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Exact controllability for systems describing plate vibrations.

A perturbation approach.∗

Mégane Bournissou† Sylvain Ervedoza† Marius Tucsnak†

Abstract

The aim of this paper is to prove new exact controllability properties of systems de-
scribed by perturbations of the classical Kirchhoff plate equation. We first consider systems
described by an abstract plate equation with a bounded control operator. The generator of
these systems is perturbed by bounded operators which are not necessarily compact, thus
not falling in the range of application of compactness-uniqueness arguments. Our first
main result is abstract and can be informally stated as follows: if the system described by
the corresponding unperturbed abstract wave equation, with the same control operator, is
exactly controllable (in some time), then the considered perturbed plate system is exactly
controllable in arbitrarily small time. The employed methodology is based, in particu-
lar, on frequency-dependent Hautus type tests for systems with skew-adjoint operators.
When applied to systems described by the classical Kirchhoff equations, our abstract re-
sults, combined with some elliptic Carleman-type estimates, yield exact controllability in
arbitrarily small time, provided that the system described by the wave equation in the
same spatial domain and with the same control operator is exactly controllable. The same
abstract results can be used to prove the exact controllability of the system obtained by
linearizing the von Kármán plate equation around a real analytic stationary state. This
leads, via a fixed-point method, to our second main result: the nonlinear system described
by the von Kármán plate equations is locally exactly controllable around any stationary
state defined by a real analytic function. We also discuss the possible application of the
methods in this paper to systems described by Schrödinger type equations on manifolds
or by the related Berger’s nonlinear plate equation.

1 Introduction

The exact controllability for systems described by the linear plate equation, designed as Kirch-
hoff plate equation in the remaining part of this paper, via a distributed internal control is
by now a well-understood subject. The existing type of results asserts that, under appropri-
ate conditions on the domain where the PDE holds and on the support of the control, exact
observability holds in arbitrarily small time (see, for instance, Zuazua [36, Appendix 1] for an
early result of this type).

A natural question is the robustness of these results when the bilaplacian appearing in the
Kirchhoff equation is perturbed by a linear second order differential operator. As far as we
know, there is no result in this direction, with the exception of the case when the coefficients
of the perturbing operator are small (in an appropriate sense), where this robustness follows
from simple functional analytic arguments. For the related problem of exact controllability of
systems described by Schrödinger equations with the Laplacian perturbed by multiplication
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operators the literature contains several results which assume either that a geometric optics
condition holds or that the domain in which the Schrödinger equation holds is a disk or a torus,
see Anantharaman, Léautaud and Macià [1], Bourgain, Burq and Zworski [7] and references
therein.

In this work we assume that the spatial domain occupied by the plate and the control
operator are such that the system described by the wave equation in the same domain and with
the same control operator is exactly controllable. One of our main results asserts that under
this assumption, which is strictly stronger than the exact controllability of the unperturbed
Kirchhoff system (see comments in Section 2 below), combined with a unique continuation
hypothesis, the perturbed plate system is exactly controllable.

The remaining part of this work is organized as follows. Section 2 is devoted to a detailed
description of the general context and to the statement of the main results. In Section 3,
we describe, in an abstract setting, a strategy, based on resolvent estimates, to deal with
bounded perturbations of the generator of control systems. In Section 4, we give a Hautus-
type condition for the exact observability of systems described by abstract Schrödinger and
Kirchhoff equations. This test is then used in Section 5 to prove the exact controllability
of linear perturbed abstract systems. These abstract results are then used in Section 6 to
prove the exact controllability of linear perturbed Kirchhoff equations stated in Theorem 2.4.
In Section 7, using a fixed-point theorem, one can deduce the exact controllability of the
nonlinear Von Kármán plate model given in Theorem 2.6.

Finally, in Section 8, we indicate how our methodology can be used to tackle perturba-
tions of the system described by the Schrödinger or plate equations on a class of compact
manifolds and of the nonlinear system described by Berger’s equation, which can be seen as
a simplification of the von Kármán system.

2 Context and statement of the main results

As already mentioned, the exact controllability of the systems we are interested in is strongly
related to the similar property for systems described by the Schrödinger and wave equations.
In particular, in the case of boundary conditions corresponding (at least for a flat boundary)
to the hinged case, these properties can be derived from the corresponding properties of the
system described by the Schrödinger equation with homogeneous Dirichlet boundary condition
and with the same control operator. Moreover, the exact controllability in any positive time of
Schrödinger type systems can be obtained from the exact controllability (in some time) of the
corresponding system described by the wave equation as done in Miller [41, Remark 10.3] and
Tucsnak and Weiss [47, Section 6.8]. Thus, in the above sense, the exact controllability proper-
ties of systems described by the wave equation implies the same property (in arbitrarily small
time) for the corresponding systems described by the Schrödinger or Kirchhoff plate equations.

To state the above assertions in a more precise manner, we introduce some notation that
will be used in the remaining part of this paper. Let n ∈ N and let Ω ⊂ Rn be an open
bounded set with ∂Ω of class C3 or let Ω be a rectangular domain. We first consider the
control system, described by a wave equation,{

v̈(t, x)−∆v(t, x) = u(t, x)χO(x) (t > 0, x ∈ Ω),
v(t, x) = 0 (t > 0, x ∈ ∂Ω),

(Σwave)

where O is an open nonempty subset of Ω, χO ∈ L∞(Ω) is non negative and positive in O,

u is the control function and

[
v
v̇

]
is the state trajectory of the system. This system, with

2



input space L2(Ω), is clearly well-posed in the state space H1
0 (Ω) × L2(Ω), where, as usual,

for every m ∈ N we denote by Hm(Ω), the space of functions in L2(Ω) with distributional
derivatives, up to order m in L2(Ω) and by Hm

0 (Ω) the closure of C∞0 (Ω) in Hm(Ω). Using
the same notation as for defining (Σwave) we define two other systems (Σschrod) and (Σplate)
which correspond, respectively, to the Schrödinger and Kirchhoff plate equations, by{

ż(t, x) + i∆z(t, x) = u(t, x)χO(x) (t > 0, x ∈ Ω),
z(t, x) = 0 (t > 0, x ∈ ∂Ω),

(Σschrod)

and {
ẅ(t, x) + ∆2w(t, x) = u(t, x)χO(x) (t > 0, x ∈ Ω),
w(t, x) = 0, ∆w(t, x) = 0 (t > 0, x ∈ ∂Ω).

(Σplate)

It is well-known that (Σschrod) and (Σplate) are well-posed control systems, both with input
space L2(Ω) and with state space L2(Ω) and

(
H2(Ω) ∩H1

0 (Ω)
)
× L2(Ω), respectively. The

exact controllability properties of the three above systems are connected by a result that goes
back to Lebeau [35] (see also Tucsnak and Weiss [47, Sections 6.7 and 6.8]).

Proposition 2.1. Assume that the system (Σwave) is exactly controllable (in some time).
Then, the systems (Σschrod) and (Σplate) are exactly controllable in arbitrarily small time.

Remark 2.2. It appears that for the exact controllability in some time τ of (Σwave), a crucial
sufficient condition on the control domain is the following:
(BLR): Any light ray, travelling in Ω at unit speed and reflected according to geometric optics
laws when it hits the boundary ∂Ω, will hit O in time 6 τ .
This condition was first considered for the wave equation by Rauch and Taylor in [45] for a
manifold, by Bardos, Lebeau and Rauch in [2] for bounded open sets Ω with ∂Ω of class C∞

(see also [3] in the case of boundary control) and later generalized to domains with ∂Ω of class
C3 by Burq in [8]. It also has been proved to be sufficient for the Schrödinger equation by
Lebeau in [35] (actually, Lebeau deals with boundary control, but the same strategy holds for
internal control). This condition is “almost” necessary in a sense made precise in [3], and we
shall refer to it as the geometric control condition of Bardos, Lebeau and Rauch or, shortly, the
(BLR) condition. However, this condition is not necessary for the controllability of systems
described by the Schrödinger or the Kirchhoff equations. This can be seen, for instance, in
the case when Ω is a rectangular domain, for which it has been shown in Jaffard [28] and
Komornik [31] that the exact controllability in arbitrarily small time of the plate equation
holds for every open nonempty subset O of Ω.

The first aim of this paper is to investigate the robustness of the result in Proposition 2.1
when the Laplacian in (Σschrod) or the bi-Laplacian in (Σplate) are perturbed by lower order
linear operators. In the case of the Schrödinger equation we have:

Proposition 2.3. Assume that the system (Σwave) is exactly controllable (in some time) and
let a ∈ L∞(Ω;R). Then the system{

ż(t, x) + i∆z(t, x) + ia(x)z(t, x) = u(t, x)χO(x) (t > 0, x ∈ Ω),
z(t, x) = 0 (t > 0, x ∈ ∂Ω),

(2.1)

with state and control space L2(Ω), is exactly controllable in any positive time.

Although we did not find the above result explicitly stated in the literature, one can say
that it makes part of the folklore in the field. For the sake of completeness, we will explain in
Section 3 how Proposition 2.3 follows from known resolvent estimates. Let us also note that
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when a stronger version of the (BLR) condition holds, such a perturbation can be studied
using Carleman estimates which are appropriate to absorb the lower-order terms (possibly
depending on time and space), as done, for instance, in Baudouin and Puel [5] or Yuan and
Yamamoto [48]. Moreover, it has been shown in Burq and Zworski [9] and Burq, Bourgain
and Zworski [7] that if Ω is a rectangular domain then the conclusion of Proposition 2.3 holds
for any open nonempty set O ⊂ Ω.

Much less is known for similar perturbations (bounded but not compact in the state space)
of the Kirchhoff system (Σplate). Our main result on linearly perturbed Kirchhoff systems,
which is proved in Section 6, is:

Theorem 2.4. Let (ak`)16k,`6n be functions in W 2,∞(Ω;R) such that
ak` = a`k (1 6 k, ` 6 n),
n∑
`=1

∂ak`
∂x`

(x) = 0 (k ∈ {1, 2, . . . , n}, x ∈ Ω).
(2.2)

Let (bk)16k6n be functions in W 1,∞(Ω) and let c ∈ L∞(Ω). Moreover, suppose that the system
(Σwave), with state space H1

0 (Ω) × L2(Ω) and control space L2(Ω), is exactly controllable (in
some time). Then, the equation

ẅ(t, x) + ∆2w(t, x) +

n∑
k,`=1

ak`(x)
∂2w

∂xk∂x`
(t, x)

+
n∑
k=1

bk(x)
∂w

∂xk
(t, x) + c(x)w(t, x) = u(t, x)χO(x) (t > 0, x ∈ Ω), (2.3)

with the boundary conditions

w(t, x) = 0, ∆w(t, x) = 0 (t > 0, x ∈ ∂Ω), (2.4)

defines a system, with state space
(
H2(Ω) ∩H1

0 (Ω)
)
× L2(Ω) and control space L2(Ω), which

is exactly controllable in any positive time.

Remark 2.5. In the particular case when the matrix (ak`)16k,`6n vanishes, the result in
Theorem 2.4 has been proven in Cindea and Tucsnak [15]. Moreover, in the same reference,
the exact controllability in some time (not necessarily in an arbitrarily small time) of the
system (2.3)-(2.4) has been established if ak` = −αδk`, where α > 0 and δk` is the Kronecker
symbol.

