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Abstract

Mental disorders (MD) are among the top most demanding challenges in world-wide health. According

to the World Health Organization, the burden of MDs continues to grow with significant impact on health

and major social and human rights. A large number of MDs exhibit pathological rhythms, which serve

as the disorders characteristic biomarkers. These rhythms are the targets for neurostimulation techniques.

Open-loop neurostimulation employs stimulation protocols, which are rather independent of the patients

health and brain state in the moment of treatment. Most alternative closed-loop stimulation protocols

consider real-time brain activity observations but appear as adaptive open-loop protocols, where e.g. pre-

defined stimulation sets in if observations fulfil pre-defined criteria. The present theoretical work proposes

a fully-adaptive closed-loop neurostimulation setup, that tunes the brain activities power spectral density

(PSD) according to a user-defined PSD. The utilized brain model is non-parametric and estimated from the

observations via magnitude fitting in a pre-stimulus setup phase. Moreover, the algorithm takes into account

possible conduction delays in the feedback connection between observation and stimulation electrode. All

involved features are illustrated on pathological α- and γ-rhythms known from psychosis. To this end, we

simulate numerically a linear neural population brain model and a non-linear cortico-thalamic feedback loop

model recently derived to explain brain activity in psychosis.
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1 Introduction

Electrical neurostimulation is an old human idea, and has been a well-established therapy for mental disorders

for few decades. Caius Plinius during Antiquity and Scribonius Largus, who lived in the first century AD,

proposed respectively contacts with the Electric ray (Torpedo Fish) for the treatment of post-partum pain

and severe headaches. In the 19th century, electrical stimulation was commonly prescribed by neurologists

for nervous disease [1]. Today, various electrical stimulation techniques exist to modulate neuronal systems

and novel techniques for an optimal clinical treatment of a specific pathology gain more and more attention.

They could be used as an additional therapeutic lever or as an alternative to pharmacological medication, thus

representing a hope for pharmaco-resistant forms of disease.

Brain oscillations result from coordinated electrical neuronal tissues activity within and between structures

and networks. Implicated in various neural processes, such as perception, attention and cognition, their disrup-

tion yields pathological rhythms, which reflect abnormal activity of the implicated brain network, notably at

the cellular and molecular level [2]. These pathological rhythms serve as good biomarkers for neuropathologies.

For instance, neurophysiological studies have revealed that a large number of mental disorders exhibit patho-

logical rhythms, which do not occur in healthy patients [3]. Neurostimulation techniques have identified such

pathological rhythms as good stimulation targets for the treatment of brain oscillatory disorders. Neurostim-

ulation induces electric currents in neuronal tissue. Depending on the stimulation protocol, i.e. the temporal
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stimulation current shape, its duration and pause and the number of repetitions, neurostimulation can lead to

neural plasticity effects or to pacemaker-like brain stimulation, respectively.

For example, Deep Brain Stimulation (DBS) is an invasive technique and proposed for patients suffering from

severe pharmaco-resistant Parkinson’s disease (PD) or obsessive-compulsive disorders. In PD patients aberrant

hypersynchronicity and hyperactivity in the β-frequency band (12-30 Hz) of the basal ganglia-thalamocortical

network can be addressed by the pharmacological medication (e.g. Levodopa) or DBS. The conventional DBS

protocols focus on the subthalamic nucleus or globus pallidus stimulation

continuously at a temporally constant frequency about 130 Hz. The suppression of the pathological beta

oscillations was correlated with improving motor symptoms [4]. Recent techniques [5, 6] propose to apply an

adaptive closed-loop stimulation protocol based on observed intracranial brain activity. In addition to this

intracranial neurostimulation technique, transcranial electrical stimulation (TES) and transcranial magnetic

stimulation (TMS) are non-invasive neuromodulation approaches in which, respectively, a low electrical current

and a magnetic field are applied to the cortical tissues. The TES current modalities include direct currents

(tDCS), i.e. constant currents, alternating current (tACS), i.e. typically oscillatory currents, and random

noise-shape currents (tRNS), which typically includes frequencies above the β-frequency band. It was shown

that tDCS can improve cognitive performance in healthy subjects [7] and patients [8] and it is applied as a

therapeutic means to target brain network dysfunctions, such as Attention-Deficit/Hyperactivity Disorder [9]

and major depressive disorder [10].

Although the neurostimulation techniques mentioned above may permit to alleviate mental disorder patients

from symptoms, the success rate of these treatments is still limited [11]. This underperformance results from

non-optimal choices of the stimulation protocol originating from the lack of understanding of the underlying

neural response to stimulations and the non-patient specific stimulation protocol. In other words, typically

the stimulation protocol (including size, duration, repetition cycle of the stimulation signal) is open-loop, i.e.

pre-defined without taking into account the current brain/health state of the patient [12]. This non-optimal

approach is inferior to so-called closed-loop techniques, which adapt to the patients current brain/health state.

Such an adaptive, or closed-loop, approach has been introduced for intracranial [13, 14, 15] and transcranial

stimulation [16]. Recently proposed closed-loop methods are adaptive in the sense that a pre-defined stimulation

signal is applied when observed brain activity fulfills certain criteria, such as passing an amplitude or power

threshold. While this adaptive approach improves existing open-loop methods, the pre-defined stimulation

signal may still be non-optimally chosen.

We propose to estimate a stimulation signal on the basis of observed brain activity. The target stimulation

signal is not pre-defined as in the open-loop setting but computed according to a pre-defined target spectral

power distribution of the brain activity. To our best knowledge, this focus on a target brain activity spectral

distribution has not been proposed before in a closed-loop neurostimulation setup. We argue that it is the

natural choice for a closed-loop optimization in the presence of pathological rhythms: typically the pathology

is identified by an abnormal power in a certain frequency band and the closed-loop control aims to modify this

power value in such a way that the final brain activity power spectral distribution resembles the distribution of a

healthy subject. This approach implies the hypothesis that modifying the observed pathological brain rhythms

of a patient to resemble brain rhythms of a healthy subject renders the patients brain state and improves

the patients health situation. This assumption was motivated by the impressive improving impact of DBS in

psychiatric disorders [17].

Technically, the proposed method aims to reshape the spectral distribution of observed data, such as elec-

troencephalographic data (EEG). For illustration, we consider pathological brain rhythms observed in psychosis

in the α- [18] and γ-band [19]. Our method relies on the extraction and the filtering in real-time of the brain

resting state activity signal, using the EEG and an estimated brain response model. The underlying brain

model is fully non-parametric and estimated from observed resting state EEG. Moreover, we consider the fact

that the closed-loop feedback exhibits a certain conduction delay between measurement and stimulation. This

conduction delay results from the transmission delay in the hardware and the numerical computation time of

the stimulation signal. Very first estimates of this delay time are in the range of few tens of milliseconds [Private
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communication, Isope, 2020], i.e. in the range of EEG signal time scales. Consequently, the present feedback

delay in real-world systems may affect the methods performance. To our best knowledge, the present study is

the first considering delays in closed-loop neurostimulation systems.

