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Abstract. We discuss the problem of adaptive discrete-time signal de-
noising in the situation where the signal to be recovered admits a “linear
oracle”—an unknown linear estimate that takes the form of convolution
of observations with a time-invariant filter. It was shown by Juditsky
and Nemirovski (2009) [20] that when the `2-norm of the oracle filter
is small enough, such oracle can be “mimicked” by an efficiently com-
putable adaptive estimate of the same structure with the observation-
driven filter. The filter in question was obtained as a solution to the op-
timization problem in which the `∞-norm of the Discrete Fourier Trans-
form (DFT) of the estimation residual is minimized under constraint on
the `1-norm of the filter DFT. In this paper, we discuss a new family of
adaptive estimates which rely upon minimizing the `2-norm of the esti-
mation residual. We show that such estimators possess better statistical
properties than those based on `∞-fit; in particular, under the assump-
tion of approximate shift-invariance we prove oracle inequalities for their
`2-loss and improved bounds for `2- and pointwise losses. We also study
the relationship of the approximate shift-invariance assumption with the
signal simplicity introduced in [20] and discuss the application of the
proposed approach to harmonic oscillation denoising.

1 Introduction

The problem we consider in this paper is that of signal denoising: given noisy
observations

yτ = xτ + σζτ , τ ∈ Z (1)

we aim at recovering a signal (xt)t∈Z. It is convenient for us to assume that
signal and noises are complex-valued. Observation noises ζτ are assumed to be
independent of x i.i.d. standard complex-valued Gaussian random variables (de-
noted ζτ ∼ CN (0, 1)), meaning that ζτ = ζ1

τ + iζ2
τ with i.i.d. ζ1

τ , ζ
2
τ ∼ N (0, 1).
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Our goal may be, for instance, to recover the value xt of the signal at time t
given observations (yτ ), |τ − t| ≤ m for some m ∈ Z+ (problem referred to as
signal interpolation in signal processing literature), or to estimate the value xt+h
given observations (yτ ), t−m ≤ τ ≤ t (signal prediction or extrapolation), etc.

The above problem is classical in statistics and signal processing. In partic-
ular, linear estimates of the form

x̂t =
∑
τ∈Z

φτyt−τ

are ubiquitous in nonparametric estimation; for instance, classical kernel esti-
mators are of this type. More generally, linear estimates are considered both
theoretically attractive and easy to use in practice [17, 9, 6, 25, 39, 41]. When the
set X of signals is well-specified, one can usually compute a (nearly) minimax
on X linear estimator in closed form. In particular, if X is a class of “smooth
signals,” such as a Hölder or a Sobolev ball, then the corresponding estimator is
given by the kernel estimator with properly selected bandwidth [39], and is min-
imax among all possible estimators. Moreover, linear estimators are known to
be nearly minimax optimal with respect to the pointwise loss [16, 6] and the `2-
loss [8, 34, 24, 23] under rather general assumptions about the set X of possible
signals. Besides this, if the set X of signals is specified in a computationally
tractable way, then a near-minimax linear estimator can be efficiently computed
by solving a convex optimization problem [24], [23].

The strength of this approach, however, comes at a price: in order to imple-
ment the estimate the set X must be known to the statistician. Such knowledge
is crucial: near-minimax estimator for one signal set can be of poor quality
for another one. Thus, linear estimation approach cannot be directly imple-
mented when no prior knowledge of X is available. In the statistical literature
this difficulty is usually addressed via adaptive model selection [3, 12, 18, 27, 29,
28, 30, 39]. However, model selection procedures usually impose strong structural
assumptions on the signal set, assuming it to be known up to a few hyper-
parameters.5

An alternative approach to the denoising problem with unknown X was pro-
posed in [32]. There, instead of directly restricting the class of signals and requir-
ing a specification of X , one restricts the class of possible estimators. Namely,
let us denote C(Z) the space of complex-valued functions on Z, and let, for
m ∈ Z+, Cm(Z) be the space of complex-valued sequences that vanish outside
the set {−m, ...,m}. We consider linear convolution-type estimators, associated
with filters φ ∈ Cm(Z) of the form

x̂t = [y ∗ φ]t :=
∑
τ∈Z

φτyt−τ =
∑
|τ |≤m

φτyt−τ . (2)

5 More general adaptation schemes have been recently introduced, e.g., routines from
[13, 28] which can handle, for example, adaptation to inhomogeneous and anisotropic
smoothness of the signal. However, the proposed schemes cannot be implemented in
a numerically efficient fashion, and therefore are not practical.



Adaptive Signal Denoising 3

Informally, the problem we are interested in here is as follows:

If we fix the structure (2) of the estimate and consider the form of the fil-
ter φ as a “free parameter,” is it possible to build an estimation procedure
which is adaptive with respect to this parameter?

In other words, suppose that a “good” filter φo with small estimation error “exists
in nature.” Is it then possible to construct a data-driven estimation routine which
has (almost) the same accuracy as the “oracle”—a hypothetic optimal estimation
method utilizing φo?

The above question was first answered positively in [20] using the estimation
machinery from [32]. To present the ideas underlying the approach of [20] we
need to define the class of “well-filtered” or “simple” signals [15, 20].

Definition 1 (Simple signals). Given parameters m,n ∈ Z+, ρ ≥ 1, and θ ≥
0, signal x ∈ C(Z) is called (m,n, ρ, θ)-simple if there exists φo ∈ Cm(Z) satis-
fying

‖φo‖2 ≤
ρ√

2m+ 1
, (3)

and such that

|xτ − [φo ∗ x]τ | ≤
σθρ√

2m+ 1
, for all |τ | ≤ m+ n. (4)

Decomposing the pointwise mean-squared error of the estimate (2) with φ = φo

as
E|xτ − [φo ∗ y]τ |2 = σ2E|[φo ∗ ζ]τ |2 + |xτ − [φo ∗ x]τ |2,

we immediately arrive at the following bound on the pointwise expected error:

[
E|xτ − [φo ∗ y]τ |2

]1/2 ≤ σ
√

1 + θ2ρ√
2m+ 1

, |τ | ≤ m+ n. (5)

In other words, simple signals are those for which there exists a linear estimator
(i) utilizing observations in the m-neighbourhood of a point, (ii) invariant in the
(m + n)-vicinity of the origin, and (iii) attaining pointwise risk of order m−1/2

in that vicinity. (For brevity, here we refer to the quantity E[|xt− x̂t|2]1/2 as the
pointwise risk (at t ∈ Z) of estimate x̂.) Parameters ρ, θ allow for refined control
of the risk and specify the bias-variance balance.

Now, assume that the only prior information about the signal to be recovered
is that it is (m,n, ρ, θ)-simple with some known (m,n, ρ, θ). As we have just seen,
this implies existence of a convolution-type linear estimator x̂o = φo ∗ y with a
good statistical performance. The question is whether we can use this informa-
tion to “mimic” x̂o—i.e., construct an estimator of (xτ )|τ |≤n with comparable
statistical performance when only using available observations. Answering this
question is not straightforward. In order to build such an adaptive estimator,
one could implement the cross-validation procedure by minimizing some observ-
able proxy of the quadratic loss of the estimate, say, the `2-norm of the residual
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([y − ϕ ∗ y]τ )|τ |≤m+n, over the set of filters ϕ satisfying (3). However, it is well
known that the set of filters satisfying (3) is too “massive” to allow for construc-
tion of adaptive estimate with the risk bound similar to (5) even when ρ = 1.6 As
a result, all known to us approaches to adaptive estimation in this case impose
some extra constraints on the class of filters such as regularity [11] or sparsity
in a certain basis [7], etc.

Nevertheless, surprisingly, adaptive convolution-type estimators with favor-
able statistical performance guarantees can be constructed. The key idea, going
back to [20], is to pass to a “new oracle” with a characterization which better
suits the goal of adaptive estimation. Namely, one can easily verify (cf., e.g., [15,
Proposition 3]) that if a filter φo ∈ Cm(Z) satisfies relations (3) and (4), then
its auto-convolution ϕo = φo ∗φo ∈ C2m(Z) (with twice larger support) satisfies
their analogues

‖F2m[ϕo]‖1 ≤
2ρ2

√
4m+ 1

, (6)

|xτ − [ϕo ∗ x]τ | ≤
2
√

2σθρ2

√
4m+ 1

, |τ | ≤ n;

here Fn is the unitary Discrete Fourier Transform (DFT) Fn : Cn(Z)→ C2n+1,

(Fn[x])k =
1√

2n+ 1

∑
|τ |≤n

exp

(
2πikτ

2n+ 1

)
xτ , 1 ≤ k ≤ 2n+ 1.

While the new bounds are inflated (the additional factor ρ is present in both
bounds), the bound (6) is essentially stronger than its counterpart ‖Fm[φo]‖1 ≤ ρ
one could extract from (3).

Based on this observation, the authors studied in [14, 20, 15] a class of adap-
tive convolution-type “uniform-fit” estimators which correspond to filters ob-
tained by minimizing the uniform norm of the Fourier-domain residual Fn[y −
y ∗ ϕ] constrained (or penalized) by the `1-norm of the DFT of the filter. Such
estimators can be efficiently computed since the corresponding filters are given
as optimal solutions to well-structured convex optimization problems.

As it is common in adaptive nonparametric estimation, one can measure the
quality of an adaptive estimator with the factor—the “cost of adaptation”—by
which the risk of such an estimator is greater than that of the corresponding
“oracle” estimator which the adaptive one is trying to “mimic”. As it turns out,
“uniform-fit” estimators studied in [14, 20, 15] admit the pointwise risk bounds
similar to (5), with extra factor Cρ3

√
log(m+ n) as compared to (5) (see [15,

Theorem 5]). On the other hand, there is a lower bound stating that the adap-
tation factor cannot be less than cρ

√
logm when m ≥ c′n (cf. [15, Theorem 2]),

leaving the gap between these two bounds which may be quite significant when

6 While this statement appears self-evident to statisticians of older generations,
younger researchers may expect an explanation. This is why we provide a brief
discussion of the “naive estimate” in Section D of the appendix.
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ρ is large. Furthermore, the choice of optimization objective (uniform fit of the
Fourier-domain residual) in such estimators was dictated by the technical con-
sideration allowing simpler control of the pointwise risk and seems artificial when
the estimation performance is measured by the `2-loss.

Contributions. In this paper, we propose a new family of adaptive convolution-
type estimators. These estimators utilize an adaptive filter which is obtained by
minimizing the `2-norm of the residual constrained or penalized by the `1-norm
of the DFT of the filter. Similarly to uniform-fit estimators, new estimators can
be efficiently computed via convex optimization routines. We prove oracle in-
equalities for the `2-loss of these estimators, which lead to the improved risk
bounds compared to the case of uniform-fit estimators. Note that signal simplic-
ity, as per Definition 1, involves a special sort of time-invariance of the oracle
estimate: filter φo ∈ Cm(Z) in Definition 1 is assumed to be “good” (cf. (4))
uniformly over |t| ≤ m + n, what can be understood as some kind of “approxi-
mate local shift-invariance” of the signal to be recovered. In fact, this property
of the signal is operational when deriving corresponding risk bounds for adap-
tive recoveries. In the present paper, in order to derive the oracle inequalities
we replace the assumption of signal simplicity, as per Definition 1, with an ex-
plicit approximate (local) shift-invariance (ASI) assumption. In a nutshell, the
new assumption states that the unknown signal admits (locally) a decomposi-
tion x = xS + ε where xS belongs to an unknown shift-invariant linear subspace
S ⊂ C(Z) of a small dimension, and the residual component ε is small in `2-
norm or `∞-norm. The remainder terms in the established oracle inequalities
explicitly depend on the subspace dimension s = dim(S) and the magnitude κ
of the residual.7 We also study the relationship between our ASI assumption and
the notion of signal simplicity introduced in [20]:

– On one hand, approximately shift-invariant signals constitute a subclass of
simple signals (in fact, the widest known to us such subclass to date). In
particular, a “uniform” version of ASI assumption, in which the residual
component ε is bounded in `∞-norm, implies signal simplicity (cf. Definition
1) with simple dependence of parameters ρ and θ of the class on the ASI
parameters s and κ. This, in turn, allows to derive improved bounds for the
pointwise and `2-loss of novel adaptive estimators over the class of signals
satisfying the “uniform” version of ASI assumption.

7 In hindsight, ASI is a natural generalization of the classical “regularity assumption”
for signals on the regular grid. Indeed, consider signals which are discretizations of
smooth functions; such signals have a very simple structure—they are “locally close”
to a given small-dimensional subspace, that of small degree polynomials. Here we
extend the notion of regularity allowing for signals to be (locally) close to an unknown
subspace of moderate dimension; we refer to [14, 21] for the detailed discussion of
the relationship of the developed framework with the nonparametric estimation of
regular functions. Our standing (technical) assumption about (local) shift invariance
of the approximating subspace is operational, it allows for successful application of
the machinery of linear filtering and Fourier transform.
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– On the other hand, all known to us examples of simple signals in C(Z) are
those of signals close to solutions of low-order linear homogeneous difference
equations, see [21]; such signals are close to small-dimensional shift-invariant
subspaces. New bounds on the `2- and pointwise risk for such signals estab-
lished in this work improve significantly over the analogous bounds for such
signals obtained in [21, 15].

As an illustration, we consider an application of the proposed approach to the
problem of denoising a harmonic oscillation—a sum of complex sinusoids with
arbitrary (unknown) frequencies. The known approaches [1, 37] to this problem
are based on the ideas from sparse recovery [10] and impose frequency separa-
tion conditions to obtain sharp statistical guarantees (see Section 4.3 for more
details). In contrast, deriving near-optimal statistical guarantees for adaptive
convolution-type estimators in this problem does not require this type of as-
sumptions.

Preliminary versions of some results presented in this paper were announced
in [33].