The second objective of this paper is to prove the local exact controllability around equilib-
rium states for systems describing the nonlinear vibrations of elastic plates. Our main result
in this direction concerns the von Kármán plate model, which is described by the equations

ẅ(t, x) + ∆2w(t, x) + [w,Φ(w,w)](t, x) = f(x) + u(t, x)χO(x) (t > 0, x ∈ Ω),
w(t, x) = ∆w(t, x) = 0 (t > 0, x ∈ ∂Ω),
w(0, x) = w0(x), ẇ(0, x) = w1(x) (x ∈ Ω),

(2.5)

where Ω ⊂ R2 is an open, bounded and nonempty set, f is a given force field, the Airy stress
function Φ(v, w) is the solution of the boundary value problem{

∆2Φ(v, w)(t, x) = [v, w](t, x) (t > 0, x ∈ Ω),

w(t, x) =
∂w

∂ν
(t, x) = 0 (t > 0, x ∈ ∂Ω),

(2.6)

4



and the bracket [·, ·] : H2(Ω)×H2(Ω)→ L1(Ω) is defined by

[ψ,ϕ] =
∂2ψ

∂x2
1

∂2ϕ

∂x2
2

+
∂2ψ

∂x2
2

∂2ϕ

∂x2
1

− 2
∂2ψ

∂x1∂x2

∂2ϕ

∂x1∂x2
(ψ,ϕ ∈ H2(Ω)). (2.7)

In the above system, which is one of the most popular nonlinear models describing the vi-
brations of elastic plates (see, for instance, Berger and Fife [6], Ciarlet and Rabier [13] for
basic facts on this type of model), w stands for the transverse displacement, whereas the in-
plane and the rotational inertia are neglected. The control function is u ∈ L2([0,∞), L2(Ω)),
whereas O is an open nonempty subset of Ω, designing the region where the control acts, and
χO ∈ L∞(Ω) is non negative and positive in O.

Let η be a stationary solution corresponding to the forcing term f , i.e. satisfying{
∆2η(x) + [η,Φ(η, η)](x) = f(x) (x ∈ Ω),
η(x) = ∆η(x) = 0 (x ∈ ∂Ω).

(2.8)

A natural question is the controllability of the system defined by (2.5) around the equilibrium
η. As far as we know, the first result in this direction has been proved in Lagnese [32],
who considered a model including rotational inertia (which simplifies the analysis) and he
proved a local controllability result for η = 0. The proof in [32] can be adapted to the
system (2.5) by using the sharp regularity of the nonlinear term in (2.5) obtained in Favini
et al. [23, 24] (see also Chueshov and Lasiecka [12]). As far as we know, the literature
contains no local controllability result for (2.5) around equilibrium states η 6= 0, or even for
the linearization of the system around such states. Closely related questions are discussed in
Eller and Toundykov [22], where the authors consider a plate system with a local nonlinearity
containing no derivatives of w and they prove a semiglobal controllability result.

The main novelty we bring in on the system defined by (2.5) (which involves non-local
second order nonlinearities) is that we prove its local exact controllability around any equi-
librium η defined by a function which is real analytic on Ω. This analyticity condition could
be replaced by a potentially weaker unique continuation assumption, which will be discussed
in Remark 7.6.

The second main result in this paper is:

Theorem 2.6. Let Ω ⊂ R2 be a nonempty, open and bounded set, with ∂Ω of class C3 or let
Ω be a rectangle. Let f ∈ L2(Ω). Assume that O is an open subset of Ω such that the system
(Σwave) is exactly controllable (in some time). Moreover, suppose that the function η is in
W 2,∞(Ω), satisfies (2.8) and is analytic in Ω. Then, for every τ > 0, there exists ε > 0 such
that for every

w0 ∈ H2(Ω) ∩H1
0 (Ω), w1 ∈ L2(Ω),

with
‖w0 − η‖H2(Ω) + ‖w1‖L2(Ω) 6 ε,

there exists u ∈ L2([0, τ ];L2(Ω)) such that

w(τ, ·) = η, ẇ(τ, ·) = 0.

The proof of this result will be presented in Section 7.
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3 Some background on the Hautus test for skew-adjoint sys-
tems

The aim of this section is to recall some basic facts on exact controllability and exact ob-
servability of systems with skew-adjoint operators, with a focus on the Hautus test and its
applications for studying perturbations. For more general background on exact observability
and exact controllability, we refer to [47, Ch. 6 and Ch. 11].

Within this section H (the state space), U (the input space) and Y (the output space) are
generic Hilbert spaces. In this work we consider control systems described by{

ż(t) = Az(t) +Bu(t) (t > 0),
z(0) = 0,

(3.1)

where A : D(A) ⊂ H → H is a skew-adjoint operator generating a unitary C0-group T on
H and B ∈ L(U,H). We say that the pair (A,B) defines a system, with state space H
and input space U , which is exactly controllable in time τ if for every z1 ∈ H, there exists
u ∈ L2([0, τ ];U) such that the solution of (3.1) satisfies z(τ) = z1.

It is well-known that the exact controllability of a well-posed linear system is equivalent
to the exact observability of the dual system. This is true, in particular for the three systems
(Σwave), (Σschrod) and (Σplate) introduced in Section 1. The duals of these systems can all be
written in the form

ż = Az, y = Cz, (3.2)

where C is a linear bounded operator from H into Y . Recall that the pair (A,C) is said
exactly observable in time τ > 0 if there exists Kτ > 0 such that

K2
τ

∫ τ

0
‖CTtz0‖2Y dt > ‖z0‖2H (z0 ∈ H).

The pair (A,C) is said exactly observable if it is exactly observable in some time τ > 0.

Remark 3.1. In this work we consider only bounded observation operators C ∈ L(H, Y ).
However, some of our abstract results, in particular those in Section 3 and in Section 4,
hold under a weaker assumption on the observation operator, namely that C ∈ L(D(A), Y )
is an admissible observation operator for the semigroup T generated by A, in the sense of
[47, Definition 4.3.1]. However, working with admissible operators instead of bounded ones
entails some technical issues with respect to the functional setting in which controllability and
observability results hold. Thus, due to the main applications we have in mind and for the
sake of clarity, the results below are only stated in the case of bounded observation operators.

A widely used necessary and sufficient condition for exact observability of systems with
skew-adjoint generator is the following Hautus test, firstly proved in Miller [41, Theorem 5.1]:

Theorem 3.2. With the above notation, let A be skew-adjoint on H and let C ∈ L(H, Y ).
Then the pair (A,C) is exactly observable if and only if there exist constants M, m > 0 such
that

M2‖(iωI −A)z0‖2H +m2‖Cz0‖2Y > ‖z0‖2H (ω ∈ R, z0 ∈ D(A)). (3.3)

Moreover, if (3.3) holds then (A,C) is exactly observable in time τ for any τ > Mπ.

In the finite-dimensional case, the observability of (A,C) is equivalent to Cφ 6= 0 for every
eigenvector φ of A. The situation is more complicated in the infinite-dimensional case (see
[11, 39, 44] for statements without information on the time of observability). A natural analog
of the condition Cφ 6= 0 for every eigenvector φ of A, at least when A is skew-adjoint, is an
observability inequality on the wave packets of A. More precisely, we have (see, for instance,
[47, Section 6.9]):
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Theorem 3.3. Assume that A is skew-adjoint on H and that it has compact resolvents and
let C ∈ L(H, Y ). We denote by (φj)j∈N∗ an orthonormal basis of eigenvectors of A and by
(iλj)j∈N∗ the corresponding eigenvalues. Moreover, for every ω ∈ R and r > 0, we set

Jr(ω) = {j ∈ N∗ such that |λj − ω| < r}.

The following statements are equivalent.

1. There exist r, δ > 0 such that for all ω ∈ R and for all z of the form z =
∑

j∈Jr(ω)

zjφj,

‖Cz‖Y > δ‖z‖H. (3.4)

2. The pair (A,C) is exactly observable.

An interesting question is to investigate the robustness of exact observability with respect
to bounded (but not necessarily small) perturbations P ∈ L(H) of the generator. To this
purpose, an interesting tool is a reinforced form of the condition (3.3), in which the constant M
is replaced by a positive function tending to zero when |ω| → ∞, which is a sufficient condition
for exact observability in arbitrarily small time, see [42, Corollary 2.14]. Such a frequency-
dependent Hautus-type condition allows to deal with bounded skew-adjoint perturbations of
the generator. More precisely, we have:

Proposition 3.4. Assume that A is skew-adjoint on H and that it has compact resolvents.
Let C ∈ L(H, Y ). Suppose that there exist a function M : R → [0,+∞) which tends to zero
when |ω| → +∞ and a constant m > 0 such that

M2(ω)‖(iωI −A)z0‖2H +m2‖Cz0‖2Y > ‖z0‖2H, (ω ∈ R, z0 ∈ D(A)). (3.5)

Moreover, let P ∈ L(H) be a bounded skew-adjoint operator such that Cφ 6= 0 for every
eigenvector φ of A+ P . Then the pair (A+ P,C) is exactly observable in any positive time.

Remark 3.5. As pointed out in [42, Remark 2.15], Proposition 3.4 is not necessary to get
observability of a system in arbitrarily small time. Indeed, when considering the Schrödinger
equation in a 2d torus observed from a strip, there is no function M : R → [0,+∞) which
tends to zero when |ω| → +∞ so that the resolvent estimate (3.5) holds, while it is well-known
that observability holds in arbitrarily small times (see e.g. [26]).

Proof. First, notice that A+P with D(A+P ) = D(A) is still skew-adjoint, thus it generates
a C0-group of unitary operators on H.

Using the fact that the pair (A,C) satisfies (3.5), together with triangular and Young
inequalities, one gets that

2M2(ω)‖(iωI −A− P )z0‖2H + 2M2(ω)‖P‖2L(H)‖z0‖2H
+m2‖Cz0‖2Y > ‖z0‖2H (ω ∈ R, z0 ∈ D(A)).

Since M(ω)→ 0 when |ω| → ∞, it follows that for every γ > 0 there exists cγ > 0 such that

γ2‖(iωI −A− P )z0‖2H +m2‖Cz0‖2Y > ‖z0‖2H (|ω| > cγ , z0 ∈ D(A)).

We have thus shown that (3.3) holds for “high frequencies”. This, combined with the fact
that Cφ 6= 0 for every eigenvector φ of A + P and [47, Proposition 6.6.4], implies the exact
observability of (A+ P,C) in any time τ > γπ.
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Proposition 3.4 allows us to prove, for instance, the robustness of the exact controllability
of a system described by the Schrödinger equation with respect to bounded perturbations as
stated in Proposition 2.3.

Proof of Proposition 2.3. Denote by A = −i∆ with D(A) = H2(Ω) ∩ H1
0 (Ω) which is skew-

adjoint with compact resolvents, C : ϕ 7→ ϕχO ∈ L(L2(Ω)) and P : ϕ 7→ −iaϕ ∈ L(L2(Ω))
(with a ∈ L∞(Ω,R)) which is also skew-adjoint. By [41, Proof of Theorem 3.4] or [47, Section
6.7], it is known that when (Σwave) is exactly controllable in some time, the Hautus-type
condition (3.5) holds with M(ω) = M√

ω
with some constant M > 0. Moreover, Cφ 6= 0 for

every eigenvector φ of A+ P (see for example [47, Theorem 15.2.1]).
Therefore, Proposition 3.4 entails that the pair (A + P,C) is exactly observable in any

positive time, and thus, by a duality argument, that the Schrödinger equation with a bounded
potential (2.1) is exactly controllable in any positive time.

As in Theorem 3.3, the frequency-dependent Hautus-type condition (3.5) can be equiva-
lently expressed in terms of wave packets, as done in Miller [42, Theorem 2.16]. For the sake
of simplicity, we only give below a simplified version of [42, Theorem 2.16], which is sufficient
for the present work.

Proposition 3.6. Assume that A is skew-adjoint on H and that it has compact resolvents
and let C ∈ L(H, Y ). The following statements are equivalent.

1. There exist δ > 0 and r : R → (0,+∞) which tends to infinity when |ω| → +∞ such
that for all ω ∈ R and z of the form z =

∑
j∈Jr(ω)(ω)

zjφj, the inequality (3.4) holds.