The remaining article is organized as follows : Section 2 presents the neurostimulation setup and the closed-

loop circuit studied in the rest of this paper. Then, we propose a model-based controller design to apply

desired modifications to the observed activity signal. Subsequently, we propose a model estimation method

to extract the brain input response model needed for the controller design. Later, we address the problem of

the closed-loop delay by designing an additional system to approximate the future values of the observations.

Finally, we present two brain models, which illustrate and validate the proposed method. Then, Section 3

presents the simulation results of our circuits, including the accuracy of the model estimation step and the

delay compensation. Lastly, in section 4, we discuss the results of the method presented in the paper compared

to the state of the art, mention limitations and pinpoint some perspectives and possible experimental tests.

2 Material and methods

2.1 Neurostimulation setup

We build a theoretical plant as a circuit containing a stimulation element and an observation element, both

connected to the model brain system under study. In real practice, the stimulation element corresponds to

the neurostimulation device, such as a TES system or a TMS coil. In contrast, the observation element may

represent electro-/magneto-encephalographic electrodes (in the following called EEG) or electrodes observing

Local Field Potential. We define the time-dependent functions u : R → R and y : R → R as the input stimulation

current and the output EEG signal, respectively.

If no input current is applied, the output is a non-zero stochastic signal y0 corresponding to the measured

resting state EEG activity and a non-zero neurostimulation current alters the output signal as a linear response.

This alteration is caused by a change in the brain activity in response to the neurostimulation input and a direct

measurement of the input current. The latter is undesirable as it is not correlated with brain dynamics but only

with neurostimulation and measurement devices. In the following, we assume that observations include brain

dynamics correlated output only while direct current measurements are filtered out. A method to remove the

direct current measurement from the EEG signal is discussed in Section 4.

Then, we define the plant P as the system that takes u as its input and generates an output y which is equal

to y0 when no input is applied. By modeling the dynamics of P, our goal is a neurostimulation signal u that

causes predetermined changes in the spectral power amplitude of the output signal y. In our case, the goal is

to increase the activity in the alpha band (8− 12Hz) and decrease the activity in the gamma band (25− 55Hz).

2.2 Linear time invariant model

We assume that the observed output response to a small neurostimulation input u is linear and time-invariant

(LTI). This assumption is supported by multiple results across literature [20, 21, 22]. Thus, there is an underlying

LTI system G that produces an output yu for any given input u. For this system, we can define a function

g : R → R, which is the output produced by the plant input response system G in response to a unit impulse

signal δ(t). This function g is also called the unit impulse response of G and we have

yu(t) = g(t) ∗ u(t) :=
∫ +∞

−∞
g(t′)u(t− t′)dt′.

with time t and ∗ denotes the convolution over time. It leads to the total plant output

y(t) = y0(t) + yu(t) = y0(t) + g(t) ∗ u(t). (1)

With this choice of model, the contribution of the neurostimulation response to the total output is purely
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Figure 1: Closed-loop neurostimulation circuit

additive, allowing us to focus the analysis on G, which represents the neurostimulation response part of the

plant system. We also see that y0, the resting state activity, contains the stochastic part of the output, while

yu can be predicted for any known input signal u if we have a model for the system G. A method to estimate

the plant input response model G is presented in section 2.4.

2.3 Closed-loop control

In this section, we suppose that the function g is known. The estimation of g will be the aim of section 2.4.

To close the loop, we generate the plant input signal u as the output of a linear controller K in response to

the plant output y

u(t) = k(t) ∗ y(t),

where k : R → R is the unit impulse response of the controller K. We can now rewrite Eq. (1) as

y(t) = y0(t) + g(t) ∗ k(t) ∗ y(t). (2)

Here, we assume that no delay between observation and stimulation application is present. We will relax this

condition in section 2.5. To solve Eq. (2), we apply the Laplace transform defined for each time-dependent

function x : R → R by

X(s) = L{x(t)}(s) :=
∫ +∞

0−
x(t)e−stdt, (3)

Thus, we define Y : C → C, Y0 : C → C, G : C → C and K : C → C as the Laplace transforms of respectively

y, y0, g and k, allowing us to write Eq. (2) as

Y (s) = Y0(s) +G(s)K(s)Y (s).

Hence

Y (s) =
1

1−G(s)K(s)
Y0(s). (4)

We now have an equation for the closed-loop output in function of the resting state activity. A block diagram of

the closed-loop circuit is shown in Fig. 1. Hence to design the frequency distribution of y we tune the frequency

distribution of the transfer function K of the controller K

Controller synthesis

Our closed-loop setup aims to tune the observation power spectrum, or equivalently, the choice of Y (s) subjected

to the resting state Y0(s). To this end, we define a linear filter H with transfer function H : C → C and

Y (s) = Y0(s) +H(s)Y0(s). (5)

Specifically, we intend to restore the physiological state of the brain, e.g. of a schizophrenic patient as our

motivation, with an observed EEG presenting low alpha activity and high gamma activity. The chosen filter
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parameter description value

f1 α-band natural frequency 10ms
B1 α-band width 4Hz
c1 α-band weight 1.0
f2 γ-band natural frequency 40ms
B2 γ-band width 30Hz
c2 γ-band weight -0.5

Table 1: Parameter set of the filter H. The frequency parameters are chosen based on the alpha frequency
range (8-12Hz) and the gamma frequency range (25-55Hz) in an EEG. The weighting parameters c1 and c2,
respectively positive and negative, corresponding to the choice to increase the alpha activity and decrease the
gamma activity.

H is a weighted double bandpass filter with positive weight in the α-frequency band to increase α-power and

negative weights in the γ-band to decrease the systems γ-activity. The filter’s transfer function is defined as

H(s) = c1
2πB1s

s2 + 2πB1s+ (2πf1)2
+ c2

2πB2s

s2 + 2πB2s+ (2πf2)2
.

The exact parameters of H are shown in table 1.

We can synthesize the closed-loop controller K, by combining equations (4) and (5) and solving for K as

1

1−G(s)K(s)
Y0(s) = Y0(s) +H(s)Y0(s)

K(s) =
H(s)

(1 +H(s))G(s)
. (6)

Therefore, if we know the plant input response transfer function G, we can find that desired controller

transfer function K by Eq. (6). Once the transfer function is obtained, we can use it to find a corresponding

state-space representation [23] for time domain simulations.

