain dynamics of the patient. Finally, the clinician’s specifications and the

fitted model are used to synthesize the closed-loop controller K that is directly used for closed-loop neurostimulation. (B) The controller directly

produces the stimulation signal u in function of the measured total brain output y in real-time.

Here, we assume that no delay between observation and stimulation
application is present. We will relax this condition in Section 2.5.
To solve Eq. (2), we apply the Laplace transform defined for each
time-dependent function x :R → R by

X(s) = L{x(t)}(s) : =
∫ +∞

0−
x(t)e−stdt, (3)

Thus, we define Y :C → C, Y0 :C → C, G :C → C and
K :C → C as the Laplace transforms of respectively y, y0, g and
k, allowing us to write Eq. (2) as

Y(s) = Y0(s)+ G(s)K(s)Y(s).

Hence

Y(s) =
1

1− G(s)K(s)
Y0(s). (4)

We now have an equation for the closed-loop output in function of
the resting state activity. A block diagram of the closed-loop circuit
is shown in Figure 1B.

Hence to design the frequency distribution of y we tune
the frequency distribution of the transfer function K of the
controllerK.

2.3.1. Controller synthesis
Our closed-loop setup aims to tune the observation power

spectrum, or equivalently, the choice ofY(s) subjected to the resting
state Y0(s). To this end, we define a linear filter H with transfer
function H :C → C and

Y(s) = Y0(s)+H(s)Y0(s). (5)

Specifically, we intend to restore the physiological state of the brain,
e.g., of a schizophrenic patient as our motivation, with an observed
EEG presenting low alpha activity and high gamma activity. The
chosen filter H is a weighted double bandpass filter with positive
weight in the α-frequency band to increase α-power and negative
weights in the γ-band to decrease the systems γ-activity. The filter’s
transfer function is defined as

H(s) = c1
2πB1s

s2 + 2πB1s+ (2π f1)2
+ c2

2πB2s

s2 + 2πB2s+ (2π f2)2
.

The exact parameters ofH are shown in Table 1.
We can synthesize the closed-loop controller K, by combining

equations (4) and (5) and solving for K as

1

1− G(s)K(s)
Y0(s) = Y0(s)+H(s)Y0(s)

K(s) =
H(s)

(1+H(s))G(s)
. (6)

Therefore, if we know the plant input response transfer
function G, we can find that desired controller transfer function
K by Eq. (6). Once the transfer function is obtained, we can use
it to find a corresponding state-space representation (Hespanha,
2018) for time domain simulations. The state-space system’s
ordinary differential equations can then be implemented by any
device that can measure the brain activity and produce a custom
neurostimulation signal in real-time.
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TABLE 1 Parameter set of the filterH.

Parameter Description Value

f1 α-band natural frequency 10ms

B1 α-band width 4Hz

c1 α-band weight 1.0

f2 γ-band natural frequency 40ms

B2 γ-band width 30Hz

c2 γ-band weight -0.5

The frequency parameters are chosen based on the alpha frequency range (8–12Hz) and
the gamma frequency range (25–55 Hz) in an EEG. The weighting parameters c1 and c2 ,
respectively positive and negative, corresponding to the choice to increase the alpha activity
and decrease the gamma activity.

2.4. Model estimation

The design of our closed-loop controller requires estimating
the plant input response system G, which in practice includes the
brain dynamics, the neurostimulation device and the observation
device. Our approach includes the estimation of G directly from
observed brain activity, such as EEG of the patient. This ensure that
the estimated plant model will be as close as possible to the real
brain dynamics in the corresponding experimental conditions. To
this end, we first need to find a way to measure the plant input
response without also measuring the plant resting state activity.
This is not trivial since the observed signal is the sum of the resting
state activity and the stimulation response.

2.4.1. Signal extraction
Let us consider an open-loop setup with an arbitrary input

u applied to the plant, which generates the output described by
Eq. (1). In this equation, we only know u and y, and want to
estimate the impulse response g. The problem is that we cannot
observe y0 only during the stimulation. Hence, based on previous
data recordings, we need to find a way to predict the dynamics of
y0 during the stimulation.

First, we provide the following standard definitions that are
important in the subsequent discussion. For any time domain
signal x :R → R, we denote the Fourier transform by

x̂(f ) = F{x(t)}(f ) : =
∫ ∞

−∞

x(t)e−2π iftdt. (7)

We define α0 :R → R and αu :R → R such as α0(t) =

y0(t)− ȳ0 and αu(t) = yu(t)− ȳu where ȳ, ȳ0 and ȳu are respectively
the ensemble means of y, y0 and yu.

We assume that y0 is a wide-sense-stationary (WSS) random
process, i.e. its mean and variance do not depend on time.
According to the Wiener-Khinchin theorem (Khintchine, 1934;
Gardiner, 2004), the autocorrelation function of a wide-sense-
stationary random process has a spectral decomposition given by
the power spectrum of that process

Syy(f ) = |α̂(f )|2,

where α̂ :R → C is the Fourier transform of α(t) = y(t)− ȳ ∈

R and Syy :R → R
+ is the spectral density of y.

Then, we can write Eq. (1) as

ȳ+ α(t) = ȳ0 + α0(t)+ ȳu + αu(t),

where ȳ = ȳ0 + ȳu. The equation then simplifies to

α(t) = α0(t)+ αu(t).

By application of the Fourier transform, we obtain

α̂(f ) = α̂0(f )+ α̂u(f )

and

|α̂(f )|2 = |α̂0(f )|
2 + |α̂u(f )|

2 + 2Re[α̂0(f )α̂u(f )
∗].

In the following, we compute the ensemble average of each term
of this equation. Since α and αu are two independent processes
sampled at different times and 〈α̂0〉 = 〈α̂u〉 = 0.

Hence

〈2Re(α̂0(f )α̂u(f )
∗)〉 = 2Re[〈α̂0(f )α̂u(f )

∗〉] = 0.

