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EXACT CONTROLLABILITY FOR SYSTEMS DESCRIBING PLATE1

VIBRATIONS.2

A PERTURBATION APPROACH.∗3

MÉGANE BOURNISSOU† , SYLVAIN ERVEDOZA† , AND MARIUS TUCSNAK†4

Abstract. The aim of this paper is to prove new exact controllability properties of systems de-5
scribed by perturbations of the classical Kirchhoff plate equation. We first consider systems described6
by an abstract plate equation with a bounded control operator. The generator of these systems is7
perturbed by bounded operators which are not necessarily compact, thus not falling in the range8
of application of compactness-uniqueness arguments. Our first main result is abstract and can be9
informally stated as follows: if the system described by the corresponding unperturbed abstract wave10
equation, with the same control operator, is exactly controllable (in some time), then the considered11
perturbed plate system is exactly controllable in arbitrarily small time. The employed methodology12
is based, in particular, on frequency-dependent Hautus type tests for systems with skew-adjoint op-13
erators. When applied to systems described by the classical Kirchhoff equations, our abstract results,14
combined with some elliptic Carleman-type estimates, yield exact controllability in arbitrarily small15
time, provided that the system described by the wave equation in the same spatial domain and with16
the same control operator is exactly controllable. The same abstract results can be used to prove the17
exact controllability of the system obtained by linearizing the von Kármán plate equation around a18
real analytic stationary state. This leads, via a fixed-point method, to our second main result: the19
nonlinear system described by the von Kármán plate equations is locally exactly controllable around20
any stationary state defined by a real analytic function.21

1. Introduction. The exact controllability for systems described by the linear22

plate equation, designed as Kirchhoff plate equation in the remaining part of this23

paper, via a distributed internal control is by now a well-understood subject. The24

existing type of results asserts that, under appropriate conditions on the domain25

where the PDE holds and on the support of the control, exact observability holds in26

arbitrarily small time. As far as we know, the first result of this type has been proved27

in Zuazua [25, Appendix 1].28

In particular, in the case of boundary conditions corresponding (at least for a flat29

boundary) to the hinged case, these properties can be derived from the corresponding30

properties of the system described by the Schrödinger equation with homogeneous31

Dirichlet boundary condition and with the same control operator. Moreover, the ex-32

act controllability in any positive time of Schrödinger type systems can be obtained33

from the exact controllability (in some time) of the corresponding system described34

by the wave equation as done in Miller [28, Remark 10.3] and Tucsnak and Weiss [33,35

Section 6.8]. Thus, in the above sense, the exact controllability properties of systems36

described by the wave equation implies the same property (in arbitrarily small time)37

for the corresponding systems described by the Schrödinger or Kirchhoff plate equa-38

tions.39

40

To state the above assertions in a more precise manner, we introduce some nota-41

tion that will be used in the remaining part of this paper. Let n ∈ N and let Ω ⊂ Rn42

be an open bounded set with ∂Ω of class C3 or let Ω be a rectangular domain. We43
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†Institut de Mathématiques de Bordeaux, UMR 5251, Université de Bordeaux,
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first consider the control system, described by a wave equation,44

(1.1)

(Σwave)

{
v̈(t, x)−∆v(t, x) = u(t, x)χO(x) (t ⩾ 0, x ∈ Ω),
v(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω),

45

where O is an open nonempty subset of Ω, χO ∈ L∞(Ω) is non negative and strictly46

positive in O, u is the control function and

[
v
v̇

]
is the state trajectory of the system.47

This system, with input space L2(Ω), is clearly well-posed in the state space H1
0 (Ω)×48

L2(Ω), where, as usual, for every m ∈ N we denote by Hm(Ω), the space of functions49

in L2(Ω) with distributional derivatives, up to order m in L2(Ω) and by Hm
0 (Ω) the50

closure of C∞
0 (Ω) in Hm(Ω). Using the same notation as for defining (Σwave) we51

define two other systems (Σschrod) and (Σplate) which correspond, respectively, to the52

Schrödinger and Kirchhoff plate equations, by53

(1.2)

(Σschrod)

{
ż(t, x) + i∆z(t, x) = u(t, x)χO(x) (t ⩾ 0, x ∈ Ω),
z(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω),

54

and55

(1.3)

(Σplate)

{
ẅ(t, x) + ∆2w(t, x) = u(t, x)χO(x) (t ⩾ 0, x ∈ Ω),
w(t, x) = 0, ∆w(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω).