Manuscript organization. We present the problem of adaptive interpolation and
prediction and introduce necessary notation in Section 2. In Section 3 we intro-
duce adaptive estimators and present oracle inequalities for their `2-loss. Then
we use these inequalities to derive guarantees for `2- and pointwise risks of adap-
tive estimates in Section 4. In particular, in Section 4.2 we discuss the structure
of the classes of approximately shift-invariant signals over Z and show that such
signals are close, in certain sense, to complex exponential polynomials—solutions
to linear homogeneous difference equations. We then specify statistical guaran-
tees for adaptive interpolation and prediction of such signals; in particular, we
establish new bounds for adaptive prediction of generalized harmonic oscillations
which are sums of complex sinusoids modulated by polynomials. Finally, in Sec-
tion 4.3 we consider an application of the proposed estimates to the problem
of full recovery of a generalized (or usual) harmonic oscillation, and compare
our approach against the state of the art for this problem. To streamline the
presentation we defer technical proofs to appendix.

2 Problem description

2.1 Notation

We follow the “Matlab convention” for matrices: [A,B] and [A;B] denote, respec-
tively, the horizontal and vertical concatenations of two matrices of compatible
dimensions. Unless explicitly stated otherwise, all vectors are column vectors.
Given a signal x ∈ C(Z) and n1, n2 ∈ Z such that n1 ≤ n2, we define the
“slicing” map

xn2
n1

:= [xn1 ; ...;xn2 ]. (7)

In what follows, when it is unambiguous, we use the shorthand notation τ ≤ n
(τ < n, |τ | ≤ n, etc.) for the set of integers satisfying the inequality in question.
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Convolution and filters. Recall that C(Z) is the linear space of all two-sided
complex sequences, and Cn(Z) denotes the space of such sequences which vanish
outside [−n, ..., n]. We call the smallest m ∈ Z+ such that φ ∈ Cm(Z) the width
of φ and denote it w(φ). Note that (7) allows to identify Cn(Z), with complex
vector space C2n+1. It is also convenient to identify x ∈ C(Z) with its Laurent
series x(z) =

∑
j xjz

j . The (discrete) convolution of ϕ∗ψ ∈ C(Z) of ϕ,ψ ∈ C(Z)
is defined as

[ϕ ∗ ψ]t :=
∑
τ∈Z

ϕτψt−τ

and is, clearly, a commutative operation. One has [ϕ ∗ ψ](z) = ϕ(z)ψ(z) with

w(ϕ ∗ ψ) ≤ w(ϕ) + w(ψ).

In what follows, ∆ stands for the forward shift operator on C(Z):

[∆x]t = xt−1,

and ∆−1 for its inverse, the backward shift. Then

ϕ ∗ ψ = ϕ(∆)ψ.

Given ϕ ∈ C(Z) with w(ϕ) < ∞ and observations y = (yτ ), we can associate
with ϕ the linear estimate x̂ of x ∈ C(Z) of the form

x̂ = ϕ ∗ y = ϕ(∆)y (8)

(x̂ is simply a kernel estimate over the grid Z corresponding to a finitely sup-
ported discrete kernel ϕ). The just defined “convolution” (kernel) estimates are
referred to as linear filters in signal processing; with some terminology abuse, we
also call filters elements of C(Z) with finitely many nonzero entries.

Norms. For x, y ∈ C(Z) we denote 〈x, y〉 the Hermitian inner product 〈x, y〉 =∑
τ∈Z xτyτ , xτ being the complex conjugate of xτ ; for n ∈ Z+ we put

〈x, y〉n =
∑
|τ |≤n

xτyτ .

Given p ≥ 1 and n ∈ Z+ we define semi-norms on C(Z) as follows:

‖x‖n,p :=

∑
|τ |≤n

|xτ |p
1/p

with ‖x‖n,∞ = max|τ |≤n |xτ |. When such notation is unambiguous, we also use
‖ · ‖p to denote the “usual” `p-norm on C(Z), e.g., ‖x‖p = ‖x‖n,p whenever
w(x) ≤ n.
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We define the (unitary) Discrete Fourier Transform (DFT) operator Fn :
Cn(Z)→ C2n+1 by

(Fn[x])k =
1√

2n+ 1

∑
|τ |≤n

exp

(
− i2πkτ

2n+ 1

)
xτ , 1 ≤ k ≤ 2n+ 1.

The unitarity of DFT implies the Parseval identities: for any x, y ∈ C(Z) and
n ∈ Z+ one has

〈x, x〉n = 〈Fn[x], Fn[x]〉, ‖x‖n,2 = ‖Fn[x]‖2. (9)

In what follows, c, C, C ′, etc., stand for absolute constants whose exact values
can be recovered from the proofs. We use the O(·) notation: for two functions
f, g of the same argument t, f = O(g) means that there exists C <∞ such that
|f(t)| ≤ C|g(t)| for all t in the domain of f .

2.2 Problem statement

We consider the problem of estimating the signal x ∈ C(Z) given noisy observa-
tions yτ := xτ + σζτ on the segment −L ≤ τ ≤ L (cf. (1)); here ζt ∼ CN (0, 1)
are i.i.d. standard complex-valued Gaussian random variables. Here we discuss
different settings of this problem:

– Signal interpolation in which, when computing the estimate of xt, one can use
observations both on the left and on the right of t. For the sake of simplicity,
we consider the “symmetric” version of this problem where the objective is,
given |m| ≤ L, to build an estimate x̂t = [ϕ̂ ∗ y]t of xt for |t| ≤ L−m, with
ϕ̂ ∈ Cm(Z) depending on observations.

– Signal prediction in which, when computing the estimate of xt, we are allowed
to use observations only on one side of t, e.g., observations for τ ≤ t−h where
h ∈ Z+ is a given prediction horizon. For the sake of clarity, in this paper
we only consider the version of this problem with h = 0 (often referred as
filtering in signal processing literature); the general situation can be treated
in the same way at the expense of more involved notation. In other words, we
are looking to build a data-driven filter ϕ̂ ∈ Cm(Z) and the “left” estimate
of xt, −L+ 2m ≤ t ≤ L (utilizing observations yτ , τ ≤ t),

x̂t =

2m∑
τ=0

ϕτ−myt−τ =

m∑
s=−m

ϕsyt−s−m = [ϕ ∗ (∆my)]t.

The corresponding “right” estimate of xt, −L ≤ t ≤ L − 2m (utilizing
observations yτ , τ ≥ t) writes

x̂t =

2m∑
τ=0

ϕm−τyt+τ =

m∑
s=−m

ϕsyt−s+m = [ϕ ∗ (∆−my)]t.
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Given a set X of signals, m,n ∈ Z+, observations yτ for |τ | ≤ L = m + n, and
the target estimation domain Dn of length 2n+ 1 (e.g., Dn = {−n, ..., n} in the
case of signal interpolation, or Dn = {−n+m, ..., n+m} in the case of filtering),
we quantify the accuracy of estimate x̂ using two types of risks:

– maximal over X `2 (integral) α-risk: the smallest maximal over x ∈ X radius
of (1− α)-confidence ball of ‖ · ‖2-norm on Dn centered at x̂:

RiskDn,2,α(x̂|X ) = inf

r : sup
x∈X

Prob


(∑
t∈Dn

|[x̂− x]t|2
)1/2

≥ r

 ≤ α
 ;

– maximal over X pointwise α-risk: the smallest maximal over x ∈ X and
t ∈ Dn (1− α)-confidence interval for xt centered at x̂t:

RiskDn,α(x̂|X ) = inf

{
r : sup

x∈X
Prob {|[x̂− x]t| ≥ r} ≤ α ∀ t ∈ Dn

}
.

When n = 0 the estimation interval Dn = {t} is a singleton, and the latter
definition becomes that of the “usual” worst-case over X (1− α)-confidence
interval for xt:

Riskα(x̂t|X ) = inf

{
r : sup

x∈X
Prob {|[x̂− x]t| ≥ r} ≤ α

}
.

3 Oracle inequalities for `2-loss of adaptive estimators

3.1 Adaptive signal interpolation

Adaptive recoveries Given m,n ∈ Z+, L = m + n, and % > 0, consider the
optimization problem

min
ϕ∈Cm(Z)

‖y − ϕ ∗ y‖2n,2 subject to ‖Fm[ϕ]‖1 ≤
%̄√

2m+ 1
. (Con)

Note that (Con) is clearly solvable; we denote ϕ̂con its optimal solution and refer
to

x̂con = ϕ̂con ∗ y
as the constrained (least-squares) estimate of x. Computing ϕ̂con requires setting
the problem parameter %̄ which, ideally, would be set proportional to the `1-
norm of the DFT of some ideal (oracle) filter, or a non-trivial upper bound on
it. Because this is not often possible in practice, we also consider the penalized
estimator

x̂pen = ϕ̂pen ∗ y,
where, for λ > 0, ϕ̂pen ∈ Cm(Z) is selected as an optimal solution to the (solv-
able) problem

min
ϕ∈Cm(Z)

‖y − ϕ ∗ y‖2n,2 + σ2λ2(2m+ 1)‖Fm[ϕ]‖21. (Pen)
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Instead of knowing %̄, some knowledge of noise variance σ2 is required to tune
this estimator. Hence, the practical recommendation is to use (Pen) when σ2 is
known or can be estimated.

Oracle inequalities for `2-loss Despite striking similarity with Lasso esti-
mators [38, 5, 2], the proposed estimates are of quite different nature. First of all,
solving optimization problems (Con) and (Pen) allows to recover a filter but
not the signal itself, and this filter is generally not sparse neither in time nor in
Fourier domain (unless the signal to recover is a sum of harmonic oscillations
with frequencies on the “DFT grid”). Second, the equivalent of “regression ma-
trices” involved in these procedures cannot be assumed to satisfy any kind of
“restricted incoherence” conditions usually imposed to prove statistical proper-
ties of “classical” `1-recovery routines (see [4, Chapter 6] for a comprehensive
overview of such conditions). Moreover, being constructed from noisy observa-
tions, these matrices depend on the noise, which poses some extra difficulties in
the analysis of the adaptive estimates, in particular, leading to the necessity of
imposing some restrictions on the signal class.

In what follows, when analyzing adaptive estimators we constrain the un-
known signal x on the interval |τ | ≤ L to be “close” to some shift-invariant
linear subspace S. Specifically, consider the following assumption:

Assumption 31 (Approximate local shift-invariance) We suppose that x ∈
C(Z) admits a decomposition

x = xS + ε.

Here, xS ∈ S where S is some (unknown) shift-invariant linear subspace of C(Z)
with s := dim(S) ≤ 2n + 1, and ε is bounded in the `2-norm: for some κ ≥ 0
one has ∥∥∆−τε∥∥

n,2
≤ κσ, |τ | ≤ m. (10)

We denote Xm,n(s,κ) the class of such signals.

Remarks. Assumption 31 merits some comments.
Observe that Xm,n(s,κ) is in fact the subset of C(Z) comprising sequences

which are close, in the sense of (10), to all s-dimensional shift-invariant subspaces
of C(Z). Similarly to Assumption 31, signal “simplicity” as set by Definition 1
also postulates a kind of “local time-invariance” of the signal: it states that
there exists a linear time-invariant filter which reproduces the signal “well” on
a certain interval. However, the actual relationship between the two notions is
rather intricate and will be discussed in Section 4.

Letting the signal to be close, in `2-norm, to a shift-invariant subspace—
instead of simply belonging to the subspace—extends the set of signals and allows
to address nonparametric situations. As an example, consider discretizations
over a uniform grid in [0, 1] of functions from the Sobolev ball. Locally, such
signals are close in `2-norm to polynomials on the grid which satisfy a linear
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homogeneous difference equation and hence belong to a shift-invariant subspace
of small dimension [21]. Other classes of signals for which Assumption 31 holds
are discretizations of complex sinusoids modulated with smooth functions and
signals satisfying linear difference inequalities [21].

We now present oracle inequalities which relate the `2-loss of adaptive filter
ϕ̂ with the best loss of any feasible solution ϕ to the corresponding optimization
problem. These inequalities, interesting for their own sake, are also operational
when deriving bounds for the pointwise and `2-losses of the proposed estimators.
We first state the result for the constrained estimator.

Theorem 1. Let s,m, n ∈ Z+, κ ≥ 0. Suppose that x ∈ Xm,n(s,κ) and ϕ is
feasible for (Con). Let ϕ̂con be an optimal solution to (Con) with some %̄ > 1,
and let x̂con = ϕ̂con ∗ y. Then for any α ∈]0, 1[ it holds with probability at least
1− α:

‖x− x̂con‖n,2 ≤ ‖x− ϕ ∗ y‖n,2

+Cσ
(
%̄(κ2

m,n + 1) log[(m+ n)/α] + %̄κ
√

log[1/α] + s
)1/2

(11)

where

κm,n :=

√
2n+ 1

2m+ 1
.

The counterpart of Theorem 1 for the penalized estimator is as follows.

Theorem 2. Let s,m, n ∈ Z+, κ, λ > 0. Suppose that x ∈ Xm,n(s,κ) and
ϕ ∈ Cm(Z) with %(ϕ) =

√
2m+ 1‖Fm[ϕ]‖1. Let ϕ̂pen be an optimal solution

to (Pen). Then for any α ∈ ]0, 1[ the estimate x̂pen = ϕ̂pen ∗ y satisfies with
probability at least 1− α:

‖x− x̂pen‖n,2 ≤ ‖x− ϕ ∗ y‖n,2 + σ
(
λ%(ϕ) + C1Q1/λ+ C2Q

1/2
2 (ϕ)

)
(12)

where

Q1 = Q1(κ, κm,n, α) = (κ2
m,n + 1) log[(m+ n)/α] + κ

√
log[1/α] + 1,

Q2(ϕ) = Q2(ϕ, s,κ, α) = %(ϕ) log[1/α] + κ
√

log[1/α] + s.
(13)

In particular, when setting λ = Q
1/2
1 we obtain

‖x− x̂pen‖n,2 ≤ ‖x− ϕ ∗ y‖n,2 + Cσ
(

Q
1/2
1 %(ϕ) + Q

1/2
2 (ϕ)

)
.