Here and in the following, 〈·〉 denotes the ensemble average. We
point out that although Eq. (8) does hold when considering the
ensemble average of the signals, fluctuations around 0 still remain
in Eq. (8) for finite ensemble number of finite time signals.

We define the amplitude ratio (AR) as

AR =

〈

|â(f )|2

|â0(f )|2

〉

, (8)

which quantifies the gain of amplitude between the resting-state
output and the stimulated output. The fluctuations mentioned
above can also be reduced by increasing the input current which
will lead to a higher AR and therefore, a higher contribution to the
total signal of the âu term (which is known) compared to the other
terms.

Nevertheless, this yields

〈|α̂u(f )|
2〉 = 〈|α̂(f )|2〉 − 〈|α̂0(f )|

2〉. (9)

Using Eq. (1), we can express α̂u in terms of the input impulse
response g and the input u

α̂u(f ) = F{yu(t)− ȳu}(f )

= F{g(t) ∗ [u(t)− ū]}(f )

= ĝ(f )F{u(t)− ū}(f ) .

(10)

This equation permits to estimate the transfer function ĝ, see
Section 3.

To express the transfer function ĝ in Laplace space, we use
the fact that a unit impulse response function is non-zero only for
positive time values t. Hence, based on equations (3) and (7), for
s = 2π if , we can write the Laplace transform G as

G(2π if ) =
∫ +∞

0−
g(t)e−2π iftdt =

∫ +∞

−∞

g(t)e−2π iftdt = ĝ(f ),

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1183670
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Wahl et al. 10.3389/fnins.2023.1183670

where the unit impulse response function g directly relates the
output y to the resting-state output y0 and the stimulation signal u,
cf. Eq. (1).

We now need a method to generate a LTI system with a transfer
function that matches the magnitude data computed with the
formula. This is achieved by the magnitude vector fitting algorithm.

2.4.2. Magnitude vector fitting
Our goal is now to find a transfer function G corresponding

the magnitude data |ĝ(f )|2. For this purpose, we use a variant of
the vector fitting algorithm design to work even with only the
magnitude data. This method is called magnitude vector fitting
(De Tommasi et al., 2010).

It allows to fit a passive LTI system to data by fitting the model
transfer function. The system is synthesized such that the mean
square error between the magnitude data sample and the transfer
function evaluated at the same frequency points is minimized.
De Tommasi et al. (2010) show that the transfer function of the
fitted model reproduces both the magnitude and the phase shift
of the original transfer function, although the fitting has been
performed using sampled magnitude data only.

By minimizing the mean square error, the algorithm ensures
that the transfer function of the fitted model accurately matches
the original model as represented by the reconstructed gain data.
Furthermore, to assess the accuracy of the reconstruction, we also
compare the fitted model to the transfer function of the linearized
brain model used for the simulation. This allows to double-check
the validity of the reconstructed magnitude and also to verify if the
reconstructed phase fits the phase of the original model as closely
as possible (cf. Figures 3C, D).

We define the root-mean-square error (RMSE) as

RMSE =

√

√

√

√

〈
∣

∣

∣

∣

∣

G̃(2π if )− G(2π if )

G(2π if )

∣

∣

∣

∣

∣

2〉

, (11)

where G̃ is the fitted model’s transfer function, G is the original
model’s transfer function and f ∈ R

+ are the frequency points used
for the fitting. This allows to quantify the accuracy of the fitting
step.

2.5. Delay compensation

Realistic feedback loops exhibit conduction delays between the
moment of observation and feedback stimulation. Reasons for such
delays are finite conduction speeds in cables, electronic switches,
interfaces and delays caused by the controller device to compute
numerically adapted stimuli. In systems with large time scales, such
as controlled mechanical devices on the centimeter or larger scale,
such delays may be negligible. Conversely biological systems such
as the brain evolve on a millisecond scale and conduction delays
may play an important role. Preliminary estimation of input and
output devices of desktop computers have revealed an approximate
delay of ∼ 10ms. By virtue of such delays, it is important to
take them into account in the closed-loop between the moment of
observation and stimulation.

The different sources of delay can be represented as plant input
and output delays. Since the controller K is LTI, the input and
output delays can be concatenated into one single plant input delay.
Hence, in our setup, we model the delay as an input delay τ in
the system G, modifying y(t) = g(t) ∗ u(t) in Eq. (1) to y(t) =

g(t) ∗ u(t − τ ). The Smith predictor (Smith, 1959; Morari and
Zafiriou, 1989) is a knownmethod to compensate such delay times.
However, in the present problem, this approach allows controlling
a limited frequency band only (Figures 7A, B). Consequently, it
was necessary to invent another method. Since the plant input
u is generated by the controller K, we modify the controller to
compensate the delay. To this end, the new controllerK is chosen to
estimate the future value of u instead of the present value. The new
proposed method to apply this controller modification is presented
in the Results Section 3.2.

2.6. Comparison to the state of the art

Our method is tested against two main control schemes
commonly used in adaptive closed-loop neurostimulation. These
control schemes are closed-loop control with a PI controller
(Westover et al., 2015; Bolus et al., 2018; Su et al., 2019; Zhu
et al., 2021) and Linear Quadratic Gaussian (LQG) control
(Yang et al., 2018, 2019; Bolus et al., 2021) which refers to
the combination of a Linear Quadratic Estimator (LQE) (or
Kalman filter) with a Linear Quadratic Regulator (LQR) (Åström,
2012). For both these methods, the tracked reference signal is
generated from pre-recorded pathological resting state activities
to which we apply a filter restoring the target α- and γ-
activities. In order to prevent closed-loop destabilization and
regulate high frequency disturbances, a Smith predictor (Smith,
1959) is used for the PI and LQG controller to compensate the
delay, while we use our own delay compensation method for
our controller.

