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November 13, 2023

Abstract

The main focus of this work is the study of several cones relating the eigenvalues
or singular values of a matrix to those of its off-diagonal blocks.
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1 Introduction

Let p ≥ q ≥ 1 and n = p+ q. Let Herm(n) denote the vector space of n-square Hermitian
matrices. The spectrum of X ∈ Herm(n) is denoted by e(X) = (e1 ≥ · · · ≥ en) and the
singular spectrum of a matrix Y ∈ Mp,q(C) is denoted by s(Y ) = (s1 ≥ · · · ≥ sq ≥ 0).

The main purpose of this article is to describe the following cones:

A(p, q) =
{
(e(X), s(X12)), X ∈ Herm(n)

}
,

S(p, q) =
{
(s(X), s(X12), s(X21)), X ∈ Mn,n(C)

}
,

T (p, q) =
{
(s(X), s(X11), s(X22)), X ∈ Mn,n(C)

}
.

Here, a n-square complex matrix X is written by blocks X =

(
X11 X12

X21 X22

)
where X12 ∈

Mp,q(C) and X21 ∈ Mq,p(C).
In the 1970s, Thompson gave some inequalities satisfied by the elements of T (p, q)

[22, 23], and more recently Fomin, Fulton, Li and Poon obtained sets of inequalities that
describe the cone A(p, q) [14, 5].

The main objective of this work is to explain how a direct application of O’Shea-
Sjamaar’s theorem [17] yields complete sets of inequalities for the cones A(p, q), S(p, q),
and T (p, q). However, this method does not provide an optimal description of these
cones, as it leads to a large number of redundancies in the list of inequalities. We’ll see,
for example, that the Fomin-Fulton-Li-Poon description of A(p, q) is more accurate than
ours. In a future work [19], we will propose a more precise method to describe these
inequality sets, using the main result of [18].
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Throughout this article, we make extensive use of Horn cones Horn(n) and Littlewood-
Richardson cones LR(m,n). Let’s recall their definition. To any integers n,m ≥ 1, we
associate

Horn(n) =
{
(e(X), e(Y ), e(X + Y )), X, Y ∈ Herm(n)

}

LR(m,n) =
{
(e(M), e(MI), e(MII)), M ∈ Herm(m+ n)

}
,

where MI ∈ Herm(m) and MII ∈ Herm(n) are the extracted matrices such that M =(
MI ∗
∗ MII

)
.

In §2, we recall the description obtained by Klyachko [9] and Knutson-Tao [12] for
Horn(n) cones, and that obtained by Berenstein-Sjamaar [3] and Ressayre [20] of LR(m,n)
cones. In both cases, the inequalities are parameterized using Littlewood-Richardson
coefficients.

In §3, we show that A(p, q) can be characterized as a sub-cone of1 Horn(n). To any
λ = (λ1 ≥ · · · ≥ λn) and s = (s ≥ · · · ≥ sq ≥ 0), we associate λ∗ = (−λn ≥ · · · ≥ −λ1)
and

ŝ p,q := (s1 ≥ · · · ≥ sq ≥ 0, · · · , 0︸ ︷︷ ︸
p−q

≥ −sq ≥ · · · ≥ −s1).

We then show that (λ, s) ∈ A(p, q) if and only if (λ, λ∗, 2ŝ p,q) ∈ Horn(n). This makes it
possible to describe A(p, q) by means of the inequalities defining Horn(n), but we’ll see
that the resulting description is less precise than that given by Fomin-Fulton-Li-Poon in
[5].

In [5], the authors pose the question of finding a collection of linear inequalities that
describes S(p, q) (Problem 1.15). We answer this problem in §4 by showing that S(p, q)
can be characterized as the intersection of LR(n, n) with the subspace of R2n × Rn × Rn

formed by the elements (γ̂n,n, ŝ p,q, t̂ p,q) where (γ, s, t) ∈ Rn × Rq × Rq.
In the last section, we give a set of inequalities describing the cone T (p, q), showing

that T (p, q) is characterized as the intersection of LR(2p, 2q) with the subspace of R2n ×
R2p × R2q formed by the elements (γ̂n,n, ŝ p,p, t̂ q,q) where (γ, s, t) ∈ Rn × Rp × Rq.

In the case T (p, 1), we recover the interleaving inequalities of singular values obtained
by Thompson [22].
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I’m also grateful to a group of young students, Martina Agüera Sanchez and Ariane &
Constantin Paradan, who implemented A.S. Buch’s “Littlewood-Richardson calculator”
in various programs, enabling me to calculate a few examples. I would also like to thank
the referees for their comments, which helped me improve this text.

1Here n = p+ q.
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Notations

Throughout the paper :

• We fix p ≥ q ≥ 1 and n = p+ q.

• We write 0ab for the zero matrix of size a× b.

• Let Ma,b(C) be the vector space of complex a× b matrices.

• Rℓ
+ is the set of sequences x = (x1 ≥ · · · ≥ xℓ) of real numbers.

• Rℓ
++ is the set of sequences x = (x1 ≥ · · · ≥ xℓ ≥ 0) of non-negative real numbers.

• For any positive integer ℓ, let [ℓ] be the set {1, . . . , ℓ}.

• If x ∈ Rℓ and A ⊂ [ℓ], we write |x|A =
∑

a∈A xa and |x| =
∑ℓ

i=1 xi.

• For A ⊂ [ℓ], we define Ao := {ℓ+ 1− a, a ∈ A} and Ac := [ℓ] \ A.

• If x ∈ Rℓ, let Diag(x) be the diagonal ℓ × ℓ matrix with diagonal entries equal to
x1, . . . , xℓ.

• If A = {a1 < · · · < ap} is an increasing sequence of positive integers, let µ(A) =
(ap − p ≥ · · · ≥ a1 − 1 ≥ 0).

2 Reminder of some classical results

We recall some classical facts that we’ll be needing later on.

2.1 Singular values

Let X be a rectangular matrix, say m × n, with complex entries, and let X∗ denote the
complex conjugate transpose of X. Let η1(X) ≥ · · · ≥ ηm(X) ≥ 0 be the eigenvalues of
the positive semidefinite matrix XX∗. Notice that ηk(X) = 0 when k > ℓ := inf{m,n}.

The singular values of the matrix X are the coordinates of the vector

s(X) :=
(√

η1(X), . . . ,
√

ηℓ(X)
)
∈ Rℓ

++.

Consider the canonical action of the unitary group Um ×Un on Mm,n(C): (g, h) ·X =
gXh−1, ∀(g, h) ∈ Um × Un. The singular values map s : Mm,n(C) → Rℓ

++ induces a

bijective application Mm,n(C)/Um × Un
∼

−→ Rℓ
++.
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2.2 Augmented matrices

Let p ≥ q ≥ 1.

If Y is a p × q matrix, we denote by Ŷ p,q the n-square Hermitian matrix

(
0pp Y
Y ∗ 0qq

)
.

Here the spectrum of Ŷ p,q is equal to ŝ p,q := (s1, · · · , sq, 0, · · · , 0,−sq, · · · ,−s1) ∈ Rn
+,

where s ∈ Rq
++ is the singular spectrum of Y .

If Z is a q × p matrix, we denote by Ŷ q,p the n-square Hermitian matrix

(
0qq Z
Z∗ 0pp

)
.

Here the spectrum of Ẑq,p is also equal to t̂ p,q, where t = s(Z) ∈ Rq
++.

If X is a k-square matrix, we simply denote X̂k,k by X̂ . The spectrum of X̂ is also
simply denoted µ̂ := (µ1, · · · , µk,−µk, · · · ,−µ1) ∈ R2k

+ , where µ = s(X).

2.3 Horn inequalities

Denote the set of cardinality r-subsets I = {i1 < i2 < · · · < ir} of [n] by Pn
r .

Definition 2.1 For any 1 ≤ r < n, LRn
r refers to the set of triplets (I, J,K) ∈ (Pn

r )
3

such that (µ(I), µ(J), µ(K)) ∈ Horn(r).

The following theorem was conjectured by Horn [7] and proved by a combination of
the works of Klyachko [9] and Knutson-Tao [12].

Theorem 2.2 The triplet (x, y, z) ∈ (Rn
+)

3 belongs to Horn(n) if and only if the following
conditions hold:

• |x|+ |y| = |z|,

• |x|I + |y|J ≥ |z|K , for any r < n and any (I, J,K) ∈ LRn
r .