One may observe that, ideally, %̄ in (Con) should be selected as

%(ϕo) =
√

2m+ 1‖Fm[ϕo]‖1
where ϕo is an ideal “oracle filter,” while the penalty parameter in (Pen) would
be set to λ = [C1Q1/%(ϕo)]1/2. These choices would result in the same remainder
terms in (11) and (12) (order of σ(%(ϕo)(1+κ)+s)1/2 up to logarithmic factors).
Obviously, this choice cannot be implemented since the value %(ϕo) is unknown.
Nevertheless, Theorem 2 provides us with an implementable choice of λ that still
results in an oracle inequality, at the expense of a larger remainder term which
now scales as σ[%(ϕo)

√
1 + κ +

√
s].
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3.2 Adaptive signal filtering

Here we consider the “left” version of the problem in which we are given obser-
vations (yτ ) on the interval −L ≤ τ ≤ L, and our objective is to build a (left)
convolution estimate x̂t = [ϕ̂ ∗ (∆my)]t of xt, t ∈ {−L + 2m ≤ t ≤ L}, using
an observation-driven filter ϕ̂ ∈ Cm(Z). Clearly, the treatment of the “right”
version of the problem is completely analogous up to obvious modifications. Let
us consider the following counterparts of (Con) and (Pen):

min
ϕ∈Cm(Z)

∥∥∆−m(y − ϕ ∗∆my)
∥∥2

n,2
subject to

∥∥Fm[ϕ]
∥∥

1
≤ %̄√

2m+ 1
, (Con+)

min
ϕ∈Cm(Z)

∥∥∆−m(y − ϕ ∗∆my)
∥∥2

n,2
+ σ2λ2(m+ 1)

∥∥Fm[ϕ]
∥∥2

1
. (Pen+)

Same as in the interpolation setting, both problems are clearly solvable, so their
respective optimal solutions ϕ̂con and ϕ̂pen are well-defined. A close inspection
of the proofs of Theorems 1 and 2 shows that their results remain valid, with
obvious adjustments, in the setting of this section. Namely, we have the following
analog of those statements.

Proposition 1 Let s,m, n ∈ Z+, κ ≥ 0, and x ∈ Xm,n(s,κ); let α ∈ ]0, 1[.

1. Let %̄ > 1 be fixed, ϕ be feasible to (Con+), and let x̂con = ϕ̂con ∗∆my where
ϕ̂con is an optimal solution to (Con+); then with probability at least 1 − α
estimate x̂con satisfies∥∥∆−m(x− x̂con)

∥∥
n,2
≤
∥∥∆−m(x− ϕ ∗∆my)

∥∥
n,2

+Cσ
(
%̄(κ2

m,n + 1) log[(m+ n)/α] + %̄κ
√

log[1/α] + s
)1/2

.

2. Let ϕ ∈ Cm(Z) with %(ϕ) =
√

2m+ 1‖Fm[ϕ]‖1, and let x̂pen = ϕ̂pen ∗∆my
where ϕ̂pen is an optimal solution to (Pen+) with λ > 0; then x̂pen satisfies
with probability at least 1− α∥∥∆−m(x− x̂pen)

∥∥
n,2
≤ ‖∆−m(x− ϕ ∗∆my)‖n,2

+σ
(
λ%(ϕ) + C1Q1/λ+ C2Q

1/2
2 (ϕ)

)
where Q1 and Q2(ϕ) are defined in (13).

4 Risk bounds for adaptive recovery under ASI

In order to transform the oracle inequalities of Theorems 1, 2 and Proposition 1
into risk bounds for adaptive recoveries, we need to establish bounds for oracle
risks on the classes of approximately shift-invariant signals. We start with the
interpolation setting.
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4.1 Risk bounds for adaptive signal interpolation

Results of this section are direct corollaries of the following statement which may
be of independent interest.

Proposition 2 Let S be a shift-invariant subspace of C(Z) of dimension s ≤
m + 1. Then there exists a filter φo ∈ Cm(Z) such that for all x ∈ S one
has x = φo ∗ x and

‖φo‖2 ≤
√

2s

2m+ 1
.

In other words, signals x ∈ S are (m,n, ρ, 0)-simple in the sense of Definition 1,
for any n ∈ Z+ and m ≥ s− 1, with ρ =

√
2s and θ = 0.

When combined with Theorems 1 and 2, Proposition 2 implies the following
bound on the integral risk of adaptive recovery.

Proposition 3 Let s,m, n ∈ Z+, m ≥ 2s− 1, κ ≥ 0, and let Dn = {−n, ..., n}.
(i) Assume that x̂con = ϕ̂con ∗ y where ϕ̂con is an optimal solution to (Con) with
some %̄ ≥ 4s. Then for any α ∈]0, 1/2]

RiskDn,2,α(x̂con|Xm,n(s,κ)) ≤ Cψαm,n(σ, s,κ; %̄)

where

ψαm,n(σ, s,κ; %̄) = σs
(
κm,n

√
log[1/α] + κ

)
+σ
(
%̄(κ2

m,n + 1) log[(m+ n)/α] + %̄κ
√

log[1/α] + s
)1/2

.

In particular, when %̄ ≤ C ′s is chosen in (Con) one obtains

RiskDn,2,α(x̂con|Xm,n(s,κ)) ≤ Cψαm,n(σ, s,κ) (14)

with

ψ
α

m,n(σ, s,κ) = σs
(
κm,n

√
log[1/α] + κ

)
+σ
(
s(κ2

m,n + 1) log[(m+ n)/α] + sκ
√

log[1/α] + s
)1/2

.

(ii) Let λ = Q
1/2
1 with Q1 as defined in (13), and let x̂pen = ϕ̂pen ∗ y where ϕ̂pen

is an optimal solution to (Pen). Then for any α ∈ (0, 1/2]

RiskDn,2,α(x̂pen|Xm,n(s,κ)) ≤ Cψ̃αm,n(σ, s,κ)

where

ψ̃αm,n(σ, s,κ) = σs
(
κm,n

√
log[1/α] + κ

)
+ σs(κm,n + 1)

√
log[(m+ n)/α].

We are now ready to derive bounds for the pointwise risk of adaptive estimates
described in the previous section. To establish such bounds we need to replace
Assumption 31 with a somewhat stronger uniform analog.
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Assumption 41 (Approximate locally uniform shift-invariance) Let n ≥
m ∈ Z+. We suppose that x ∈ C(Z) admits a decomposition

x = xS + ε.

Here xS ∈ S where S is some (unknown) shift-invariant linear subspace of C(Z)
with s := dim(S) ≤ 2n+ 1, and ε is uniformly bounded: for some κ ≥ 0 one has

|ετ | ≤
κσ√

2n+ 1
, |τ | ≤ n+m. (15)

We denote Xm,n(s,κ) the class of such signals.

Observe that if x ∈ Xm,n(s,κ) then also x ∈ Xm,n(s,κ). Therefore, the bounds
of Proposition 2 also hold true for the risk of adaptive recovery on Xm,n(s,κ).
Furthermore, bound (15) of Assumption 41 now leads to the following bounds
for pointwise risk of recoveries x̂con and x̂pen.

Proposition 4 Let s,m, n ∈ Z+ with m ≥ 2s − 1 and n ≥ bm/2c (here b·c
stands for the integer part), κ ≥ 0; let also Dn,m = {−n+bm/2c, ..., n−bm/2c}.

(i) Let x̂con = ϕ̂con∗y where ϕ̂con is an optimal solution to (Con) with %̄ ∈ [4s, Cs]
for some C ≥ 4.8 Then for any α ∈]0, 1/2]

RiskDn,m,α(x̂con|Xm,n(s,κ)) ≤ C ′ςαm,n(σ, s,κ) (16)

where

ςαm,n(σ, s,κ) =

√
s

2m+ 1
ψ
α

m,n(σ, s,κ)

+
sσ√

2m+ 1

(√
sκ +

√
log [(2m+ 1)/α] +

√
s log[1/α]

)
≤ C ′′ sσ√

2m+ 1

(
κm,n

√
s log [1/α] + κ + κm,n

√
log [(m+ n)/α]

)
.

(ii) Let x̂pen = ϕ̂pen∗y where ϕ̂pen is an optimal solution to (Pen) with λ = Q
1/2
1 ,

Q1 being defined in (13). Then for any α ∈ (0, 1/2]

RiskDn,m,α(x̂pen|Xm,n(s,κ)) ≤ Cς̃αm,n(σ, s,κ)

where

ς̃αm,n(σ, s,κ) =

√
s

2m+ 1
ψ̃αm,n(σ, s,κ)

+
sσ√

2m+ 1

(√
sκ +

√
log [(2m+ 1)/α] +

√
s log [1/α]

)
≤ C ′sσ√

2m+ 1

(√
s
(
κm,n

√
log [1/α]

+κ +
√

κ log [1/α]
)

+ κm,n
√

log [(m+ n)/α]
)
.

8 For the sake of conciseness, here we only present the result for the constrained
recovery with %̄ � s.
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Remark. The above bounds for the pointwise risk of adaptive estimates may be
compared against available lower bound and bounds for the risk of the uniform-
fit adaptive estimate in the case where the signal to recover is a sum of s complex

sinusoids. In this situation, [15, Theorem 2] states the lower bound cσs
√

logm
m

for the pointwise risk of estimation with the upper bound

O

(
σs3 log[s]

√
logm

m

)

up to a logarithmic in α factor (cf. [15, Section 4]). Because the signal in question
belongs to a 2s-dimensional shift-invariant subspace of C(Z), the bound on the
pointwise risk in Proposition 4 results (recall that we are in the situation of
κ = 0) in the bound

O

(
σs

√
s+ logm

m

)
for adaptive estimates x̂con and x̂pen with significantly improved dependence on
s.

4.2 Risk bounds for adaptive signal filtering

Our next goal is to bound the risk of the constrained and penalized adaptive
filters. Recall that in order to obtain the corresponding bounds in the interpo-
lation setting we first established the result of Proposition 2 which allows to
bound the error of the oracle filter on any s-dimensional shift-invariant subspace
of C(Z). This result, along with oracle inequalities of Theorems 1 and 2, directly
led us to the bounds for the risk of adaptive interpolation estimates. In order to
reproduce the derivation in the previous section we first need to establish a fact
similar to Proposition 2 which would guarantee existence of a predictive filter of
small `2-norm exactly reproducing all signals from any shift-invariant subspace
of C(Z). However, as we will see in an instant, the prediction case is rather dif-
ferent from the interpolation case: generally, a “good predictive filter” one may
look for—a reproducing predictive filter of small norm—simply does not exist
in the case of prediction. And analysis of situations where such filter does exist
is quite different from the simple proof of Proposition 2. This is why, before
returning to our original problem, it is useful to get a better understanding of
the structure of shift-invariant subspaces of C(Z).

Characterizing shift-invariant subspaces of C(Z) We start with the fol-
lowing

Proposition 5 Solution set of a homogeneous linear difference equation

[p(∆)x]t

[
=

s∑
τ=0

pτxt−τ

]
= 0, t ∈ Z, (17)
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with a characteristic polynomial p(z) = 1 + p1z + ... + psz
s is a shift-invariant

subspace of C(Z) of dimension at most s.
Conversely, any shift-invariant subspace of C(Z) of dimension s is the solution
set of a difference equation of the form (17) with deg(p) = s; such polynomial is
unique if normalized by p(0) = 1.

Recall that the set of solutions of equation (17) is spanned by exponential poly-
nomials. Namely, let zk, for k = 1, ..., r ≤ s, be the distinct roots of p(z) with
corresponding multiplicities mk, and let ωk ∈ C be such that zk = e−iωk . Then
solutions to (17) are exactly sequences of the form

xt =

r∑
k=1

qk(t)eiωkt

where qk(·) are arbitrary polynomials of deg(qk) = mk−1. For instance, discrete-
time polynomials of degree s−1 satisfy (17) with p(z) = (1−z)s; another example
is that of harmonic oscillations with given (all distinct) ω1, ..., ωs ∈ [0, 2π[,

xt =

s∑
k=1

qkeiωkt, q ∈ Cs, (18)

which satisfy (17) with p(z) =
∏s
k=1(1 − eiωkz). Thus, the set of complex

harmonic oscillations with fixed frequencies ω1, ..., ωs is an s-dimensional shift-
invariant subspace.

In view of the above, it is now clear that simply belonging to a shift-invariant
subspace does not guarantee that a signal x can be reproduced by a predictive
filter of small `2-norm. For instance, given r ∈ C, |r| > 1, consider signals from
the parametric family

Xr = {x ∈ C(Z) : xτ = βrτ , β ∈ C}.

Here Xr is a one-dimensional shift-invariant subspace of C(Z)—solution set of the
equation (1− r∆)x = 0. Clearly, for x ∈ Xr xt cannot be estimated consistently
using noisy observations on the left of t (cf. [35]), and we cannot expect a “good”
predictive filter to exist for all x ∈ Xr.

The above example is representative of the difficulties arising when predict-
ing signals from shift-invariant subspaces of C(Z): the characteristic polynomial
of the associated difference equation is unstable—its root z = 1/r lies inside
the (open) unit disk. Therefore, to be able to build good “left” predictive filters,
we need to reduce the class of signals to solutions of equations (17) with stable
polynomials, with all roots lying outside the (open) unit disk—decaying expo-
nents, harmonic oscillations, and their products. Note that if we are interested
in estimating xt using only observations on the right of t, similar difficulties will
arise when x is a solution of a homogeneous linear difference equation with roots
outside the closed unit disc—this situation is completely similar to the above,
up to the inversion of the time axis.
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Adaptive prediction of generalized harmonic oscillations The above dis-
cussion motivates our interest in a special family of shift-invariant subspaces
which allow for constructing good “left” and “right” prediction filters—that of
sets of solutions to linear homogeneous difference equations (17) with all roots
zk on the unit circle, i.e., zk = e−iωk with real ωk ∈ [0, 2π[, k = 1, ..., s. In
other words, we are interested in the class of solutions to equation (17) with
p(z) =

∏s
k=1(1− eiωkz) comprised of signals of the form

xt =

r∑
k=1

qk(t)eiωkt

where ω1, ..., ωr ∈ [0, 2π[ are distinct oscillation frequencies and qk(·), k = 1, ..., r,
are (arbitrary) polynomials of degree mk − 1, mk being the multiplicity of the
root zk = e−iωk (i.e.,

∑r
k=1mk = s). We call such signals generalized harmonic

oscillations; we denote Hs[ω] the space of such signals with fixed spectrum ω ∈
[0, 2π[s and denote Hs the set of generalized harmonic oscillations with at most
s (unknown) frequencies.