2.7. Brain models

Our closed-loop control method works for any LTI brain
model. Furthermore, we want to show that it also produces good
results on non-linear brain models, for which the neurostimulation
input response behaves closely to an LTI system, when the
input is sufficiently small. To this end, we present two models
used to test our method. The first one is a linear neural
population model of cortical activity, and the second one is
a non-linear cortico-thalamic neural population model with
cortico-thalamic delay.

2.7.1. Linear brain model
We describe neural population activity with a noise-driven

linear model (Hutt, 2013). The model is composed of two pairs
of interacting excitatory and inhibitory populations. Here we have
V
(1,2)
e,i :R → R, representing the mean activity of the associated

population, where V
(1,2)
e and V

(1,2)
i correspond respectively to

excitatory and inhibitory populations. Each population is driven by
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TABLE 2 Parameter set of model (12).

Parameter Description Value

τe,1,2 exc. synaptic time constant 5ms

τi,1,2 inhib. synaptic time constant 20ms

N11 first exc. linear coefficient 1.15

N21 first inhib. linear coefficient 0.63

N12 second exc. linear coefficient 2.52

N22 second inhib. linear coefficient 6.6

N number of neurons 1000

κ2
1,2 noises variances (pathological) 10−4/N

(κ ′
1)

2 first noise variance (healthy) 3.6 · 10−4/N

(κ ′
2)

2 second noise variance (healthy) 2.5 · 10−5/N

b1,2 input coupling constants 0.18

b3,4 input coupling constants 0.14

The choice of parameter is partially based on the paper in which it was developed (see Hutt,
2013). The difference between the healthy and pathological state is modeled by changes in the
amplitude of the finite size fluctuations of each population.

noise ξ1,2 :R → R and the external input u :R → R, according to
the following differential equations:



































τe,1
dVe

(1)(t)
dt

= (−1+ N11)V
(1)
e (t)− N11V

(1)
i (t)+ b1u(t)+ ξ1(t),

τi,1
dVi

(1)(t)
dt

= N21V
(1)
e (t)+ (−1− N21)V

(1)
i (t)+ b2u(t),

τe,2
dVe

(2)(t)
dt

= (−1+ N12)V
(2)
e (t)− N12V

(2)
i (t)+ b3u(t)+ ξ2(t),

τi,2
dVi

(2)(t)
dt

= N22V
(2)
e (t)+ (−1− N22)V

(2)
i (t)+ b4u(t),

(12)
where the noise ξ1,2 is uncorrelated Gaussian distributed with

zero mean and variance κ2
1,2 = 10−7, and the stimulation u is

weighted by the coupling constants bi > 0 of the corresponding
population. In addition, τ(e,i),(1,2) are the synaptic time constants of
the populations, and constants Nij > 0 are interaction gains of the
respective population. Table 2 provides the parameters employed in
subsequent simulations.

The observed output

y(t) = V(1)
e (t)− V

(1)
i (t)+ V(2)

e (t)− V
(2)
i (t)

is a sum of the effective field potentialV
(j)
e −V

(j)
i of both populations

j = 1, 2, (cf. Figure 2A).
The simulation of the linear brain model in time domain is

done using the library control of python. The numerical integration
is computed thanks to matrix exponential (Van Loan, 1978), with a
simulation sampling time of 1ms. The resting state activity of the
linear brain model in shown in Figure 2A.

2.7.2. Cortico-thalamic brain model
A different model considers the cortico-thalamic feedback

circuit (Riedinger and Hutt, 2022). It describes the cortex layers

I-III and the cortico-thalamic loop between cortical layers IV-
VI, the thalamic relay cell population and the reticular structure.
The cortical layer I-III exhibits mean activity of excitatory cells
v and inhibitory cells w. Similarly, layer IV-VIs exhibits the
mean activity Ve and Vi and thalamic relay cell populations the
mean activity Vth,e and Vth,i. Moreover, the reticular structure
has the mean activity Vret . The fibers between the cortex and
thalamus and the cortex and reticular structure exhibit a finite
conduction delay τ (Hashemi et al., 2015; Riedinger and Hutt,
2022). The 7-dimensional dynamical system of the brain state x =

(v,w,Ve,Vi,Vth,e,Vth,i,Vret) ∈ R
7 obeys

{

ẋ(t) = F(x(t), x(t − τ ))+ ξ (t)+ Bu(t),
y(t) = Cx(t),

(13)

where the superscript t denotes transposition, F ∈ R
7 is a nonlinear

vector function, B ∈ R
7×1 is the input coupling matrix and

C ∈ R
1×7 is the observation matrix. We mention that B =

(b1, b2, b3, b4, 0, 0, 0)t , bi > 0, i.e. only the cortical layers are
stimulated with weights bi. The observation y captures the activity
of the cortical excitatory populations (Nunez and Srinivasan, 2006;
Riedinger and Hutt, 2022) with C = (c1, 0, c3, 0, 0, 0, 0), ci > 0. For
more details, please see the Supplementary material.

The time domain simulations of the cortico-thalamic model
is done by numerical integration using the fourth-order Runge-
Kutta method implemented by the scipy library in python with a
maximum simulation time step of 1 ms. The resting state activity of
the cortico-thalamic brain model is shown in Figure 2B.

2.8. Measuring brain activity

The general activity in EEG measurement is measured by first
estimating the power spectral density of the signal using frequency
bins of 1 Hz and then summing all the frequency bins up to the
Nyquist frequency. In practice, the sum will be mostly determined
by the activity in low frequencies and more precisely, near the α-
and γ-activity peaks. To measure the results of our method, we
define the α- and γ-activities as the sum of 1Hz frequency bins
only in their respective frequency bands, i.e., respectively 8–12 Hz
and 25–55Hz.Meanwhile, the total activity of the neurostimulation
signal, that we call the mean amplitude of u is computed from 0 Hz
to the Nyquist frequency.