2.4 Model estimation

The design of our closed-loop controller requires estimating the plant input response system G, which in practice

includes the brain dynamics, the neurostimulation device and the observation device. Our approach includes

the estimation of G directly from observed brain activity, such as EEG of the patient. This ensure that the

estimated plant model will be as close as possible to the real brain dynamics in the corresponding experimental

conditions. To this end, we first need to find a way to measure the plant input response without also measuring

the plant resting state activity. This is not trivial since the observed signal is the sum of the resting state

activity and the stimulation response.

Signal extraction

Let us consider an open-loop setup with an arbitrary input u applied to the plant, which generates the output

described by Eq. (1). In this equation, we only know u and y, and want to estimate the impulse response g. The

problem is that we cannot observe y0 only during the stimulation. Hence, based on previous data recordings,

we need to find a way to predict the dynamics of y0 during the stimulation.

First, we provide the following standard definitions that are important in the subsequent discussion. For

any time domain signal x : R → R, we denote the Fourier transform by

x̂(f) = F{x(t)}(f) :=
∫ ∞

−∞
x(t)e−2πiftdt. (7)

We define α0 : R → R and αu : R → R such as α0(t) = y0(t) − ȳ0 and αu(t) = yu(t) − ȳu where ȳ, ȳ0 and
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ȳu are respectively the ensemble means of y, y0 and yu.

We assume that y0 is a wide-sense-stationary (WSS) random process, i.e. its mean and variance do not

depend on time. According to the Wiener-Khinchin theorem [24, 25], the autocorrelation function of a wide-

sense-stationary random process has a spectral decomposition given by the power spectrum of that process

Syy(f) = |α̂(f)|2,

where α̂ : R → C is the Fourier transform of α(t) = y(t)− ȳ ∈ R and Syy : R → R+ is the spectral density

of y.

Then, we can write Eq. (1) as

ȳ + α(t) = ȳ0 + α0(t) + ȳu + αu(t),

where ȳ = ȳ0 + ȳu. The equation then simplifies to

α(t) = α0(t) + αu(t).

By application of the Fourier transform, we obtain

α̂(f) = α̂0(f) + α̂u(f)

and

|α̂(f)|2 = |α̂0(f)|2 + |α̂u(f)|2 + 2Re[α̂0(f)α̂u(f)
∗].

In the following, we compute the ensemble average of each term of this equation. Since α and αu are two

independent processes sampled at different times and ⟨α̂0⟩ = ⟨α̂u⟩ = 0.

Hence

⟨2Re(α̂0(f)α̂u(f)
∗)⟩ = 2Re[⟨α̂0(f)α̂u(f)

∗⟩] = 0.

Here and in the following, ⟨·⟩ denotes the ensemble average. We point out that although Eq. (8) does hold when

considering the ensemble average of the signals, fluctuations around 0 still remain in Eq. (8) for finite ensemble

number of finite time signals.

Nevertheless, this yields

⟨|α̂u(f)|2⟩ = ⟨|α̂(f)|2⟩ − ⟨|α̂0(f)|2⟩. (8)

Using Eq. (1), we can express α̂u in terms of the input impulse response g and the input u

α̂u(f) = F{yu(t)− ȳu}(f)

= F{g(t) ∗ [u(t)− ū]}(f)

= ĝ(f)F{u(t)− ū}(f) .

(9)

This equation permits to estimate the transfer function ĝ, see Section 3.

To express the transfer function ĝ in Laplace space, we use the fact that a unit impulse response function is

non-zero only for positive time values t. Hence, based on equations (3) and (7), for s = 2πif , we can write the

Laplace transform G as

G(2πif) =

∫ +∞

0−
g(t)e−2πiftdt =

∫ +∞

−∞
g(t)e−2πiftdt = ĝ(f).
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We now need a method to generate a LTI system with a transfer function that matches the magnitude data

computed with the formula. This is achieved by the magnitude vector fitting algorithm.

Magnitude vector fitting

Our goal is now to find a transfer function G corresponding the magnitude data |ĝ(f)|2. For this purpose, we

use a variant of the vector fitting algorithm design to work even with only the magnitude data. This method is

called magnitude vector fitting [26].

It allows to fit a passive LTI system to data by fitting the model transfer function. The system is synthesized

such that the mean square error between the magnitude data sample and the transfer function evaluated at the

same frequency points is minimized. [26] show that the transfer function of the fitted model reproduces both

the magnitude and the phase shift of the original transfer function, although the fitting has been performed

using sampled magnitude data only.

By minimizing the mean square error, the algorithm ensures that the transfer function of the fitted model

accurately matches the original model as represented by the reconstructed gain data. Furthermore, to assess the

accuracy of the reconstruction, we also compare the fitted model to the transfer function of the linearized brain

model used for the simulation. This allows to double-check the validity of the reconstructed magnitude and also

to verify if the reconstructed phase fits the phase of the original model as closely as possible cf. Fig 3C,D.

2.5 Delay compensation

Realistic feedback loops exhibit conduction delays between the moment of observation and feedback stimulation.

Reasons for such delays are finite conduction speeds in cables, electronic switches, interfaces and delays caused

by the controller device to compute numerically adapted stimuli. In systems with large time scales, such as

controlled mechanical devices on the centimeter or larger scale, such delays may be negligible. Conversely

biological systems such as the brain evolve on a millisecond scale and conduction delays may play an important

role. Preliminary estimation of input and output devices of desktop computers have revealed an approximate

delay of ∼ 10ms. By virtue of such delays, it is important to take them into account in the closed-loop between

the moment of observation and stimulation.

The different sources of delay can be represented as plant input and output delays. Since the controller

K is LTI, the input and output delays can be concatenated into one single plant input delay. Hence, in our

setup, we model the delay as an input delay τ in the system G, modifying y(t) = g(t) ∗ u(t) in Eq. (1) to

y(t) = g(t) ∗ u(t − τ). The Smith predictor [27] [28] is a known method to compensate such delay times.

However, in the present problem, this approach allows controlling a limited frequency band only (see Fig. 7A)).

Consequently, it was necessary to invent another method. Since the plant input u is generated by the controller

K, we modify the controller to compensate the delay. To this end, the new controller K is chosen to estimate

the future value of u instead of the present value. A method to apply this controller modification is presented

in Section 3.2.

2.6 Brain models

Our closed-loop control method works for any LTI brain model. Furthermore, we want to show that it also

produces good results on non-linear brain models, for which the neurostimulation input response behaves closely

to an LTI system, when the input is sufficiently small. To this end, we present two models used to test our

method. The first one is a linear neural population model of cortical activity, and the second one is a non-linear

cortico-thalamic neural population model with cortico-thalamic delay.