The problem of constructing a predictive filter for signals from Hs[ω] has
already been studied in [22], where the authors proved (cf. [22, Lemma 6.1])
that for any s ≥ 1, vector of frequencies ω1, ..., ωs, and m large enough there is
φo ∈ Cm(Z) such that x = φo ∗∆mx and

‖φo‖2 ≤ Cs3/2

√
log[s+ 1]

m
. (19)

Here we utilize an improved version of that result.

Proposition 6 Let s ≥ 1 and ω ∈ [0, 2π[s. Then for any m ≥ cs2 log s there
is a filter φo ∈ Cm(Z) which only depend on ω such that x = φo ∗∆mx for all
x ∈ Hs[ω] and

‖φo‖2 ≤ Cs
√

logm

m
. (20)

Let now Hm,n(s,κ) be the set of signals x ∈ C(Z) (locally) close to Hs in `2-
norm, i.e., which can be decomposed (cf. Assumption (31)) as

x = xH + ε

where xH ∈ Hs and ∥∥∆−τε∥∥
n,2
≤ κσ, |τ | ≤ m.

Equipped with the bound of Proposition 6, we can now derive risk bounds for
adaptive predictive estimates on Hm,n(s,κ). Specifically, following the proof of
Propositions 3 and 4 we obtain the following corollaries of the oracle inequalities
of Proposition 1.

Proposition 7 Let s,m, n ∈ Z+, m ≥ cs2 log s with large enough c, and let
κ ≥ 0.
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(i) Let %̄ = Cs2 logm with C large enough, and let x̂con = ϕ̂con ∗∆my where ϕ̂con

is an optimal solution to (Con+); let also Dn = {−n+m, ..., n+m}. Then for
any α ∈]0, 1/2]

RiskDn,2,α(x̂con|Hm,n(s,κ)) ≤ C ′χαm,n(σ, s,κ)

where

χαm,n(σ, s,κ) = σs2 log[m]
(
κm,n

√
log[1/α] + κ

)
+σs(κm,n + 1)

√
log[m] log[(m+ n)/α].

(ii) Let λ = Q
1/2
1 with Q1 as in (13), and let x̂pen = ϕ̂pen ∗∆my where ϕ̂pen is

an optimal solution to (Pen+). Then for any α ∈]0, 1/2]

RiskDn,2,α(x̂pen|Hm,n(s,κ)) ≤ Cχ̃αm,n(σ, s,κ)

where

χ̃αm,n(σ, s,κ) = σs2 log[m]
(

(κm,n + 1)
√

log[(m+ n)/α] + κ
)
.

Next, in order to state the result describing pointwise risks of the proposed
estimate we need to replace the class Hm,n(s,κ) with the class of signals which
are (locally) “uniformly” close to Hs. Namely, let Hm,n(s,κ) be the set of signals
x ∈ C(Z) which can be decomposed (cf. Assumption 41) as

x = xH + ε

with xH ∈ Hs and

|ετ | ≤
κσ√

2n+ 1
, |τ | ≤ n+m.

Proposition 8 Let s,m, n ∈ Z+, m ≥ cs2 log s with large enough c, n ≥ m/2,
and let κ ≥ 0. We set Dn,m = {−n+ 2m, ..., n+m}.

(i) Let x̂con = ϕ̂con ∗ ∆my where ϕ̂con is an optimal solution to (Con+) where
%̄ = Cs2 logm with C large enough. Then for any α ∈]0, 1/2]

RiskDn,m,α(x̂con|Hm,n(s,κ)) ≤ C ′ναm,n(σ, s,κ)

where

ναm,n(σ, s,κ) = s

√
logm

m
χαm,n(σ, s,κ) +

σs3(logm)3/2

√
m

(κ + log[1/α])

≤ C ′′σs
3(logm)3/2

√
m

(κ + log[1/α]) .

(ii) Let x̂pen = ϕ̂pen ∗ ∆my where ϕ̂pen is an optimal solution to (Pen+) with

λ = Q
1/2
1 , Q1 being defined in (13). Then for any α ∈]0, 1/2]

RiskDn,m,α(x̂pen|Hm,n(s,κ)) ≤ Cν̃αm,n(σ, s,κ)
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where

ν̃αm,n(σ, s,κ) = s

√
logm

m
χ̃αm,n(σ, s,κ) +

σs3(logm)3/2

√
m

(κ + log[1/α])

≤ C ′σs
3(logm)3/2

√
m

(κ + log[(m+ n)/α]) .

4.3 Harmonic oscillation denoising

To illustrate the results of the previous section, let us consider the problem
of recovery of generalized harmonic oscillations. Specifically, given observations
yτ = xτ + σζτ , |τ | ≤ L ∈ Z+ we are to estimate the signal x ∈ Hs. We measure
the statistical performance of the adaptive estimate x̂ by the maximal over Hs
integral α-risk

RiskDL,2,α(x̂|Hs) = inf

{
r : sup

x∈Hs
Prob {‖x̂− x‖L,2 ≥ r} ≤ α

}
on the entire observation domain DL = {−L, ..., L}.

Note that if the frequencies were known, the ordinary least-squares estimate
would attain the risk O (σ

√
s) (up to a logarithmic factor in α). When the

frequencies are unknown, the lower bound (see, e.g., [37, Theorem 2]) states
that

RiskDL,2, 12 (x̂|Hs) ≥ cσ
√
s logL. (21)

In the case where all frequencies are different, this bound is attained asymp-
totically by the maximum likelihood estimate [40, 36]. However, implementing
that estimate involves computing maximal likelihood estimate of ω—a global
minimizer in the optimization problem

min
α∈Cs, ω∈Rs

∑
|τ |≤L

∣∣∣∣∣yτ −
s∑

k=1

αke
iωkτ

∣∣∣∣∣
2
1/2

and becomes numerically challenging already for very moderate values of s.
Moreover, the lower bound (21) is in fact attained by the Atomic Soft Thresh-
olding (AST) estimate [1, 37]—which can be implemented efficiently—but only
under the assumption that the frequencies {ω1, ..., ωs} are well separated—
precisely, when the minimal frequency separation in the wrap-around distance

δmin := min
1≤j 6=k≤s

min{|ωj − ωk|, 2π − |ωj − ωk|} (22)

satisfies δmin > 2π
2L+1 (cf. [37, Theorem 1]). To the best of our knowledge, the

question whether there exists an efficiently implementable estimate matching
the lower bound (21) in the general case is open.
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A new approach to the problem was suggested in [15] where a uniform-fit
adaptive estimate was used for estimation and prediction of (generalized) har-
monic oscillations. That approach, using the bound (19) along with the esti-
mate for the risk of the uniform-fit recovery, resulted in the final risk bound
O
(
σs3 log[s] log[L/α]

)
.

Using the results in the preceding section we can now build an improved
adaptive estimate. Here we assume that the number s of frequencies (counting
with their multiplicities) is known in advance, and utilize constrained recover-
ies (Con) and (Con+) with the parameter %̄ selected using this information;9

note that s is precisely the dimension of the shift-invariant subspace to which x
belongs, cf. Proposition 5. Let us consider the following procedure.

Choose K ≤ L, and divide the observation interval DL into the cen-
tral segment DK = {−K, ...,K} and left and right segments D− =
{−L, ...,−K − 1} and D+ = {K + 1, ..., L}. In what follows we assume
that L and K are even and put k = (L−K)/2. Then we act as follows.
– Using the data yτ , |τ | ≤ L we compute an optimal solution ϕ̂ ∈
CL−K(Z) to the optimization problem (Con) with m = L − K,
n = K, and %̄ = 4s; for t ∈ Dn we compute the interpolating (two-
sided) estimate x̂t = [ϕ̂ ∗ y]t.

– We set m = b(L+n)/2c, n = k, %̄ = %̄+ := 2C2s2 logL where C is as
in the bound (20) of Proposition 6 and compute an optimal solution
ϕ̂+ ∈ Cm(Z) to the optimization problem (Con+); for t ∈ D+ we
compute the left (one-sided) prediction x̂t = [ϕ̂+ ∗∆my]t.

– We set m = b(L + n)/nc, n = k, %̄ = %̄+ and compute an optimal
solution ϕ̂− ∈ Cm(Z) to the “right” analog of (Con+);10 for t ∈ D−
we compute the right (one-sided) prediction x̂t = [ϕ̂− ∗∆−my]t .

We select K to minimize the “total” risk bound of the adaptive recovery
over DL.

We have the following corollary of the Propositions 3 and 7 in the present setting.

Proposition 9 Suppose that L ≥ cs2 log s with large enough c > 0. Then, in
the situation of this section, for any α ∈]0, 1/2]

RiskDL,2,α(x̂|Hs) ≤ Cσs3/2 log[L/α]. (23)

Remarks. The risk bound (23), while significantly improved in terms of de-
pendence on s over the corresponding bound of [15], contains an extra factor
O(s
√

logL) when compared to the lower bound (21). It is unclear to us whether
this factor can be reduced for an efficiently computable estimate.

9 It is worth mentioning that the AST estimate does not require the a priori knowledge
of s; we can also get rid of this hypothesis when using the procedure which is adaptive
to the unknown value of s, at the expense of an additional logarithmic factor.

10 In the corresponding “right” optimization problem the “left prediction” ϕ ∗ ∆my
is replaced with the “right prediction” ϕ ∗ ∆−my. Therefore, the objective to be
minimized in this case is ‖∆m(y − ϕ ∗∆−my)‖n,2.
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It may be worth mentioning that when the frequency separation assump-
tion holds, i.e., when δmin >

2π
2L+1 where the separation δmin is defined in (22),

the above estimation procedure can be simplified: one can “remove” the central
segment in the above construction only using left and right adaptive predic-
tive estimates on two half-domains. The “total” (1 − α)-reliable `2-loss of the
“simplified” adaptive recovery is then

O
(
σ
√
s2 log[1/α] + s log[L/α]

)
.

The latter bound is a simple corollary of the oracle inequalities of Proposition 1
and the following statement.

Lemma 1. Let m ∈ Z+, ν > 1, and let Hs[ω] be the set of harmonic oscillations
x with the minimal frequency separation satisfying

δmin ≥
2πν

2m+ 1
. (24)

Then there exists a filter φo ∈ Cm(Z) satisfying x = φo ∗∆mx for all x ∈ Hs[ω]
and such that

‖φo‖2 ≤
√

Qs

2m+ 1
, where Q =

ν + 1

ν − 1
.

In particular, whenever δmin ≥ 4π
2m+1 , one has

‖φo‖2 ≤
√

3s

2m+ 1
.
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A Preliminaries

First, let us present some additional notation and technical tools to be used in
the proofs.

A.1 Additional notation

In what follows, Re(z) and Im(z) denote, correspondingly, the real and imaginary
parts of z ∈ C, and z denotes the complex conjugate of z. For a matrix A with
complex entries, A stands for the conjugation of A (without transposition), AT

for the transpose of A, and AH for its Hermitian conjugate. We denote A−1 the
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inverse of A when it exists. Tr(A) denotes the trace of a matrix A and detA its
determinant; ‖A‖F is the Frobenius norm of A, ‖A‖∗ is the operator norm, and
‖A‖ is the nuclear norm. We also denote λmax(A) and λmin(A) the maximal and
minimal eigenvalues of a Hermitian matrix A. For a ∈ Cn we denote Diag(a) the
n × n diagonal matrix with diagonal entries ai. We use notation ‖x‖∗n,p for the
`p-norm of the DFT of x so that

‖x‖∗n,p = ‖Fn[x]‖p =

(
2n+1∑
k=1

∣∣(Fn[x]
)
k

∣∣p)1/p

with the standard interpretation of ‖ · ‖∗n,∞.

In what follows, we associate linear maps Cn(Z) → Cn′(Z) with matrices
in C(2n+1)×(2n′+1).

Convolution matrices. We use the following matrix-vector representations of
discrete convolution.

– Given y ∈ C(Z), we associate with it an (2n+ 1)× (2m+ 1) matrix

T (y) =



y−n+m · · · y−n · · · y−n−m
... · · ·

... · · ·
...

ym · · · y0 · · · y−m
... · · ·

... · · ·
...

yn+m · · · yn · · · yn−m

 , (25)

such that [ϕ∗y]n−n = T (y)[ϕ]m−m for ϕ ∈ Cm(Z). Its squared Frobenius norm
satisfies

‖T (y)‖2F =
∑
|τ |≤m

‖∆τy‖2n,2. (26)

– Given ϕ ∈ Cm(Z), consider a (2n+ 1)× (2m+ 2n+ 1) matrix

M(ϕ) =



ϕm · · · · · · ϕ−m 0 · · · · · · 0
0 ϕm · · · · · · ϕ−m 0 · · · 0
...

. . .
. . . · · · · · ·

. . . · · ·
...

... · · ·
. . .

. . . · · · · · ·
. . .

...
0 · · · · · · 0 ϕm · · · · · · ϕ−m

 , (27)

such that for y ∈ C(Z) one has [ϕ ∗ y]n−n = M(ϕ)[y]m+n
−m−n, and

‖M(ϕ)‖2F = (2n+ 1)‖ϕ‖2m,2. (28)
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– Given ϕ ∈ Cm(Z), consider the following circulant matrix of size 2m+2n+1:

C(ϕ) =



ϕ0 · · · · · · ϕ−m 0 · · · · · · · · · 0 ϕm · · · · · · ϕ1

ϕ1 ϕ0 · · · · · · ϕ−m 0 · · · · · · · · · 0 ϕm · · · ϕ2

· · · · · ·
. . . · · · · · ·

. . .
. . . · · · · · · · · · · · · · · · · · ·

· · · · · · · · ·
. . . · · · · · ·

. . .
. . . · · · · · · · · · · · · · · ·

· · · · · · · · · · · ·
. . . · · · · · ·

. . .
. . . · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·
. . . · · · · · ·

. . .
. . . · · · · · · · · ·

0 · · · 0 ϕm · · · · · · ϕ0 · · · · · · ϕ−m 0 · · · 0

· · · · · · · · ·
. . .