In the following sections, we’ll use Littlewood-Richardson coefficients to parameterize
certain inequalities. Let’s recall their definition. Let λ, µ, and ν be three partitions
of length less than n ≥ 1. We associate them with the irreducible representations Vλ,
Vµ and Vν of the unitary group Un. The Littlewood-Richardson coefficient cλµ,ν can be

characterized by the relation cλµ,ν = dim [V ∗
λ ⊗ Vµ ⊗ Vν ]

Un . Thanks to the saturation

Theorem of Knutson and Tao [12], we know that cλµ,ν 6= 0 ⇐⇒ (µ, ν, λ) ∈ Horn(n).
The following kind of duality is used in the next sections: for all (I, J,K) ∈ (Pn

r )
3, we

have

(1) c
µ(K)
µ(I),µ(J) 6= 0 ⇐⇒ c

µ((Ko)c)
µ((Io)c),µ((Jo)c) 6= 0.

Since the relation |x|(Io)c + |y|(Jo)c ≥ |z|(Ko)c is equivalent to |x|Io + |y|Jo ≤ |z|Ko, in
Theorem 2.2, we can rewrite the last condition by requiring that

|x|I + |y|J ≥ |z|K and |x|Io + |y|Jo ≤ |z|Ko

for any r ≤ n
2 and any (I, J,K) ∈ LRn

r .
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2.4 The cone LR(U, Ũ)

Let ι : U →֒ Ũ be two connected compact Lie groups. We choose an invariant scalar
product (−,−) on the Lie algebra ũ of Ũ , and we denote by π : ũ → u the orthogonal
projection.

Select maximal tori T in U and T̃ in Ũ such that T ⊂ T̃ , and Weyl chambers t+ ⊂ t

and t̃+ ⊂ t̃, where t and t̃ denote the Lie algebras of T , resp. T̃ . The aim of this section
is to recall the description of the following cone given in [3, 20]:

LR(U, Ũ ) =
{
(ξ, ξ̃) ∈ t+ × t̃+, Uξ ⊂ π

(
Ũ ξ̃

)}
.

Consider the lattice ∧ := 1
2π ker(exp : t → T ) and the Weyl groups W̃ = NŨ (T̃ )/T̃

and W = NU (T )/T . We denote by wo ∈ W the longest element. A vector γ ∈ t is called
rational if it belongs to the Q-vector space tQ generated by ∧. We will see that the cone

LR(U, Ũ) is completely described by inequalities of the form

(ξ̃, w̃γ) ≥ (ξ, wowγ)

with γ rational anti-dominant and (w, w̃) ∈ W × W̃ .

2.4.1 Admissible elements

We let Σ(ũ/u) ⊂ t∗ denote the set of weights relative to the T -action on (ũ/u) ⊗ C. If
γ ∈ t, we denote by Σ(ũ/u) ∩ γ⊥ the subset of weights vanishing against γ.

Definition 2.3 A rational element γ ∈ t is said admissible when

(2) Vect
(
Σ(ũ/u) ∩ γ⊥

)
= Vect

(
Σ(ũ/u)

)
∩ γ⊥.

When the following assumption is satisfied, we’ll see in Section §2.4.4 that LR(U, Ũ )
is described by inequalities parameterized by a finite number of admissible elements.

Assumption 2.4 The subspace z := {X ∈ t, α(X) = 0,∀α ∈ Σ(ũ/u)} is contained in the
center Zũ of ũ.

This assumption means that any ideal of ũ contained in u is a subspace of Zũ ∩ u.
Let t = z ⊕ t1 be a rational decomposition. Let us denote by Σ(ũ/u)′ the image of

Σ(ũ/u) through the projection t∗ → (t1)
∗. If Assumption 2.4 holds, Σ(ũ/u)′ generates

(t1)
∗. Any rational element γ ∈ t can be written γ = γ0 + γ1 where γ0 is a rational

element of z and γ1 is a rational element of t1. We see then that a rational element γ is
admissible if and only if γ1 is admissible. The later condition is equivalent to asking that
the hyperplane (γ1)

⊥ ⊂ (t1)
∗ is generated by a finite subset of Σ(ũ/u)′. Thus, there are a

finite number of choices for γ1 (up to multiplication by Q>0).
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2.4.2 Polarized trace

Let R(u) and R(ũ) be the set of roots associated to the Lie algebras u and ũ. The choice of
the Weyl chambers t+ and t̃+ define subsets of positive roots R+ ⊂ R(u) and R̃+ ⊂ R(ũ).

For a rational element γ ∈ t and (w, w̃) ∈ W × W̃ , we will use the following condition
to parameterize the inequalities of LR(U, Ũ):

(3)
∑

α∈R+

〈α,wγ〉>0

〈α,wγ〉 +
∑

α̃∈R̃+

〈α̃,w̃γ〉<0

〈α̃, w̃γ〉 = 0

2.4.3 Schubert calculus

Let ι : UC →֒ ŨC be the complexification of ι : U →֒ Ũ . To any non-zero rational element
γ ∈ t, we associate the parabolic subgroups

(4) P̃γ = {g ∈ ŨC, lim
t→∞

exp(−itγ)g exp(itγ) exists} and Pγ = P̃γ ∩ UC.

We consider the projective varieties Fγ := UC/Pγ and F̃γ := ŨC/P̃γ , with the canonical

embedding ι : Fγ →֒ F̃γ . Let B ⊂ UC (resp. B̃ ⊂ ŨC) be the Borel subgroup associated
to the choice of the Weyl chamber t+ (resp. t̃+).

We associate to (w, w̃) ∈ W × W̃ , the Schubert cells

X̃o
w̃,γ := B̃[w̃] ⊂ F̃γ and Xo

w,γ := B[w] ⊂ Fγ .

The corresponding Schubert varieties are X̃w̃,γ := X̃o
w̃,γ and Xw,γ := Xo

w,γ .

We consider the cohomology2 rings H∗(F̃γ ,Z) and H∗(Fγ ,Z). Let

ι∗ : H∗(F̃γ ,Z) → H∗(Fγ ,Z)

be the pull-back map in cohomology. If Y is an irreducible closed subvariety of F̃γ , we

denote by [Y ] ∈ H2nY (F̃γ ,Z) its cycle class in cohomology : here nY = codimC(Y ).
Recall that the cohomology class [pt] associated to a singleton Y = {pt} ⊂ Fγ is a basis
of Hmax(Fγ ,Z).

In the next section we will consider a rational element γ ∈ t and (w, w̃) ∈ W ×

W̃ satisfying the relation [Xw,γ ] · ι
∗([X̃w̃,γ ]) = k[pt] in H∗(Fγ ,Z), with k ≥ 1. This

cohomological condition implies in particular that dimC(Xw,γ) = codimC(X̃w̃,γ) which is
equivalent to the relation

(5) ♯
{
α ∈ R+, 〈α,wγ〉 > 0

}
= ♯

{
α̃ ∈ R̃+, 〈α̃, w̃γ〉 < 0

}
.

2Here, we use singular cohomology with integer coefficients.
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We finish this section by considering the particular case where UC = GLn(C) is
embedded diagonally in ŨC = GLn(C) × GLn(C). For 1 ≤ r < n, the vector γr =
(−1, . . . ,−1︸ ︷︷ ︸

r times

, 0, . . . , 0) ∈ Rn ≃ t is admissible and the flag manifolds Fγr and F̃γr admits a

canonical identifications respectively with the Grassmanians G(r, n) and G(r, n)×G(r, n).
The map ι : Fγ →֒ F̃γ corresponds to the diagonal embedding ι : G(r, n) → G(r, n) ×
G(r, n).

For w ∈ W ≃ Sn, the Schubert variety Xw,γr ⊂ G(r, n), which depends only of the

subset K = w([r]) ⊂ [n], is denoted XK . Similarly, for w = (w1, w2) ∈ W̃ ≃ Sn × Sn,
the Schubert variety X̃w̃,γr ⊂ G(r, n)×G(r, n) is equal to XI ×XJ , where I = w1([r]) and
J = w2([r]).

In this setting, we have the following classical result.

Lemma 2.5 The following statements are equivalent:

• [Xw,γ ] · ι
∗([X̃w̃,γ ]) = ℓ[pt] in H∗(Fγ ,Z), with ℓ ≥ 1.

• [XI ] · [XJ ] · [XK ] = ℓ[pt] in H∗(G(r, n),Z), with ℓ ≥ 1.

• The Littlewood-Richardson coefficient c
µ(K)
µ(Io),µ(Jo) is non-zero.

2.4.4 Description of LR(U, Ũ )

We can finally describe the cone LR(U, Ũ).