56

It is well-known that (Σschrod) and (Σplate) are well-posed control systems, both with57

input space L2(Ω) and with state space L2(Ω) and
(
H2(Ω) ∩H1

0 (Ω)
)
×L2(Ω), respec-58

tively. The exact controllability properties of the three above systems are connected59

by a result that goes back to Lebeau [24] (see also Tucsnak and Weiss [33, Sections60

6.7 and 6.8]).61

Proposition 1.1. Assume that the system (Σwave) is exactly controllable (in62

some time). Then, the systems (Σschrod) and (Σplate) are exactly controllable in arbi-63

trarily small time.64

Remark 1.2. It appears that for the exact controllability in some time τ of65

(Σwave), a crucial sufficient condition on the control domain is the following:66

(BLR): Any light ray, travelling in Ω at unit speed and reflected according to geometric67

optics laws when it hits the boundary ∂Ω, will hit O in time ⩽ τ .68

This condition was first considered for the wave equation by Rauch and Taylor in [31]69

for a manifold, by Bardos, Lebeau and Rauch in [1] for bounded open sets Ω with ∂Ω70

of class C∞ and later generalized to domains with ∂Ω of class C3 by Burq in [6].71

The first aim of this paper is to investigate the robustness of the result in Propo-72

sition 1.1 when the Laplacian in (1.2) or the bi-Laplacian in (1.3) are perturbed by73

lower order linear operators. In the case of the Schrödinger equation we have:74

Proposition 1.3. Assume that the system (Σwave) is exactly controllable (in75

some time) and let a ∈ L∞(Ω;R). Then the system76

(1.4){
ż(t, x) + i∆z(t, x) + ia(x)z(t, x) = u(t, x)χO(x) (t ⩾ 0, x ∈ Ω),
z(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω),

77

with state and control space L2(Ω), is exactly controllable in any positive time.78

Although we did not find the above result explicitly stated in the literature, one79

can say that it makes part of the folklore in the field. For the sake of completeness, we80
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will explain in Section 2 how Proposition 1.3 follows from known resolvent estimates.81

Let us also note that when a stronger version of the (BLR) condition holds, such a per-82

turbation can be studied using Carleman estimates which are appropriate to absorb83

the lower-order terms (possibly depending on time and space), as done, for instance,84

in Baudouin and Puel [3] or Yuan and Yamamoto [34]. Moreover, it has been shown85

in Burq and Zworski [7] and Burq, Bourgain and Zworski [5] that if Ω is a rectangular86

domain then the conclusion of Proposition 1.3 holds for any open nonempty setO ⊂ Ω.87

88

Much less is known for similar perturbations (bounded but not compact in the89

state space) of the Kirchhoff system (1.3). Our main result linearly perturbed Kirch-90

hoff systems is:91

Theorem 1.4. Let (akℓ)1⩽k,ℓ⩽n be functions in W 2,∞(Ω;R) such that92

(1.5)


akℓ = aℓk (1 ⩽ k, ℓ ⩽ n),
n∑

ℓ=1

∂akℓ
∂xℓ

(x) = 0 (k ∈ {1, 2, . . . , n}, x ∈ Ω).
93

Let (bk)1⩽k⩽n be functions in W 1,∞(Ω) and let c ∈ L∞(Ω). Moreover, suppose that94

the system (Σwave), with state space H1
0 (Ω)×L2(Ω) and control space L2(Ω), is exactly95

controllable (in some time). Then, the equation96

97

(1.6) ẅ(t, x) + ∆2w(t, x) +

n∑
k,ℓ=1

akℓ(x)
∂2w

∂xk∂xℓ
(t, x)98

+

n∑
k=1

bk(x)
∂w

∂xk
(t, x) + c(x)w(t, x) = u(t, x)χO(x) (t ⩾ 0, x ∈ Ω),99

100

with the boundary conditions101

(1.7) w(t, x) = 0, ∆w(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω),102

defines a system, with state space
(
H2(Ω) ∩H1

0 (Ω)
)
×L2(Ω) and control space L2(Ω),103

which is exactly controllable in any positive time.104

Remark 1.5. In the particular case when the matrix (akℓ)1⩽k,ℓ⩽n vanishes, the105

result in Theorem 1.4 has been proven in Cindea and Tucsnak [11]. Moreover, in the106

same reference, the exact controllability in some time (not necessarily in an arbitrarily107