2.6.1 Linear brain model

We describe neural population activity with a noise-driven linear model [29]. The model is composed of two

pairs of interacting excitatory and inhibitory populations. Here we have V
(1,2)
e,i : R → R, representing the
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parameter description value

τe,1,2 exc. synaptic time constant 5ms
τi,1,2 inhib. synaptic time constant 20ms
N11 first exc. linear coefficient 1.15
N21 first inhib. linear coefficient 0.63
N12 second exc. linear coefficient 2.52
N22 second inhib. linear coefficient 6.6
N number of neurons 1000
κ2
1,2 noises variances 10−4/N

b1,2 input coupling constants 0.18
b3,4 input coupling constants 0.14

Table 2: Parameter set of model (10). The choice of parameter is partially based on the paper in which
it was developed (see [29]).

mean activity of the associated population, where V
(1,2)
e and V

(1,2)
i correspond respectively to excitatory and

inhibitory populations. Each population is driven by noise ξ1,2 : R → R and the external input u : R → R,
according to the following differential equations:

τe,1
dVe

(1)(t)
dt = (−1 +N11)V

(1)
e (t)−N11V

(1)
i (t) + b1u(t) + ξ1(t),

τi,1
dVi

(1)(t)
dt = N21V

(1)
e (t) + (−1−N21)V

(1)
i (t) + b2u(t),

τe,2
dVe

(2)(t)
dt = (−1 +N12)V

(2)
e (t)−N12V

(2)
i (t) + b3u(t) + ξ2(t),

τi,2
dVi

(2)(t)
dt = N22V

(2)
e (t) + (−1−N22)V

(2)
i (t) + b4u(t),

(10)

where the noise ξ1,2 is uncorrelated Gaussian distributed with zero mean and variance κ2
1,2 = 10−7, and

the stimulation u is weighted by the coupling constants bi > 0 of the corresponding population. In addition,

τ(e,i),(1,2) are the synaptic time constants of the populations, and constants Nij > 0 are interaction gains of the

respective population. Table 2 provides the parameters employed in subsequent simulations.

The observed output

y(t) = V (1)
e (t)− V

(1)
i (t) + V (2)

e (t)− V
(2)
i (t)

is a sum of the effective field potential V
(j)
e − V

(j)
i of both populations j = 1, 2, cf. Fig. 7 (top panels).

The simulation of the linear brain model in time domain is done using the library control of python. The

numerical integration is computed thanks to matrix exponential [30], with a simulation sampling time of 1ms.

2.6.2 Cortico-thalamic brain model

A different model considers the cortico-thalamic feedback circuit [31]. It describes the cortex layers I-III and

the cortico-thalamic loop between cortical layers IV-VI, the thalamic relay cell population and the reticular

structure. The cortical layer I-III exhibits mean activity of excitatory cells v and inhibitory cells w. Similarly,

layer IV-VIs exhibits the mean activity Ve and Vi and thalamic relay cell populations the mean activity Vth,e

and Vth,i. Moreover, the reticular structure has the mean activity Vret. The fibers between the cortex and

thalamus and the cortex and reticular structure exhibit a finite conduction delay τ [31, 32]. The 7-dimensional

dynamical system of the brain state x = (v, w, Ve, Vi, Vth,e, Vth,i, Vret) ∈ R7 obeys{
ẋ(t) = F(x(t),x(t− τ)) + ξ(t) +Bu(t),

y(t) = Cx(t),
(11)

where the superscript t denotes transposition, F ∈ R7 is a nonlinear vector function, B ∈ R7×1 is the input

coupling matrix and C ∈ R1×7 is the observation matrix. We mention that B = (b1, b2, b3, b4, 0, 0, 0)
t, bi > 0,

i.e. only the cortical layers are stimulated with weights bi. The observation y captures the activity of the cortical
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excitatory populations [31, 33] with C = (c1, 0, c3, 0, 0, 0, 0), ci > 0. For more details, please see the Appendix.

The time domain simulations of the cortico-thalamic model is done by numerical integration using the

fourth-order Runge-Kutta method implemented by the scipy library in python with a maximum simulation

time step of 1 ms. The signal produced by this cortico-thalamic brain model is shown in Fig. 2.
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Figure 2: Resting state activity computed from the cortico-thalamic brain model. Left: Observation
time series in a certain time window. Right: Power spectral density of the observation time series.

3 Results

The present work addresses two major problems in closed-loop control: the correct model choice of the systems

dynamics and the present conduction delay. The subsequent sections propose solutions for both problems and

illustrate them in some detail by applying them to the linear brain activity model from section 2.6.1. The final

section demonstrates the closed feedback loop for the cortico-thalamic brain model from Section 2.6.2.

3.1 Model estimation

Equations (8) and 9 permit to express the magnitude of ĝ(f) in terms of the spectral densities of observable

signals

|ĝ(f)|2|F{u(t)− ū}(f)|2 = |α̂(f)|2 − |α̂0(f)|2

|ĝ(f)|2Suu(f) = Syy(f)− Sy0y0(f)

|ĝ(f)|2 =
Syy(f)− Sy0y0

(f)

Suu(f)
.

(12)

The spectral density functions Sy0y0
and Syy may be estimated numerically from output data before and

during a stimulation with a known chosen stimulation function u. The estimation may be performed by applying

conventional methods, such as the Welch method [34]. These estimations provide the magnitude of the transfer

function |ĝ| by utilizing Eq. (12). In detail, at first, we considered the linear model (10) and injected a white

noise current into the plant gaining the system’s response signal together with the resting state activity, cf.

Fig. 3A. The subsequent estimation of Syy(f), Sy0y0
(f) and Suu(f) (see Fig. 3B) from the data permitted to

compute the brain input response model ĝ(f) by Eq. (12). We observe a very good accordance of the original

model response function and its estimation in magnitude (see Fig. 3C) and phase (see Fig. 3D).

The remaining error in the estimated model compared to the original model depends on the amplitude of

the driving noise ξ, cf. Fig. 4. High driving noise can also cause the magnitude vector fitting algorithm not to

converge, leading to a non-minimal mean-square error between the fitted and the original models when evaluated

at the frequency sample points used for the algorithm.