Theorem 2.6 Let (ξ, ξ̃) ∈ t+ × t̃+. We have Uξ ⊂ π
(
Ũ ξ̃

)
if and only if

(6) 〈ξ̃, w̃γ〉 ≥ 〈ξ, wowγ〉

for any (γ,w, w̃) ∈ t×W × W̃ satisfying the following properties:

a) γ is admissible antidominant.

b) [Xw,γ ] · ι
∗([X̃w̃,γ ]) = [pt] in H∗(Fγ ,Z).

c) Identity (3) holds.

The result still holds if we replace b) by the weaker condition

b′) [Xγ ] · ι
∗([X̃w̃,γ ]) = ℓ[pt], ℓ ≥ 1 in H∗(Fγ ,Z).

Remark 2.7 Suppose that there exists cγ > 0 such that |〈α,wγ〉| and |〈α̃, w̃γ〉| belongs
to {0, cγ}, ∀(w, w̃) ∈ W × W̃ , ∀(α, α̃) ∈ R(u) × R(ũ). Then condition c) follows from
condition b) (see (5)).
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When the closed connected subgroups ι : U →֒ Ũ satisfy Assumption 2.4 the subspace
z := {X ∈ t, α(X) = 0,∀α ∈ Σ(ũ/u)} is equal to Zũ ∩ u. Let t = Zũ ∩ u⊕ t1 be a rational
decomposition. Any rational element γ ∈ t can be written γ = γ0 + γ1 where γ0 ∈ Zũ ∩ u

and γ1 ∈ t1 are rational. Two cases occur :

• If γ1 = 0, then γ satisfies conditions a), b) and c). The inequalities (6) given by
these central elements shows that ξ̃ − ξ is orthogonal to Zũ ∩ u.

• If γ1 6= 0 then it is immediate to see that γ satisfies a), b) and c) if and only if γ1
does also. Moreover, as ξ̃− ξ is orthogonal to Zũ∩u, 〈ξ̃, w̃γ〉 ≥ 〈ξ, wowγ〉 if and only
if 〈ξ̃, w̃γ1〉 ≥ 〈ξ, wowγ1〉.

Thus, when Assumption 2.4 is satisfied, LR(U, Ũ ) is described by the condition ξ̃− ξ ∈
(Zũ ∩ u)⊥ and a finite number of inequalities of the form 〈ξ̃, w̃γ1〉 ≥ 〈ξ, wowγ1〉.

Many people have contributed to Theorem 2.6. The first input was given by Klyachko
[9] with a refinement by Belkale [1], in the case of SLn →֒ (SLn)

s. The case UC →֒ (UC)
s

has been treated by Belkale-Kumar [2] and by Kapovich-Leeb-Millson [8]. Recall that
Condition c) is related to the notion of Levi-movability introduced by Belkale-Kumar
[2]. Finally, Berenstein-Sjamaar [3] and Ressayre [20, 21] have studied the general case.
Ressayre [20] also proved the irredundancy of the list of inequalities.

We refer the reader to the survey articles [6, 4, 10] for details.

2.5 The cone LR(m,n)

Let m,n ≥ 1. Let us write an Hermitian matrix X ∈ Herm(m + n) by blocks X =(
XI ∗
∗ XII

)
where XI ∈ Herm(m) and XII ∈ Herm(n). In this section, we are interested

in the cone LR(m,n) := {(e(X), e(XI), e(XII)) ; X ∈ Herm(m+ n)}. Thanks to Theo-
rem 2.6, we obtain the following description of LR(m,n). The details of the proof are
given in the next section.

Theorem 2.8 The triplet (x, y, z) ∈ Rm+n
+ ×Rm

+ ×Rn
+ belongs to LR(m,n) if and only if

the following conditions hold:

• |x| = |y|+ |z|,

• xn+k ≤ yk ≤ xk, ∀k ∈ [m],

• xm+ℓ ≤ zℓ ≤ xℓ, ∀ℓ ∈ [n],

• |x|A ≥ |y|B + |z|C , for any triplet A,B,C satisfying:

1. B ⊂ [m] and C ⊂ [n] are strict subsets,

2. A ⊂ [m+ n] and ♯A = ♯B + ♯C,

9



3. the Littlewood-Richardson coefficient c
µ(A)
µ(B),µ(C) is non-zero.

Moreover, the condition c
µ(A)
µ(B),µ(C) 6= 0 is equivalent to (µ(A), µ(B), µ(C)) ∈ LR(u, v),

where u = ♯B and v = ♯C.

Remark 2.9 In Theorem 2.8, we can strenghten condition 3. by requiring that

c
µ(A)
µ(B),µ(C) = 1.

Remark 2.10 In [13], Li and Poon also obtained a characterization of the cone LR(m,n)
by means of the following inequalities: |x|I ≤ |y|J∩[m] + |z|K∩[n], ∀(I, J,K) ∈ LRn+m

r ,
∀r < n+m.

We will see in the next section that c
µ(A)
µ(B),µ(C) 6= 0 if and only c

µ((Ao)c)
µ((Bo)c)),µ((Co)c)) 6= 0.

Since the relation |x|(Ao)c ≥ |y|(Co)c + |z|(Co)c is equivalent to |x|Ao ≤ |y|Co + |z|Co , in
Theorem 2.8, we can rewrite the last condition by requiring that

(7) |x|A ≥ |y|B + |z|C and |x|Ao ≤ |y|Co + |z|Co

for all strict subsets A ⊂ [m+n], B ⊂ [m], C ⊂ [n] that satisfy ♯A = ♯B+ ♯C ≤ 1
2 (m+n)

and c
µ(A)
µ(B),µ(C) 6= 0.

2.6 Proof of Theorem 2.8

We work with the unitary group Ũ = Um+n and the subgroup U = Um × Un embedded
diagonally. We consider the orthogonal projection π0 : Herm(m + n) → Herm(m) ×
Herm(n) that sends X to π0(X) = (XI,XII). The cone LR(m,n) is formed by the
triplets (x, y, z) ∈ Rm+n

+ × Rm
+ × Rn

+ satisfying

Um ·Diag(y)× Un ·Diag(z) ⊂ π0 (Um+n ·Diag(x)) .

Thus LR(m,n) = LR(Um × Un, Um+n).

2.6.1 Admissible elements

We work with the maximal torus T ⊂ U of diagonal matrices. The set of roots relatively
to the action of T on ũ/u ≃ Mm,n(C) is Σ := {e∗i − f∗

j ; i ∈ [m], j ∈ [n]}.
The center of ũ is generated by γo := (1, . . . , 1) ∈ Rm+n ≃ t. For any (r, s) ∈

{0, . . . ,m} × {0, . . . , n}, we define

γr,s = (−1, . . . ,−1︸ ︷︷ ︸
r times

, 0, . . . , 0) ⊕ (−1, . . . ,−1︸ ︷︷ ︸
s times

, 0, . . . , 0) ∈ Rm × Rn ≃ t.

Lemma 2.11 Let γ ∈ t be an admissible element. There exists (a, b) ∈ Q×Q≥0, (w,w′) ∈
Sm ×Sn, and (r, s) such that γ = aγo + b(w,w′)γr,s. The couple (r, s) must satisfy the
auxiliary conditions: either 0 < r < m and 0 < s < n or (r, s) ∈ {(1, 0), (0, 1), (m −
1, n), (n,m − 1)}.
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Proof : Consider an admissible vector γ = (γ1, . . . , γm; γ′1, . . . , γ
′
n) that is linearly

independent to γo. The relation Vect(Σ ∩ γ⊥) = Vect(Σ) ∩ γ⊥ means that (Σ ∩ γ⊥)⊥ is a
subspace of dimension 2. Here Σ ∩ γ⊥ is the set of vectors e∗i − f∗

j such that γi = γ′j . For

α ∈ R, we define [m]α := {i ∈ [m], γi = α} and [n]α := {j ∈ [n], γ′j = α}. Hence Σ ∩ γ⊥ is
parameterized by

∐
α∈L[m]α × [n]α where L = {α ∈ R, [m]α 6= ∅ and [n]α 6= ∅} is a finite

set.
Consider first the case where ∪α∈L[m]α 6= [m]. Let k /∈ ∪α∈L[m]α. Then (Σ ∩ γ⊥)⊥,

which is of dimension 2, contains the vectors γo, γ and ek. Hence, γ is a linear combinaison
of γo and ek: we check easily that there exists (a, b) ∈ Q × Q>0, w ∈ Sm, and (r, s) ∈
{(1, 0), (m − 1, n)} such that γ = aγo + bwγr,s.

If ∪α∈L[n]α 6= [n], we prove similarly that γ = aγo + bw′γr,s for (a, b) ∈ Q × Q>0,
w′ ∈ Sn, and (r, s) ∈ {(0, 1), (m,n − 1)}.