2. There exists m > 0 and M : R → (0,+∞) which tends to zero when |ω| → +∞ such
that (3.5) holds.

Our approach to prove the robustness of the exact observability property for plate equa-
tions with respect to bounded perturbations of the generator, as stated in Theorem 2.4, is
to show that the considered system satisfies a frequency-dependent Hautus condition of type
(3.5). To this aim, see Section 4, we first check a frequency-dependent wave packets condition.
However, the situation is more complicated in the case of systems described by the plate equa-
tion (2.3) than in the case of the Schrödinger equation (2.1), already studied in this section.
Indeed, extra difficulties are generated by the fact that, when written in first-order form, the
generator of the perturbed system is no longer skew-adjoint. Thus, instead of directly apply-
ing Proposition 3.4, we need a special decomposition in low and high frequency parts of the
state space and the application of a simultaneous controllability result.

4 A frequency-dependent Hautus condition for systems de-
scribing plate vibrations

In this section, we show that under appropriate assumptions, a class of abstract observation
systems, described by plate type equation with distributed observation satisfies a frequency-
dependent Hautus-type condition (3.5). This condition will be essential in the next section
where we show that the exact observability property is robust with respect to a class of
perturbations of the generator.

Within this section, we continue to denote by H and Y two Hilbert spaces and we denote
by A0 : D(A0)→ H a positive operator with compact resolvents. If there is no risk of confu-
sion, the inner product and the norm in H are simply denoted by 〈·, ·〉 and ‖ · ‖, respectively.
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For α > 0, we denote by Hα the space D(Aα0 ) endowed with the graph norm of Aα0 . For
α < 0 the space Hα is defined as the dual of H−α with respect to the pivot space H. Note
that for every α ∈ R the operator A0 can be restricted (or extended) to a unitary operator in
L(Hα,Hα−1). Moreover, let C0 ∈ L(H, Y ) be an observation operator.

With the above notation, the class of systems we consider is:
δ̈(t) +A2

0δ(t) = 0 (t > 0),

δ(0) = δ0 ∈ H, δ̇(0) = δ1 ∈ H−1,
y(t) = C0δ(t) (t > 0).

(4.1)

The system (4.1) can be written in a first-order form
ż(t) = Az(t) (t > 0),
z(0) = z0,
y(t) = Cz(t) (t > 0),

in the state space H×H−1, which is a Hilbert space with the inner product〈[
f1

g1

]
,

[
f2

g2

]〉
H×H−1

= 〈f1, f2〉+ 〈A−1
0 g1, A

−1
0 g2〉,

with A : D(A)→ H×H−1, C ∈ L(H×H−1, Y ) and z defined by D(A) = H1 ×H and

A =

[
0 I
−A2

0 0

]
i.e. A

[
f
g

]
=

[
g

−A2
0f

]
, (4.2)

C =
[
C0 0

]
, (4.3)

z(t) =

[
δ(t)

δ̇(t)

]
, z0 =

[
δ0

δ1

]
. (4.4)

Since A2
0 > 0 (see [47, Remark 3.3.7]), according to [47, Proposition 3.7.6], the operator A is

skew-adjoint and 0 ∈ ρ(A). By Stone’s theorem, A generates a unitary group on H×H−1.

The main result of this section is:

Theorem 4.1. With the above notation and assumptions, suppose that the pair (Ã, C̃) with

D(Ã) = H1 ×H 1
2
, Ã =

[
0 I
−A0 0

]
, C̃ =

[
0 C0

]
, (4.5)

defines a system, with state space H 1
2
×H and output space Y , which is exactly observable (in

some time).
Then there exist a function M1 : R→ [0,+∞), which tends to zero when |ω| → ∞, and a

constant m1 > 0 such that

M2
1 (ω)‖(iωI −A)z0‖2H×H−1

+m2
1‖Cz0‖2Y > ‖z0‖2H×H−1

(ω ∈ R, z0 ∈ D(A)), (4.6)

where A and C are respectively defined in (4.2) and (4.3).

Remark 4.2. It is not difficult to check that the above assumption that the pair (Ã, C̃) defines
an exactly observable system with state space H 1

2
× H and output space Y is equivalent to

the fact that
(
Ã,
[
C0 0

])
defines an exactly observable system with state space H × H− 1

2
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and output space Y . By duality, these conditions are equivalent to the exact controllability
of the control system, with state space H 1

2
×H and input space Y , defined by (Ã, B̃), where

B̃ =

[
0
C∗0

]
. In the approach that will be presented in Section 6 to prove Theorem 2.4, this

assumption will correspond to the controllability of the system (Σwave), with state space
H1

0 (Ω)× L2(Ω) and control space L2(Ω).

The proof of Theorem 4.1 relies on the link between a wave packets condition (first intro-
duced in [11]) and resolvent estimates (3.5) as stated by Miller in [42, Proposition 2.6]. Thus,
the proof relies on a wave packet condition for the abstract Kirchhoff system (4.1) which is
deduced from a similar condition for an abstract Schrödinger system. To this end, one needs
first to show that (3.5) holds for a system described by an abstract plate equation.

Proposition 4.3. With the notation and assumptions in Theorem 4.1, there exists a constant
γ0 > 0 such that

1

ω
‖(ω2I −A2

0)ϕ‖2H + ‖ω C0ϕ‖2Y > γ0‖ωϕ‖2H (ω > 0, ϕ ∈ D(A2
0)). (4.7)

Proof. Since the pair (Ã, C̃) is exactly observable, applying the Hautus type test in [38] (see
also [44, Proposition 4.5]), it follows that there exists a constant γ0 > 0 such that

‖(ωI −A0)ϕ‖2H + ω‖C0ϕ‖2Y > γ0ω‖ϕ‖2H (ω > 0, ϕ ∈ D(A0)). (4.8)

On the other hand, using the fact that A0 > 0 it follows that

‖(ω2I −A2
0)ϕ‖2H = ‖(ωI +A0)(ωI −A0)ϕ‖2H > ω2‖(ωI −A0)ϕ‖2H (ω > 0, ϕ ∈ D(A2

0)).

The last estimate and (4.8) imply the conclusion (4.7).

As a consequence of the above result we can prove a wave packets condition for the abstract
Schrödinger equation.

Proposition 4.4. With the notation and assumptions in Theorem 4.1, let (λn)n∈N∗ be the
nondecreasing sequence formed by the eigenvalues of A0 and let (φn)n∈N∗ be a corresponding
sequence of eigenvectors, forming an orthonormal basis of H. Moreover, for every ω, r > 0
and ε ∈ (0, 1

2) we set
Ir(ω) = {m ∈ N∗ such that |λm − ω| < r}, (4.9)

rε(ω) =

{
ω

1
2
−ε (ω > ω0,ε),

min
{ω

2
,
ρε
3

}
ω ∈ (0, ω0,ε),

(4.10)

where ω0,ε = max

{
1,

(
18

γ0

) 1
2ε

}
(with γ0 is the constant in (4.7)) and

ρε = inf{|λ− µ|;λ 6= µ eigenvalues of A0 in (0, 2ω0,ε)}.

(Notice that ρε > 0 because there is only a finite number of eigenvalues of A0 in (0, 2ω0,ε).)
Then, for every ε ∈ (0, 1

2), there exists γ1 > 0 such that we have

‖C0ϕ‖Y > γ1‖ϕ‖H (ω > 0, ϕ ∈ span {φk}k∈Irε(ω)(ω)). (4.11)
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Proof. Let ε ∈ (0, 1
2). For the sake of clarity, in this proof, the dependency of ω0,ε and ρε with

respect to ε is not mentioned. For ω > ω0, we consider ϕ of the form

ϕ =
∑

m∈Irε (ω)

cmφm. (4.12)

Then we clearly have that ϕ ∈ D(A2
0) and∥∥(ω2I −A2

0)ϕ
∥∥2

H =
∑

m∈Irε(ω)(ω)

∣∣ω2 − λ2
m

∣∣2 |cm|2 6 ω1−2ε
∑

m∈Irε(ω)(ω)

|ω + λm|2|cm|2. (4.13)

On the other hand, it is clear that for every ω > 1 and m ∈ Irε(ω)(ω) we have

0 < ω + λm < 2ω + rε(ω) 6 3ω.

The last inequality and (4.13) imply that for every ϕ of the form (4.12), we have∥∥(ω2I −A2
0)ϕ
∥∥2

H 6 9ω1−2ε‖ωϕ‖2H 6
γ0ω

2
‖ωϕ‖2H,

for ω > ω0. By applying (4.7) to ϕ of the form (4.12), the above estimate leads to (4.11) for
every ω > ω0.

Moreover, by construction of rε, for every ω ∈ (0, ω0), there exists λ = λ(ω) such that

span {φk}k∈Irε(ω)(ω) = Ker(A0 − λI).

Indeed, if there exist n,m ∈ Irε(ω)(ω) such that λn 6= λm,

ρ 6 |λn − λm| 6 |λn − ω|+ |λm − ω| 6 2rε(ω) 6
2ρ

3
,

which is a contradiction. Therefore, since C0ϕ 6= 0 for every eigenfunction ϕ of A0 (because
the pair (Ã, C̃) is observable), it follows that for every ω ∈ (0, ω0), there exists γ1 = γ1(ω) > 0
such that

‖C0ϕ‖Y > γ1‖ϕ‖H ϕ ∈ span {φk}k∈Irε(ω)(ω).

Finally, using the fact that A0 has a finite number of eigenvalues in (0, ω0), the constant γ1

can be chosen uniformly with respect to ω ∈ (0, ω0), giving (4.11).

Remark 4.5. The wave packets condition (4.11) on the pair (A0, C0) allows us to prove the
existence of constants M,m > 0 such that

M2

ω1−2ε
‖(ωI −A0)z0‖2H +m2‖Cz0‖2Y > ‖z0‖2H (ω ∈ R, z0 ∈ D(A0)), (4.14)

using the link between wave packets condition and resolvent estimates as stated by Miller
in [42, Proposition 2.6] and recalled in Proposition 3.6. Taking A0 = −∆ with D(A0) =
H2(Ω)∩H1

0 (Ω) and C : ϕ 7→ ϕχO, this gives a Hautus type condition (3.5) for the Schrödinger
equation which is weaker than the one already proven in [41, Proof of Theorem 3.4] or [47,
Section 6.7] and used in the proof of Proposition 2.3, in Section 3.

Finally, one can deduce the wave packets condition for the abstract Kirchhoff equation,
which leads us to the proof the main result of this section.
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Proof of Theorem 4.1. Let A be the operator defined in (4.2), let (λn)n∈N∗ be the nondecreas-
ing sequence formed by the eigenvalues of A0 (repeated according to their multiplicity) and
let (φn)n∈N∗ be the corresponding eigenvectors of A0 forming an orthonormal basis of H−1.
We set φ−n = −φn for all n ∈ N∗. Then (see, for instance, Proposition 3.7.7 in [47]) the
eigenvalues of A are (iµn)n∈Z∗ with µn = λn if n > 0 and µn = −λ−n if n < 0. Moreover,
there is in H×H−1 an orthonormal basis formed of eigenvectors of A, given by

ψn =
1√
2

[ 1
iµn

φn
φn

]
(n ∈ Z∗). (4.15)

With the above notation and introducing, for all ω ∈ R and r > 0, the sets

Jr(ω) = {m ∈ Z∗ such that |µm − ω| < ε}, (4.16)

we remark that for every ε ∈ (0, 1
2), if the function rε defined in (4.10) is extended by rε(ω) =

rε(−ω) for ω < 0, we have
Jrε(ω)(ω) = sign(ω)Irε(|ω|)(|ω|) (4.17)

where Ir has been defined in (4.9). From (4.15) and (4.17), it follows that if ψ =

[
η
ϕ

]
∈

D(A) is in span {ψk}k∈Jrε(ω)(ω), then η ∈ span {φk}k∈Irε(|ω|)(|ω|), ‖ψ‖H×H−1 =
√

2‖η‖H, and

‖Cψ‖Y = ‖C0η‖Y . This facts and Proposition 4.4 imply that

‖Cψ‖Y > γ1‖η‖H =
γ1√

2
‖ψ‖H×H−1

(
ω ∈ R, ψ =

[
η
ϕ

]
∈ span {ψk}k∈Jrε(ω)(ω)

)
.