. . . · · · · · ·
. . . · · · · · · · · · · · · · · ·

· · · · · · · · · · · ·
. . .

. . . · · · · · ·
. . . · · · · · · · · · · · ·

· · · · · · · · · · · · · · ·
. . .

. . . · · · · · ·
. . . · · · · · · · · ·

· · · · · · · · · · · · · · · · · ·
. . .

. . . · · · · · ·
. . . · · · · · ·

· · · · · · · · · · · · · · · · · · · · ·
. . .

. . . · · · · · ·
. . . · · ·

ϕ−1 · · · · · · ϕ−m 0 · · · · · · · · · 0 ϕm · · · · · · ϕ0



. (29)

Note that C(ϕ)[y]m+n
−m−n is the circular convolution of [y]m+n

−m−n and the zero-
padded filter

ϕ̃ := [ϕ]m+n
−m−n = [0; ...;ϕ−m; ...;ϕm; 0; ...; 0],

that is, convolution of the periodic extensions of [y]m+n
−m−n and ϕ̃ evaluated

on {−m− n, ...,m+ n}. Hence, by the diagonalization property of the DFT
operator one has

C(ϕ) =
√

2m+ 2n+ 1FH
m+ndiag(Fm+nϕ̃)Fm+n (30)

where with some notational abuse we denote Fn the matrix of DFT with the
entries

[Fn]kj =
1√

2n+ 1
exp

(
2πi(k − n)j

2n+ 1

)
, 1 ≤ k, j ≤ 2n+ 1.

Besides this, note that

‖C(ϕ)‖2F = (2m+ 2n+ 1)‖ϕ‖2m,2.

Reformulation of approximate shift-invariance The following reformulation of
Assumption 31 will be convenient for our purposes.

There exists an s-dimensional vector subspace Sn of C2n+1 and an idem-
potent Hermitian (2n + 1) × (2n + 1) matrix ΠSn of rank s—projector
on Sn—such that∥∥ (I2n+1 −ΠSn) [∆τx]

n
−n
∥∥

2

[
= ‖∆τε‖n,2

]
≤ σκ, |τ | ≤ m (31)

where I2n+1 is the (2n+ 1)× (2n+ 1) identity matrix.
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A.2 Technical tools

Deviation bounds for quadratic forms. Let ζ ∼ CN (0, In) be a standard complex
Gaussian vector, meaning that ζ = ξ1 + iξ2 where ξ1 and ξ2 are two independent
draws from N (0, In). We use simple facts listed below.

– Due to the unitarity of the DFT, if ζn−n ∼ CN (0, I2n+1) we also have Fn[ζ] ∼
CN (0, I2n+1).

– We use a simple bound

Prob
{
‖ζ‖n,∞ ≤

√
2 log n+ 2u

}
≥ 1− e−u (32)

which can be verified directly using that |ζ1|22 ∼ χ2
2.

– The following deviation bounds for ‖ζ‖22 ∼ χ2
2n are due to [26, Lemma 1]:

Prob

{
‖ζ‖22

2
≤ n+

√
2nu+ u

}
≥ 1− e−u,

Prob

{
‖ζ‖22

2
≥ n−

√
2nu

}
≥ 1− e−u.

(33)

By simple algebra we obtain an upper bound for the norm:

Prob
{
‖ζ‖2 ≤

√
2n+

√
2u
}
≥ 1− e−u. (34)

– Further, let K be an n× n Hermitian matrix with the vector of eigenvalues
λ = [λ1; ...; λn]. Then the real-valued quadratic form ζHKζ has the same
distribution as ξTBξ, where ξ = [ξ1; ξ2] ∼ N (0, I2n), and B is a real 2n× 2n
symmetric matrix with the vector of eigenvalues [λ;λ]. We have Tr(B) =
2Tr(K), ‖B‖2F = 2‖K‖2F and ‖B‖ = ‖K‖ ≤ ‖K‖F. Invoking again [26,
Lemma 1] (a close inspection of the proof shows that the assumption of
positive semidefiniteness can be relaxed), we have

Prob

{
ζHKζ

2
≤ Tr(K) + (u+

√
2u)‖K‖F

}
≥ 1− e−u. (35)

Further, when K is positive semidefinite, we have ‖K‖F ≤ Tr(K), whence

Prob

{
ζHKζ

2
≤ Tr(K)(1 +

√
u)2

}
≥ 1− e−u. (36)

The following lemma, interesting in its own right, controls the inflation of the
`1-norm of the DFT of a zero-padded signal.

Lemma 2. Let u ∈ Cm(Z) one has

‖u‖∗m+n,1 ≤ ‖u‖∗m,1(1 + κ2
m,n)1/2[log(m+ n+ 1) + 3].
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Proof. It suffices to show that the bound

‖u‖∗m+n,1 ≤ (1 + κ2
m,n)1/2[log(m+ n+ 1) + 3]

holds for all u ∈ Cm(Z) such that ‖u‖∗m,1 ≤ 1. We assume that n ≥ 1, the lemma
statement being trivial otherwise.

First of all, function ‖u‖∗m+n,1 is convex so its maximum over the set u ∈
Cm(Z), ‖u‖∗m,1 ≤ 1, is attained at an extreme point uj of the set given by

Fm[uj ] = eiθej where ej is the j-th canonic basis vector and θ ∈ [0, 2π]. Note
that

ujτ =
1√

2m+ 1
exp

(
i

[
θ +

2πτj

2m+ 1

])
,

thus, for γm,n :=
√

(2m+ 2n+ 1)(2m+ 1) we obtain

∥∥uj∥∥∗
m+n,1

=
1

γm,n

2(m+n)+1∑
k=1

∣∣∣∣∣∣
∑
|τ |≤m

exp

(
2πiτ

[
j

2m+ 1
− k

2m+ 2n+ 1

])∣∣∣∣∣∣
=

1

γm,n

2(m+n)+1∑
k=1

|Dm (ωjk)| ,

where

ωjk := 2π

[
j

2m+ 1
− k

2m+ 2n+ 1

]
and Dm(·) is the Dirichlet kernel of order m:

Dm(ω) :=


sin ((2m+ 1)ω/2)

sin (ω/2)
, ω 6= 2πl,

2m+ 1, ω = 2πl.

Hence,

γm,n‖uj‖∗m+n,1 ≤ max
θ∈[0,2π]

Σm,n(θ) :=

2(m+n)+1∑
k=1

∣∣∣∣Dm( 2πk

2m+ 2n+ 1
+ θ

)∣∣∣∣
 .

(37)

For any θ ∈ [0, 2π], the summation in (37) is over the θ-shifted regular (2m +
2n+ 1)-grid on the unit circle. The contribution to the sum Σm,n(θ) of the two
closest to x = 1 points of this grid is at most 2(2m+ 1). Using the bound

Dm(ω) ≤ | sin(ω/2)|−1 ≤ π

min(ω, 2π − ω)
.

for the remaining points, and because f(ω) = π
ω is decreasing on [ 2π

2m+2n+1 , π]
(recall that n ≥ 1) we arrive at the bound

Σm,n(θ) ≤ 2

(
2m+ 1 +

m+n+1∑
k=1

2m+ 2n+ 1

2k

)
.
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Now, using the inequality Hn ≤ log n+1 for the n-th harmonic number we arrive
at the bound

Σm,n(θ) ≤ 2(2m+ 1) + (2m+ 2n+ 1) [log(m+ n+ 1) + 1]

≤ (2m+ 2n+ 1) [log(m+ n+ 1) + 3]

which implies the lemma. �

B Proof of Theorems 1 and 2

What is ahead. While it is difficult to describe informally the ideas underlying
the proofs of the oracle inequalities, the “mechanics” of the proof of inequality
(11), for instance, is fairly simple: for any ϕo which is feasible to (Con) one has

‖y − ϕ̂ ∗ y‖n,2 ≤ ‖y − ϕo ∗ y‖n,2,

and to prove the inequality (11) all we need to do is to bound tediously all terms
of the remainder ‖x − ϕ̂ ∗ y‖n,2 − ‖x − ϕo ∗ y‖n,2. This may be compared to
bounding the `2-loss of the Lasso regression estimate. Indeed, let m = n for
simplicity, and, given y ∈ C(Z), let T (y) be the (2n+ 1)× (2n+ 1) “convolution
matrix” as defined by (25) such that for ϕ ∈ Cn(Z) one has [ϕ∗y]n0 = T (y)[ϕ]n−n.
When denoting f = Fn[ϕ], the optimization problem in (Con) can be recast as
a “standard” `1-constrained least-squares problem with respect to f :

min
f∈C2n+1

‖y −Anf‖2n,2 s.t. ‖f‖1 ≤
%̄√

2n+ 1
(38)

where An = T (y)FH
n . Observe that fo = Fn[ϕo] is feasible for (38), so that

‖y −Anf̂‖2n,2 ≤ ‖y −Anfo‖2n,2,

where f̂ = Fn[ϕ̂], and

‖x−Anf̂‖2n,2 − ‖x−Anfo‖2n,2
≤ 2σ

(
Re〈ζ, x−Anfo〉n − Re〈ζ, x−Anf̂〉n

)
≤ 2σ

∣∣〈ζ,An(fo − f̂)〉n
∣∣ ≤ 2σ‖AH

n [ζ]n−n‖∞‖fo − f̂‖1

≤ 4σ‖AH
n [ζ]n−n‖∞

%̄√
n+ 1

.

In the “classical” situation, where [ζ]n−n is independent of An (see, e.g., [19]) one
would have

‖AH
n [ζ]n−n‖∞ ≤ cα

√
log nmax

j
‖[An]j‖2 ≤ cα

√
n log nmax

i,j
|Aij |

where cα is a logarithmic in α−1 factor. This would rapidly lead to the bound
equivalent to (11). The principal difference with the standard setting which is
also the source of the main difficulty in the analysis of the properties of adaptive
estimates is that the “regression matrix” An in the case we are interested in is
built of the noisy observations [y]n−n and thus depends on [ζ]n−n. In this situation,
curbing the cross term is more involved and calls for Assumption 31.
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B.1 Proof of Theorem 1

1o. Let ϕo ∈ Cm(Z) be any filter satisfying the constraint in (Con). Then,

‖x− ϕ̂ ∗ y‖2n,2 ≤ ‖(1− ϕo) ∗ y‖2n,2 − σ2‖ζ‖2n,2 − 2σRe〈ζ, x− ϕ̂ ∗ y〉n
= ‖x− ϕo ∗ y‖2n,2 − 2σRe〈ζ, x− ϕ̂ ∗ y〉n︸ ︷︷ ︸

δ(1)

+2σRe〈ζ, x− ϕo ∗ y〉n︸ ︷︷ ︸
δ(2)

. (39)

Let us bound δ(1). Denote for brevity I := I2n+1, and recall that ΠSn is the
projector on Sn from (31). We have the following decomposition:

δ(1) = σRe〈[ζ]n−n, ΠSn [x− ϕ̂ ∗ y]n−n〉︸ ︷︷ ︸
δ
(1)
1

+σRe〈[ζ]n−n, (I −ΠSn)[x− ϕ̂ ∗ x]n−n〉︸ ︷︷ ︸
δ
(1)
2

− σ2 Re〈[ζ]n−n, (I −ΠSn)[ϕ̂ ∗ ζ]n−n〉︸ ︷︷ ︸
δ
(1)
3

One can easily bound δ
(1)
1 under the premise of the theorem:∣∣∣δ(1)

1

∣∣∣ ≤ σ∥∥ΠSn [ζ]
n
−n
∥∥

2

∥∥ΠSn [x− ϕ̂ ∗ y]n−n
∥∥

2

≤ σ
∥∥ΠSn [ζ]

n
−n
∥∥

2

∥∥x− ϕ̂ ∗ y∥∥
n,2
.

Note that ΠSn [ζ]n−n ∼ CN (0, Is), and by (34) we have

Prob
{∥∥ΠSn [ζ]n−n

∥∥
2
≥
√

2s+
√

2u
}
≤ e−u,

which gives the bound

Prob
{∣∣δ(1)

1

∣∣ ≤ σ∥∥x− ϕ̂ ∗ y∥∥
n,2

(√
2s+

√
2 log [1/α1]

)}
≥ 1− α1. (40)

2o. We are to bound the second term of (40). To this end, note first that

δ
(1)
2 = σRe〈[ζ]n−n, (I −ΠSn)[x]n−n〉 − σRe〈[ζ]n−n, (I −ΠSn)[ϕ̂ ∗ x]n−n〉.

By (31),
∥∥(I −ΠSn)[x]n−n

∥∥
2
≤ σκ, thus with probability 1− α,∣∣〈[ζ]n−n, (I −ΠSn)[x]n−n〉

∣∣ ≤ σκ√2 log[1/α]. (41)

On the other hand, using the notation defined in (25), we have [ϕ̂ ∗ x]n−n =
T (x)[ϕ̂]m−m, so that

〈[ζ]n−n, (I −ΠSn)[ϕ̂ ∗ x]n−n〉 = 〈[ζ]n−n, (I −ΠSn)T (x)[ϕ̂]m−m〉.
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Note that [T (x)]τ = [∆τx]n−n for the columns of T (x), |τ | ≤ m. By (31), we have

(I −ΠSn)T (x) = T (ε),

and by (26),

‖(I −ΠSn)T (x)‖2F = ‖T (ε)‖2F =
∑
|τ |≤m

‖∆τε‖2n,2 ≤ (2m+ 1)σ2κ2.

Due to (36) we conclude that∥∥T (x)H(I −ΠSn)[ζ]n−n
∥∥2

2
≤ 2(2m+ 1)σ2κ2

(
1 +

√
log[1/α]

)2
with probability at least 1− α. Since∣∣〈[ζ]n−n, (I −ΠSn)T (x)[ϕ̂]m−m

〉∣∣ ≤ %̄√
2m+ 1

∥∥T (x)H(I −ΠSn)[ζ]n−n
∥∥

2
,

we arrive at the bound with probability 1− α:∣∣〈[ζ]n−n, (I −ΠSn)T (x)[ϕ̂]m−m
〉∣∣ ≤ √2σκ%̄

(
1 +

√
log[1/α]

)
.