small time) of the system (1.6)-(1.7) has been established if akℓ = −αδkℓ, where α ⩾ 0108

and δkℓ is the Kronecker symbol.109

The second objective of this paper is to prove the local exact controllability around110

equilibrium states for systems describing the nonlinear vibrations of elastic plates. Our111

main result in this direction concerns the von Kármán plate model, which is described112

by the equations113

(1.8) ẅ(t, x) + ∆2w(t, x) + [w,Φ(w,w)](t, x) = f(x) + u(t, x)χO(x) (t ⩾ 0), x ∈ Ω),
w(t, x) = ∆w(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω),
w(0, x) = w0(x), ẇ(0, x) = w1(x) (x ∈ Ω),

114

where Ω ⊂ R2 is an open, bounded and nonempty set, f is a given force field, the115
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Airy stress function Φ(v, w) is the solution of the boundary value problem116

(1.9)

{
∆2Φ(v, w)(t, x) = [v, w](t, x) (t ⩾ 0, x ∈ Ω),

w(t, x) =
∂w

∂ν
(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω),

117

and the bracket [·, ·] : H2(Ω)×H2(Ω) → L1(Ω) is defined by118

(1.10) [ψ,φ] =
∂2ψ

∂x21

∂2φ

∂x22
+
∂2ψ

∂x22

∂2φ

∂x21
− 2

∂2ψ

∂x1∂x2

∂2φ

∂x1∂x2
(ψ,φ ∈ H2(Ω)).119

In the above system, which is one of the most popular nonlinear models describing the120

vibrations of elastic plates (see, for instance, Berger and Fife [4], Ciarlet and Rabier121

[10] for basic facts on this type of model), w stands for the transverse displacement,122

whereas the in-plane and the rotational inertia are neglected. The control function123

is u ∈ L2([0,∞), L2(Ω)), whereas O is an open nonempty subset of Ω, designing the124

region where the control acts, and χO ∈ L∞(Ω) is non negative and strictly positive125

in O.126

127

Let η be a stationary solution corresponding to the forcing term f , i.e. satisfying128

(1.11)

{
∆2η(x) + [η,Φ(η, η)](x) = f(x) (x ∈ Ω),
η(x) = ∆η(x) = 0 (x ∈ ∂Ω).

129

A natural question is the controllability of the system defined by (1.8) around the130

equilibrium η. As far as we know, the first result in this direction has been proved131

in Lagnese [23], who considered a model including rotational inertia (which simplifies132

the analysis) and he proved a local controllability result for η = 0. The proof in [23]133

can be adapted to the system (1.8) by using the sharp regularity of the nonlinear term134

in (1.8) obtained in Favini et al. [18, 19] (see also Chueshov and Lasiecka [9]). As135

far as we know, the literature contains no local controllability result for (1.8) around136

equilibrium states η ̸= 0, or even for the linearization of the system around such137

states. Closely related questions are discussed in Eller and Toundykov [17], where the138

authors consider a plate system with a local nonlinearity containing no derivatives of139

w and they prove a semiglobal controllability result.140

The main novelty we bring in on the system defined by (1.8) (which involves141

non-local second order nonlinearities) is that we prove its local exact controllability142

around any equilibrium η defined by a function which is real analytic on Ω. This143

analyticity condition could be replaced by a potentially weaker unique continuation144

assumption, which will be discussed in Remark 6.6.145

The second main result in this paper is:146

Theorem 1.6. Let Ω ⊂ R2 be a nonempty, open and bounded set, with ∂Ω of
class C3 or let Ω be a rectangle. Let f ∈ L2(Ω). Assume that O is an open subset
of Ω such that the system (Σwave) is exactly controllable (in some time). Moreover,
suppose that the function η is in W 2,∞(Ω), satisfies (1.11) and is analytic in Ω. Then,
for every τ > 0, there exists ε > 0 such that for every

w0 ∈ H2(Ω) ∩H1
0 (Ω), w1 ∈ L2(Ω),

with
∥w0 − η∥H2(Ω) + ∥w1∥L2(Ω) ⩽ ε,

there exists u ∈ L2([0, τ ];L2(Ω)) such that

w(τ, ·) = η, ẇ(τ, ·) = 0.

4

This manuscript is for review purposes only.