The above estimate implies the announced conclusion by applying the frequency-dependent
Hautus test given in Miller [42, Theorem 2.16] and recalled in Proposition 3.6.

5 Perturbation of abstract Kirchhoff systems

The goal of this section is to use the resolvent estimate (4.6) to study the robustness of
the exact observability property for a system described by an abstract plate equation, with
respect to bounded (but not necessarily compact) perturbations of the generator. Notice that
the similar result for the perturbed Schrödinger equation given in Proposition 2.3 has already
been dealt with in Section 3.

We continue in this section to use the notation introduced in the previous one. More
precisely, H and Y are Hilbert spaces, A0 : D(A0) → H is a positive operator with compact
resolvents, and C0 ∈ L(H, Y ). If needed, the spaces H and Y are identified with their duals.
Moreover, if V is another Hilbert space with continuous embedding V ⊂ H, the dual of V is
identified with its dual using the pivot space H. For α > 0 we still denote by Hα the space
D(Aα0 ) endowed with the graph norm of Aα0 and we define H−α as the dual of Hα with respect
to the pivot space H. Moreover, we set H0 := H and A still is the operator defined in (4.2).
Recall that for every α ∈ R we can extend (or restrict) A0 to a unitary operator from Hα
onto Hα−1. With a slight abuse of notation, we shall still denote by A0 this extension (or
restriction).

The main result of this section is:

Theorem 5.1. With the notation and assumptions in Theorem 4.1, assume that

P0 ∈ L(H,H−1) ∩ L(H1,H)

12



is a symmetric operator on H−1, with domain H. Let P :=

[
0 0
P0 0

]
∈ L(H × H−1) and let

AP : D(AP )→ H×H−1 be the operator defined by

D(AP ) = D(A), AP = A− P. (5.1)

Moreover, let C ∈ L(H×H−1) be defined by C =
[
C0 0

]
and suppose that

Ker (s2I +A2
0 + P0) ∩KerC0 = {0} (s ∈ C). (5.2)

Then the system, with state space H×H−1 and output space Y , described by the pair (AP , C)
is exactly observable in any time τ > 0.

The proof of Theorem 5.1 partially relies on a series of results resenting similarities with
those in [47, Section 7.3]. For the sake of completeness, we give the detailed proofs below.

The first result of this series can be seen as a variation of [47, Proposition 7.3.3].

Proposition 5.2. With the above notation, ψ =

[
η
ϕ

]
∈ D(AP ) is an eigenvector of AP ,

associated to the eigenvalue iµ, if and only if η is an eigenvector of A2
0 +P0, associated to the

eigenvalue µ2, and ϕ = iµη (note that µ does not have to be real).

Proof. Suppose that µ ∈ C and

[
η
ϕ

]
∈ D(AP ) \

{[
0
0

]}
are such that AP

[
η
ϕ

]
= iµ

[
η
ϕ

]
.

According to the definition of AP this is equivalent to

ϕ = iµη and −A2
0η − P0η = iµϕ = −µ2η.

Clearly, A2
0 + P0, with domain H1, is self-adjoint on H−1 and it has compact resolvents.

According to a classical result (see, for instance, [47, Proposition 3.2.12]) it follows that A2
0+P0

is diagonalizable with an orthonormal basis (φ̃k)k∈N∗ in H−1 formed of eigenvectors of A2
0 +P0

and with the corresponding family of real eigenvalues (λ̃k)k∈N∗ satisfying lim
k→∞

|λ̃k| = ∞.

Moreover, since for all z ∈ H1,

〈(A2
0 + P0)z, z〉H−1 > ‖A0z‖2H−1

− ‖P0‖L(H,H−1)‖z‖H‖z‖H−1

>
1

2
‖z‖2H −

1

2
‖P0‖2L(H,H−1)‖z‖

2
H−1

,

it follows that limk→∞ λ̃k = +∞. Hence, without loss of generality, we may assume that the
sequence (λ̃k)k∈N∗ is nondecreasing. We extend the sequence (φ̃k)k∈N∗ to a sequence indexed
by Z∗ by setting φ̃k = −φ̃−k for every k ∈ Z−. We introduce the real sequence (µk)k∈Z∗ by

µk =

√
|λ̃k| if k > 0 and µk = −µ−k if k < 0.

We denote by

W0 = span

{[
1

isign(k) φ̃k

φ̃k

]∣∣∣∣∣ k ∈ Z∗, µk = 0

}
.

If Ker (A2
0 + P0) = {0} then of course W0 is the zero subspace of H ×H−1. Let N ∈ N∗ be

such that λ̃N > 0. We denote by

WN = span

{[
1
iµk
φ̃k

φ̃k

]∣∣∣∣∣ k ∈ Z∗, |k| < N, µk 6= 0

}
,
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and define YN = W0 +WN . We also introduce the space

VN = span

{[
1
iµk
φ̃k

φ̃k

]∣∣∣∣∣ |k| > N

}
, (5.3)

the closure being taken in H×H−1.

Lemma 5.3. With the above notation, we have H×H−1 = YN ⊕ VN . Moreover, YN and VN
are invariant under the semigroup T generated by AP on H×H−1.

Proof. We adapt below the proof of Lemma 7.3.4 in [47].
First, to prove that H × H−1 = YN ⊕ VN , one can show that YN = V ⊥N for a suitable

inner product to be defined. To deal with the fact that A2
0 +P0 is not a positive operator, we

introduce a new operator A1, whose eigenfunctions are the same as the one of A2
0 + P0, but

its eigenvalues are all positive. More precisely, let A1 : H1 → H−1 be defined by

A1f =
∑
λ̃k=0

〈f, φ̃k〉Hφ̃k +
∑
λ̃k 6=0

|λ̃k|〈f, φ̃k〉Hφ̃k (f ∈ H1). (5.4)

Since the family (φ̃k)k∈N∗ is an orthonormal basis in H−1 and each φ̃k is an eigenvector of
A1, it follows that A1 is diagonalizable. Moreover, since the eigenvalues of A1 are positive,
it follows that A1 > 0. Following line by line the proof of Proposition 3.4.9 in [47], it can be
checked that the inner product on H×H−1 defined by〈[

f1

g1

]
,

[
f2

g2

]〉
1

= 〈f1, f2〉H + 〈A−
1
2

1 g1, A
− 1

2
1 g2〉H

([
f1

g1

]
,

[
f2

g2

]
∈ H ×H−1

)
, (5.5)

is equivalent to the original one, meaning that it induces a norm equivalent to the original
one.

Let A1 be the operator on H×H−1 defined by

D(A1) = H1 ×H, A1 =

[
0 I
−A1 0

]
.

According to Proposition 3.7.6 of [47], A1 is skew-adjoint on X (if endowed with the inner
product 〈·, ·〉1 defined in (5.5)). Thus, Proposition 3.7.7 of [47] entails that YN = V ⊥N (for the
inner product 〈·, ·〉1) giving that H×H−1 = YN ⊕ VN .

We next prove that YN and VN are invariant under the semigroup T generated by AP .
First, using the fact that λ̃k > 0 for every k > N and Proposition 5.2, it follows that VN is a
closed subspace spanned by a set of eigenvectors of AP , thus is invariant under the action of
T. To prove that W0 is also invariant under the action of T, one can notice that for every k
in Z∗ such that µk = 0,

AP

[
1

isign(k) φ̃k

φ̃k

]
=

[
φ̃k
0

]
=
isign(k)

2

([
1

isign(k) φ̃k

φ̃k

]
+

[
1

isign(−k) φ̃−k

φ̃−k

])
∈W0.

To prove that WN is invariant under the action of T, one can first notice that for every k in
Z∗, |k| < N such that µk 6= 0, µ2

k = sign(λ̃|k|)λ̃|k| and [A2
0 + P0]φ̃k = λ̃|k|φ̃k. Thus, one gets

that

AP

[
1
iµk
φ̃k

φ̃k

]
=

[
φ̃k

λ̃|k|
iµk

φ̃k

]
= iµk

[
1
iµk
φ̃k

−sign(λ̃|k|)φ̃k

]
∈WN ,

because

[
1
iµk
φ̃k

−φ̃k

]
=

[
1

iµ−k
φ̃−k

φ̃−k

]
∈ WN . Finally, YN = W0 + WN is invariant under the action

of T.
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We are now in a position to prove the main result of this section.

Proof of Theorem 5.1. We first note that Theorem 4.1 implies that

M2
1 (ω)‖(iωI −AP − P )z0‖2H×H−1

+m2
1‖Cz0‖2Y > ‖z0‖2H×H−1

(ω ∈ R, z0 ∈ D(A)).

Using an elementary inequality, we obtain that

2M2
1 (ω)‖(iωI −AP )z0‖2H×H−1

+ 2M2
1 (ω)‖P0‖2L(H,H−1)‖z0‖2H×H−1

+m2
1‖Cz0‖2Y > ‖z0‖2H×H−1

(ω ∈ R, z0 ∈ D(A)).

Since we know from Theorem 4.1 that M1(ω) → 0 when |ω| → ∞, it follows that for every
γ > 0 there exists cγ > 0 such that

γ2‖(iωI −AP )z0‖2H×H−1
+ 2m2

1‖Cz0‖2Y > ‖z0‖2H×H−1
(|ω| > cγ , z0 ∈ D(A)). (5.6)

Moreover, using the inner product (5.5) associated with the operator A1 defined in (5.4) (which
is equivalent to the original one), (5.6) implies that for every γ > 0 there exist c̃γ , mγ > 0
such that

γ2‖(iωI −AP )z0‖21 +m2
γ‖Cz0‖2Y > ‖z0‖21 (|ω| > c̃γ , z0 ∈ D(A)). (5.7)

For N ∈ N∗ such that λ̃N > 0, we denote by AP,N the part of AP in VN , where VN is the
space defined in (5.3). Since AP,N coincides with the part of A1 in VN , it follows that AP,N is
skew-adjoint on VN (endowed with the inner product 〈·, ·〉1). Moreover, using (5.7), it follows
that, for every γ > 0, there exist c̃γ , mγ > 0 such that the following estimate holds

γ2‖(iωI −AP,N )z0‖21 +m2
γ‖Cz0‖2Y > ‖z0‖21 (|ω| > c̃γ , z0 ∈ D(A) ∩ VN ). (5.8)

Since AP,N is skew-adjoint (thus normal) on VN , it follows that there exists Nγ ∈ N∗ such
that

‖(iωI −AP,Nγ )z0‖1 > γ−1‖z0‖1 (|ω| < c̃γ , z0 ∈ D(A) ∩ VNγ ).

The above estimate and (5.8) imply that for every γ > 0 there exist mγ > 0 and Nγ ∈ N∗
such that

γ2‖(iωI −AP,Nγ )z0‖21 +m2
γ‖Cz0‖2Y > ‖z0‖21 (ω ∈ R, z0 ∈ D(A) ∩ VNγ ). (5.9)

The above estimate and the fact that AP,Nγ is skew-adjoint imply, according to the Hautus-
type test for systems with skew-adjoint generator proved in Miller [41] (see also [47, Theorem
6.6.1]), that the pair (AP,Nγ , CNγ ), where CNγ is the restriction of C to VNγ , is exactly
observable in any time τ > γπ.

Denoting by ÃP,Nγ the part of AP in YNγ and by C̃Nγ the restriction of C to YNγ , we obtain

that the finite-dimensional system (ÃP,Nγ , C̃Nγ ) is observable by applying the classical Hautus

test thanks to (5.2). Since ÃP,Nγ and AP,Nγ have no common eigenvalues and (AP,Nγ , CNγ ) is
exactly observable in any time larger than γπ, we can apply Theorem 6.4.2 in [47] to obtain
that (AP , C) is exactly observable in any time τ > γπ. Since γ > 0 can be arbitrarily small,
this implies the conclusion of the theorem.