Let us consider the last case where ∪α∈L[m]α = [m] and ∪α∈L[n]α = [n]. Then
γ =

∑
α∈L αVα with Vα =

∑
i∈[m]α,j∈[n]α

ei + fj. The vectors {Vα, α ∈ L} define an

independent family of the subspace (Σ ∩ γ⊥)⊥ which is of dimension 2, so ♯L ≤ 2. Since
γ is linearly independent to γo, the set L has cardinal 2. Now we see that there exists
(a, b) ∈ Q ×Q>0, (w,w′) ∈ Sm ×Sn, and r < m, s < n such that γ = aγo + b(w,w′)γr,s.
✷

Here, the remark 2.7 applies, so condition c) will follow from condition b).

2.6.2 Cohomological conditions and inequalities

The Lie algebra t is identified with Rm+n ≃ Rm × Rn.
First case: The two vectors ±γo are admissible elements, and satisfy conditions a),

b) and c) of Theorem 2.6 in an obvious way. In this cases, the corresponding inequalities
±(x, γo) ≥ ±((y, z), woγo) are equivalent to |x| = |y|+ |z|.

Second case: We work now with the admissible element γr,s in the situation where
r ∈ [m− 1] and s ∈ [n− 1]. The flag manifold GLm(C)×GLn(C)/Pγr,s admits a natural
identification with the product of Grassmannians G(r,m) × G(s, n). Similarly, the flag
manifold GLm+n(C)/P̃γr,s is isomorphic to the Grassmannian G(r + s,m+ n). The map
ιC : GLm(C)×GLn(C) → GLm+n(C) factorises to a smooth map ιr,s : G(r,m)×G(s, n) →
G(r + s,m+ n) defined by ιr,s(V1, V2) = V1 ⊕ V2.

Let w = (w1, w2) ∈ W ≃ Sm ×Sn and let B = w1([r]) ⊂ [m] and C = w2([s]) ⊂ [n]
be the corresponding subsets. The associated Schubert variety is Xw,γr,s = XB × XC ⊂
G(r,m)×G(s, n).

In the same way, to w̃ ∈ W̃ ≃ Sm+n, we associate the subset A = w̃([r])∪w̃([s]+m) ⊂
[m+ n] and the Schubert variety X̃w̃,γr,s = XA ⊂ G(r + s,m+ n).

Lemma 2.12 The following identities are equivalent:

1. [Xw,γ ] · ι
∗([X̃w̃,γ ]) = ℓ[pt], ℓ ≥ 1,
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2. c
µ(Ao)
µ(B),µ(C) = ℓ ≥ 1,

3. c
µ(Ac)
µ((Bo)c),µ((Co)c) = ℓ ≥ 1.

Proof: Recall that we associate a partition λ(A) = (λ1 ≥ · · ·λr) with a subset A =
{a1 < i2 < · · · < ar} ⊂ [n] of cardinality r, by posing λk = n− r + k − ak, ∀k ∈ [r].

Let
∧

r[x] = Z[x1, . . . , xr]
Sr be the ring of symmetric polynomials, with integral coef-

ficients, in r variables. For any partition ν of length r, we associate its Schur polynomial
sν(x) ∈

∧
r[x]. The family (sν) determine a Z-basis of

∧
r[x].

Let us recall recall the following classical fact (see §3.2.2 in [16]). The map φr :∧
r[x] −→ H∗(G(r,m)) defined by the relations

φr(sν) =

{
σν if ν1 ≤ m− r,

0 if ν1 > m− r.

is a ring morphism. Here σν denotes the cohomology class [XD] defined by a subsetD ⊂ [m]
of cardinality r such that ν = λ(D). In the same way we consider the ring

∧
r+s[x, y] =

Z[x1, . . . , xr, y1, . . . , ys]
Sr+s and the morphism φr+s :

∧
r+s[x, y] −→ H∗(G(r + s,m+ n)).

Let us denote by R :
∧

r+s[x, y] →
∧

r[x]⊗
∧

s[y] the restriction morphism. It is not hard
to check that the following diagram is commutative:

∧
r[x] ⊗

∧
s[y]

∧
r+s[x, y]

H∗(G(r,m)) ⊗ H∗(G(s, n)) H∗(G(r + s,m+ n)).

φr φs

R

φr+s

j∗

As [Xw,r] = σλ(B) ⊗ σλ(C) and [X̃w̃,r] = σλ(A), the previous diagram tell us that the

integer ℓ such that [Xw,r] · ι
∗
r([X̃w̃,r]) = ℓ[pt] is equal to the coefficient of R(sλ(A)(x, y))

relatively to sλ(Bo)(x)⊗ sλ(Co)(y) : in other words ℓ is equal to the Littlewood-Richardson

coefficient c
λ(A)
λ(Bo),λ(Co) = c

µ(Ao)
µ(B),µ(C) (see [15], §I.5). The equivalence between 1. and 2. is

proved.

Let us consider r′, s′ such that r + r′ = m and s + s′ = n. The canonical bilinear
form on Cm+n permits to define the map δ : G(r′ + s′,m + n) → G(r + s,m + n) that
sends a subspace F ⊂ Cm+n to its orthogonal F⊥. Let δ∗ : H∗(G(r + s,m + n)) →
H∗(G(r′ + s′,m + n)) denote the pullback map in cohomology. If we consider similar
maps δ∗ : H∗(G(r,m)) → H∗(G(r′,m)) and δ∗ : H∗(G(s, n)) → H∗(G(s′, n)), we have a
commutative diagram:

H∗(G(r,m)) ⊗ H∗(G(s, n)) H∗(G(r + s,m+ n))

H∗(G(r′,m)) ⊗ H∗(G(s′, n)) H∗(G(r′ + s′,m+ n)).

δ∗ δ∗

j∗

δ∗

j∗

12



This allows us to see that σλ(B)⊗σλ(C) ·j
∗(σλ(A)) = ℓ[pt], k ≥ 1 if and only if δ∗(σλ(B))⊗

δ∗(σλ(C)) · j
∗(δ∗(σλ(A))) = ℓ[pt], k ≥ 1. Since we have δ∗(σλ(X)) = σµ(Xc) as a general rule,

the previous relation is equivalent to c
µ(Ac)
µ((Bo)c),µ((Co)c) = ℓ ≥ 1. The equivalence between

2. and 3. is proved. ✷

The inequalities associated to γr,s are

−|x|A = 〈x, w̃γr,s〉 ≥ 〈(y, z), wowγ〉 = −|y|Bo − |z|Co

Using |x| = |y| + |z|, we obtain |x|Ac ≥ |y|(Bo)c + |z|(Co)c for any strict subsets A ⊂

[m+ n], B ⊂ [m] and C ⊂ [n] satisfying ♯A = ♯B + ♯C and c
µ(Ac)
µ((Bo)c),µ((Co)c) = ℓ ≥ 1.

Third case: (r, s) ∈ {(1, 0), (0, 1), (m − 1, n), (n,m− 1)}. Here we use the same type
of argument as before.

(r, s) = (1, 0): we obtain the inequalities xn+k ≤ yk,∀k ∈ [m].
(r, s) = (0, 1): we obtain the inequalities xm+ℓ ≤ zℓ,∀ℓ ∈ [n].
(r, s) = (m− 1, n): we obtain the inequalities yk ≤ xk,∀k ∈ [m].
(r, s) = (m,n− 1): we obtain the inequalities zℓ ≤ xℓ,∀ℓ ∈ [n].

The proof of Theorem 2.8 is completed. ✷

2.7 A consequence of the O’Shea-Sjamaar Theorem

2.7.1 First setting: compact Lie groups with involution

Let Ũ be a compact connected Lie group equipped with an involution σ. The Lie algebra
of Ũ admit the decomposition ũ = ũσ ⊕ ũ−σ that is invariant under the action of the
subgroup Ũσ. We start with a basic but important fact (see [17], Example 2.9).

Lemma 2.13 For any adjoint orbit Õ ⊂ ũ, the intersection Õ ∩ ũ−σ is either empty or
an orbit of the connected subgroup K̃ := (Ũσ)0.

Let U ⊂ Ũ be a subgroup invariant under σ. Let us choose an invariant scalar product
(−,−) on the Lie algebra ũ of Ũ such that σ ∈ O(ũ). At the level of Lie algebras, we
consider the orthogonal projection π : ũ → u relatively to the scalar product (−,−).

One of the main tool used in this paper is the following result, which is a consequence
of the O’Shea-Sjamaar Theorem (see [17], Section 3). Let K be the connected component
of Uσ.