Along with (41) this results in the bound

Prob
{∣∣δ(1)

2

∣∣ ≤ √2σ2κ(%̄+ 1)
(
1 +

√
log [1/min(α2, α3)]

)}
≥ 1− α2 − α3.(42)

3o. Let us rewrite δ
(1)
3 as follows:

δ
(1)
3 = σ2 Re〈[ζ]n−n, (I −ΠSn)M(ϕ̂)[ζ]

m+n
−m−n〉 = σ2 Reσ2〈[ζ]m+n

−m−n, QM(ϕ̂)[ζ]
m+n
−m−n〉,

whereM(ϕ̂) ∈ C(2n+1)×(2m+2n+1) is defined by (27), andQ ∈ C(2m+2n+1)×(2n+1)

is given by
Q = [Om,2n+1; I −ΠSn ;Om,2n+1]

(Hereafter we denote Om,n the m× n zero matrix.) Now, by the definition of ϕ̂
and since the mapping ϕ 7→M(ϕ) is linear,

δ
(1)
3 =

σ2

2
([ζ]

m+n
−m−n)H(QM(ϕ̂) +M(ϕ̂)HQH︸ ︷︷ ︸

K1(ϕ̂)

)[ζ]m+n
−m−n

≤ σ2%̄

2
√

2m+ 1
max

u ∈ Cm(Z),
‖u‖∗m,1 ≤ 1

([ζ]n−m)HK1(u)[ζ]m+n
−m−n

=
σ2%̄√

2m+ 1
max
|j|≤m

max
θ∈[0,2π]

1
2
([ζ]m+n
−m−n)HK1(eiθuj)[ζ]m+n

−m−n,

where uj ∈ Cm(Z), and [uj ]m−m = FH
me

j , ej being the j-th canonic basis vector.
Indeed, ([ζ]m+n

−m−n)HK1(u)[ζ]m+n
−m−n is clearly a convex function of the argument
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u as a linear function of [Re(u); Im(u)]; as such, it attains its maximum over the
set

Bm,1 = {u ∈ Cm(Z) : ‖u‖∗m,1 ≤ 1} (43)

at one of the extremal points eiθuj , θ ∈ [0, 2π], of this set. It can be directly
verified that

K1(eıθu) = K1(u) cos θ +K2(u) sin θ,

where the Hermitian matrix K2(u) is given by

K2(u) = i
(
QM(u)−M(u)HQH

)
.

Denoting qjl (ζ) = 1
2
([ζ]m+n
−m−n)HKl(u

j)[ζ]m+n
−m−n for l = 1, 2, we have

max
θ∈[0,2π]

1
2
([ζ]m+n
−m−n)HK1(eıθuj)[ζ]m+n

−m−n

= max
θ∈[0,2π]

qj1(ζ) cos θ + qj2(ζ) sin θ

=

√
|qj1(ζ)|2 + |qj2(ζ)|2 ≤

√
2 max(|qj1(ζ)|, |qj2(ζ)|). (44)

Using (28), by simple algebra we get for l = 1, 2:

Tr[Kl(u
j)2] ≤ 4 Tr[M(uj)M(uj)H] = 4(2n+ 1)‖uj‖2m,2 ≤ 4(2n+ 1).

Now let us bound Tr[Kl(u)], l = 1, 2, on the set , Bm,1 cf. (43). One can verify
that for the circulant matrix C(u), cf. (29), it holds:

QM(u) = RC(u),

where R = QQH is an (2m+ 2n+ 1)× (2m+ 2n+ 1) projection matrix of rank
s defined by

R =

Om,m Om,n+1 Om,m
On+1,m I −ΠSn On+1,m

Om,m Om,n+1 Om,m.


Hence, we can bound Tr[Kl(u)], l = 1, 2, as follows:

|Tr[Kl(u)]| ≤ 2
∣∣Tr[RC(u)]

∣∣ ≤ 2‖R‖∗ ‖C(u)‖
≤ 2‖C(u)‖ = 2

√
2m+ 2n+ 1‖ũ‖∗m+n,1, (45)

where in the last transition we used the Fourier diagonalization property (30).
Recall that u ∈ Cm(Z), hence Fm+n[u] is the Discrete Fourier Transform of the
zero-padded filter

ũ = [0; ...; 0; [u]m−m; 0; ...; 0] ∈ C2m+2n+1.
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Now combining Lemma 2 with (45) we arrive at∣∣Tr[Kl(u
j)]
∣∣ ≤ 2

√
2m+ 1(κ2

m,n + 1)(log[2m+ 2n+ 1] + 3), l = 1, 2.

By (35) we conclude that for any fixed pair (l, j) ∈ {1, 2} × {−m, ...,m}, with
probability ≥ 1− α,∣∣qjl (ζ)

∣∣ ≤ ∣∣Tr[Kl(u
j)]
∣∣+
∥∥Kl(u

j)
∥∥

F

(
1 +

√
log[2/α]

)2
.

With α0 = 2(2m+ 1)α, by the union bound together with (43) and (44) we get

Prob
{
δ

(1)
3 ≤ 2

√
2σ2%̄

[
(κ2
m,n + 1)(log[2m+ 2n+ 1] + 3)

+κm,n
(
1 +

√
log [4(2m+ 1)/α0]

)2]} ≥ 1− α0. (46)

4o. Bounding δ(2) is relatively easy since ϕo does not depend on the noise. We
decompose

δ(2) = σRe〈ζ, x− ϕo ∗ x〉n − σ2 Re〈ζ, ϕo ∗ ζ〉n.

Note that Re〈ζ, x−ϕo ∗ x〉n ∼ N (0, ‖x−ϕo ∗ x‖2n,2), therefore, with probability
≥ 1− α,

Re〈ζ, x− ϕo ∗ x〉n ≤
√

2 log[1/α]‖x− ϕo ∗ x‖n,2. (47)

On the other hand, defining

% =
√

2m+ 1‖ϕo‖∗m,1,

we have

‖x− ϕo ∗ x‖n,2 ≤ ‖x− ϕo ∗ y‖n,2 + σ‖ϕo ∗ ζ‖n,2
≤ ‖x− ϕo ∗ y‖n,2 +

√
2σ%κm,n

(
1 +

√
log[1/α]

)
(48)

with probability 1− α. Indeed, one has

‖ϕo ∗ ζ‖2n,2 =
∥∥M(ϕo)[ζ]m+n

−m−n
∥∥2

2
,

where for M(ϕo) by (28) we have

‖M(ϕo)‖2F = (2n+ 1)‖ϕo‖2m,2 ≤ κ2
m,n%

2. (49)

Using (36) we conclude that, with probability at least 1− α,

‖ϕo ∗ ζ‖2n,2 ≤ 2κ2
m,n%

2
(
1 +

√
log[1/α]

)2
, (50)

which implies (48). Using (47) and (48), we get that with probability at least
1− α4 − α5,

Re〈ζ, x− ϕo ∗ x〉n ≤
√

2 log [1/min(α4, α5)] [‖x− ϕo ∗ y‖n,2
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+
√

2σ%κm,n
(
1 +

√
log[1/min(α4, α5)]

)]
≤ ‖x− ϕo ∗ y‖n,2

√
2 log [1/min(α4, α5)]

+2σ%κm,n
(
1 +

√
log [1/min(α4, α5)]

)2
. (51)

Now, the (indefinite) quadratic form

Re〈ζ, ϕo ∗ ζ〉n = 1
2
([ζ]m+n
−m−n)HK0(ϕo)[ζ]m+n

−m−n,

where

K0(ϕo) = [Om,2m+2n+1;M(ϕo);Om,2m+2n+1]+[Om,2m+2n+1;M(ϕo);Om,2m+2n+1]H,

whence (cf. 3o)

|Tr[K0(ϕo)]| ≤ 2(2n+ 1) |ϕo0|

Let us bound |ϕo0|. Let e0 be the discrete centered Dirac vector in R2m+1, and
note that ‖Fm[e0]‖∞ = 1/

√
2m+ 1. Then,

|ϕom| = |〈[ϕo]m−m, e0〉| ≤ ‖ϕo‖∗m,1‖Fm[e0]‖∞ ≤
%

2m+ 1
,

whence |Tr[K0(ϕo)]| ≤ 2κ2
m,n%. On the other hand, by (49),

‖K0(ϕo)‖2F ≤ 4 ‖M(ϕo)‖2F ≤ 4κ2
m,n%

2.

Hence by (35),

Prob
{
−Re〈ζ, ϕo ∗ ζ〉n ≤ 2κ2

m,n%+ 2κm,n%
(
1 +

√
2 log [1/α6]

)2} ≥ 1− α6.

(52)

5o. Let us combine the bounds obtained in the previous steps with initial
bound (39). For any α ∈ (0, 1], putting αi = α/4 for i = 0, 1, 6, and αj = α/16,
2 ≤ j ≤ 5, by the union bound we get that with probability ≥ 1− α,

‖x− ϕ̂ ∗ y‖2n,2 ≤ ‖x− ϕo ∗ y‖2n,2 + 2δ(2) − 2δ(1)

[by (51)] ≤ ‖x− ϕo ∗ y‖2n,2 + 2σ‖x− ϕo ∗ y‖n,2
√

2 log[16/α]

[by (51)–(52)] + 4σ2%
[
κ2
m,n + 2κm,n

(
1 +

√
2 log[16/α]

)2]
[by (40)] + 2σ‖x− ϕ̂ ∗ y‖n,2

(√
2s+

√
2 log[16/α]

)
[by (42)] + 2

√
2σ2(%̄+ 1)

(
1 +

√
log[16/α]

)
κ

[by (46)] + 4
√

2σ2%̄
[
(κ2
m,n + 1)(log[2m+ 2n+ 1] + 3)

+κm,n

(
1 +

√
log [16(m+ 1)/α]

)2 ]
(53)
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Now, denote cα :=
√

2 log[16/α] and let

u(α) = 2
(√

2 + cα
)
, (54)

v1(α) = 4
[
κ2
m,n + 2κm,n (1 + cα)

2
]
, (55)

v2(α) = 4
√

2
[
(κ2
m,n + 1)(log[2m+ 2n+ 1] + 3)

+ κm,n

(
1 +

√
log [16(2m+ 1)/α]

)2 ]
. (56)

In this notation, (53) becomes

‖x− ϕ̂ ∗ y‖2n,2 ≤ ‖x− ϕo ∗ y‖2n,2
+ 2σ(

√
2s+ cα) (‖x− ϕ̂ ∗ y‖n,2 + ‖x− ϕo ∗ y‖n,2)

+ u(α)σ2(%̄+ 1)κ + (v1(α) + v2(α))σ2%̄, (57)

which implies, by completing the squares, that

‖x− ϕ̂ ∗ y‖n,2 ≤ ‖x− ϕo ∗ y‖n,2 + 2σ(
√

2s+ cα)

+σ
√
u(α)(%̄+ 1)κ + (v1(α) + v2(α))%̄.

Let us simplify this bound. Note that

u(α) ≤ 4cα, (58)

while on the other hand,

v1(α) + v2(α) ≤ 4
√

2(κ2
m,n + 1)(log[2m+ 2n+ 1] + 4)

+4.5(4
√

2 + 8)κm,n log [16(2m+ 1)/α]

≤ 8 (1 + 4κm,n)
2

log [110(m+ n+ 1)/α] . (59)

We finally arrive at

‖x− ϕ̂ ∗ y‖n,2 ≤ ‖x−ϕo ∗ y‖n,2 + 2σ
(√

%̄Vα +
√

(%̄+ 1)cακ +
√

2s+ cα

)
(60)

where we put

Vα := 2 (1 + 4κm,n)
2

log [110(m+ n+ 1)/α] . (61)

The bound (11) of the theorem follows from (60) after straightforward simplifi-
cations. �

B.2 Proof of Theorem 2

Denote %̂ =
√

2m+ 1‖ϕ̂‖∗m,1, and let % = %(ϕo) =
√

2m+ 1‖ϕo‖∗m,1 for some
ϕo ∈ Cm(Z). In the sequel, we use the notation defined in the proof of Theorem
1. We have the following counterpart of (39):

‖x− ϕ̂ ∗ y‖2n,2 + λ2σ2%̂2 ≤ ‖x− ϕo ∗ y‖2n,2 − 2δ(1) + 2δ(2) + λ2σ2%2.



Adaptive Signal Denoising 33

When repeating steps 1o–4o of the proof of Theorem 1 we obtain a counterpart
of (57):

‖x− ϕ̂ ∗ y‖2n,2 + λ2σ2%̂2 ≤ ‖x− ϕo ∗ y‖2n,2 + 2σ(‖x− ϕo ∗ y‖n,2
+‖x− ϕ̂ ∗ y‖n,2)(

√
2s+ cα) + u(α)σ2κ + v1(α)σ2%

+λ2σ2%2 + [u(α)κ + v2(α)]σ2%̂ (62)

with u(α), v1(α), and v2(α) given by (54)–(56). We now consider two cases as
follows.

(a) First, assume that

‖x− ϕ̂ ∗ y‖2n,2 ≤ ‖x− ϕo ∗ y‖2n,2 + 2σ(‖x− ϕo ∗ y‖n,2 + ‖x− ϕ̂ ∗ y‖n,2)(
√

2s+ cα)

+u(α)σ2κ + v1(α)σ2%+ λ2σ2%2. (63)

In this case, clearly,

‖x− ϕ̂ ∗ y‖n,2 ≤ ‖x− ϕo ∗ y‖n,2 + 2σ
(√

2s+ cα
)

+
√
u(α)σ2κ + v1(α)σ2%+ λ2σ2%2

≤ ‖x− ϕo ∗ y‖n,2 + 2σ(
√

2s+ cα) + σ(
√
u(α)κ + v1(α)%+ λ%) (64)

(b) Suppose, on the contrary, that (63) does not hold, we then conclude from (62)
that

%̂ ≤ λ−2(u(α)κ + v2(α)),

and
u(α)%̂κ + v2(α)%̂ ≤ λ−2(u(α)κ + v2(α))2.