As a consequence of Theorem 5.1, we can obtain a second perturbation result. More
precisely, the result below shows that the exact observability property still holds if, besides
the perturbation P0, we add a perturbation Q0 whose contribution is compact with respect
to the topology of the state space.
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Corollary 5.4. With the notation and assumptions in Theorem 5.1, let Q0 ∈ L(H,H−1) be

a compact operator and let Q =

[
0 0
Q0 0

]
∈ L(H×H−1). Let APQ : D(APQ) → H×H−1 be

the operator defined by

D(APQ) = D(A), APQ = A− P −Q. (5.10)

Then APQ generates a C0-semigroup T on H×H−1. Moreover, assuming that

Ker (s2I +A2
0 + P0 +Q0) ∩KerC0 = {0} (s ∈ C), (5.11)

the pair (APQ, C) is exactly observable in any time τ > 0.

Proof. The fact that APQ generates a C0-semigroup on H × H−1 follows from the obvious
property P + Q ∈ L(H × H−1). Moreover, we can remark that the result in Proposition
5.2 holds for every P0 ∈ L(H,H−1) (no symmetry of P0 is needed), thus, in particular, if

we replace P0 by P0 + Q0. It follows that ψ =

[
η
ϕ

]
∈ D(APQ) is an eigenvector of APQ,

associated to the eigenvalue iµ, if and only if η is an eigenvector of A2
0 + P0 +Q0, associated

to the eigenvalue µ2, and ϕ = iµη. This fact and (5.11) imply that

Ker (sI −APQ) ∩KerC = {0} (s ∈ C).

We also note that, under our assumptions, Q ∈ L(H×H−1) is a compact operator. Moreover,
we know from Theorem 5.1 that the pair (AP , C), with AP defined in (5.1), is exactly observ-
able in any time τ > 0. Since APQ = AP −Q, the conclusion follows now using the duality of
the exact observability and of exact controllability properties and by applying Theorem 1.2
in [20] to deal with the compact perturbation using a compactness-uniqueness method.

By duality, Corollary 5.4 yields the following exact controllability result:

Corollary 5.5. With the notation and assumptions in Corollary 5.4, let R0 ∈ L(H1,H) be
the operator defined by

〈R0ϕ,ψ〉H = 〈ϕ,Q0ψ〉H1,H−1 (ϕ ∈ H1, ψ ∈ H). (5.12)

Then the equation

ẅ(t) +A2
0w(t) + (P0 +R0)w(t) = C∗0u(t) (t > 0), (5.13)

determines a well-posed control system with state space H1×H and input space Y . Moreover,
this system is exactly controllable in arbitrarily small time.

Proof. Recall that the Hilbert spaces H and Y are identified with their duals. Moreover, if V
is another Hilbert space, with continuous embedding V ⊂ H, the dual of V is identified with
its dual using the pivot space H.

We next consider, for every τ > 0, the input map Φτ ∈ L(L2([0, τ ];Y ),H1×H) defined by

Φτu =

[
w(τ)
ẇ(τ)

]
(u ∈ L2([0, τ ];Y )), (5.14)

where w is the unique solution of (5.13) satisfying the initial conditions w(0) = 0 and ẇ(0) = 0.
In order to write Φ′τ ∈ L(H−1 × H, L2([0, τ ];Y )) in a convenient manner we consider the
system {

ÿ(t) +A2
0y(t) + P0y(t) +Q0y(t) = 0 (t ∈ [0, τ ]),

y(τ) = y1, ẏ(τ) = −y0,
(5.15)

16



where Q0 is defined by (5.12). We first assume that y1 ∈ H2 and y0 ∈ H1 so that

y ∈ C([0, τ ];H2) ∩ C1([0, τ ];H1) ∩ C2([0, τ ];H).

We also (temporarily) assume that u ∈ H1([0, τ ];Y ) and u(0) = 0, so that the solution of
(5.13) with zero initial data satisfies

w ∈ C([0, τ ];H2) ∩ C1([0, τ ];H1) ∩ C2([0, τ ];H).

The above regularity properties for y and w allow us to take the inner product in L2([0, τ ];H)
of all the terms in (5.13) by y. In particular, integrating twice by parts with respect to time,
we have ∫ τ

0
〈ẅ(t), y(t)〉 dt = 〈ẇ(τ), y1〉+ 〈w(τ), y0〉+

∫ τ

0
〈w(t), ÿ(t)〉 dt. (5.16)

Moreover, we have ∫ τ

0
〈A2

0w(t), y(t)〉 dt =

∫ τ

0
〈w(t), A2

0y(t)〉 dt. (5.17)

On the other hand, from (6.5) and (5.12) it follows that∫ τ

0
〈P0w(t), y(t)〉dt =

∫ τ

0
〈w(t), P0y(t)〉 dt, (5.18)∫ τ

0
〈R0w(t), y(t)〉 dt =

∫ τ

0
〈w(t), Q0y(t)〉 dt. (5.19)

Summing up (5.16)-(5.19) and using (5.15), (5.13) it follows that for every y1 ∈ H2, y0 ∈ H1

and u ∈ H1([0, τ ];Y ), with u(0) = 0, we have∫ τ

0
〈u(t), C0y(t)〉Y dt = 〈w(τ), y0〉+ 〈ẇ(τ), y1〉.

By a simple density argument, it follows that∫ τ

0
〈u(t), C0y(t)〉Y dt = 〈A0w(τ), A−1

0 y0〉+ 〈ẇ(τ), y1〉.

for every y1 ∈ H, y0 ∈ H−1 and u ∈ L2([0, τ ];Y ). By combining the last formula and (5.14)
it follows that 〈

Φτu,

[
y0

y1

]〉
H1×H,H−1×H

=

∫ τ

0
〈u(t), C0y(t)〉Y dt,

for every y1 ∈ H, y0 ∈ H−1 and u ∈ L2([0, τ ];Y ). We have thus shown that(
Φ′τ

[
y0

y1

])
(t) = C0y(t) (y0 ∈ H−1, y1 ∈ H, t ∈ [0, τ ]), (5.20)

where y satisfies (5.15).

On the other hand, from (5.15), it is clear that

[
y(t)
ẏ(t)

]
= Tt−τ

[
y1

−y0

]
, where T is the

C0-group introduced in Corollary 5.4. By combining (5.20) and Corollary 5.4 it follows that
there exists a constant Kτ > 0 such that

Kτ

∥∥∥∥Φ′τ

[
y0

y1

]∥∥∥∥
L2([0,τ ];Y )

>

∥∥∥∥[y0

y1

]∥∥∥∥
H−1×H

(y0 ∈ H−1, y1 ∈ H).

Using a classical result (see, for instance, Barnes [4, Theorem 7]) it follows that Φτ is onto
from L2([0, τ ];Y ) to H1 ×H, which implies the announced exact controllability result.
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6 Proof of the main result on linear systems

The goal of this section is to prove Theorem 2.4 on the controllability of the perturbations of
a plate equation. Within this section, we specify the spaces H, Y and the operators A0 and
C0 which have been introduced in an abstract context in Sections 4 and 5. More precisely, we
set:

• H = L2(Ω), where Ω is an open bounded set of Rn, with ∂Ω of class C3 or Ω is a
rectangular domain;

• −A0 is the Dirichlet Laplacian on L2(Ω). More precisely,

D(A0) = H2(Ω) ∩H1
0 (Ω), (6.1)

A0ϕ = −∆ϕ (ϕ ∈ D(A0)); (6.2)

The operator A0 is positive with compact resolvents;

• Y = L2(Ω) and C0 ∈ L(H, Y ) is defined by

C0ϕ = ϕχO (ϕ ∈ H), (6.3)

where O is an open subset of Ω and χO ∈ L∞(Ω) is a nonnegative function which is
positive on O.

With H and A0 chosen above, it is known (see, for instance, [47, Section 3.6]) that

H2 =
{
ϕ ∈ H4(Ω) ∩H1

0 (Ω) | ∆ϕ = 0 on ∂Ω
}
, H1 = H2(Ω) ∩H1

0 (Ω).

Moreover, we have
H−1 =

[
H2(Ω) ∩H1

0 (Ω)
]′
,

where
[
H2(Ω) ∩H1

0 (Ω)
]′

is the dual of H2(Ω)∩H1
0 (Ω) with respect to the pivot space L2(Ω).

Proof of Theorem 2.4. The proof consists in applying Corollary 5.5 with the appropriate
choice of spaces and operators. We first remark that, since the system (Σwave) described
by the wave equation is exactly controllable in some time, a standard duality argument im-
plies that the pair (Ã, C̃) defined in (4.5) is exactly observable in some time. Thus, since the
spaces H, Y , the operators A0, C0 and the spaces Hα have been specified in the preamble of
this section, it only remains to define the operators P0 and R0.

Let P0 ∈ L(H1,H) be the operator defined by

P0ϕ =
n∑

k,`=1

ak`
∂2ϕ

∂xk∂x`
(ϕ ∈ H1). (6.4)

Using (2.2) and the fact that (ak`)16k,`6n are real-valued, it is easy to check that P0 is well-
defined and

〈P0ϕ,ψ〉H = 〈ϕ, P0ψ〉H (ϕ, ψ ∈ H1).

Moreover, the above formula implies that

|〈P0ϕ,ψ〉H| 6
n∑

k,`=1

‖ak`‖L∞(Ω)‖ϕ‖H‖ψ‖H1 (ϕ, ψ ∈ H1).
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It follows that P0 can be uniquely extended to an unbounded symmetric operator on H−1

(still denoted by P0), with domain H, by setting

〈P0ϕ,ψ〉H = 〈ϕ, P0ψ〉H1,H−1 (ϕ ∈ H1, ψ ∈ H). (6.5)

Let R0 ∈ L(H1,H) be the operator defined by

R0ϕ =
n∑
k=1

bk
∂ϕ

∂xk
+ cϕ (ϕ ∈ H1).

An integration by parts shows that

〈R0ϕ,ψ〉H = 〈ϕ,Q0ψ〉H (ϕ, ψ ∈ H1),

where
Q0ψ = −div

(
bψ
)

+ cψ (ψ ∈ H1). (6.6)

From the last two formulas, it follows that Q0 can be extended uniquely to a compact operator
(still denoted by Q0) in L(H,H−1).

To conclude using Corollary 5.5, we still have to check the unique continuation properties
(5.2) and (5.11). More precisely, we need to prove that for ε ∈ {0, 1}, ψ ∈ H2(Ω) ∩ H1

0 (Ω)
and µ ∈ C we have

µ2ψ + ∆2ψ + P0ψ + εQ0ψ = 0 in Ω,
ψ = 0, ∆ψ = 0 on ∂Ω,
ψ = 0 in O,

 ⇒ ψ = 0. (6.7)

This unique continuation is a direct consequence of the Carleman estimate given in Theorem
A.1 of Appendix A. Indeed, denote

g = −P0ψ − εQ0ψ − µ2ψ.

Applying Theorem A.1, there exists a function β ∈ C2(Ω) and a positive constant C > 0 such
that for all s > 1,∫

Ω

(
s2|D2ψ|2 + s4|∇ψ|2 + s6|ψ|2

)
e2sβ dx 6 C

∫
Ω
|g|2e2sβ dx, (6.8)

where D2ψ designs the Hessian matrix of ψ, | · | stands for the euclidian norm on finite
dimensional spaces and we have used the fact that ψ = 0 in O. Moreover, using the definition
of the operators P0 and Q0 given in (6.4) and (6.6), one can easily check that, for all x ∈ Ω,

|g(x)| 6 max
k,`=1,...,n

‖ak`‖L∞(Ω)|D2ψ(x)|

+ ε max
k=1,...,n

‖bk‖L∞(Ω)|∇ψ(x)|+ (ε‖c‖L∞(Ω) + |µ|2)|ψ(x)|.

Therefore, this estimate combined with (6.8) implies that for every s > 1,∫
Ω

(
s2|D2ψ|2 + s4|∇ψ|2 + s6|ψ|2

)
e2sβ 6 C

(
max

k,`=1,...,n
‖ak`‖2L∞(Ω)

∫
Ω
|D2ψ|2e2sβ

+ ε2 max
k=1,...,n

‖bk‖2L∞(Ω)

∫
Ω
|∇ψ|2e2sβ + (ε2‖c‖2L∞(Ω) + |µ|4)

∫
Ω
|ψ|2e2sβ

)
.