3. Results

The present work addresses two major problems in closed-
loop control: the correct model choice of the systems dynamics
and the present conduction delay. The subsequent sections propose
solutions for both problems and illustrate them in some detail by
applying them to the linear brain activity model from Section 2.7.1.
The final section demonstrates the closed feedback loop for the
cortico-thalamic brain model from Section 2.7.2.
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FIGURE 2

Healthy and pathological resting state activity of the linear and cortico-thalamic brain models. The pathological state is characterized by a decreased

α-activity and an increased γ-activity. (A) Comparison of the healthy and pathological state of the linear brain model. The first row shows the last

500ms of the simulated time series. The second row shows the power spectral densities estimated from the time series and the last row shows the

estimated α- and γ-activities computed from the spectral densities and averaged over 50 simulations. (B) Same as (A) but using the cortico-thalamic

brain model. “***” corresponds to a p-value less than 0.0005 using Welch’s t-test.

3.1. Model estimation

Equations (9) and 10 permit to express the magnitude of ĝ(f ) in
terms of the spectral densities of observable signals

|ĝ(f )|2|F{u(t)− ū}(f )|2 = |α̂(f )|2 − |α̂0(f )|
2

|ĝ(f )|2Suu(f ) = Syy(f )− Sy0y0 (f )

|ĝ(f )|2 =
Syy(f )− Sy0y0 (f )

Suu(f )
.

(14)

The spectral density functions Sy0y0 and Syy may be estimated
numerically from output data before and during a stimulation with
a known chosen stimulation function u. The estimation may be
performed by applying conventional methods, such as the Welch
method (Welch, 1967). These estimations provide the magnitude
of the transfer function |ĝ| by utilizing Eq. (14). In detail, at first, we
considered the linear model (12) and injected a white noise current
into the plant gaining the system’s response signal together with
the resting state activity, (cf. Figure 3A). The subsequent estimation
of Syy(f ), Sy0y0 (f ) and Suu(f ) (Figure 3B) from the data permitted
to compute the brain input response model ĝ(f ) by Eq. (14). We
observe a very good accordance of the original model response
function and its estimation in magnitude (Figure 3C) and phase
(Figure 3D).

3.1.1. Robustness
The remaining error in the estimated model compared to

the original model depends on the amplitude ratio between the
stimulated output y and the resting state output y0, (cf. Figure 4).

Low stimulation currents or high driving noise can also cause the
magnitude vector fitting algorithm not to converge, leading to a
non-minimal mean-square error between the fitted and the original
models when evaluated at the frequency sample points used for
the algorithm.

This problem can be solved by increasing the amplitude of the
input current u that we inject in the plant, which decreases the
contribution of the resting state driving noise ξ to the output signal
relative to the input current. Although the remaining dominant
input current is also noisy, its value at any time or frequency
is known, meaning that it is canceled out in the ratio

Syy
Suu

in
Eq. (14). This effectively leads to lower noise in the transfer function
magnitude data extracted with Eq. (14). The limitation is then
set by the maximum amplitude of the current we are allowed to
inject into the brain in a given neurostimulation setup. Indeed, the
amplitude of the current is limited both for safety reasons that are
beyond the scope of this paper and because of the assumption of
linearity on which our method is based and which requires small
currents. On the other hand, we can also decrease the noise in the
spectral density data by increasing the stimulation time, and hence
increasing the amount of data which decreases the contribution
of the noise in the power spectral density estimation. Therefore,
the accuracy of the model fitting step can be optimized by finding
a trade-off between the maximum amplitude of the stimulation
current, and the maximum duration of the stimulation.

The accuracy of the fitting is generally easily assessed by
computing the root mean square error between the data and the
fitted model’s transfer function. In practise, this could be used as an
indicator to evaluate if sufficient stimulation amplitude and time
were chosen and then possibly reiterate this step with different
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FIGURE 3

The magnitude vector fitting algorithm successfully reconstructs the transfer function G from magnitude-only data. (A) Time series of the resting

state activity (blue), the input signal (green) and the stimulation response (red). (B) Spectral densities of the simulated input signal (green), the resting

state activity (blue) and the stimulation response (red). The input signal is a white noise with chosen standard deviation 0.005. (C) Reconstructed gain

|ĝ| of the plant input response. The fitted model (dashed cyan) accurately matches the original model (black) with a root mean square error (RMSE) of

5.4%± 2.2% (Confidence Interval (CI) 95%). The RMSE represents the error percentage between the fitted model’s transfer function and the original

model’s transfer function averaged over 50 trials. The pink curve is the raw data used for fitting, computed from the spectral density data in (A) using

Eq. (14). (D) Reconstructed phase of the plant input response ĝ.

FIGURE 4

The magnitude vector fitting algorithm’s performances depend on the amplitude ratio of the stimulation current and the driving noise. (A)

Reconstructed magnitude and phase data for an amplitude ratio (AR) of 4.488 ± 0.065. The AR is computed as the ratio between the mean amplitude

of y and the mean amplitude of y0 averaged over 50 simulations (CI 95%). The fitted model has a corresponding RMSE of 2.4% ± 1.1% (CI 95%). (B)

Same as (A), but with an AR of 2.406 ± 0.042, the presented data are the same as in Figures 3C, D. (C) Same as (A), but with an AR of 1.479 ± 0.026

resulting in a RMSE of 15.6% ± 10.2% for the fitted model. We see that the noise level in magnitude data is higher for smaller AR, which leads to

higher RMSE (CI 95%) between the fitted model’s transfer function and the original model’s transfer function. The fitted model is coded in dashed

cyan and deviates more from the original model for higher noise levels. All data have been computed from 30s long simulated time series.
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FIGURE 5

Closed-loop neurostimulation circuit with predictor.

parameters. The root mean square error could also be used to
directly quantify the error between the transfer function of the
estimatedmodel and the original model, which can be an important
parameter regarding the stability and the robustness of the closed-
loop while performing delay compensation as discussed in the
next section.

3.2. Delay compensation

Delay compensation is achieved by adding another LTI system
at the output of the controller K (cf. Figure 5), whose purpose is
to reproduce the transfer function of a negative delay. We call this
system the predictor φ.