Proposition 2.14 Let ξ ∈ u−σ and ξ̃ ∈ ũ−σ. The following conditions are equivalent:

1. Uξ ⊂ π
(
Ũ ξ̃

)
,

2. Kξ ⊂ π
(
K̃ξ̃

)
.
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2.7.2 Second setting: real reductive Lie groups

Let ι : G →֒ G̃ ⊂ GLN (R) be two connected real reductive Lie groups admitting a
complexification ιC : GC →֒ G̃C ⊂ GLN (C). It is for example the case when G and G̃ are
semisimple (see [11], §VII.1). Let us denote by

• K = G ∩ SON (R) and K̃ = G̃ ∩ SON (R) the maximal compact subgroups of G and
G̃. Their Lie algebras are denoted by ι : k →֒ k̃.

• U = GC ∩ UN and Ũ = G̃C ∩ UN the maximal compact subgroups of GC and G̃C.
Their Lie algebras are denoted by ι : u →֒ ũ.

Consider the Cartan decompositions, g = k ⊕ p and g̃ = k̃ ⊕ p̃, of G and G̃. At the
level of Lie algebras, we have ũ = k̃ ⊕ ip̃ and u = k ⊕ ip. The antilinear conjugation on
GLN (C) defines an involution σ on U →֒ Ũ such that K →֒ K̃ are respectively equal to
the connected components of Uσ and Ũσ. We see also that u−σ = ip and ũ−σ = ip̃.

Let π : g̃C → gC be the orthogonal projection relatively to the Hermitian norm
Tr(X∗X)1/2 on glN (C).

Proposition 2.15 Let X ∈ p and X̃ ∈ p̃. The following conditions are equivalent:

1. UX ⊂ π
(
ŨX̃

)
,

2. KX ⊂ π
(
K̃X̃

)
.

Proof: It follows from Proposition 2.14 and the fact that the projection π : g̃C → gC is
complex linear. ✷

3 The cone A(p, q)

Here, we work with the reductive real Lie group U(p, q) = {g ∈ GLn(C), g
∗Ip,qg = Ip,q},

where Ip,q = Diag(Ip,−Iq).

3.1 Matrix identities

Let us decompose a n-square hermitian matrix X =

(
X11 X12

X∗
12 X22

)
by blocks, where X12 ∈

Mp,q(C). Recall that (λ, s) ∈ A(p, q) if and only if there exists an hermitian matrix X
such that λ = e(X) and s = s(X12). Let us consider

X̃ = −Ip,qXIp,q =

(
−X11 X12

X∗
12 −X22

)
and X + X̃ = 2

(
0 X12

X∗
12 0

)
.
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If we look at the eigenvalues of this three Hermitian matrices, we obtain, following the
notations of Section 2.2,

e(X̃) = e(X)∗ and e(X + X̃) = 2 ŝ(X12)
p,q

,

i.e. (e(X), e(X)∗ , 2 ŝ(X12)
p,q

) ∈ Horn(n).
From the above identities, we see that any (λ, s) ∈ A(p, q) satisfies the relation

(8) (λ, λ∗, 2 ŝ p,q) ∈ Horn(n).

In the following sections, we explain how the O’Shea-Sjamaar theorem (see Proposition
2.15) allows us to see that relation (8) characterizes the cone A(p, q).

3.2 Complexification and antiholomorphic involution

We work with the reductive real Lie groups G := U(p, q) and G̃ := GLn(C). Let us denote
by ι : G → G̃ the canonical embedding. The unitary group K̃ := Un is a maximal compact
subgroup of G̃. Let p̃ := Herm(n) ⊂ gln(C) be the subspace of Hermitian matrices.

The subgroup K := K̃∩U(p, q) ≃ Up×Uq is a maximal compact sugroup of G, and the

map Y 7→ Ŷ p,q =

(
0pp Y
Y ∗ 0qq

)
defines an identification between Mp,q(C) and the subspace

p := p̃ ∩ g.
The complexification of the group G is GC := GLn(C). We consider the antiholomor-

phic involution σ on GC defined by σ(g) = Ip,q(g
∗)−1Ip,q. The subgroup G is the fixed

point set of σ.
The complexification of the group G̃ is G̃C := GLn(C) × GLn(C). The inclusion

G̃ →֒ G̃C is given by the map g 7→ (g, ḡ). We consider the antiholomorphic involution σ̃
on G̃C defined by σ̃(g1, g2) = (g2, g1). The subgroup G̃ corresponds to the fixed point set
of σ̃. The embedding ι : G →֒ G̃ admits a complexification ιC : GC →֒ G̃C defined by
ιC(g) = (g, σ(g)): notice that ιC ◦ σ = σ̃ ◦ ιC.

The groups U = Un and Ũ = Un × Un are respectively maximal compact sugroups of
GC and G̃C. The embedding ιC : U →֒ Ũ is defined by ιC(k) = (k, Ip,qk̄Ip,q). The fixed

point subgroups of the involutions are Uσ = K and Ũ σ̃ = K̃.
At the level of Lie algebra, we have a morphism ιC : gln(C) →֒ gln(C)× gln(C) defined

by ιC(X) = (X,σ(X)), where σ(X) = −Ip,qX
∗Ip,q.

3.3 Orthogonal projection of orbits

We use on gln(C) × gln(C) the euclidean norm ‖(X,Y )‖2 = Tr(XX∗) + Tr(Y Y ∗). The
subspace orthogonal to the image of ιC is {(X,−σ(X)),X ∈ gln(C)}. Hence the orthogonal
projection

π : gln(C)× gln(C) −→ gln(C),
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is defined by the relations π(X,Y ) = 1
2(X + σ(Y )). Note that π commutes with the

involutions : π ◦ σ̃ = σ ◦ π.
If X ∈ Herm(n), the corresponding adjoint orbit Un ·X, which is entirely determined

by the spectrum e(X), is denoted by Oe(X). If λ = (λ1, · · · , λn), we denote by λ∗ the
vector (−λn, · · · ,−λ1): we see that e(−X) = e(X)∗ for any X ∈ Herm(n).

The subspace p̃ ⊂ g̃ is identified with {(X,X),X ∈ Herm(n)} ⊂ gln(C)× gln(C). For
any X ∈ Herm(n), the image by the projection π of the orbit Ũ · (X,X) is equal to

1
2 (Un ·X + Un · σ(X)) = 1

2 (Un ·X + Un · (−X)) = 1
2 (Oλ +Oλ∗) ,

where λ = e(X).
If Y ∈ Mp,q(C) has singular spectrum s ∈ Rq

++, the spectrum of the Hermitian matrix

Ŷ p,q is equal to ŝ p,q, hence U · Ŷ p,q is equal to Oŝ p,q . At this stage, we have proved that
for any (X,Y ) ∈ Herm(n)×Mp,q(C) the following statements are equivalents:

• U · Ŷ p,q ⊂ π
(
Ũ · (X,X)

)
,

• 2Oŝ p,q ⊂ Oλ +Oλ∗ ,

• (λ, λ∗, 2ŝ p,q) ∈ Horn(n),

where λ = e(X) and s = s(Y ).
The group K ≃ Up × Uq acts canonically Mp,q(C) ≃ p. For any Y ∈ Mp,q(C), the

orbit K · Ŷ p,q ⊂ p is equal to the set of matrices with singular spectrum equal to s(Y ). If
one restricts the projection π : gln(C)× gln(C) −→ gln(C) to the subspace p̃ ≃ Herm(n),

we obtain the map π : p̃ → p that sends an Hermitian matrix X =

(
X11 X12

X∗
12 X22

)
to

X̂12
p,q

=

(
0pp X12

X∗
12 0qq

)
.

Since the orbit K̃ · X is equal to Oe(X), we see then that A(p, q) can be defined as
follows: (λ, s) ∈ Rn

+ × Rq
++ belongs to the cone A(p, q) if and only if for any (X,Y ) ∈

Herm(n)×Mp,q(C) satisfying λ = e(X) and s = s(Y ), we have K · Ŷ p,q ⊂ π
(
K̃ ·X

)
.

3.4 Inequalities determining A(p, q)

The computations done in the previous section, together with Proposition 2.15, gives us
the following result.

Proposition 3.1 Let (λ, s) ∈ Rn
+ ×Rq

++, and let (X,Y ) ∈ Herm(n)×Mp,q(C) such that
λ = e(X) and s = s(Y ). The following statements are equivalent:

• (λ, s) ∈ A(p, q),

• K · Ŷ p,q ⊂ π
(
K̃ ·X

)
,

16



• U · Ŷ p,q ⊂ π
(
Ũ · (X,X)

)
,

• (λ, λ∗, 2ŝ p,q) ∈ Horn(n).