Taking s large enough in the last inequality, we obtain that ψ = 0, which concludes the
proof.
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7 Proof of Theorem 2.6

The main ingredient in the proof of Theorem 2.6 is an exact controllability result for the
system obtained by linearizing (2.5) around the stationary state (η, 0). To write down this
system, we insert the formula

w(t, x) = η(x) + εδ(t, x) (t > 0, x ∈ Ω),

in (2.5) and we develop in a power series with respect to ε. Identifying the terms of order 1,
we obtain the system:

δ̈(t, x) + ∆2δ(t, x) + [δ,Φ(η, η)] + 2[η,Φ(η, δ)] = u(t, x)χO(x) (t > 0, x ∈ Ω),
δ(t, x) = ∆δ(t, x) = 0 (t > 0, x ∈ ∂Ω),

δ(0, x) = δ0(x), δ̇(0, x) = δ1(x) (x ∈ Ω),

(7.1)

where the Airy stress function Φ is the solution of (2.6). The main result in this section is
the following.

Theorem 7.1. Assume that Ω, O and η satisfy the assumptions in Theorem 2.6. Then (7.1)
determines a well-posed control system with state space[

H2(Ω) ∩H1
0 (Ω)

]
× L2(Ω),

and control space L2(Ω). Moreover, this system is exactly controllable in any time τ > 0.

To write (7.1) as a well-posed control system, we have to introduce some spaces and
operators. To this aim, we first recall some properties of the Airy stress function Φ defined in
(2.6) given in [12, Corollary 1.4.4].

Proposition 7.2. For every p ∈ [1,∞], the Airy stress function Φ defines a bounded bilinear

operator from H2(Ω) × H2(Ω) to W
2+ 2

p
,p

(Ω) ∩ H2
0 (Ω). In particular, there exists a positive

constant KΩ such that

‖Φ(v, w)‖W 2,∞(Ω) 6 KΩ‖v‖H2(Ω) ‖w‖H2(Ω) (v, w ∈ H2(Ω)). (7.2)

Then, we also recall the following property of the von Kármán bracket defined in (2.7),
given in [12, Proposition 1.4.5].

Proposition 7.3. For any u ∈ H2(Ω) and v, w ∈ H2 ∩H1
0 (Ω), the following relation holds∫

Ω
[u, v]wdx =

∫
Ω

[u,w]vdx.

Corollary 7.4. For every η ∈ H2(Ω), the mapping P0,1 : δ 7→ [η,Φ(η, δ)] defines a linear
bounded operator from H2 ∩H1

0 (Ω) to L2(Ω). Moreover, P0,1 can be extended to an operator
in L(L2(Ω), [H2 ∩H1

0 (Ω)]′) and is symmetric on [H2 ∩H1
0 (Ω)]′.

Proof. The fact that for every η ∈ H2(Ω), we have P0,1 ∈ L(H2(Ω), L2(Ω)) is a direct conse-
quence of (7.2). Moreover, for every δ, ψ ∈ H2 ∩H1

0 (Ω),

〈P0,1δ, ψ〉L2(Ω) = 〈δ, P0,1ψ〉L2(Ω). (7.3)

To prove this relation, introduce the operator AD defined by{
D(AD) = H4(Ω) ∩H2

0 (Ω),
ADϕ = ∆2ϕ (ϕ ∈ D(AD)).
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This operator is known to be positive on L2(Ω) and the definition of P0,1 can be rewritten as

P0,1δ =
[
η,A−1

D [η, δ]
]

(δ ∈ H2(Ω) ∩H1
0 (Ω)).

Using Proposition 7.3 and the self-adjointness of A−1
D , it follows that, for every δ, ψ ∈ H2 ∩

H1
0 (Ω),

〈P0,1δ, ψ〉L2(Ω) =
〈[
η,A−1

D [η, δ]
]
, ψ
〉
L2(Ω)

=
〈
A−1
D [η, δ], [η, ψ]

〉
L2(Ω)

=
〈
[η, δ], A−1

D [η, ψ]
〉
L2(Ω)

=
〈
δ,
[
η,A−1

D [η, ψ]
]〉
L2(Ω)

= 〈δ, P0,1ψ〉L2(Ω).

Then, the relation (7.3) and the continuity of P0,1 from H2∩H1
0 (Ω) to L2(Ω) imply that there

exists C > 0 such that for all δ, ψ ∈ H2 ∩H1
0 (Ω),∣∣〈P0,1δ, ψ〉L2(Ω)

∣∣ 6 C‖δ‖L2(Ω)‖ψ‖H2∩H1
0 (Ω).

Therefore, P0,1 can be extended uniquely to an operator in L(L2(Ω), [H2 ∩ H1
0 (Ω)]′) (still

denoted by P0,1) with

〈P0ϕ,ψ〉L2(Ω) = 〈ϕ, P0ψ〉H2∩H1
0 (Ω),[H2∩H1

0 (Ω)]′ (ϕ ∈ H2 ∩H1
0 (Ω), ψ ∈ L2(Ω)).

Proposition 7.5. For all η ∈W 2,∞(Ω), we define the operator P0,2 ∈ L(H2 ∩H1
0 (Ω), L2(Ω))

by
P0,2δ = [δ,Φ(η, η)] (δ ∈ H2 ∩H1

0 (Ω)).

Then, there exist functions (ak`)16k,`62 in H2(Ω) such that

P0,2δ =

2∑
k,`=1

ak`
∂2δ

∂xk∂x`
(δ ∈ H2 ∩H1

0 (Ω)), (7.4)

with 
ak` = a`k ∈ H2(Ω) (k, ` ∈ {1, 2}),

2∑
`=1

∂ak`
∂x`

= 0 (k ∈ {1, 2}).
(7.5)

Moreover, P0,2 can be extended to an operator in L(L2(Ω), [H2 ∩H1
0 (Ω)]′) which is symmetric

on [H2 ∩H1
0 (Ω)]′.

Finally, if η is analytic, then the functions (ak`)16k,`62 in (7.4) are also analytic.

Proof. The definition of P0,2 implies that (7.4) holds with

a11 =
∂2

∂x2
2

Φ(η, η), a12 = a21 = − ∂2

∂x1∂x2
Φ(η, η), a22 =

∂2

∂x2
1

Φ(η, η). (7.6)

The fact that (ak`)16k,`62 satisfies (7.5) is a direct consequence of (7.6). The regularity of
(ak`)16k,`62 follows from the elliptic regularity: As η is in W 2,∞(Ω), [η, η] is in L2(Ω) and
thus, Φ(η, η) is in H4(Ω).

The fact that P0,2 is in L(H,H−1)∩L(H1,H) and it is symmetric on H−1, can be checked
as in the proof of Theorem 2.4, in Section 6.
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We are now in a position to prove the main result in this section.

Proof of Theorem 7.1. To prove Theorem 7.1, we apply Corollary 5.5 with the spaces H, Y ,
the operators A0 and C0 given at the beginning of Section 6 and P0 = P0,1 + P0,2, with
P0,1 and P0,2 defined in Corollary 7.4 and Proposition 7.5, respectively. Moreover, since the
system (Σwave) is supposed to be exactly controllable in some time, we can use a standard
duality argument (see Remark 4.2), to deduce that the pair (Ã, C̃) defined in (4.5) is exactly
observable in some time.

Therefore, to apply Corollary 5.5, it remains to prove the unique continuation (5.2): if ϕ
is the solution of

s2ϕ+ ∆2ϕ+ P0,1ϕ+ P0,2ϕ = 0 in Ω,

ϕ = 0, ∆ϕ = 0 on ∂Ω,

ϕ = 0, in O,

for some s ∈ C, then ϕ = 0. Using (7.4), the above property is equivalent to proving that if
ϕ and Γ satisfy for some s ∈ C

s2ϕ+ ∆2ϕ+
2∑

k,`=1

ak`
∂2ϕ

∂xk∂x`
+ [η,Γ] = 0 in Ω,

ϕ = 0, ∆ϕ = 0 on ∂Ω,
ϕ = 0, in O,

(7.7)

and  ∆2Γ = [η, ϕ] in Ω,

Γ = 0,
∂Γ

∂ν
= 0 on ∂Ω,

(7.8)

then ϕ = 0. This follows from the fact that ϕ is analytic on Ω, which in turn is a consequence
of the analyticity of η and of the coefficients (ak`)16k,`62 in Ω (see Proposition 7.5) and of the
classical results in [46, Section 4.1.4] or [30, Ch.7].

Remark 7.6. The analyticity of η, assumed in Theorem 2.6, is used only to ensure the
following unique continuation property: if ϕ and Γ satisfy (7.7)–(7.8) for some s ∈ C, then
ϕ vanishes everywhere (and thus Γ too). This unique continuation property may hold with
different assumptions on η. One could, for instance, use the algebraic resolubility method of
Gromov to give sufficient algebraic conditions on the derivatives of η guaranteeing that the
unique continuation holds for (7.7)–(7.8). More precisely, these conditions would require that
a large determinant involving derivatives of η to be non zero, similarly to Condition (1.8) in
Duprez and Lissy [18, Theorem 1.2] (see also [19, 17] or [37, Ex. 1, Section 1.3, p.18–19]).
Nevertheless, we have no reason to think that this unique continuation property holds for
any η smooth enough. However, due to the the above considerations, we conjecture that this
property generically holds for smooth η.

We next consider the nonlinear controlled system

δ̈(t, x) + ∆2δ(t, x) + [δ,Φ(η, η)](t, x) + 2[η,Φ(δ, η)](t, x) + [η,Φ(δ, δ)](t, x)

+ 2[δ,Φ(η, δ)](t, x) + [δ,Φ(δ, δ)](t, x) = u(t, x)χO(x) (t > 0, x ∈ Ω), (7.9)

with the boundary conditions and initial conditions

δ(t, x) = ∆δ(t, x) = 0 (t > 0, x ∈ ∂Ω), (7.10)

δ(0, x) = δ0(x), δ̇(0, x) = δ1(x) (x ∈ Ω). (7.11)

It is easily seen that Theorem 2.6 (with w = δ + η) directly follows from the result below.
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Theorem 7.7. Under the assumptions in Theorem 2.6, for every τ > 0 there exists α > 0
such that for every

δ0 ∈ H2(Ω) ∩H1
0 (Ω), δ1 ∈ L2(Ω),

with
‖δ0‖H2(Ω) + ‖δ1‖L2(Ω) 6 α,

there exists u ∈ L2([0, τ ];L2(Ω)) such that the solution of (7.9)-(7.11) satisfies

δ(τ, ·) = 0, δ̇(τ, ·) = 0.

Proof. Let τ > 0. In this proof, for convenience, the dependency of the objects in this proof
with respect to τ is not mentioned. First, from the exact controllability in time τ of the
linearized equation (7.1), stated in Theorem 7.1, it follows that there exists a continuous
linear operator

L :
(
H2 ∩H1

0 (Ω)
)
× L2(Ω)× L2([0, τ ];L2(Ω)) → L2([0, τ ];L2(Ω))

such that for every δ0 ∈ H2 ∩H1
0 (Ω), δ1 ∈ L2(Ω) and g ∈ L2([0, τ ];L2(Ω)), the solution δg of

δ̈g + ∆2δg + [δg,Φ(η, η)] + 2[η,Φ(η, δg)] = g + ugχO (t > 0, x ∈ Ω),
δg(t, x) = ∆δg(t, x) = 0 (t > 0, x ∈ ∂Ω),

δg(0, x) = δ0(x), δ̇g(0, x) = δ1(x) (x ∈ Ω),

(7.12)

with ug = L(δ0, δ1, g), satisfies

δg(τ, ·) = 0 and δ̇g(τ, ·) = 0. (7.13)

Indeed, the solution δg of (7.12) can be written as δg = δg,lin + δg,cont, where δg,lin is the
solution of

δ̈g,lin + ∆2δg,lin + [δg,lin,Φ(η, η)] + 2[η,Φ(η, δg,lin)] = g (t > 0, x ∈ Ω),
δg,lin(t, x) = ∆δg,lin(t, x) = 0 (t > 0, x ∈ ∂Ω),

δg,lin(0, x) = δ0(x), δ̇g,lin(0, x) = δ1(x) (x ∈ Ω),

and ug is the control given by Theorem 7.1 such that the solution δg,cont of
δ̈g,cont + ∆2δg,cont + [δg,cont,Φ(η, η)] + 2[η,Φ(η, δg,cont)] = ugχO (t > 0, x ∈ Ω),
δg,cont(t, x) = ∆δg,cont(t, x) = 0 (t > 0, x ∈ ∂Ω),

δg,cont(T, x) = 0, δ̇g,cont(T, x) = 0 (x ∈ Ω),

satisfies
δg,cont(0, x) = −δg,lin(T, x), δ̇g,cont(0, x) = −δ̇g,lin(T, x) (x ∈ Ω).