However, perfectly reproducing the transfer function of a
negative delay would be impossible since the associated time-
domain system would then be a perfect predictor, which is a non-
causal, i.e. un-physical, system. Nonetheless, we can build a causal
and stable system that behaves almost like a perfect predictor,
however only in the frequency ranges of interest.

The numerical implementation of the controller necessitates
discretization in time. Consequently, it is reasonable to choose the
predictor design as a discrete-time system, meaning that for any
input signal at xt :R → R at an instant t ∈ R, it approximately
predicts the future signal xt+1t where 1t ∈ R is the sampling time
chosen when building the predictor. Since x is a discrete sequence,
its transfer function is obtained using the Z-transform, defined as

X(z) = Z{xn1t}(z) : =
∞
∑

n=0

xn1tz
−n,

with z ∈ C and X :C → C. Then the transfer function 8 :C → C

of a negative delay of one step 1t applied to x would simply be
8(z) = z, the Z-transform of a one-step delay. However, this choice
would be non-causal, which is not implementable numerically in
time. Nevertheless, to obtain a stable and implementable system
with a transfer function as close as possible to z, we chose the ansatz

8(z0) =
b0z0 + b1

z0 − a
= z0, (15)

for a fixed value z = z0 and where a ∈ R is the pole of the system
and b0 ∈ R and b1 ∈ R are the polynomial coefficients of the

numerator of8. This equation corresponds to the transfer function
of a discrete LTI system with exactly one pole and one zero, which
is the closest form of a proper rational function to the identity
function of z in the sense that it has only one more pole. We add
the additional constraints that |a| < 1, since this is the necessary
and sufficient condition for the discrete predictor φ to be stable.

We choose to reformulate this problem by setting a as a free
parameter. This way, we can select any a between −1 and 1, and
the remaining parameters are found by solving the linear equation
b0z0+ b1 = z0(z0− a), where z ∈ C is a chosen complex frequency
point at which we want this equation to hold. Since there are two
unknowns, we can write a second equation in which we want the
derivative of each side of the equation also to be equal, yielding
b0 = 2z0 − a. By replacing b0 in the first equation, we obtain

z0(2z0 − a)+ b1 = z0(z0 − a)

b1 = −z20 .

In the z-domain, the zero frequency corresponds to z0 = 1. We
choose to solve this equation for this point, hence we can replace a,
b0 and b1 in Eq. (15) which yields

8(z) =
(2− a)z − 1

z − a
. (16)

This transfer function can then be converted to an associated state-
space representation and used for time domain simulations with a
sampling time1t. The output of this systemwill then be yt ≈ ut+1t

for any input signal ut . Simulating delays greater than the system
sampling time is simply achieved by concatenating multiple times
this predictor system. Here the delay has to be a multiple of the
sampling time. This predictor can then be appended to the output
of the digital controllerK.

To avoid closed-loop instability, we must limit the amplitude of
the feedback signal computed from the controller input signal. This
amplitude is determined by the three systems G, H and K. Since
G is defined by the system under study and H is the chosen filter
defining the desired modifications in the frequency distribution
of the observed signal, φ (or equivalently parameter a) is the
only degree of freedom. Figure 6 shows the region of closed-loop
stability as a function of the predictor pole a and the delay.

Because the predictor has a gain that is still slightly greater than
one in the frequency ranges of interest, we reduce the weights of the
filterH to compensate for the excess gain at the α and γ-peaks. To
do this, we simply divide the weight of each band by the magnitude
of the predictor system evaluated at the band’s natural frequency.
This reduces the errors in the closed-loop transfer function in the
α and γ-ranges.

Figure 7C shows results combining the model estimation by
vector fitting and the delay compensation. The proposed closed-
loop control yields an increase in α-power and a decrease
in γ-power according to the employed target filter H. The
application of PI and LQG control with a Smith predictor for delay
compensation (Figures 7A, B) has poor performances for higher
γ-frequency activity.
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FIGURE 6

The predictor pole location a�ects the closed-loop stability. The magnitude of the pole with the highest magnitude in the closed-loop transfer

function parameterizes the stability of the closed-loop. Indeed, if this value is less than 0 dB, then all the poles of the closed-loop transfer function

have a magnitude less than 0 dB, meaning that the system is stable. The system is unstable otherwise. Here the full curve, the dashed curve and the

dotted curve correspond to predictors for delays of 3 ms, 5 ms and 10 ms, respectively. The higher the delay is, the lower is the size of the region of

closed-loop stability for a.

FIGURE 7

Our method successfully decreases α- and γ-activities in the presence of a 5ms delay, while maintaining a low stimulation current. (A) Simulation

time series (left panel) and power spectral densities (right panel) of the PI control loop with Smith predictor. (B) Same as (A) for the LQG control loop

with Smith predictor. (C) Same as (A) for our method, including delay compensation. (D) α-, γ-activities and mean amplitude of u for each method,

averaged over 50 simulations. “***” corresponds to a p-value less than 0.05 with Welch’s t-test, while “n.s.” correspond to a p-value higher than 0.05.

Our method provides both the closest match to the target α- and γ-activities and the lowest stimulation current (u) amplitude. The parameters for all

controllers have been chosen to match the target activities as closely as possible without destabilizing the closed-loop. The activities are computed

by averaging the spectral densities in their corresponding ranges while the u-amplitude correspond to the average spectral density of u from 0Hz to

the Nyquist frequency.