This problem can be solved by increasing the amplitude of the input current u that we inject in the plant,

which decreases the contribution of the rest state driving noise ξ to the output signal relative to the input

9
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Figure 3: The magnitude vector fitting algorithm successfully reconstructs the transfer function
G from magnitude-only data. A) Time series of the resting state activity (blue), the input signal (green)
and the stimulation response (red). B) Spectral densities of the simulated input signal (green), the resting
state activity (blue) and the stimulation response (red). The input signal is a white noise with chosen standard
deviation 0.005. C) Reconstructed gain |ĝ| of the plant input response. The fitted model (dashed cyan)
accurately matches the original model (black). The red curve is the raw data used for fitting, computed from
the spectral density data in panel A) using Eq. (12). D) Reconstructed phase of the plant input response ĝ
.

current. Although the remaining dominant input current is also noisy, its value at any time or frequency is

known, meaning that it is canceled out in the ratio
Syy

Suu
in Eq. (12). This effectively leads to lower noise in

the transfer function magnitude data extracted with Eq. (12). The limitation is then set by the maximum

amplitude of the current we are allowed to inject into the brain in a given neurostimulation setup. Indeed, the

amplitude of the current is limited both for safety reasons that are beyond the scope of this paper and because

of the assumption of linearity on which our method is based and which requires small currents.

3.2 Delay compensation

Delay compensation is achieved by adding another LTI system at the output of the controller K cf. Fig. 5,

whose purpose is to reproduce the transfer function of a negative delay. We call this system the predictor ϕ.

However, perfectly reproducing the transfer function of a negative delay would be impossible since the

associated time-domain system would then be a perfect predictor, which is a non-causal, i.e. un-physical,

system. Nonetheless, we can build a causal and stable system that behaves almost like a perfect predictor,

however only in the frequency ranges of interest.

The numerical implementation of the controller necessitates discretization in time. Consequently, it is

reasonable to choose the predictor design as a discrete-time system, meaning that for any input signal at

xt : R → R at an instant t ∈ R, it approximately predicts the future signal xt+∆t where ∆t ∈ R is the sampling

time chosen when building the predictor. Since x is a discrete sequence, its transfer function is obtained using

the Z-transform, defined as

X(z) = Z{xn∆t}(z) :=
∞∑

n=0

xn∆tz
−n,

with z ∈ C and X : C → C. Then the transfer function Φ : C → C of a negative delay of one step ∆t applied

10
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Figure 4: The magnitude vector fitting algorithm’s performances depend on the amplitude ratio
of the stimulation current and the driving noise. Each row correspond to a different signal-to-noise
ratios (SNR), computed as the ratio between the mean input coupling strength and the mean noise standard
deviation. The transfer function magnitude data (red dots) are then used to synthesize a plant model via
the magnitude vector fitting algorithm. The left (right) column corresponds to the transfer function magnitude
(transfer function phase). We see that the noise levels in the transfer function magnitudes are higher for stronger
brain-driving noise. The fitted model is coded in dashed cyan and deviates more from the original model for
higher noise levels.

to x would simply be Φ(z) = z, the Z-transform of a one-step delay. However, this choice would be non-causal,

which is not implementable numerically in time. Nevertheless, to obtain a stable and implementable system

with a transfer function as close as possible to z, we chose the ansatz

Φ(z0) =
b0z0 + b1
z0 − a

= z0, (13)

for a fixed value z = z0 and where a ∈ R is the pole of the system and b0 ∈ R and b1 ∈ R are the polynomial

coefficients of the numerator of Φ. This equation corresponds to the transfer function of a discrete LTI system

with exactly one pole and one zero, which is the closest form of a proper rational function to the identity

function of z in the sense that it has only one more pole. We add the additional constraints that |a| < 1, since

this is the necessary and sufficient condition for the discrete predictor ϕ to be stable.

We choose to reformulate this problem by setting a as a free parameter. This way, we can select any a

between −1 and 1, and the remaining parameters are found by solving the linear equation b0z0+b1 = z0(z0−a),

where z ∈ C is a chosen complex frequency point at which we want this equation to hold. Since there are two

unknowns, we can write a second equation in which we want the derivative of each side of the equation also to
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Figure 5: Closed-loop neurostimulation circuit with predictor
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Figure 6: The predictor pole location affects the closed-loop stability. The magnitude of the pole
with the highest magnitude in the closed-loop transfer function parameterizes the stability of the closed-loop.
Indeed, if this value is less than 0 dB, then all the poles of the closed-loop transfer function have a magnitude
less than 0 dB, meaning that the system is stable. The system is unstable otherwise. Here the full curve, the
dashed curve and the dotted curve correspond to predictors for delays of 3 ms, 5 ms and 10 ms, respectively.
The higher the delay is, the lower is the size of the region of closed-loop stability for a.

be equal, yielding b0 = 2z0 − a. By replacing b0 in the first equation, we obtain

z0(2z0 − a) + b1 = z0(z0 − a)

b1 = −z20 .

In the z-domain, the zero frequency corresponds to z0 = 1. We choose to solve this equation for this point,

hence we can replace a, b0 and b1 in Eq. (13) which yields

Φ(z) =
(2− a)z − 1

z − a
. (14)

This transfer function can then be converted to an associated state-space representation and used for time

domain simulations with a sampling time ∆t. The output of this system will then be yt ≈ ut+∆t for any input

signal ut. Simulating delays greater than the system sampling time is simply achieved by concatenating multiple

times this predictor system. Here the delay has to be a multiple of the sampling time. This predictor can then

be appended to the output of the digital controller K.

To avoid closed-loop instability, we must limit the amplitude of the feedback signal computed from the

controller input signal. This amplitude is determined by the three systems G, H and K. Since G is defined by

the system under study and H is the chosen filter defining the desired modifications in the frequency distribution

of the observed signal, ϕ (or equivalently parameter a) is the only degree of freedom. Figure 6 shows the region

of closed-loop stability as a function of the predictor pole a and the delay.

Because the predictor has a gain that is still slightly greater than one in the frequency ranges of interest,

we reduce the weights of the filter H to compensate for the excess gain at the α and γ-peaks. To do this, we

simply divide the weight of each band by the magnitude of the predictor system evaluated at the band’s natural

frequency. This reduces the errors in the closed-loop transfer function in the α and γ-ranges.
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Figure 7(B) shows results combining the model estimation by vector fitting and the delay compensation.