(Note that, since (7.1) determines a well-posed control system with state space [H2(Ω) ∩
H1

0 (Ω)] × L2(Ω) and control space L2(Ω), the control can be chosen such that it depends
continuously (in L2([0, τ ];L2(Ω))) and linearly on the data to be controlled (in [H2(Ω) ∩
H1

0 (Ω)]× L2(Ω)).)
Our goal is to prove the local exact controllability of the nonlinear system (7.9) via a

fixed-point argument. To this aim, let δ0 ∈ H2 ∩H1
0 (Ω) and δ1 ∈ L2(Ω). We construct a map

G : L2([0, τ ];L2(Ω))→ L2([0, τ ];L2(Ω)) by setting, for g ∈ L2([0, τ ];L2(Ω)),

G(g) = [η,Φ(δg, δg)] + 2[δg,Φ(η, δg)] + [δg,Φ(δg, δg)] (7.14)
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where δg is the solution of (7.12) with the source term g and the control

ug = L(δ0, δ1, g). (7.15)

To conclude the proof of the theorem, it clearly suffices to check the existence of a fixed-point
of G.
Step 1: The map G is well-defined. First, using the property of the Airy function given in
Proposition 7.2 and the definition (2.7) of the bracket [·, ·], there exists C > 0 such that, for
every δ0 ∈ H2 ∩H1

0 (Ω), δ1 ∈ L2(Ω), g ∈ L2([0, τ ];L2(Ω)),

‖G(g)‖L2([0,τ ];L2(Ω)) 6 C

3∑
i=2

(
‖δg‖C([0,τ ];H2(Ω)) + ‖δ̇g‖C([0,τ ];L2(Ω))

)i
.

Moreover, using the continuity of L (see (7.15)), it follows that there exists C > 0 such that,
for every δ0 ∈ H2∩H1

0 (Ω), δ1 ∈ L2(Ω), g ∈ L2([0, τ ];L2(Ω)), the solution δg of (7.12) satisfies

‖δg‖C([0,τ ];H2(Ω)) + ‖δ̇g‖C([0,τ ];L2(Ω))

6 C
(
‖δ0‖H2(Ω) + ‖δ1‖L2(Ω) + ‖g‖L2([0,τ ];L2(Ω))

)
. (7.16)

Combining the two previous estimates, one gets the existence of C > 0 such that

‖G(g)‖L2([0,τ ];L2(Ω)) 6 C
3∑
i=2

(
‖δ0‖iH2(Ω) + ‖δ1‖iL2(Ω) + ‖g‖iL2([0,τ ];L2(Ω))

)
. (7.17)

Step 2: The map G maps Br to itself. Let C > 0 be the constant in (7.17). Let r > 0 such
that

C(r + r2) <
1

2
, (7.18)

and define the associated ball of L2([0, τ ];L2(Ω)) by

Br = {g ∈ L2([0, τ ];L2(Ω)); ‖g‖L2([0,τ ];L2(Ω)) 6 r}.

Let α > 0 be such that
2C(α2 + α3) <

r

2
, (7.19)

and let δ0 ∈ H2 ∩H1
0 (Ω) and δ1 ∈ L2(Ω) satisfy

‖δ0‖H2(Ω) + ‖δ1‖L2(Ω) 6 α. (7.20)

Using (7.17), (7.18) and (7.19), it follows that for every g ∈ Br we have

‖G(g)‖L2([0,τ ];L2(Ω)) 6 2C(α2 + α3) + C(r2 + r3) 6 r.

Consequently, the ball Br in invariant under the action of G.
Step 3: The map G is a contraction on Br. Let r and α satisfy the conditions (7.18) and
(7.19) introduced at Step 2.

We first remark that there exists C > 0 such that for every g1, g2 ∈ Br we have

‖G(g1)−G(g2)‖L2([0,τ ];L2(Ω)) 6 Cr
[
‖δg1 − δg2‖C([0,τ ];H2(Ω)) + ‖δ̇g1 − δ̇g2‖C([0,τ ];L2(Ω))

]
, (7.21)

24



where δgi is the solution of (7.12) with the source term gi and the control ugi . To avoid
repetitions, we detail the above estimate only for the first term in the definition (7.14) of G.
To this aim, we use Proposition 7.2, to obtain the existence of C > 0 with

‖[η,Φ(δg1 , δg1)]− [η,Φ(δg2 , δg2)]‖L2([0,τ ];L2(Ω)) 6 C
[
‖δg1 − δg2‖C([0,τ ];H2(Ω))

+ ‖δ̇g1 − δ̇g2‖C([0,τ ];L2(Ω))

]
×
[
‖δg1 + δg2‖C([0,τ ];H2(Ω)) + ‖δ̇g1 + δ̇g2‖C([0,τ ];L2(Ω))

]
.

Moreover, using (7.16) and (7.19) one gets that for every g1, g2 ∈ Br we have

‖δg1 + δg2‖C([0,τ ];H2(Ω)) + ‖δ̇g1 + δ̇g2‖C([0,τ ];L2(Ω)) 6 Cr.

The other nonlinear terms in G can be tackled in similar manner, leading to (7.21). Then, as
before, using (7.16), one can deduce from (7.21) that, for all g1, g2 ∈ Br,

‖G(g1)− G(g2)‖L2([0,τ ];L2(Ω)) 6 Cr‖g1 − g2‖L2([0,τ ];L2(Ω)).

Hence, reducing r if needed, one gets that G is a strict contraction on Br.
Conclusion. Thus, by the Banach fixed-point theorem, the map G has a fixed point, which
concludes the proof as explained before.

8 Comments and related questions

8.1 Perturbed Schrödinger and plate equations on surfaces of variable cur-
vature

The aim of this subsection is to show that the general results from Section 5 can be applied
to systems governed by the Schrödinger and plate type equations in other geometrical sit-
uations, namely without assuming that the system described by the corresponding abstract
wave equation is exactly observable. To this purpose, let (M, g) be a compact smooth Rie-
mannian manifold whose geodesic flow has the Anosov property. We refer to Dyatlov, Jin and
Nonnemacher [21, Section 2.1] for the precise definition of this concept, recalling here just the
fact that it includes the case of surfaces with negative Gauss curvature. The result below can
be seen as a counterpart in a different geometrical setting of the result given in Proposition
2.3 in an Euclidian context. The remarkable fact is that, unlike in Proposition 2.3, the control
region can be an arbitrary open set.

Proposition 8.1. With the above notation, let ∆g be the Laplace-Beltrami operator on M ,
let O be an open nonempty subset of M , let χO be the indicator function of O and let a ∈
L∞(M ;R). Then the system described by

ż(t, x) + i∆gz(t, x) + ia(x)z(t, x) = u(t, x)χO(x) (t > 0, x ∈M), (8.1)

with state and control space L2(M), is exactly controllable in any positive time.

Proof. Let −A0 be the Laplace-Beltrami operator on H = L2(M). It is known that A0 is a
densely defined operator and positive on H. Let C ∈ L(H) be the multiplication operator by
χO. The major ingredient of this proof is the result in [21, Theorem 2], which implies the
existence of K = KM,O > 0, m > 0 and ω0 > 0 such that

K2 log(ω)

ω
‖(ωI −A0)z0‖2H +m2‖Cz0‖2H > ‖z0‖2H, (ω > ω0, z0 ∈ D(A0)). (8.2)
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On the other hand, Cφ 6= 0 for every eigenvector φ of −iA0−P , where P is the multiplication
operator by ia (this is the unique continuation property for eigenvectors of the Laplace oper-
ator with potential, which is classical, see for instance [34, Chap. 21]). Thus, we can apply
Proposition 3.4 to conclude that (−iA0−P,C) is exactly observable in any positive time. By
duality, it follows that (iA0 + P,C) with state and input space H, is exactly controllable in
any positive time, which is the announced conclusion.

Remark 8.2. When a = 0, the exact controllability in any time of the Schrödinger equation
(8.1) has already been proved in [21, Theorem 5] when M has the Anosov property and in
[29, Theorem 1.3] when M is a compact hyperbolic surface.

To state a similar result for systems described by the plate equation we use the gradient
and divergence operators on Riemannian manifolds, denoted by ∇g and divg, respectively.
We refer, for instance, to Cǎlin and Chang [10, Ch.2] for the definition of these operators.

Proposition 8.3. With the assumptions and notation in Proposition 8.1, let b ∈ C∞(M ;R)
and c ∈ L∞(M). Then the system described by

ẅ(t, x) + ∆2
gw(t, x) + divg (b(x)(∇gw)(t, x)) + c(x)w(t, x)

= u(t, x)χO(x) (t > 0, x ∈M), (8.3)

with state space H2(M) × L2(M) and control space L2(M), is exactly controllable in any
positive time.

Proof. Let H := L2(M) and denote by −A0 the Laplace-Beltrami operator on H. Then A0 is
a positive operator on H, with domain H1 = H2(M). Consider the linear operators

C0ϕ = ϕχO (ϕ ∈ H),
P0ϕ = divg (b∇gϕ) (ϕ ∈ H1),
Q0ϕ = cϕ (ϕ ∈ H).

It can be easily checked that, under our assumptions, we have that P0 ∈ L(H1,H) is symmetric
on H and that Q0 ∈ L(H). Moreover, by applying [34, Chap. 21], it follows that

Ker (s2I +A2
0 + P0) ∩KerC0 = Ker (s2I +A2

0 + P0 +Q0) ∩KerC0 = {0} (s ∈ C),

To conclude, it would be sufficient to apply a result similar to Corollary 5.5 in order to obtain
that the equation

ẅ(t) +A2
0w(t) + (P0 +R0)w(t) = C∗0u(t) (t > 0),

with R0 = Q∗0, determines a system, with state space H1 ×H and control space H, which is
exactly controllable in arbitrarily small time. This would imply, using the obvious facts that
R0 is just the multiplication operator by c and C∗0 = C0, the announced conclusion.

The reason for which Corollary 5.5 cannot be directly applied is that it relies upon several
preliminary results, namely those of Section 4 and Section 5. Nevertheless, the conclusion
of this corollary holds here. Indeed, the only ingredient of the proof of Corollary 5.5 which
cannot be adapted in an obvious manner to the context of the present proof is Theorem 4.1.
However, we can easily show that the conclusion of Theorem 4.1 is still true in the context
of the current proof. Indeed, the exact controllability of the corresponding wave equation,
assumed in Theorem 4.1 and not necessarily holding here, is used in the proof of Theorem 4.1
only to obtain the resolvent estimate (4.8). This resolvent estimate can be replaced by (8.2),
which holds in our context and which is clearly sufficient to obtain the conclusion of Theorem
4.1. We have thus shown that indeed the conclusion of Corollary 5.5 holds here, which ends
our proof.
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8.2 Small time controllability for the Berger plate equation

In this subsection, we consider a system that can be seen as an asymptotic limit of the Von
Kármán equations (see Perla Menzala and Zuazua [40], Nayfeh and Mook [43]) and we show
that, using Corollary 5.5, we can easily improve the known results on the controllability of
an associated system. More precisely, Berger’s model for an elastic plate filling the domain
Ω ⊂ R2 and hinged on the boundary ∂Ω is:

ẅ(t, x) + ∆2w(t, x)−
(
a+ b

∫
Ω
|∇w|2 dx

)
∆w(t, x) = f(x) + uχO (t > 0, x ∈ Ω),

w(t, x) = ∆w(t, x) = 0 (t > 0, x ∈ ∂Ω),
w(0, x) = 0, ẇ(0, x) = 0 (x ∈ Ω).