3.2.1. Accuracy
The error between the achieved closed-loop output activity

levels and the target activity levels is highly affected by the delay
(cf. Figure 8). This is caused by the phase shift between the input
and the output signal, which changes the effect of the control signal

on the output in a frequency dependent manner. Our frequency
range of interest is limited to frequencies below 55 Hz, which is
the higher limit we use for the γ-range. In this case, the effect
of delays of the order of milliseconds will be more visible for
higher frequencies and higher delays (cf. Figure 8). However, using
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FIGURE 8

Delay a�ects the stability and robustness of the closed-loop transfer function. (A) Stability margin and α- and γ-activities errors in function of the

delay with no model errors. The stability margin is computed as the shortest distance between the Nyquist plot and the point −1. The higher the

stability margin, the more robust the closed-loop is to model uncertainties. The α- and γ-errors represent the error percentage between the

measured activity and the target activity. (B–D) Same as row (A) but with model errors (quantified as the RMSE of the model fitting step)

corresponding respectively to the model fits shown in Figures 4A–C. The vertical bars represent the standard deviation of their corresponding point.

our predictor design, we significantly mitigate the effects of the
delay in the frequency ranges of interest (cf. Figure 8) red curve.
Nonetheless, these effect are still present, creating a limit to the
maximum delay our predictor is able to compensate, which in our
case is situated around 10ms.

3.2.2. Stability and robustness
As discussed earlier, delay compensation can destabilize

the closed-loop system depending on the parameters of its
components. However, if the correct predictor pole is chosen based
on Figure 6, the closed-loop will remain stable. These values are
computed under the assumption that there are nomodel estimation
errors. If we take into account the inaccuracies in the fitted brain
model compared to the original brain model, extra gain can add up

in the feedback signal, introducing again the risk of destabilizing the
closed-loop (cf. Figure 8). The solution is either to simply reduce
the amplitude of the spectral density modification that we want to
apply by reducing the amplitude of the transfer function of filter
H, or to reduce the amplitude of the predictor 8 reducing its
accuracy and possibly increasing delay errors. There is then a trade-
off between how much we want to change the gain of the closed-
loop transfer function while also compensating delay errors and
how much we want to avoid closed-loop destabilization caused by
model uncertainties. In any case, the inaccuracies in the estimated
brain model create errors in the closed-loop transfer function
regardless of the delay, which makes them the main determinant
of the performance limits of our method in any given setup.
Nevertheless, our method produces smaller α- γ-activities errors
than LQG control and produces the smallest error for γ-activities
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for delays of 1 to 12ms (cf. Figure 8). Comparisons lead to p-values
less than 0.0005 usingWelch’s t-test, except for LQG control in row
D where the variance of the data was to high to find any significant
difference with this test.

3.3. Application to cortico-thalamic circuit
model

To extend the analysis to a biologically more realistic model,
we employed a nonlinear cortico-thalamic brain model (cf.
Section 2.7.2). Fitting a linear transfer function to the brain model
activity as described above, we found a good accordance of fitted
and original model as can be seen in Figures 9A, B. Small deviations
in the gain and the phase resulted from the internal delay in
the brain model and its non-linearity. Indeed, the magnitude
vector fitting algorithm does not reproduce this delay but instead
synthesizes a linear system that has no delay but still approximates
well the transfer function of the original model. Nonetheless, the
non-linearity of this model can also decrease the accuracy of the
fitting, as we are trying to represent a non-linear input response
model by a linear one. However, this effect is only seen when the
current is large enough for the non-linear part of the response to be
significant.

In fact, the model-based control enhances α-activity and
diminishes γ-activity in good accordance to the imposed filter
H (Figure 9C). The closed-loop transfer function deviates from
the target transfer function for large frequencies beyond the γ-
frequency range. This results from the employed conduction delay.

To elucidate better the functions of the different elements of the
proposed method, we applied a second closed-loop setup, where
the neurostimulation input was applied to the first three layers of
the cortex modeled by u and v and to the reticulum modeled by
Vret (Figure 10). In this setting, the response in the high-frequency
ranges are mainly produced by the cortex, while the response in
low-frequency ranges originates mainly from the reticulum and the
thalamic relay structure, with a gap approximately between 10Hz
and 20Hz. The weak response between 10 and 20 Hz observable
(cf. Figure 10A) is compensated by the controller, which produces a
highmagnitude stimulation in the closed-loop for these frequencies
(cf. Figure 10C). The second consequence is the inaccuracy of the
closed-loop output in the low-frequency ranges, this is caused by
the rather long cortico-thalamic internal delay. This delay yields a
larger phase shift at low-frequencies and originates from the fact
that we observe signals in the cortex, but stimulate in the reticulum.

4. Discussion

The goal of the proposed method was to design a delayed
closed-loop control method to apply defined modifications to
the spectral distribution of an observed signal, such as EEG or
LFP. Under the assumption of linear brain stimulation response,
the presented work explicitly describes all the steps needed to
build a delayed closed-loop neurostimulation setup to restore
the physiological brain state of a patient (Hebb et al., 2014).
Since the controller is modeled as a linear time-invariant system,
its implementation is lightweight, straightforward, and easily

applicable in most embedded systems. Applications to a simple
neural populations model (Figure 7) and to a biologically plausible
cortico-thalamic feedback system (Figures 9, 10) demonstrate its
elements and their impact on the control performance.

4.1. Main contributions

Our method allows to precisely specify the desired frequency-
domain modifications we want to apply to the brain activity. The
resulting closed-loop controller can then synthesize in real-time the
required closed-loop neurostimulation signal necessary to reach the
desired output, without the need to track a pre-defined reference
signal. This make the method more flexible since it requires to
specify relative rather that absolute signal modifications which is
preferable considering the intra- and inter-patients variability of the
EEG spectrum. Furthermore, specifying a reference signal which is
a stochastic signal uncorrelated with the noise of the current plant
output introduces additional noise in the feedback signal, since
the controller needs to compensate for both the mean difference
between the frequency distributions of the two signal and the
difference between the driving noises of the two signals. Therefore,
our method is able to track a target frequency distribution for the
brain output with a lower current amplitude than classical methods
(cf. Figure 7).