The proposed closed-loop control yields an increase in α-power and a decrease in γ-power according to the

employed target filter H. The application of a conventional reference signal control and Smith predictor for

delay compensation (Fig. 7(A)) does not yield a reduction of higher γ-frequency activity. This can also be seen

in Fig. 7(bottom panel), showing that the proposed scheme adapts much better to the target gain function than

the reference signal control scheme. Generally, both methods fail to adapt well to very high-frequencies (details

not shown).
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Figure 7: Model-based closed-loop neurostimulation with delay compensation successfully de-
creases gamma activity while reference signal-based control with Smith predictor fails. A) Sim-
ulation data of the reference signal-based control design with Smith predictor. B) Simulation data of the
model-based control design with delay compensation. The upper panels show the time series of the resting state
activity signal y0 (blue) and the closed-loop output signal y (red) and the input current u (green). The ampli-
tude of the stimulation current is much larger for reference signal-based control than for model-based control.
The center panels show spectral densities of the resting state activity signal y0 (blue), the closed-loop output
signal y (red) and the input current u (green). The activity is increased in the alpha range and decreased in the
gamma range for model-based control, however, is increased everywhere for reference signal-based control. The
spectral density of the input current is again much larger for reference signal-based control than for model-based
control. The lower panels show the spectral density gain from y0 to y of the closed-loop systems. The dashed
red curve is computed from the closed-loop transfer function and the black curve is the target curve computed
from the transfer function 1+H(s). We see that the implemented closed-loop applies the correct modifications
in alpha and gamma ranges for model-based control but not for reference signal-based control where the error
is large for frequencies above the alpha range. The conduction delay is 5ms and the value of the parameter a
in the delay compensation scheme is chosen to a = 0.55
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3.2.1 Accuracy
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Figure 8: Delay decreases the accuracy of the closed-loop transfer function For uncompensated delay
(dashed blue curve), the closed-loop transfer function significantly deviates from the target transfer function
defined as 1+H(s) (black curve). Delay compensation (dashed red curve) reduces the deviation from the target
transfer function in the α- and γ-frequency range for delays of 3ms and 5ms. However, the error is still large in
the γ-range for a delay of 10ms.

3.2.2 Stability

As discussed earlier, delay compensation can destabilize the closed-loop system depending on the parameters

of its components. However, if the correct predictor pole is chosen based on Fig. 6, the closed-loop will remain

stable. These values are computed under the assumption that there are no model estimation errors. If we take

into account the inaccuracies in the fitted brain model compared to the original brain model, extra gain can add

up in the feedback signal, introducing again the risk of destabilizing the closed-loop. This is trickier to solve,

as we assume here that in a real experimental setup that, it is very difficult to reduce these remaining errors

further by the method proposed. Hence the solution is either to simply reduce the amplitude of the spectral

density modification that we want to apply by reducing the amplitude of the transfer function of filter H, or

to reduce the amplitude of the predictor ⊕ reducing its accuracy and possibly increasing delay errors. In any

case, the inaccuracies in the estimated brain model create errors in the closed-loop transfer function regardless

of the delay.
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3.3 Application to cortico-thalamic circuit model

To extend the analysis to a biologically more realistic model, we employed a nonlinear cortico-thalamic brain

model (cf. section 2.6.2). Fitting a linear transfer function to the brain model activity as described above, we

found a good accordance of fitted and original model as can be seen in Fig. 9A),B). Small deviations in the gain

and the phase resulted from the internal delay in the brain model and its non-linearity. Indeed, the magnitude

vector fitting algorithm does not reproduce this delay but instead synthesizes a linear system that has no delay

but still approximates well the transfer function of the original model. Nonetheless, the non-linearity of this

model can also decrease the accuracy of the fitting, as we are trying to represent a non-linear input response

model by a linear one. However, this effect is only seen when the current is large enough for the non-linear part

of the response to be significant.
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Figure 9: Fitted model-based control using the cortico-thalamic brain model successfully repro-
duces the target transfer function in the frequency domains of interest. A) Magnitude of the fitted
brain model transfer function (dashed cyan) compared to the magnitude of the original cortico-thalamic brain
model transfer function (black). B) Phase shift of the fitted transfer function (dashed cyan) compared to the
magnitude of the original transfer function (black). C) Spectral densities of the rest state activity signal (blue),
the stimulated brain output (red) and the stimulation signal (green). D) Closed-loop transfer function (dashed
red), compared to the target transfer function 1 +H(s) (black).

In fact, the model-based control enhances α-activity and diminishes γ-activity in good accordance to the

imposed filter H (see Fig. 9C)). This can also be seen in the closed-loop transfer function, which corresponds

well to the target transfer function (see Fig. 9D)) for small and medium frequencies. The closed-loop transfer

function deviates from the target transfer function for large frequencies beyond the γ-frequency range. This

results from the employed conduction delay.

To elucidate better the functions of the different elements of the proposed method, we applied a second

closed-loop setup, where the neurostimulation input was applied to the first three layers of the cortex modeled

by u and v and to the reticulum modeled by Vret (Fig. 10). In this setting, the response in the high-frequency

ranges are mainly produced by the cortex, while the response in low-frequency ranges originates mainly from

the reticulum and the thalamic relay structure, with a gap approximately between 10Hz and 20Hz. The weak

response between 10 Hz and 20 Hz observable cf. Fig. 10A is compensated by the controller, which produces

a high magnitude stimulation in the closed-loop for these frequencies cf. Fig. 10C. The second consequence is

the inaccuracy of the closed-loop output in the low-frequency ranges, this is caused by the rather long cortico-

thalamic internal delay. This delay yields a larger phase shift at low-frequencies and originates from the fact
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that we observe signals in the cortex, but stimulate in the reticulum.
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Figure 10: Reticulum stimulation yields incorrect closed-loop gain in low-frequency ranges. A)
Magnitude of the fitted brain model transfer function (dashed cyan) compared to the magnitude of the original
cortico-thalamic brain model transfer function (black). B) Phase shift of the fitted transfer function (dashed
cyan) compared to the magnitude of the original transfer function (black). C) Spectral densities of the rest state
activity signal (blue), the stimulated brain output (red) and the stimulation signal (green). D) Closed-loop
transfer function (dashed red), compared to the target transfer function 1 +H(s) (black).

4 Discussion

The goal of the proposed method was to design a delayed closed-loop control method to apply defined modifi-

cations to the spectral distribution of an observed signal, such as EEG or LFP. The presented work explicitly

describes all the steps needed to build a delayed closed-loop neurostimulation setup to restore the physiological

brain state of a patient [35]. Since the controller is modeled as a linear time-invariant system, its implementa-

tion is lightweight, straightforward, and easily applicable in most embedded systems. Applications to a simple

neural populations model (Fig. 7) and to a biologically plausible cortico-thalamic feedback system (Fig. 9 and

10) demonstrate its elements and their impact on the control performance.

Main contributions

Model estimation

We assume resting state activity signal driven by noise, when no neurostimulation is applied. Injecting a

stimulation creates an additional response that adds to the resting state. Consequently, both the resting state

signal and response signal can be observed separately in experimental practice and they serve to estimate a

linear state-space model as outlined in section 3.1. This approach is successful for both simplified linear models

(cf. Figs. 3,4) and neurophsysiological realistic nonlinear models (cf. Fig. 9). This approximation is suitable

for nonlinear systems whose dynamics evolve close to a stationary state. Several studies have already exposed

evidence confirming that the measured brain dynamics behave mostly linearly at macroscopic scales [20], [21].