Thanks to the description of the Horn(n) cone given in Theorem 2.2, we can conclude
with the following description of A(p, q). Note that |λ∗|J = −|λ|Jo and |ŝ p,q|K = |s|K∩[q]−
|s|Ko∩[q].

Proposition 3.2 An element (λ, s) ∈ Rn
+ × Rq

++ belongs to A(p, q) if and only if

(⋆)I,J,K |λ|I − |λ|Jo ≥ 2|s|K∩[q] − 2|s|Ko∩[q]

for any r ≤ n
2 and any (I, J,K) ∈ LRn

r .

However, our description is less precise than that obtained by Fomin-Fulton-Li-Poon [5].
They show the remarkable fact that it suffices to consider inequalities (⋆)I,J,K when I, J,K
are subsets of [q].

Theorem 3.3 ([5]) An element (λ, s) ∈ Rn
+ × Rq

++ belongs to A(p, q) if and only if

|λ|I − |λ|Jo ≥ 2|s|K

for any r ≤ q and any (I, J,K) ∈ LRq
r.

3.5 Examples

Computation of A(2, 2)

The inequalities associated to (I, J,K) ∈ LR2
1 are

(9) λ1 − λ4 ≥ 2s1, λ2 − λ4 ≥ 2s2, λ1 − λ3 ≥ 2s2.

The inequality associated to I = J = K = {1, 2} is

(10) λ1 + λ2 − λ3 − λ4 ≥ 2(s1 + s2).

Theorem 3.3 give us the following description.

Corollary 3.4 An element (λ, s) ∈ R4
+ ×R2

++ belongs to A(2, 2) if and only if the condi-
tions (9) and (10) hold.
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Computation of A(3, 3)

The inequalities associated to LR3
1 are

λ1 − λ6 ≥ 2s1 λ1 − λ4 ≥ 2s3

λ2 − λ6 ≥ 2s2 λ2 − λ5 ≥ 2s3(11)

λ1 − λ5 ≥ 2s2 λ3 − λ6 ≥ 2s3.

The inequalities associated to LR3
2 are

λ1 + λ2 − λ5 − λ6 ≥ 2(s1 + s2)

λ1 + λ2 − λ4 − λ6 ≥ 2(s1 + s3)

λ1 + λ3 − λ5 − λ6 ≥ 2(s1 + s3)

λ1 + λ2 − λ4 − λ5 ≥ 2(s2 + s3)(12)

λ1 + λ3 − λ4 − λ6 ≥ 2(s2 + s3)

λ2 + λ3 − λ5 − λ6 ≥ 2(s2 + s3).

The inequality associated to I = J = K = {1, 2, 3} is

(13) λ1 + λ2 + λ3 − λ4 − λ5 − λ6 ≥ 2(s1 + s2 + s3).

The result of Fulton-Fomin-Li-Poon (Theorem 3.3) gives the following description of
A(3, 3).

Proposition 3.5 An element (λ, s) ∈ R6
+ × R3

++ belongs to A(3, 3) if and only if the
inequalities listed in (11), (12) and (13) are satisfied.

Remark 3.6 The cone A(3, 3) ⊂ R6×R3 corresponds to the intersection of the Horn cone
Horn(6) ⊂ R18 with the subspace {(λ, λ∗, 2 ŝ p,q), (λ, s) ∈ R6 × R3}. Strikingly, A(3, 3)
is determined by 21 inequalities, while Horn(6) is described with a minimal list of 536
inequalities.

4 The cone S(p, q)

We work with the projection π0 : gl2n(C) −→ gln(C)× gln(C) defined by the relations:

(14) B =

(
B00 B01

B10 B11

)
7−→ π0(B) = (B00, B11).

Here each matrix Bij belongs to gln(C).
Recall that (λ, µ, ν) ∈ LR(n, n) if and only if there exists a 2n-square Hermitian matrix

B such that λ = e(B), µ = e(B00) and ν = e(B11).
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4.1 Matrix identities

Here we use the notations Ŷ p,q, µ̂p,q introduced in the §2.2.

Let us decompose a n-square complex matrix X =

(
X11 X12

X21 X22

)
by blocks where

X12 ∈ Mp,q(C). Let X̂ =

(
0 X
X∗ 0

)
be the associated 2n-square Hermitian matrix.

Recall that e(X̂) = ŝ(X) (see Section 2.2).
Let Pτ ∈ O2n(R) be the orthogonal matrix associated with the permutation τ : [2n] →

[2n] which is defined as follows: τ(k) = k if 1 ≤ k ≤ p, τ(k) = k + q if p+ 1 ≤ k ≤ n + p
and τ(k) = k − n if n+ p+ 1 ≤ k ≤ 2n.

We see then that Pτ X̂P−1
τ is a 2n-square hermitian matrix such that

(Pτ X̂P−1
τ )00 =

(
0 X12

X∗
12 0

)
and (Pτ X̂P−1

τ )11 =

(
0 X21

X∗
21 0

)

Finally we obtain the relations ŝ(X) = e(X̂) = e(Pτ X̂P−1
τ ),

e((Pτ X̂P−1
τ )00) = ŝ(X12)

p,q
and e((Pτ X̂P−1

τ )11) = ŝ(X21)
p,q

.

In other words, (ŝ(X), ŝ(X12)
p,q

, ŝ(X21)
p,q

) ∈ LR(n, n) for any n-square complex matrix
X. At this point, we have shown that any (γ, s, t) ∈ S(p, q) satisfies the relation

(15) (γ̂, ŝ p,q, t̂ p,q) ∈ LR(n, n).

In the next sections, we explain how the O’Shea-Sjamaar theorem (see Proposition
2.15) allows us to show that (15) characterizes the cone S(p, q).

4.2 Antiholomorphic involution and orthogonal projection

We work with the real reductive Lie groups G := U(p, q)×U(q, p) and G̃ := U(n, n). The
embedding ι : G → G̃ is defined as follows:

(16) ι(g, h) =



g11 0pn g12
0np h 0nq
g21 0qn g22


 , when g =

(
g11 g12
g21 g22

)
.

Here g11 ∈ Mp,p(C), g12 ∈ Mp,q(C), g2,1 ∈ Mq,p(C) and g22 ∈ Mq,q(C).

The unitary group K̃ := Un ×Un is a maximal compact subgroup of G̃. The subspace
p̃ := {X̂,X ∈ gln(C)} ⊂ g̃ admits a canonical action of K̃. The subgroup K = K1 ×K2,
with K1 ≃ Up × Uq and K2 ≃ Uq × Up, is a maximal compact subgroup of G, and the
subspace p = p̃ ∩ g admits a natural identification with Mp,q(C)×Mq,p(C):

(Y,Z) ∈ Mp,q(C)×Mq,p(C) 7−→ (Ŷ p,q, Ẑq,p) ∈ p.
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The complexification of the group G is GC := GLn(C) × GLn(C). We consider the
antiholomorphic involution σ on GC defined by σ(g, h) = (Ip,q(g

∗)−1Ip,q, Iq,p(h
∗)−1Iq,p).

The subgroup G is the fixed point set of σ.
The complexification of the group G̃ is G̃C := GL2n(C). We consider the antiholomor-

phic involution σ̃ on G̃C defined by σ̃(g) = In,n(g
∗)−1In,n. The subgroup G̃ corresponds

to the fixed point set of σ̃.
The groups U = Un × Un and Ũ = U2n are respectively maximal compact subgroups

of GC and G̃C. The fixed point subgroups of the involutions are Uσ = K and Ũ σ̃ = K̃.
The embedding ι : G →֒ G̃ admits a complexification ιC : GC →֒ G̃C. At the level of

Lie algebra, we have a morphism ιC : gln(C)× gln(C) →֒ gl2n(C), still defined by (16).
The orthogonal projection π1 : gl2n(C) −→ gln(C) × gln(C) dual to the morphism ιC

is defined by the relations :

(17) A =



A11 A12 A13

A21 A22 A23

A31 A32 A33


 7−→ π1(A) =

((
A11 A13

A31 A33

)
, A22

)
.

Here the matrix A ∈ gl2n(C) is written by blocks relatively to the decomposition 2n =
p+ n+ q.

In the beginning of §4, we have consider another projection π0 (see (14)).

Lemma 4.1 For any U2n-orbit O ⊂ gl2n(C), we have π1(O) = π0(O).