(8.4)
In the above system, f is a given force field and a is a real constant. The constant b is
supposed to be positive. Let η be a stationary solution corresponding to the forcing term f ,
i.e. satisfying ∆2η(x)−

(
a+ b

∫
Ω
|∇η|2 dx

)
∆η(x) = f(x) (x ∈ Ω),

η(x) = ∆η(x) = 0 (x ∈ ∂Ω).

The main result in this subsection is:

Proposition 8.4. Let Ω ⊂ R2 be an open bounded set with C2 boundary and let O ⊂ Ω
be an open and nonempty subset of Ω such that (Σwave) (introduced in Section 1) is exactly
controllable in some time. Then the nonlinear system (8.4) is locally exactly controllable
in any positive time τ > 0, i.e., for every τ > 0 there exists M > 0 such that for every[
w0

w1

]
∈ (H2(Ω) ∩ H1

0 (Ω)) × L2(Ω), with ‖w0 − η‖2H2(Ω) + ‖w1‖2L2(Ω) 6 M2, there exists u ∈

L2([0, τ ];L2(O)) such that the solution w of (8.4) satisfies

w(τ, ·) = η, ẇ(τ, ·) = 0.

A weaker version of the above result, which was yielding the exact controllability in some
(not necessarily small) time has been proved in [14], in the case η = 0. The fact that the
arbitrarily small controllability time was not obtained in [14] is due to the following limitation:
in the above-referred work, the exact controllability of the linearized system was proved only
for large enough time (see Remark 2.5 above).

Sketch of the proof of Proposition 8.4. With the results of the present paper at hand, we can
apply Theorem 2.4, with ak` = −αδk`, where

α = a+ b‖∇η‖2L2(Ω),

δk` is the Kronecker symbol, bk = 0 and c = 0, to obtain that the system obtained by
linearizing (8.4) around η is exactly controllable in any positive time. Using this fact, the
approach proposed in [14] can be easily adapted to obtain the local exact controllability of
(8.4) in arbitrarily small time and thus proving Proposition 8.4.

8.3 Conclusions and open questions

In this work we have developed a perturbation approach for abstract control systems described
by Kirchhoff and Schrödinger type equations. More precisely, after writing the equations as a
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first-order system, the perturbations we have considered are bounded, but not necessarily com-
pact, with respect to the natural topology of the state space. Consequently, a compactness-
uniqueness based methodology cannot be directly applied. Nevertheless, we show that, under
the assumption that the system described by the wave equation on the same spatial domain
and with the same control operator is exactly controllable, we can apply a frequency do-
main perturbation argument. This methodology yields robustness of the exact controllability
property with respect to this type of perturbation, with some extra assumptions (similar to
those appearing in compactness-uniqueness approaches) on the unique continuation of the
eigenvectors of the perturbed systems. The new results obtained on the systems obtained by
perturbing the classical Kirchhoff plate equation by terms involving up to second-order deriva-
tives with respect to the space variable provide, in particular, enough estimates to tackle the
local controllability for some nonlinear plate systems. More precisely, they allow to obtain the
local, around a sufficiently smooth equilibrium state, exact controllability in arbitrarily small
time, for systems described by the nonlinear von Kármán or Berger plate equations.

The main limitation of our approach is the systematic use of the assumption that the
system described by the wave equation on the same spatial domain and with the same control
operator is exactly controllable. In the case of systems described by the Schrödinger equation
with homogeneous Dirichlet conditions in rectangular domains, this assumption has been
removed in [9] and [7], provided that the perturbation preserves the skew-adjoint nature of
the generator. We can conjecture that similar results hold for systems described by the
plate equation in rectangular domains, opening the way to the local exact controllability of
rectangular von Kármán plates with controls localized in an arbitrary control region. However,
since in this case the generator of the corresponding first-order system is not skew-adjoint,
adapting the arguments (which are not perturbation theory-based ones) from [9] and [7] to
the case of systems described by the plate equation does not seem an obvious task.

Acknowledgements. The authors are grateful to Nicolas Burq for helpful suggestions
and discussions. We are also indebted to the referee for her / his suggestions and comments
on the first version of this work.

A A Carleman estimate for the bi-Laplacian

The goal of this section is to prove the global Carleman estimate for the bi-Laplacian which
has been used in the proof of Theorem 2.4.

To give the precise statement of this result, we introduce some notation, which will be used
in all the remaining part of this section. Firstly, given n ∈ N, the euclidian norms on Cn and
Mn(C) are denoted by | · |. We denote by Ω a nonempty bounded open set of Rn with a C2

boundary or a rectangular domain and by O an open and nonempty subset of Ω. Moreover,
for g ∈ H2(Ω), we write (D2g)(x) and ∇g(x) for the Hessian matrix and the gradient of g at
x ∈ Ω, respectively.

For the remaining part of this section, let α be a C2(Ω) function satisfying

∀x ∈ ∂Ω, α(x) = 0, ∀x ∈ Ω, α(x) > 0, and inf
Ω\O
|∇α| > 0. (A.1)

The existence of a function α with the above properties has been proved in Fursikov and
Imanuvilov [25] (see also [47, Chapter 14] or [16, Lemma 2.68]).

We are now in a position to state the main result in this section.
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Theorem A.1. With the above notation and assumptions, there exist a constant C > 0 and
λ̂ > 0 such that for every s > 1 and every ψ ∈ H4(Ω) satisfying ψ = ∆ψ = 0 on ∂Ω we have∫

Ω

(
s2|D2ψ|2 + s4|∇ψ|2 + s6|ψ|2

)
e2sβ dx

6 C
(∫

Ω
|∆2ψ|2e2sβ dx+

∫
O

[s3|∆ψ|2 + s6|ψ|2]e2sβ dx
)
, (A.2)

where β is given by β = eλ̂α, with α ∈ C2(Ω) as in (A.1).

We refer to [33, Section 1.4, Proposition 1.1] for the proof of the optimality of the powers
of the parameter s in the Carleman estimate (A.2).

Remark A.2. The following global Carleman estimate for the bi-Laplacian is known from
[15, Proposition 1]: for every a > 0, there exist ŝ > 1, λ̂ > 0 and a constant C > 0 such that
for every s > ŝ, for every ψ ∈ H4(Ω) satisfying ψ = ∆ψ = 0 on ∂Ω,∫

Ω

(
s4|∇ψ|2 + s6|ψ|2

)
e2sβ dx 6 C

(∫
Ω
|∆2ψ − a∆ψ|2e2sβ dx

+

∫
O

[s|∇(∆ψ)|2 + s3|∆ψ|2 + s4|∇ψ|2 + s6|ψ|2]e2sβ dx
)
, (A.3)

where β = eλ̂α with α ∈ C2(Ω) as in (A.1). However, (A.3) is not sufficient to prove the
unique continuation (6.7), since one needs to consider the case a = 0 and to estimate all the
second order derivatives of ψ from the right hand side of the Carleman estimate (A.2) or
(A.3).

The strategy used to prove Theorem A.1 is the same as the one in [15, Proposition 1].
More precisely, we apply twice a global Carleman estimate for the Laplacian, which is deduced
from Imanuvilov [27, Lemma 2.7]:

Theorem A.3. With the notation and assumptions in Theorem A.1, there exist λ̂ > 0 and a
constant C > 0 such that for every s > 1, for every y ∈ H2(Ω) ∩H1

0 (Ω) we have∫
Ω

(1

s
|D2y|2 + s|∇y|2 + s3|y|2

)
e2sβ dx 6 C

(∫
Ω
|∆y|2e2sβ dx+ s3

∫
O
|y|2e2sβ dx

)
, (A.4)

where β = eλ̂α with α ∈ C2(Ω) as in (A.1).

Proof. Let T > 0. From [27, Lemma 2.7], one gets the existence of λ̂ > 0 such that for every
λ > λ̂ there exist ŝ > 1 and C > 0 such that for every s > ŝ, t ∈ (0, T ) and y ∈ H2(Ω)∩H1

0 (Ω),∫
Ω

( 1

sβT,λ(t)
|D2y|2 + sλ2βT,λ(t)|∇y|2 + s3λ4(βT,λ(t))3|y|2

)
e2sδT,λ(t) dx

6 C
(∫

Ω
|∆y|2e2sδT,λ(t) dx+ s3λ4

∫
O

(βT,λ(t))3|y|2e2sδT,λ(t) dx
)
,

where the weight functions βT,λ(t) and δT,λ(t) are defined by

βT,λ(t, x) =
eλα(x)

[t(T − t)]2
and δT,λ(t, x) =

eλα(x) − eλ2‖α‖∞
[t(T − t)]2

,

with α ∈ C2(Ω) satisfying (A.1).
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Applying the above estimate at time t = T/2, taking λ = λ̂ and replacing s by 16s/T 4,
we get the existence of ŝ > 1 such that for all s > ŝ we have∫

Ω

( 1

sβ
|D2y|2 + sλ2β|∇y|2 + s3λ4β3|y|2

)
e2s(β−eλ̂2‖α‖∞ ) dx

6 C
(∫

Ω
|∆y|2e2s(β−eλ̂2‖α‖∞ ) dx+ s3λ4

∫
O
β3|y|2e2s(β−eλ̂2‖α‖∞ ) dx

)
,

with β = eλ̂α. Multiplying by e2seλ̂
2‖α‖∞

on both sides, and bounding β from below and from
above (which can be done independently of s), we get (A.4) for s > ŝ. If ŝ > 1, applying
(A.4) for the value ŝ of the Carleman parameter, straightforward bounds on e2sβ for s ∈ [1, ŝ]
yields (A.4) for all s > 1. This concludes the proof.

Using twice the Carleman estimate (A.4) for the Laplacian, one can deduce the Carleman
estimate (A.2) for the bi-Laplacian and prove Theorem A.1.

Proof of Theorem A.1. Let g ∈ L2(Ω) and ψ ∈ H4(Ω) satisfying ψ = ∆ψ = 0 on ∂Ω. Then
y = ∆ψ satisfies {

∆y = ∆2ψ in Ω,
y = 0 in ∂Ω.

Then, by applying the Carleman estimate (A.4) (neglecting the terms involving derivatives of
order one and two in y, i.e. of order three and four in ψ), one gets the existence of λ̂ > 0 and
C > 0 such that for every s > 1,

s3

∫
Ω
|∆ψ|2e2sβ dx 6 C

(∫
Ω
|∆2ψ|2e2sβ dx+ s3

∫
O
|∆ψ|2e2sβ dx

)
. (A.5)

One the other hand, applying the Carleman estimate (A.4) to ψ, we have for all s > 1,∫
Ω

(1

s
|D2ψ|2 + s|∇ψ|2 + s3|ψ|2

)
e2sβ dx 6 C

(∫
Ω
|∆ψ|2e2sβ dx+ s3

∫
O
|ψ|2e2sβ dx

)
. (A.6)

Combining (A.5) and (A.6), we deduced that for every s > 1, estimate (A.2) holds.
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nonlinear boundary dissipation” [Differential Integral Equations 9 (1996), no. 2, 267–294;
MR1364048 (97a:35065)], Differential Integral Equations, 10 (1997), pp. 197–200.

[25] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, vol. 34
of Lecture Notes Series, Seoul National University Research Institute of Mathematics,
Global Analysis Research Center, Seoul, 1996.
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[36] J.-L. Lions, Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués.
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