When substituting the latter bound into (62), we obtain the bound

‖x− ϕ̂ ∗ y‖n,2 ≤ ‖x− ϕo ∗ y‖n,2 + 2σ(
√

2s+ cα)

+σ(
√
u(α)κ + v1(α)%+ λ−1(u(α)κ + v2(α)) + λ%),

which also holds in the case of (a) due to (64).

Finally, using (58), (59), and the bound

v1(α) ≤ 4(1 + κm,n)2(1 + cα)2

which directly follows from (55), we conclude that

‖x− ϕ̂ ∗ y‖n,2 ≤ ‖x− ϕo ∗ y‖n,2
+σ(λ%+ 4λ−1(cακ + Vα)) + 2σ

(√
%Wα +

√
cακ +

√
2s+ cα

)
with Vα given by (61), and Wα = (1 + κm,n)2(1 + cα)2. The bound (12) of the
theorem follows by a straightforward simplification of the above bound. �
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C Proofs for Section 4

C.1 Proof of Proposition 2

Let ΠSm be the m + 1-dimensional Euclidean projection matrix on the sub-
space Sm ⊂ Cm+1 of dimension ≤ s (in fact, this subspace is exactly of di-
mension s) generated by vectors xm0 for x ∈ S (one may set, for instance,
ΠSm = Zm(ZHmZm)−1ZHm , Zm = [z1, ..., zdim(Sm)], where zi are linearly inde-
pendent and such that zi = [xi]

m
0 with xi ∈ S). Since dim(S) ≤ s, one has

‖ΠSm‖22 = Tr(ΠSm) ≤ s.

Thus, there is a j ∈ {0, ...,m} such that the j+ 1-th column r = [ΠSm ]j of ΠSm
satisfies

‖r‖2 ≤
√

s

m+ 1
≤
√

2s

2m+ 1
,

and, because ΠSm is the projector on Sm one has xj − 〈r, xm0 〉 = 0 for all x ∈ S.
Hence, using that ∆S = S we obtain for all τ ∈ Z

xτ − 〈r, xτ−j+mτ−j 〉 = 0, τ ∈ Z.

Finally, let φo ∈ Cm(Z) = ∆−jφ(r) where φ(r) is the inverse slicing map of
r̃ ∈ Cm+1 such that r̃i = rm+1−i. Obviously, φo ∈ Cm(Z); on the other hand,

‖φo‖2 ≤
√

2s

2m+ 1
and xt − [φo ∗ x]t = 0, ∀t ∈ Z. �

C.2 Proof of Proposition 3

In the proofs to follow, the following simple statement will be of use.

Lemma 3.
(i) Suppose that for all z ∈ S there is a filter φo ∈ Cm(Z) such that z = φo ∗ z
with ‖φo‖2 ≤ ρ√

2m+1
for some ρ ≥ 1. Then for all x ∈ Xm,n(s,κ) one has

‖x− φo ∗ x‖n,2 ≤ σκ(1 + ρ). (65)

Moreover, if x ∈ Xm,n(s,κ) then

‖x− φo ∗ x‖n,∞ ≤
σκ√

2m+ 1
(1 + ρκn,m). (66)

(ii) Similarly, assume that for all z ∈ S there is φo ∈ Cm(Z) such that z =
φo ∗∆mz and ‖φo‖2 ≤ ρ√

2m+1
for some ρ ≥ 1. Then for all x ∈ Xm,n(s,κ) one

has
‖∆−m(x− φo ∗∆mx)‖n,2 ≤ σκ(1 + ρ).

Furthermore, if x ∈ Xm,n(s,κ) then

‖∆−m(x− φo ∗∆mx)‖n,∞ ≤
σκ√

2m+ 1
(1 + ρκn,m).
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Proof of the lemma. Here we prove the first statement of the lemma, proof of the
second one being completely analogous. Recall that any x ∈ Xm,n(s,κ) can be
decomposed as in x = xS + ε where xS ∈ S and ‖∆τε‖n,2 ≤ κσ for all |τ | ≤ m.
Thus,

‖x− [φo ∗ x]‖n,2 ≤ ‖xS − φo ∗ xS‖n,2 + ‖ε‖n,2 + ‖φo ∗ ε‖n,2 = κσ + ‖φo ∗ ε‖n,2.(67)

On the other hand, by the Cauchy inequality,

‖φo ∗ ε‖2n,2 =

n∑
t=−n

∣∣∣∣∣
m∑

τ=−m
φoτεt−τ

∣∣∣∣∣
2

≤ ‖φo‖22
n∑

t=−n

m∑
τ=−m

|εt−τ |2

= ‖φo‖22
m∑

τ=−m
‖∆τε‖2n,2 ≤ ρ2σ2κ2.

When substituting the latter bound into (67) we obtain (65).
To show (66) recall that in the case of x ∈ Xm,n(s,κ) we have x = xS + ε

with |ετ | ≤ κσ√
2n+1

for all |τ | ≤ m+ n. Then for |t| ≤ n we get

|xt − [φo ∗ x]t| ≤ |xSt − [φo ∗ xS ]t|+ |εt|+ |[φo ∗ ε]t|

≤ κσ√
2n+ 1

+ ‖φo‖2‖∆−tε‖m,2

≤ κσ√
2n+ 1

+
ρ√

2m+ 1

σκ
√

2m+ 1√
2n+ 1

≤ σκ√
2m+ 1

(1 + ρκn,m). �

Proof of the proposition. W.l.o.g. we may assume that m = 2mo. In the premise
of the proposition, by Proposition 2, for any mo ≥ s − 1 there exists a filter
φo ∈ Cmo(Z) such that

‖φo‖2 ≤
√

2s

2mo + 1
, z = φo ∗ z ∀z ∈ S. (68)

When setting ϕo = φo ∗ φo ∈ Cm we have z − ϕo ∗ z = 0 ∀z ∈ S, and11

‖ϕo‖m,2 ≤ ‖ϕo‖∗m,1 ≤
4s√

2m+ 1
(69)

(cf. [15, Proposition 3] or [20, Lemma 16]). We now apply Lemma 3.i to obtain
for all x ∈ Xm,n(s,κ)

‖x− ϕo ∗ x‖n,2 ≤ σκ(4s+ 1). (70)

Moreover, note that
‖ϕo ∗ ζ‖2n,2 = 〈ζ,M(ϕo)ζ〉n,

11 In the case of m = 2mo + 1 one may consider two filters φo and ψo of widths mo

and mo + 1 respectively, and then build ϕo = φo ∗ ψo ∈ Cm(Z). One easily verifies
that in this case ‖ϕo‖∗m,1 ≤

√
2m+ 1‖φo‖2‖ψo‖2 ≤ 4s√

2m+1
.
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where M(ϕ) is defined by (27). When using the bound (69) along with (28) we
obtain

‖M(ϕo)‖2F = (2n+ 1)‖ϕo‖22 ≤ 16κ2
m,ns

2;

by (36) this implies that for any α ∈ (0, 1), with probability at least 1− α,

‖ϕo ∗ ζ‖n,2 ≤ 4
√

2σκm,ns
(
1 +

√
log[1/α]

)
. (71)

The latter bound taken together with (70) implies that with probability ≥ 1−α

‖x− ϕo ∗ y‖n,2 ≤ 4
√

2κm,nσs
(
1 +

√
log[1/α]

)
+ σκ(4s+ 1)

≤ Cσs
(
κm,n

√
log[1/α] + κ

)
when α ≤ 1/2. We conclude the proof by substituting the above bound for the
loss of the estimate x̂ = ϕo ∗ y and the bound ‖ϕo‖∗m,1 ≤ 4s into the oracle
inequalities of Theorems 1 and 2. �

C.3 Proof of Proposition 4

We provide the proof for the case of constrained estimator x̂con, the proof of the
proposition for penalized estimator x̂pen follows exactly same lines. Let ϕ̂ = ϕ̂con.

1o. W.l.o.g. we assume that m = 2mo. By Proposition 2, for such mo there is a
filter φo ∈ Cmo(Z) satisfying relationships (68). When applying Lemma 3.i we
obtain for all x ∈ Xm,n(s,κ)

‖x− φo ∗ x‖n,∞ ≤
σκ√

2mo + 1
(1 +

√
2sκn,mo). (72)

Next, replacing ϕo with φo and n with m in the derivation which led us to (71)
in the proof of Proposition 3 we conclude that

‖φo ∗ ζ‖m,2 ≤ 2σκmo,m
√
s
(
1 +

√
log[1/α]

)
≤ 2
√

2sσ
(
1 +

√
log[1/α]

)
. (73)

2o. Let now |t| ≤ n−mo. We decompose

|[x− ϕ̂ ∗ y]t| = |[(φo + (1− φo)) ∗ (x− ϕ̂ ∗ y)]t|
≤ |[φo ∗ (x− ϕ̂ ∗ y)]t|+ |[(1− φo) ∗ (1− ϕ̂) ∗ x]t|

+σ|[ϕ̂ ∗ ζ]t|+ σ|[ϕ̂ ∗ φo ∗ ζ]t|
=: δ(1) + δ(2) + δ(3) + δ(4). (74)

We have

δ(1) ≤ ‖φo‖2
∥∥∆−t[x− ϕ̂ ∗ y]

∥∥
mo,2

≤ 2
√
s√

2m+ 1
‖x− ϕ̂ ∗ y‖n,2.

Using the bound (14) of Proposition 3 we conclude that with probability ≥
1− α/3

δ(1) ≤ C
√

s

2m+ 1
ψ
α/3

m,n(σ, s,κ).
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Next, using (72) we get

δ(2) ≤ (1 + ‖ϕ̂‖1)
∥∥∆−t[(1− φo) ∗ x]

∥∥
mo,∞

≤ C ′s σκ√
2m+ 1

(1 +
√

2sκn,mo) ≤
Cs3/2σκ√

2m+ 1

(recall that n ≥ mo). Further, by the Parseval’s identity, with probability ≥
1− α/3,

δ(3) = σ|〈Fm[ϕ̂], Fm[∆−tζ]〉| ≤ σ‖ϕ̂‖∗m,1‖∆−tζ‖∗m,∞

≤ C ′sσ√
2m+ 1

√
2 log [3(2m+ 1)/α]

due to (32). Finally, using (73) and the fact that the distribution of ζt+m+mo
t−m−mo

is the same as that of ζm+mo
−m−mo we conclude that with probability ≥ 1 − α/3 it

holds

‖∆−t[φo ∗ ζ]‖m,2 ≤ 2
√

2sσ
(
1 +

√
log[3/α]

)
.

Therefore, we have for δ(4):

δ(4) ≤ σ‖ϕ̂‖m,2
∥∥∆−t[φo ∗ ζ]

∥∥
m,2
≤ C ′sσ√

2m+ 1
2
√

2sσ
(
1 +

√
log[3/α]

)
=

C ′′s3/2σ√
2m+ 1

(
1 +

√
log[3/α]

)
with prob. ≥ 1−α/3. Substituting the bounds for δ(k), k = 1, ..., 4, into (74) we
arrive at (16). �

C.4 Proof of Proposition 5

As a precursory remark, note that if a finite-dimensional subspace S is shift-
invariant, i.e., ∆S ⊆ S, then necessarily ∆S = S (indeed, ∆ obviously is a
linear transformation with a trivial kernel).

1o. To prove the direct statement, note that the solution set of (17) with
deg(p(·)) = s is a shift-invariant subspace of C(Z) – let us call it S ′. Indeed,
if x ∈ C(Z) satisfies (17), so does ∆x, so S ′ is shift-invariant. To see that
dim(S ′) = s, note that x 7→ xs1 is a bijection S ′ → Cs: under this map arbitrary
xs1 ∈ Cs has a unique preimage. Indeed, as soon as one fixes xs1, (17) uniquely
defines the next samples xs+1, xs+2, ... (note that p(0) 6= 0); dividing (17) by ∆s,
one can retrieve the remaining samples of x since deg(p(·)) = s (we used that ∆
is bijective on S).
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2o. To prove the converse, first note that any polynomial p(·) with deg(p(·)) = s
and such that p(0) = 1 is uniquely expressed via its roots z1, ..., zs as

p(z) =

s∏
k=1

(1− z/zk).

Since S is shift-invariant, we have∆S = S as discussed above, i.e.,∆ is a bijective
linear operator on S. Let us fix some basis E = [e1; ...; es] of S and denote A the
s×s representation matrix of ∆ in this basis, that is, ∆(ej) =

∑s
i=1 aije

i. By the
Jordan theorem basis E can be chosen in such a way that A is upper-triangular.
Then, any vector x ∈ S satisfies q(∆)x ≡ 0 where

q(z) =

s∏
i=1

(aii − z) = det(A− zI)

is the characteristic polynomial of A. Note that detA =
∏s
i=1 aii 6= 0 since ∆ is

a bijection. Hence, choosing

p(∆) =
q(∆)

detA

we obtain
∏s
i=1(1 − ci∆)x ≡ 0 for some complex ci 6= 0. This means that S

is contained in the solution set S ′ of (17) with deg(p(·)) = s and such that
p(0) = 1. Note that by 1o S ′ is also a shift-invariant subspace of dimension s,
thus S and S ′ coincide. Finally, uniqueness of p(·) follows from the fact that q(·)
is a characteristic polynomial of A. �

C.5 Proof of Proposition 6

To prove the proposition we need to exhibit a vector q ∈ Cn+1 of small `2-norm
and such that the polynomial 1 − q(z) = 1 −

[∑n
i=0 qiz

i
]

is divisible by p(z),
i.e., that there is a polynomial r(z) of degree n− s such that

1− q(z) = r(z)p(z).