Proof: Let Pτ ∈ O2n(R) the orthogonal matrix defined in Section 4.1. We check that
π1(M) = π0(PτMP−1

τ ), ∀M ∈ gl2n(C). Our lemma follows from this relation. ✷

4.3 Description of S(p, q) through LR(n, n)

For t ∈ Rq, we consider the n-square Hermitian matrix

(18) Y (t) :=




0qq 0q,p−q Diag(t)
0p−q,q 0p−q,p−q 0p−q,q

Diag(t) 0q,p−q 0qq


 .

Here is the main application of Proposition 2.15.

Proposition 4.2 Let (γ, s, t) ∈ Rn
++ × Rq

++ × Rq
++. The following statements are equiv-

alent:

1. (γ, s, t) ∈ S(p, q),

2. ∃A =

(
A11 A12

A21 A22

)
∈ gln(C), such that s(A) = γ, s(A12) = s, and s(A21) = t,
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3. ∃M ∈ p̃, with π1(M) = (M1,M2), s.t. e(M) = γ̂, e(M1) = ŝ p,q and e(M2) = t̂ p,q,

4. π1

(
Un × Un · D̂iag(γ)

)
contains

(
Up × Uq · Y (s)

)
×

(
Uq × Up · Y (t)

)
.

5. π1

(
U2n · D̂iag(γ)

)
contains Un · Y (s)× Un · Y (t).

6. π0 (U2n ·Diag(γ̂)) contains Oŝ p,q ×Ot̂ p,q .

7. (γ̂, ŝ p,q, t̂ p,q) ∈ LR(n, n).

Proof: Equivalences “1. ⇐⇒ 2.” and “6. ⇐⇒ 7.” are true by definition. Equivalence
“2. ⇐⇒ 3.” is proved by taking M = Â (see §4.1). Equivalence “3. ⇐⇒ 4.” is obtained by
noting the following relations

{
M ∈ p̃; e(M) = γ̂

}
= Un × Un · D̂iag(γ),

and
{
(X,Y ) ∈ p; e(X) = ŝ and e(Y ) = t̂

}
= (Up × Uq · Y (s)) × (Uq × Up · Y (t)). Equiv-

alence “4. ⇐⇒ 5.” follows from Proposition 2.15, and “5. ⇐⇒ 6.” is a consequence of

Lemma 4.1 and the fact that the orbit U2n · D̂iag(γ) is equal to U2n ·Diag(γ̂). ✷

4.4 Inequalities determining S(p, q)

Thanks to Proposition 4.2 and Theorem 2.8, we obtain the following description of the
cone S(p, q).

Theorem 4.3 An element (γ, s, t) ∈ Rn
++ ×Rq

++ ×Rq
++ belongs to S(p, q) if and only if,

(19) γk ≥ sk and γk ≥ tk, ∀k ∈ [q],

and

(20) |γ|A∩[n] − |γ|Ao∩[n] ≥ |s|B∩[q] − |s|Bo∩[q] + |t|C∩[q] − |t|Co∩[q],

holds for any triplets (A,B,C) satisfying the following conditions :

• B,C are strict subsets of [n],

• A ⊂ [2n] and ♯A = ♯B + ♯C,

• the Littlewood-Richardson coefficient c
µ(A)
µ(B),µ(C) is non-zero.

Let us use some duality to minimize the number of equations (see (7)). The equation
(20) means that (γ̂, ŝ p,q, t̂ p,q) satisfies |x|A ≥ |y|B + |z|C , that is |γ̂|A ≥ |ŝ p,q|B + |t̂ p,q|C . If
we apply (γ̂, ŝ p,q, t̂ p,q) to the relation |x|Ao ≤ |y|Co+|z|Co , we get |γ̂|Ao ≤ |ŝ p,q|Bo+|t̂ p,q|Co

which is equivalent to (20) since |γ̂|Ao = −|γ̂|A, |ŝ
p,q|Bo = −|ŝ p,q|B and |t̂ p,q|Co = −|t̂ p,q|C .

We can therefore rewrite Theorem 4.3, by requiring that (20) holds for all strict subsets

A ⊂ [2n], B,C ⊂ [n], which satisfy ♯A = ♯B + ♯C ≤ n and c
µ(A)
µ(B),µ(C) 6= 0.
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4.5 Examples

The cone S(1, 1)

We have to look to subsets B = {b} ⊂ [2], C = {c} ⊂ [2], and A = {a2 > a1} ⊂ [4] such

that the Littlewood-Richardson coefficient c
µ(A)
µ(B),µ(C) is non-zero. Here’s the list and the

corresponding inequalities:

i) B = C = {2} and A = {4, 1} or {3, 2}: 0 ≥ −s− t.

ii) B = {1}, C = {2} and A = {3, 1}: λ1 − λ2 ≥ s− t.

iii) B = {2}, C = {1} and A = {3, 1}: λ1 − λ2 ≥ −s+ t.

iv) B = C = {1} and A = {2, 1}: λ1 + λ2 ≥ s+ t.

Note that the inequalities (19) are here a consequence of ii), iii) and iv). Thus, an
element (γ, s, t) ∈ R2

++ × R≥0 × R≥0 belongs to S(1, 1) if and only if

λ1 − λ2 ≥ |s− t| and λ1 + λ2 ≥ s+ t.

We recover the computation done in [5] (see Example 1.17).

The cone S(2, 1)

First, we look to subsets B = {b} ⊂ [3], C = {c} ⊂ [3], and A = {a2 > a1} ⊂ [6] such that

the Littlewood-Richardson coefficient c
µ(A)
µ(B),µ(C) is non-zero. The corresponding inequality

(20) is called trivial when it is a consequence of the following relations

(21) γ1 ≥ γ2 ≥ γ3 ≥ 0, γ1 ≥ t ≥ 0, γ1 ≥ s ≥ 0.

Here’s the list of the non-trivial inequalities:

• B = {1}, C = {1} and A = {2, 1}: γ1 + γ2 ≥ s+ t.

• B = {1}, C = {3} and A = {4, 1}: γ1 − γ3 ≥ s− t.

• B = {3}, C = {1} and A = {4, 1}: γ1 − γ3 ≥ −s+ t.

Next, we examine subsets B = {b1 > b2} ⊂ [3], C = {c} ⊂ [3], and A = {a3 > a2 >

a1} ⊂ [6] such that c
µ(A)
µ(B),µ(C) 6= 0. An easy check shows that all inequalities obtained here

are a consequence of (21) and the inequalities

(22) λ1 + λ2 ≥ s+ t, λ1 − λ3 ≥ |s− t|,

which we have just proved above.

Corollary 4.4 An element (γ, s, t) ∈ R3 × R × R belongs to S(2, 1) if and only if the
inequalities (21) and (22) hold.
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5 The cone T (p, q)

We consider here the projections π0, π1 : gl2n(C) −→ gl2p(C)× gl2q(C):

• π1 is defined by the relations:

(23) A =



A11 A12 A13

A21 A22 A23

A31 A32 A33


 7−→ π(A) =

((
A11 A13

A31 A33

)
, A22

)
,

where the matrix A ∈ gl2n(C) is written by blocks relatively to the decomposition
2n = p+ 2q + p.

• π0 is defined by the relations:

(24) B =

(
B00 B01

B10 B11

)
7−→ π0(B) = (B00, B11),

where B00 ∈ gl2p(C) and B11 ∈ gl2q(C)

Lemma 5.1 For any U2n-orbit O ⊂ gl2n(C), we have π1(O) = π0(O).

Proof: Same proof as for Lemma 4.1. ✷

5.1 Matrix identities

Let us decompose a n-square complex matrix X =

(
X11 X12

X21 X22

)
by blocks where X12 ∈

Mp,q(C). We want to find a link between the singular eigenvalues of X, X11 and X22.

The matrix Q =

(
0pq Idp
Idq 0qp

)
is orthogonal and the matrix X ′ := XQ =

(
X12 X11

X22 X21

)

has the same singular values as X. The image of the 2n-square Hermitian matrix X̂ ′ :=(
0nn X ′

(X ′)∗ 0nn

)
trough the projection π1 is equal to

π1

(
X̂ ′

)
=

(
X̂11, X̂22

)
.

The orbit O := U2n ·X̂ ′ is equal to the subset of 2n-square Hermitian matrices Y satisfying

e(Y ) = e
(
X̂ ′

)
= ŝ(X ′) = ŝ(X), and the projection π0(O) = π1(O) contains (X̂11, X̂22),

so (ŝ(X), ŝ(X11), ŝ(X22)) ∈ LR(2p, 2q).
We have just shown that any (γ, s, t) ∈ T (p, q) satisfies the relation

(25) ( γ̂, ŝ, t̂ ) ∈ LR(2p, 2q).