Moreover, in the case of the brain response to small neurostimulation input, our assumption of the linear brain

response is supported by results of [22]. The authors of this study measured the controllability Gramian of their

brain model with nonlinear sigmoid transfer function, similar to the cortico-thalamic brain model [31] used
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in this paper. If the system exhibits nonlinear dynamics far from any linear approximation, such as bistable

dynamics and chaotic evolution, the proposed vector fitting technique may yield a too large model error and

thus instability of the closed-loop feedback. The hypothesis of macroscopically linear dynamics has also recently

been tested against various nonlinear models [36]. While that work included fitting methods for both linear

and nonlinear brain models, our work chose the paradigm of purely frequency domain model fitting with the

magnitude vector fitting algorithm [26] and applied it to the brain input response system, which we could isolate

thanks to a simple open-loop neurostimulation setup. While models have already been studied in application to

neurostimulation [37], [38], we propose a straightforward black box modeling approach that is directly usable

for adaptive closed-loop neurostimulation, and is technically applicable easily for each individual patients before

any closed-loop neurostimulation sessions.

Delay compensation

Conduction delays of a few milliseconds in the transmission between observation and stimulation may be negli-

gible in systems evolving on time scales of seconds or longer, but may play an important role in neural systems.

Our study demonstrates that such feedback delays may introduce control errors and we show how these er-

rors can be avoided by a novel delay compensation method (section 3.2). Application to the linear model (7)

demonstrated its superior performance compared to a conventional delay compensation method. Delay com-

pensating systems have already been described in other work [39], [40]. However, we used a design primarily

focused on the correction of a gain error in the closed-loop transfer function, whereas the majority of the cur-

rent research is based on time domain criterion and stability enforcement [41], [42]. The methods performance,

i.e. how well the total gain function fits to the pre-defined transfer function, is good for low-frequencies but

weakens for frequencies exceeding a limit frequency. Note that frequency domain compensation has also already

been achieved, notably via delay equalizers [43]. However, this would restrict the frequency range in which

the delay is compensated, and create additional errors in the surrounding frequencies. Other designs include

filters with negative group delays, however their applications are limited to band limited input signals [44], [45].

The predictor design we presented also relies on negative group delay, enabling delay compensation in a large

frequency band, while still being applicable to the brain EEG, which is inherently not band limited, because

of the noise. Nonetheless, while our predictor design allows to significantly decreases the delay errors in the

closed-loop transfer function, the delay still imposes a limit on the controllable frequency range. The larger

the delay, the smaller is this limit frequency. Low performance may induce instability in the feedback loop [46]

and thus should be avoided. A corresponding stability criteria has been proposed, cf. Fig. 6. Better predictor

designs could allow better performance of the closed-loop system for larger delays. The improvement of the

accuracy of our closed-loop neurostimulation setup by building more efficient predictor designs is in progress

and we refer the reader to future work.

Limits of our methodology

Experimental stimulation parameters and safety

Experimental stimulation protocols have to ensure the subjects safety [47] and thus avoide stimulus-induced

health risks and complications. For instance, tDCS may be administered for a duration of 60 minutes and a

maximum current of 4 mA without yielding health risks. However, parameters beyond these limits may yield

adverse effects in subjects, such as skin lesions similar to burns and mania or hypomania in patients with

depression [48]. The proposed method does not limit the stimulation duration per se, but of course the duration

can be chosen accordingly without constrating the method. The method adapts the systems brain rhythms to

the target rhythms very rapidly on a time scale of less than a second and hence permits rather short stimulation

duration longer than a second.

Moreover, the proposed method does not specify absolute stimulation current magnitude applied. The impact

of stimulation at certain magnitudes depends heavily on the stimulation type. In tDCS, anodal stimulation with
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positive currents have a different impact as cathodal stimulation with negative currents. In addition, currents

are thought to have to pass a certain threshold to yield a measurable effect. In tACS [49], stimulating in the

α-frequency range large and small magnitudes yield excitation and inhibition, respectively, while intermediate

magnitudes yield weak effects. Stimulating with a range of frequencies, as in tRNS [50], a 1mA peak-to-

peak amplitude for 10 minutes stimulation duration does not yield adverse effects. We conclude that it is

not straight-forward to decide which stimulation magnitude applied in the presented method would be safe

for human subjects, since the stimulation signal is neither constant, single frequency oscillation nor random

noise. In sum, we argue that a maximum peak-to-peak amplitude of 1mA for few tens of minutes may not yield

adverse effects, but still may evoke a measurable impact on observations and the brain state. Of course, future

experimental studies will gain deeper insights.

Model internal delay

The internal delay in the brain is not reproducible by the magnitude vector fitting algorithm, which relies on

the time invariance of the signals. Hence, this will cause errors in the transfer function of the fitted model (cf.

Fig. 9) that are larger for higher contribution of the delay in the output, cf. Fig. 10. To limit this effect, we

must minimize the delay between the application of the neurostimulation input and the measurement of the

response to this input as much as possible by taking into account the delay between the different brain regions.

Estimating the closed-loop delay

For delay compensation, in this paper, we assumed that we know the conduction delay in the closed-loop.

However, although it is a single constant parameter, we would need a method to measure it for a real closed-

loop neurostimulation setup. A straightforward way to do this would be to inject any current into the plant and

measure the time lag between the moment at which we inject the input current and the moment at which we

measure the output signal. This estimated delay would then correspond to the total closed-loop delay except

for the computation delay of the digital controller K. This computation delay can be easily measured with

the same software used for computation, as it corresponds to the delay needed to perform constant-size matrix

multiplications. Moreover, several methods have already been developed to estimate the conduction delays in

linear systems [51], [52].

Direct input current measurements

One of the main challenges to solve for closed-loop neurostimulation is the elimination of direct transmission

artifacts from the measured EEG signal [53]. Indeed, when measuring the plant output signal, a portion of

the measured signal might be a direct measurement of the input current without any influence from the brain

dynamics. In the ideal case, one intends to minimize the contribution of the stimulation input to the observed

signal since it would mean that the measured EEG signal does not fully correspond to the brain activity. Hence,

reading the EEG of the patient would be more difficult for the user of our closed-loop setup, and the contribution

of the brain dynamics to the closed-loop would be smaller. A simple solution to this problem is discussed further

below.

Perspectives

The control proposed allows to perform accurate frequency shaping of the systems’ activity spectral distri-

bution. However, this approach is limited to linear models of the brain stimulation response. This may be

disadvantageous if the systems dynamics exhibit nonlinear behavior (see e.g. [54]) as we want to represent the

brain dynamics realistically. Furthermore, in real-case scenarios, we would also have to take into account the

noise in the acquisition of the signal by the sensor and in the application of the input signal by the actuator.
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Filtering out direct input current measurements

Filtering out the direct input current measurements is achievable with our setup removing the strictly proper

system requirement while using the magnitude vector fitting algorithm to measure the brain input response.