Indeed, this would imply that

xt − [q ∗ x]t = [1− q(∆)]xt = r(∆)p(∆)xt = 0

due to p(∆)xt = 0,

Our objective is to prove the inequality ‖q‖2 ≤ C ′s
√

log[ns]
n . So, let θ1, ..., θs

be complex numbers of modulus 1 – the roots of the polynomial p(z). Given
δ = 1− ε ∈ (0, 1), let us set δ̄ = 2δ/(1 + δ), so that

δ̄

δ
− 1 = 1− δ̄ > 0. (75)

Consider the function

q̄(z) =

s∏
i=1

z − θi
δz − θi

.
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Note that q̄(·) has no singularities in the circle

B = {z : |z| ≤ 1/δ̄};

besides this, we have q̄(0) = 1. Let |z| = 1/δ̄, so that z = δ̄−1w with |w| = 1.
We have

|z − θi|
|δz − θi|

=
1

δ

|w − δ̄θi|
|w − δ̄

δ θi|
.

We claim that when |w| = 1, |w − δ̄θi| ≤ |w − δ̄
δ θi|.

Indeed, assuming w.l.o.g. that w is not proportional to θi, consider tri-
angle ∆ with the vertices A = w, B = δ̄θi and C = δ̄

δ θi. Let also D = θi.

By (75), the segment AD is a median in ∆, and ∠CDA is ≥ π
2 (since D

is the closest to C point in the unit circle, and the latter contains A), so

that |w − δ̄θi| ≤ |w − δ̄
δ θi|.

As a consequence, we get

z ∈ B ⇒ |q̄(z)| ≤ δ−s, (76)

whence also
|z| = 1 ⇒ |q̄(z)| ≤ δ−s. (77)

Now, the polynomial p(z) =
∏s
i=1(z − θi) on the boundary of B clearly satisfies

|p(z)| ≥
[

1

δ̄
− 1

]s
=

[
1− δ

2δ

]s
,

which combines with (76) to imply that the modulus of the holomorphic in B
function

r̄(z) =

[
s∏
i=1

(δz − θi)

]−1

is bounded with δ−s
[

1−δ
2δ

]−s
=
[

2
1−δ

]s
on the boundary of B. It follows that the

coefficients rj of the Taylor series of r̄ satisfy

|rj | ≤
[

2

1− δ

]s
δ̄j , j = 0, 1, 2, ...

When setting

q`(z) = p(z)r`(z), r`(z) =
∑̀
j=1

rjz
j , (78)

for |z| ≤ 1, utilizing the trivial upper bound |p(z)| ≤ 2s, we get

|q`(z)− q̄(z)| ≤ |p(z)||r`(z)− r̄(z)| ≤ 2s
[

2

1− δ

]s ∞∑
j=`+1

|rj |
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≤
[

4

1− δ

]s
δ̄`+1

1− δ̄
. (79)

Note that q`(0) = p(0)r`(0) = p(0)r̄(0) = 1, that q` is a polynomial of degree
`+ s, and that q` is divisible by p(z). Besides this, on the unit circumference we
have, by (79),

|q`(z)| ≤ |q̄(z)|+
[

4

1− δ

]s
δ̄`+1

1− δ̄
≤ δ−s +

[
4

1− δ

]d
δ̄`+1

1− δ̄︸ ︷︷ ︸
R

, (80)

where we used (77). Now,

δ̄ =
2δ

1 + δ
=

2− 2ε

2− ε
=

1− ε
1− ε/2

≤ 1− ε/2 ≤ e−ε/2,

and
1

1− δ̄
=

1 + δ

1− δ
=

2− ε
ε
≤ 2

ε
.

We can upper-bound R:

R =

[
4

1− δ

]s
δ̄`+1

1− δ̄
≤ 22s+1

εs+1
e−ε`/2

Now, given positive integer ` and positive α such that

α

`
≤ 1

4
, (81)

let ε = α
2`s . Since 0 < ε ≤ 1

8 , we have − log(δ) = − log(1−ε) ≤ 2ε = α
`s , implying

that δ̄ ≤ e−ε/2 = e−
α

4`s , and

R ≤
[

8`s

α

]s+1

exp
{
− α

4s

}
.

Now let us put
α = α(`, s) = 4s(s+ 2) log(8`s);

observe that this choice of α satisfies (81), provided that

` ≥ O(1)s2 log(s+ 1)

with properly selected absolute constant O(1). With this selection of α, we have
α ≥ 1, whence

R
[α
`

]−1

≤ exp
{
− α

4s

}[8`s

α

]s+1
`

α
≤ exp

{
− α

4s

}
[8`s]s+2

≤ exp{−(s+ 2) log(8`s)} exp{(s+ 2) log(8`s)} = 1,
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that is,

R ≤ α

`
≤ 1

4
. (82)

Furthermore,

δ−s = exp{−s log(1− ε)} ≤ exp{2εs} = exp{α` } ≤ 2,
δ−2s = exp{−2s log(1− ε)} ≤ exp{4εs} = exp{ 2α

` }
≤ 1 + exp{ 1

2}
2α
` ≤ 1 + 4α

` .
(83)

When invoking (80) and utilizing (83) and (82) we get

1

2π

∮
|z|=1

|q`(z)|2|dz| ≤ δ−2s + 2δ−sR+R2 ≤ 1 + 4
α

`
+ 4R+

1

4
R ≤ 1 + 10

α

`
.

On the other hand, denoting by q0, q1,...,q`+s the coefficients of the polynomial
q` and taking into account that q̄0 = q`(0) = 1, we have

1 +

`+s∑
i=1

|qi|2 = |q0|2 + ...+ |q`+s|2 =
1

2π

∮
|z|=1

|q`(z)|2|dz| ≤ 1 + 10
α

`
. (84)

We are done: when denoting n = `+s, and q(z) =
∑n
i=1 qjz

j , we have the vector
of coefficients q = [0; q1; ...; qn] ∈ Cn+1 of q(z) such that, by (84),

‖q‖22 ≤
40s(s+ 2) log[8s(n− s)]

n− s
,

and such that the polynomial q`(z) = 1 + q(z) is divisible by p(z) due to (78). �

C.6 Proof of Lemma 1

Let ΠS2m be the (2m+1)×(2m+1) projector matrix built in the proof of Propo-
sition 2, but now let φo ∈ Cm(Z) be obtained from the last column of ΠS2m .
As in that proof, due to the shift-invariance of Hs[ω] we have x = φo ∗ ∆mx
∀x ∈ Hs[ω]. To prove the proposition it remains to bound ‖φo‖2.

Note that in the premise of the proposition Sm is spanned by vectors{
v(ω) : [v(ω)]t =

eiωkt√
m+ 1

, 0 ≤ t ≤ 2m

}
, ω ∈ {ω1, ..., ωs}.

Hence, the projector ΠS2m can be written as

ΠSm = V
(
V HV

)−1
V H,

where V is an (2m+1)×s Vandermonde matrix with columns v(ωk), k = 1, ..., s.
Note that since s ≤ 2m + 1, and ωk, k = 1, ..., s are distinct, matrix V has full
column rank. Now, in order to bound ‖φo‖2 from above it suffices to separate
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the minimal eigenvalue λmin(V HV ) of V HV from zero. Indeed, assuming that
λmin(V HV ) > 0 we may write

ΠSm = UUH,

where U = [U1, ..., Us] is the unitary normalization of V :

U = [U1 · · ·Us] = V (V HV )−1/2, UHU = Is.

Let u = [u1, ..., us] be the last row of U , and v that of V . Note that the vector
ψ = uUH =

∑s
k=1 uk[Uk]H has the same `2-norm as φo, and so ‖φo‖22 = ‖u‖22.

On the other hand, because u = v(V HV )−1/2, we arrive at

‖u‖22 ≤ ‖v‖22λ−1
min(V HV ) ≤ s

2m+ 1
λ−1

min(V HV )

where the last inequality is due to the bound (2m + 1)−1/2 on the moduli of
elements of v. Finally, we utilize the bound on the condition number of a Van-
dermonde matrix:

Lemma 4 ([31, Theorem 2.3]). Let δmin be given by (22); one has

λmax(V HV )

λmin(V HV )
≤
(
m− 2π

δmin

)−1(
m+

2π

δmin

)
.

We clearly have ‖V ‖∗ ≥ 1, whence λmax(V HV ) ≥ 1. Together with (24) this
results in

λ−1
min(V HV ) ≤ ν + 1

ν − 1
,

whence the required bound on ‖φo‖2. �

C.7 Proof of Proposition 9

Note that in the premise of the proposition k = bL/(s log[L])c is correctly defined
and K = L− 2k ≥ L/2 so that

κK,k ≤ C(s logL)−1/2 and κk,K ≤ C ′
√
s logL. (85)

When applying Proposition 3 (recall that κ = 0 in our setting), we conclude
that the error of the estimate ϕ̂ ∗ y satisfies, with probability at least 1− α/3,

‖x− x̂‖K,2 ≤ Cσ
(
κk,Ks

√
log[1/α] +

√
s log[L/α]

)
. (86)

On the other hand, due to κK,k ≤ 1, applying Proposition 7 we conclude that
with probability 1− α/3 the error of the left estimate ϕ̂+ ∗∆my satisfies:∥∥∆−m(x− ϕ̂+ ∗∆my)

∥∥
k,2
≤ C ′σ

(
κK,ks

2 log[L]
√

log[1/α] + s
√

log[L] log[L/α]
)
,
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and the same estimation holds true for the right estimate ϕ̂− ∗∆−my:∥∥∆m(x− ϕ̂− ∗∆−my)
∥∥
k,2
≤ C ′σ

(
κK,ks

2 log[L]
√

log[1/α] + s
√

log[L] log[L/α]
)
.

When combining the latter bounds with (86) we arrive at the bound with
probability ≥ 1− α:

‖x− x̂‖L,2 ≤
∥∥∆m(x− ϕ̂− ∗∆−my)

∥∥
k,2

+ ‖x− x̂‖K,2 +
∥∥∆−m(x− ϕ̂+ ∗∆my)

∥∥
k,2

≤ Cσs
√

log[L] log[L/α] + C ′σs
√

log[1/α](κk,K + κK,ks log[L])

(by (85)) ≤ Cσs log[L/α] + C ′′σs
√
s log[L] log[1/α] ≤ Cσs3/2 log[L/α]. �

D Naive adaptive estimate

In this section,12 we consider the “naive” adaptive estimate x̂ = φ̂ ∗ y where
φ̂ ∈ Cm(Z) solves the optimization problem

min
φ∈Cm(Z)

‖y − φ ∗ y‖n,2 subject to ‖φ‖2 ≤
ρ√

2m+ 1
. (87)

Recall that our goal is to show that using estimate x̂ is really not a good idea.
To make the long story short, from now on, we consider the simplified version of
the estimation problem in which m = n, signals are 2m+ 1-periodic, and linear
estimates are in the form of circular (periodic) convolution

[φ ∗ y]t =

m∑
τ=−m

φτys(t,τ), |t| ≤ m,

where s(t, τ) = [t+m− τ mod 2m+1]−m. Because the Discrete Fourier Trans-
form diagonalizes the periodic convolution, problem (87) may be equivalently
reformulated in the space of Fourier coefficients

min
w∈C2m+1

‖z − Zw‖n,2 subject to ‖w‖2 ≤ ρ (88)

where z = Fm[y], Z = diag(z) (with A = diag(a) being the diagonal matrix
with entries Aii = ai), and w is a properly “rephased” DFT of φ with |wk| =√

2m+ 1 |(Fm[φ])k|, 1 ≤ k ≤ 2m+ 1.
Consider the situation in which the signal to recover is just one “complex

sinusoid,” e.g., xτ = ae
2πiτ
2m+1 , τ ∈ Z, a ∈ C, and let us show that the error of the

naive estimate may be much larger than the “oracle” error. We have Fm[x] = fe1

where e1 is the first basis orth, f = a
√

2m+ 1 with |f | = ‖x‖m,2 = |a|
√

2m+ 1,
and the “sequence-space” observation z satisfies

z = fe1 + σζ, ζ ∼ CN (0, In).

12 We use notation defined in Sections 2.1 and A.1.
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Obviously, in this case there exist a filter φo with ‖φo‖2 = (2m + 1)−1/2 such
that x = φo ∗x, so that the integral α-risk of the “oracle estimate” φo ∗y is O(σ)
up to logarithmic in α factor. Let us show that in this simple situation the risk
of the naive estimate may be significantly higher.

First of all, note that the optimal solution ŵ to the problem (88) with ρ = 1
is of the form

ŵk =
|zk|2

|zk|2 + λ
, 1 ≤ k ≤ 2m+ 1

where λ is chosen to ensure ‖ŵ‖2 = 1. Let us bound λ from below. We have

1 = ‖ŵ‖22 =
|z1|4

(|z1|2 + λ)2
+

2m+1∑
k=2

σ4|ζk|4

(σ2|ζk|2 + λ)2

≥
2m+1∑
k=2

σ4|ζk|4

(σ2M2
m + λ)2

≥ σ4S2
m

2m(λ+ σ2Mm)2

where Mm = max1≤k≤2m+1 |ζk|2 and Sm =
∑2m+1
k=2 |ζk|2. Since with high prob-

ability (say, 1 − O(1/m)) Mm = O(logm) and Sm = O(m) (cf. (32) and (33)),
for m large enough one has

λ ≥ σ2

(
Sm√
2m
−Mm

)
≥ cσ2

√
m

with probability at least 1−O(1/m). As a result,

1− ŵ1 = 1− |z1|2

|z1|2 + λ
=

λ

|z1|2 + λ
≥ λ

(|f |+ σ|Mn|)2 + λ
≥ c′

whenever f satisfies |f |2 ≤ Cσ2
√
m. Next, observe that

‖x− x̂‖2m,2 = ‖Fm[x]− Zŵ‖22 = ‖fe1 − Zŵ‖22 ≥ |f − z1ŵ1|2

≥ 1
2
|f(1− ŵ1)|2 − σ2|ζ1|2ŵ2

1 ≥ c|f |2 − σ2Mm ≥ c′|f |2

for |f | ≥ c′′σ
√

logm. In other words, when the signal amplitude satisfies

cσ2 logm

m
≤ |a|2 ≤ Cσ2

√
m
,

the loss ‖x̂ − x‖m,2 of the naive estimate is lower bounded, with probability at
least 1 − O(1/m), with c′‖x‖m,2. In particular, when a � σm−1/4 this error is
at least order of σm1/4, which is incomparably worse than the error O(σ) of the
oracle estimate.
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