In the next sections, we explain how the O’Shea-Sjamaar theorem (see Proposition
2.15) allows us to see that relation (25) characterizes the cone T (p, q).
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5.2 Antiholomorphic involution and orthogonal projection

We work with the real reductive Lie groups G := U(p, p)×U(q, q) and G̃ := U(n, n). The
embedding ι : G → G̃ is defined as follows:

(26) ι(g, h) =




g11 0p,2q g12
02q,p h 02q,p
g21 0p,2q g22


 , when g =

(
g11 g12
g21 g22

)
.

Here gij ∈ glp(C) and h ∈ U(q, q) ⊂ gl2q(C).

The unitary group K̃ := Un ×Un is a maximal compact subgroup of G̃. The subspace
p̃ := {X̂,X ∈ Mn,n(C)} ⊂ g̃ admits a canonical action of K̃. The subgroup K = K1×K2,
with K1 ≃ Up × Up and K2 ≃ Uq × Uq, is a maximal compact subgroup of G, and the
subspace p = p̃ ∩ g admits a natural identification with glp(C)× glq(C):

(Y,Z) ∈ glp(C)× glq(C) 7−→ (Ŷ , Ẑ) ∈ p.

The complexification of the group G is GC := GL2p(C) × GL2q(C). We consider the
antiholomorphic involution σ on GC defined by σ(g, h) = (Ip,p(g

∗)−1Ip,p, Iq,q(h
∗)−1Iq,q).

The subgroup G is the fixed point set of σ.
The complexification of the group G̃ is G̃C := GL2n(C). We consider the antiholomor-

phic involution σ̃ on G̃C defined by σ̃(g) = In,n(g
∗)−1In,n. The subgroup G̃ corresponds

to the fixed point set of σ̃.
The groups U = U2p ×U2q and Ũ = U2n are respectively maximal compact subgroups

of GC and G̃C. The fixed point subgroups of the involutions are Uσ = K and Ũ σ̃ = K̃.
The embedding ι : G →֒ G̃ admits a complexification ιC : GC →֒ G̃C. At the level of

Lie algebra, we have a morphism ιC : gl2p(C)× gl2q(C) →֒ gl2n(C), still defined by (26).
The orthogonal projection gl2n(C) −→ gl2p(C) × gl2q(C) dual to the morphism ιC is

the map π1 defined at the start of Section 5.

5.3 Description of T (p, q) through LR(2p, 2q)

Here is the main application of the Proposition 2.15. Recall that for (γ, s, t) ∈ Rn
++ ×

Rp
++ × Rq

++, we define γ̂ := (γ1, . . . , γn,−γn, . . . ,−γ1), ŝ := (s1, . . . , sp,−sp, . . . ,−s1) and
t̂ := (t1, . . . , tq,−tq, . . . ,−t1).

Proposition 5.2 Let (γ, s, t) ∈ Rn
++ × Rp

++ × Rq
++. The following statements are equiv-

alent:

1. (γ, s, t) ∈ T (p, q),

2. ∃A =

(
A11 A12

A21 A22

)
∈ gln(C), such that s(A) = γ, s(A11) = s, and s(A22) = t,

3. ∃M ∈ p̃, with π1(M) = (M1,M2), s.t. e(M) = γ̂, e(M1) = ŝ and e(M2) = t̂,
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4. π1

(
Un × Un · D̂iag(γ)

)
contains

(
Up × Up · D̂iag(s)

)
×

(
Uq × Uq · D̂iag(t)

)
.

5. π1

(
U2n · D̂iag(γ)

)
contains U2p · D̂iag(s)× U2q · D̂iag(t).

6. π0 (U2n ·Diag(γ̂)) contains U2p ·Diag(ŝ )× U2q · Diag(t̂ ).

7. ( γ̂ , ŝ , t̂ ) ∈ LR(2p, 2q).

Proof: Equivalences “2. ⇐⇒ 3.” and “6. ⇐⇒ 7.” are true by definition. Equivalence
“2. ⇐⇒ 3.” is proved by taking M = Â′ (see §5.1). Equivalence “3. ⇐⇒ 4.” is obtained
by noting the following relations

{
M ∈ p̃; e(M) = γ̂

}
= Un × Un · D̂iag(γ),

and
{
(X,Y ) ∈ p; e(X) = ŝ and e(Y ) = t̂

}
=

(
Up × Up · D̂iag(s)

)
×

(
Uq × Uq · D̂iag(t)

)
.

Equivalence “4. ⇐⇒ 5.” follows from Proposition 2.15, and “5. ⇐⇒ 6.” is a consequence
of Lemma 4.1. ✷

5.4 Inequalities determining T (p, q)

Thanks to Proposition 5.2 and Theorem 2.8, we obtain the following description of the
cone T (p, q).

Theorem 5.3 An element (γ, s, t) ∈ Rn
++ × Rp

++ × Rq
++ belongs to T (p, q) if and only if

the following inequalities hold:

1. γk ≥ sk, ∀k ≤ p,

2. γj ≥ tj, ∀j ≤ q,

3. γ2q+ℓ ≤ sℓ, ∀ℓ ≤ p− q,

4. we have |γ|A∩[n] − |γ|Ao∩[n] ≥ |s|B∩[p] − |s|Bo∩[p] + |t|C∩[q] − |t|Co∩[q]

for any triplets (A,B,C) satisfying the following conditions :

• B ⊂ [2p] and C ⊂ [2q] are strict subsets,

• A ⊂ [2n] and ♯A = ♯B + ♯C ≤ n,

• the Littlewood-Richardson coefficient c
µ(A)
µ(B),µ(C) is non-zero.
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5.5 Examples

The cone T (1, 1)

We need to find subsets B = {b} ⊂ [2], C = {c} ⊂ [2], and A = {a2 > a1} ⊂ [4] such that

the Littlewood-Richardson coefficient c
µ(A)
µ(B),µ(C) is non-zero. This work has been done for

the cone S(1, 1). Thus, an element (γ, s, t) ∈ R2
++ × R≥0 × R≥0 belongs to T (1, 1) if and

only if

(27) γ1 − γ2 ≥ |s− t| and γ1 + γ2 ≥ s+ t.

Note that inequalities γ1 ≥ s and γ1 ≥ t follow from (27).

The cone T (2, 1)

We work with (γ, s, t) ∈ R3
++ × R2

++ × R≥0 satisfying

(28) γ1 ≥ s1, γ1 ≥ t, γ2 ≥ s2, γ3 ≤ s1.

We’re now interested in the inequalities associated with triplets (A,B,C) such that

c
µ(A)
µ(B),µ(C) is non-zero and ♯A = ♯B + ♯C ≤ 3. We obtain the following inequalities when
♯A = 2:

γ1 + γ2 ≥ s1 + t

γ1 + γ3 ≥ s2 + t

γ1 − γ3 ≥ |s2 − t|(29)

γ1 − γ2 ≥ −s1 + t.

In the list (29), I haven’t included inequality γ2 + γ3 ≥ s2 − t, which is associated with
A = {2, 3}, B = {2}, C = {2}, since it follows from (28) and the fact that γ3, t ≥ 0. When
♯A = 3 we get:

γ1 + γ2 + γ3 ≥ s1 + s2 + t

γ1 + γ2 − γ3 ≥ s1 − s2 + t

γ1 + γ2 − γ3 ≥ s1 + s2 − t(30)

γ1 − γ2 + γ3 ≥ −s1 + s2 + t

γ1 − γ2 − γ3 ≥ −s1 + s2 − t

γ1 − γ2 − γ3 ≥ −s1 − s2 + t.

Thus, an element (γ, s, t) ∈ R3
++ × R2

++ × R≥0 belongs to T (2, 1) if and only if the
inequalities (28), (29) and (30) are satisfied.
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5.6 Interlacing inequalities for singular values

Let us consider the case where p ≥ q = 1.
Let γ1 ≥ · · · ≥ γp+1 ≥ 0 be the singular values of a p + 1-square complex matrix X.

Let X ′ be the p-square submatrix of X obtained by deleting a row and a column: we
denote by s1 ≥ · · · ≥ sp ≥ 0 its singular spectrum.

Points 1. and 3. of Theorem 5.3 yields interlacing inequalities which where first
observed by Thompson [22]:

γ3 ≤ s1 ≤ γ1,

γ4 ≤ s2 ≤ γ2,

· · ·

γj+2 ≤ sj ≤ γj, 1 ≤ j ≤ p− 2,

· · ·

γp ≤ sp−2 ≤ γp−2,

sp−1 ≤ γp−1,

sp ≤ γp.
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