In other words, while fitting the brain input response system, we want the fitted model to be able to contain

a direct transmission term corresponding to the direct current measurement. Hence, if the real plant input

response contains a significant direct transmission term, it will be identified by the magnitude vector fitting

algorithm when synthesizing the estimated plant input response. The second step is them simply to substract

the feedtrough term multiplied by the input current to the plant output signal. Thus, the remaining part of the

signal would only correspond to the brain dynamics.

Application to multiple inputs multiple outputs plants

For now, we only focused on plant with a signal input signal and a single output signal. However, in a real

setup, the EEG measurement is typically composed of multiple channels corresponding to different electrodes.

This can also be true for the neurostimulation device. For example, with electric current stimulation, we can

inject multiple signals using multiple electrodes. This can be simply solved by feeding a single input to each

input channel and summing each output to a single output channel. However, when we separate the different

channels, we can have more control over each individuals output channels. When we have multiple inputs and

output, the plant is then a Multiple-Inputs Multiple-Outputs (MIMO) system. Everything developed in this

paper is generalizable to MIMO systems, with one caveat: when solving Eq. (6), a unique solution only exists

if the system has as more outputs than it has inputs. The user can always ensure this, by using as many

neurostimulation input channels than there are EEG output channels. In this generalized setup, we can also

define the filter H to apply different modifications to each output channel.

Neurostimulation effects on larger time scales

Our method relies only on the short term dynamics of the brain, using signal feedback and delay compensation

to produce an adaptive stimulation current and obtain the desired EEG frequency distribution. However,

more traditional neurostimulation techniques rely on the long term dynamics of neural plasticity, which is not

modeled in the brain models we use in this paper. Long term brain adaptation to neurostimulation could

cause the EEG frequency distribution to diverge from the desired frequency distribution after several minutes of

stimulation. This effect could be compensated either by reiterating the model identification step and performing

neurostimulation again, or by adjusting the weight of the filter H according to the observed changes in real-time.

Incorporating the effect of neural plasticity in the brain models would allow our method to produce predictable

and durable modification to the EEG frequency distribution, even after we stop the stimulation.
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Cortico-thalamic brain model details

The differential equation system (11) develops as

τe
dVe(t)

dt
= −Ve(t) + FeTc(Ve(t)− Vi(t)) + FctTth(Vth,e(t)− Vth,i(t)) + FccxSe(v(t)) + µe + Ie + ξe(t) + b1u(t)

τi
dVi(t)

dt
= −Vi(t) + FiTc(Ve(t)− Vi(t)) + µi + Ii + ξi(t) + b2u(t)

τth,e
dVth,e(t)

dt
= −Vth,e(t) + FtcTc(Ve(t− τ)− Vi(t− τ)) + µth,e + ξth,e(t)

τth,i
dVth,i(t)

dt
= −Vth,i(t) + FtrTret(Vret(t)) + µth,i + ξth,i(t)

τret
dVret(t)

dt
= −Vret(t) + FrtTth(Vth,e(t)− Vth,i(t)) + FrcTc(Ve(t− τ)− Vi(t− τ)) + µret + ξret(t)

τce
dv(t)

dt
= −v(t) + FcxSe(v(t))−McxSi(w(t)) +Mcx,thTth(Vth,e(t− τ)− Vth,i(t− τ)) + µce + Ice + ξce(t) + b3u(t)

τci
dw(t)

dt
= −w(t)− FcxSi(w(t)) +McxSe(v(t)) + µci + Ici + ξci(t) + b4u(t)

(15)

where the transfer functions are defined as

Tm(x) =
1

2

(
1− erf

(
− x√

2σm

))
Sm(x) =

1

2

(
1− erf

(
− x√

2σcm

))
.

(16)

The ξx terms represent the driving noises, which are uncorrelated Gaussian noise defined as

⟨ξx(t)⟩ = 0 , ⟨ξx(t)ξy(t′)⟩ =
Qx

N
δxyδ(t− t′),

with x = e, i, (th, e), (th, i), ret, ce, ci. The variances in Eq. (16) are defined as

σ2
c =

Qe

τe
+

Qi

τi
, σ2

th =
Qth,e

τth,e
+

Qth,i

τth,i
, σ2

ret =
Qret

τret

σ2
ce =

Qce

τce
, σ2

ci =
Qci

τci

All the parameters are given in Table 3.

24



parameter description value

τe exc. decay time (infragranular) 10 ms
τi inh. decay time (infragranular) 50 ms
τth,e exc. decay time (relay) 5 ms
τth,i inh. decay time (relay) 30 ms
τret exc. decay time (reticular) 8 ms
τce exc. decay time (supragranular) 5 ms
τci inh. decay time (supragranular) 20 ms
τ cortico-thalamic propagation delay 40 ms
Fe exc. synaptic strength 1.0
Fi inh. synaptic strength 2.0
Fct synaptic strength (relay → cortex) 1.2
Ftc synaptic strength (cortex → relay)) 1.0
Ftr synaptic strength (reticular → relay) 1.0
Frt synaptic strength (relay → reticular) 0.3
Frc synaptic strength (cortex → reticular) 0.6
Fcx synaptic strength (exc. → exc.) 2.18
Mcx synaptic strength (inh. → exc.) 3.88
Fccx synaptic strength (supragranular → infragranular) 0.05
Fcx,th synaptic strength (thalamic relay → supragranular) 0.1
µe exc. noise input (infragranular) 0.1
µi inh. noise input (infragranular) 0.0
µth,e exc. noise input (relay) 1.3
µth,i inh. noise input (realy) 1.0
µret exc. noise input (reticular) 0.0
µce exc. noise input (supragranular) 0.05
µci inh. noise input (supragranular) 0.05
Ie exc. resting input (infragranular) 2.7
Ii inh. resting input (infragranular) 1.7
Ice exc. resting input (supragranular) 1.1
Ici inh. resting input (supragranular) 0.4
Qe exc. input noise variance (infragranular) 3× 10−5

Qi inh. input noise variance (infragranular) 0.001
Qth,e exc. input noise variance (relay) 2.5× 10−6

Qth,i inh. input noise variance (relay) 12.6× 10−6

Qret exc. input noise variance (reticular) 10.9× 10−6

Qce exc. input noise (supragranular) 2× 10−5

Qci inh. input noise (supragranular) 8× 10−5

N number of neurons 1000
b1,2,3,4 input coupling constants 1
c1 observation coefficient (supragranular) 0.3
c3 observation coefficient (infragranular) 1

Table 3: Parameter set of model (15). The choice of parameters is for the most part based on the paper
in which it was developed [31].
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