4.1.1. Model estimation
We assume resting state activity signal driven by noise, when

no neurostimulation is applied. Injecting a stimulation creates an
additional response that adds to the resting state. Consequently,
both the resting state signal and response signal can be observed
separately in experimental practice and they serve to estimate a
linear state-space model as outlined in Section 3.1. This approach
is successful for both simplified linear models (cf. Figures 3, 4) and
neurophsysiological realistic nonlinear models (cf. Figure 9). This
approximation is suitable for nonlinear systems whose dynamics
evolve close to a stationary state. Several studies have already
exposed evidence confirming that the measured brain dynamics
behave mostly linearly at macroscopic scales (Popivanov et al.,
1996; Liu et al., 2010). Moreover, in the case of the brain response
to small neurostimulation input, our assumption of the linear
brain response is supported by results of Kim and Ching (2016).
The authors of this study measured the controllability Gramian
of their brain model with nonlinear sigmoid transfer function,
similar to the cortico-thalamic brain model (Riedinger and Hutt,
2022) used in this paper. If the system exhibits nonlinear dynamics
far from any linear approximation, such as bistable dynamics
and chaotic evolution, the proposed vector fitting technique may
yield a too large model error and thus instability of the closed-
loop feedback. The hypothesis of macroscopically linear dynamics
has also recently been tested against various nonlinear models
(Nozari et al., 2020). While that work included fitting methods
for both linear and nonlinear brain models, our work chose the
paradigm of purely frequency domain model fitting with the
magnitude vector fitting algorithm (De Tommasi et al., 2010)
and applied it to the brain input response system, which we
could isolate thanks to a simple open-loop neurostimulation
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FIGURE 9

Fitted model-based control using the cortico-thalamic brain model successfully reproduces the target transfer function in the frequency domains of

interest. (A) Magnitude of the fitted brain model transfer function (dashed cyan) obtained from the power spectral density data (pink) compared to

the magnitude of the original cortico-thalamic brain model transfer function (black). (B) Phase shift of the fitted transfer function (dashed cyan)

compared to the phase shift of the original transfer function (black). (C) Spectral densities of the resting state activity signal (blue), the stimulated

brain output (red) and the stimulation signal (green). (D) α- and γ-activities of the closed-loop output averaged over 50 trials for which the fitting step

was repeated each time. “***” corresponds to a p-value less than 0.0005 with Welch’s t-test while “*” corresponds to a p-value less than 0.05. The α-

and γ-activities are respectively increased and decreased after application of the closed-loop.

FIGURE 10

Reticulum stimulation yields incorrect closed-loop gain in low-frequency ranges. (A) Magnitude of the fitted brain model transfer function (dashed

cyan) compared to the magnitude of the original cortico-thalamic brain model transfer function (black). (B) Phase shift of the fitted transfer function

(dashed cyan) compared to the magnitude of the original transfer function (black). (C) Spectral densities of the resting state activity signal (blue), the

stimulated brain output (red) and the stimulation signal (green). (D) Closed-loop transfer function (dashed red), compared to the target transfer

function 1+H(s) (black).

setup. While models have already been studied in application to
neurostimulation (Modolo et al., 2011; Wagner et al., 2014), we
propose a straightforward black box modeling approach that is

directly usable for adaptive closed-loop neurostimulation, and is
technically applicable easily for each individual patients before any
closed-loop neurostimulation sessions.
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4.1.2. Delay compensation
Conduction delays of a few milliseconds in the transmission

between observation and stimulation may be negligible in systems
evolving on time scales of seconds or longer, but may play an
important role in neural systems. Our study demonstrates that
such feedback delays may introduce control errors and we show
how these errors can be avoided by a novel delay compensation
method (Section 3.2). Application to the linear model (7)
demonstrated its superior performance compared to conventional
delay compensation methods. Delay compensating systems have
already been described in other work (Guo et al., 2004; Hosseini
et al., 2019). However, we used a design primarily focused on the
correction of a gain error in the closed-loop transfer function,
whereas the majority of the current research is based on time
domain criterion and stability enforcement (Sönmez and Ayasun,
2015; Ledva et al., 2017). The methods performance, i.e. how well
the total gain function fits to the pre-defined transfer function, is
good for low-frequencies but weakens for frequencies exceeding
a limit frequency. Note that frequency domain compensation has
also already been achieved, notably via delay equalizers (Podilchak
et al., 2009). However, this would restrict the frequency range in
which the delay is compensated, and create additional errors in
the surrounding frequencies. Other designs include filters with
negative group delays, however their applications are limited to
band limited input signals (Bukhman and Bukhman, 2004; Voss,
2017). The predictor design we presented also relies on negative
group delay, enabling delay compensation in a large frequency
band, while still being applicable to the brain EEG, which is
inherently not band limited, because of the noise. Nonetheless,
while our predictor design allows to significantly decreases the
delay errors in the closed-loop transfer function, the delay still
imposes a limit on the controllable frequency range. The larger the
delay, the smaller is this limit frequency. Low performance may
induce instability in the feedback loop (Mirkin and Palmor, 2005)
and thus should be avoided. A corresponding stability criteria has
been proposed, (cf. Figure 6). Better predictor designs could allow
better performance of the closed-loop system for larger delays. The
improvement of the accuracy of our closed-loop neurostimulation
setup by buildingmore efficient predictor designs is in progress and
we refer the reader to future work.

4.2. Limits of our methodology

4.2.1. Experimental stimulation parameters and
safety

Experimental stimulation protocols have to ensure the subjects
safety (Ko, 2021) and thus avoide stimulus-induced health risks
and complications. For instance, tDCS may be administered for a
duration of 60 minutes and a maximum current of 4 mA without
yielding health risks. However, parameters beyond these limits may
yield adverse effects in subjects, such as skin lesions similar to burns
and mania or hypomania in patients with depression (Matsumoto
and Ugawa, 2017). The proposed method does not limit the
stimulation duration per se, but of course the duration can be
chosen accordingly without constrating the method. The method
adapts the systems brain rhythms to the target rhythms very rapidly

on a time scale of less than a second and hence permits rather short
stimulation duration longer than a second.

Moreover, the proposed method does not specify absolute
stimulation current magnitude applied. The impact of stimulation
at certain magnitudes depends heavily on the stimulation type. In
tDCS, anodal stimulation with positive currents have a different
impact as cathodal stimulation with negative currents. In addition,
currents are thought to have to pass a certain threshold to yield a
measurable effect. In tACS (Moliadze et al., 2012), stimulating in
the α-frequency range large and small magnitudes yield excitation
and inhibition, respectively, while intermediate magnitudes yield
weak effects. Stimulating with a range of frequencies, as in
tRNS (Potok et al., 2022), a 1mA peak-to-peak amplitude for
10 minutes stimulation duration does not yield adverse effects.
We conclude that it is not straight-forward to decide which
stimulation magnitude applied in the presented method would
be safe for human subjects, since the stimulation signal is
neither constant, single frequency oscillation nor random noise.
In sum, we argue that a maximum peak-to-peak amplitude of
1mA for few tens of minutes may not yield adverse effects,
but still may evoke a measurable impact on observations and
the brain state. Of course, future experimental studies will gain
deeper insights.

4.2.2. Model internal delay
The internal delay in the brain is not reproducible by the

magnitude vector fitting algorithm, which relies on the time
invariance of the signals. Hence, this will cause errors in the transfer
function of the fitted model (cf. Figure 9) that are larger for higher
contribution of the delay in the output (cf. Figure 10). To limit this
effect, we must minimize the delay between the application of the
neurostimulation input and the measurement of the response to
this input as much as possible by taking into account the delay
between the different brain regions.

4.2.3. Estimating the closed-loop delay
For delay compensation, in this paper, we assumed that we

know the conduction delay in the closed-loop. However, although it
is a single constant parameter, we would need a method to measure
it for a real closed-loop neurostimulation setup. A straightforward
way to do this would be to inject any current into the plant and
measure the time lag between the moment at which we inject the
input current and the moment at which we measure the output
signal. This estimated delay would then correspond to the total
closed-loop delay except for the computation delay of the digital
controller K. This computation delay can be easily measured with
the same software used for computation, as it corresponds to
the delay needed to perform constant-size matrix multiplications.
Moreover, several methods have already been developed to estimate
the conduction delays in linear systems (Schier, 1997; Dudarenko
et al., 2014).

4.2.4. Direct input current measurements
One of the main challenges to solve for closed-loop

neurostimulation is the elimination of direct transmission
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artifacts from the measured EEG signal (Iturrate et al., 2018).
Indeed, when measuring the plant output signal, a portion of
the measured signal might be a direct measurement of the input
current without any influence from the brain dynamics. In the ideal
case, one intends to minimize the contribution of the stimulation
input to the observed signal since it would mean that the measured
EEG signal does not fully correspond to the brain activity. Hence,
reading the EEG of the patient would be more difficult for the
user of our closed-loop setup, and the contribution of the brain
dynamics to the closed-loop would be smaller. A simple solution
to this problem is discussed further below.

4.3. Perspectives

The control proposed allows to perform accurate frequency
shaping of the systems’ activity spectral distribution. However,
this approach is limited to linear models of the brain stimulation
response. This may be disadvantageous if the systems dynamics
exhibit nonlinear behavior (see e.g., Hutt and beim Graben,
2017) as we want to represent the brain dynamics realistically.
Furthermore, in real-case scenarios, we would also have to take into
account the noise in the acquisition of the signal by the sensor and
in the application of the input signal by the actuator.

4.3.1. Filtering out direct input current
measurements

Filtering out the direct input current measurements is
achievable with our setup removing the strictly proper system
requirement while using the magnitude vector fitting algorithm to
measure the brain input response. In other words, while fitting
the brain input response system, we want the fitted model to be
able to contain a direct transmission term corresponding to the
direct current measurement. Hence, if the real plant input response
contains a significant direct transmission term, it will be identified
by the magnitude vector fitting algorithm when synthesizing the
estimated plant input response. The second step is them simply to
substract the feedtrough termmultiplied by the input current to the
plant output signal. Thus, the remaining part of the signal would
only correspond to the brain dynamics.

4.3.2. Application to multiple inputs multiple
outputs plants

For now, we only focused on plant with a signal input
signal and a single output signal. However, in a real setup, the
EEG measurement is typically composed of multiple channels
corresponding to different electrodes. This can also be true
for the neurostimulation device. For example, with electric
current stimulation, we can inject multiple signals using multiple
electrodes. This can be simply solved by feeding a single input to
each input channel and summing each output to a single output
channel. However, when we separate the different channels, we can
have more control over each individuals output channels. When
we have multiple inputs and output, the plant is then a Multiple-
Inputs Multiple-Outputs (MIMO) system. Everything developed in
this paper is generalizable toMIMO systems, with one caveat: when

solving E.q., (6), a unique solution only exists if the system has as
more outputs than it has inputs. The user can always ensure this,
by using as many neurostimulation input channels than there are
EEG output channels. In this generalized setup, we can also define
the filterH to apply different modifications to each output channel.

4.3.3. Neurostimulation e�ects on larger time
scales

Our method relies only on the short term dynamics
of the brain, using signal feedback and delay compensation
to produce an adaptive stimulation current and obtain the
desired EEG frequency distribution. However, more traditional
neurostimulation techniques rely on the long term dynamics of
neural plasticity, which is not modeled in the brain models we
use in this paper. Long term brain adaptation to neurostimulation
could cause the EEG frequency distribution to diverge from the
desired frequency distribution after several minutes of stimulation.
This effect could be compensated either by reiterating the model
identification step and performing neurostimulation again, or by
adjusting the weight of the filter H according to the observed
changes in real-time. Incorporating the effect of neural plasticity in
the brain models would allow our method to produce predictable
and durable modification to the EEG frequency distribution, even
after we stop the stimulation.
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