The remaining part of this work is organized as follows. In Section 2, we describe,147

in an abstract setting, a strategy, based on resolvent estimates, to deal with bounded148

perturbations of the generator of control systems. In Section 3, we give a Hautus-type149

condition for the exact observability of systems described by abstract Schrödinger150

and Kirchhoff equations. This test is then used in Section 4 to prove the exact151

controllability of linear perturbed abstract systems. These abstract results are then152

used in Section 5 to prove the exact controllability of linear perturbed Kirchhoff153

equations stated in Theorem 1.4. In Section 6, using a fixed-point theorem, one can154

deduce the exact controllability of the nonlinear Von Kármán plate model given in155

Theorem 1.6.156

2. Some background on the Hautus test for skew-adjoint systems. The157

aim of this section is to recall some basic facts on exact controllability and exact158

observability of systems with skew-adjoint operators, with a focus on the Hautus test159

and its applications for studying perturbations. For more general background on exact160

observability and exact controllability, we refer to [33, Ch. 6 and Ch. 11].161

Within this section H (the state space), U (the input space) and Y (the output162

space) are generic Hilbert spaces. In this work we consider control systems described163

by164

(2.1)

{
ż(t) = Az(t) +Bu(t) (t ⩾ 0),
z(0) = 0,

165

where A : D(A) ⊂ H → H is a skew-adjoint operator generating a unitary C0-group166

T on H and B ∈ L(U,H). We say that the pair (A,B) defines a system, with state167

space H and input space U , which is exactly controllable in time τ if for every z1 ∈ H,168

there exists u ∈ L2([0, τ ];U) such that the solution of (2.1) satisfies z(τ) = z1.169

It is well-known that the exact controllability of a well-posed linear system is170

equivalent to the exact observability of the dual system. This is true, in particular for171

the three systems (Σwave), (Σschrod) and (Σplate) introduced in Section 1. The duals172

of these systems can all be written in the form173

(2.2) ż = Az, y = Cz,174

where C is a linear bounded operator from H into Y . Recall that the pair (A,C) is175

said exactly observable in time τ > 0 if there exists Kτ > 0 such that176

K2
τ

∫ τ

0

∥CTtz0∥2Y dt ⩾ ∥z0∥2H (z0 ∈ H).177

The pair (A,C) is said exactly observable if it is exactly observable in some time τ > 0.178

Remark 2.1. In this work we consider only bounded observation operators C ∈179

L(H, Y ). However, some of our abstract results, in particular those in Section 2 and in180

Section 3, hold under a weaker assumption on the observation operator, namely that181

C ∈ L(D(A), Y ) is an admissible observation operator for the semigroup T generated182

by A, in the sense of [33, Definition 4.3.1]. However, working with admissible operators183

instead of bounded ones entails some technical issues with respect to the functional184

setting in which controllability and observability results hold. Thus, due to the main185

applications we have in mind and for the sake of clarity, the results below are only186

stated in the case of bounded observation operators.187

A widely used necessary and sufficient condition for exact observability of systems188

with skew-adjoint generator is the following Hautus test, firstly proved in Miller [28,189

Theorem 5.1]:190

5
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Theorem 2.2. With the above notation, let A be skew-adjoint on H and let C ∈191

L(H, Y ). Then the pair (A,C) is exactly observable if and only if there exist constants192

M, m > 0 such that193

(2.3) M2∥(iωI −A)z0∥2H +m2∥Cz0∥2Y ⩾ ∥z0∥2H (ω ∈ R, z0 ∈ D(A)).194

Moreover, if (2.3) holds then (A,C) is exactly observable in time τ for any τ > Mπ.195

An interesting question is to investigate the robustness of exact observability with196

respect to bounded (but not necessarily small) perturbations P ∈ L(H) of the genera-197

tor. To this purpose, an interesting tool is a reinforced form of the condition (2.3), in198

which the constantM is replaced by a positive function tending to zero when |ω| → ∞,199

which is a sufficient condition for exact observability in arbitrarily small time, see [29,200

Corollary 2.14]. Such a frequency-dependent Hautus-type condition allows to deal201

with bounded skew-adjoint perturbations of the generator. More precisely, we have:202

Proposition 2.3. Assume that A is skew-adjoint on H and that it has compact203

resolvents. Let C ∈ L(H, Y ). Suppose that there exist a function M : R → [0,+∞)204

which tends to zero when |ω| → +∞ and a constant m > 0 such that205

(2.4) M2(ω)∥(iωI −A)z0∥2H +m2∥Cz0∥2Y ⩾ ∥z0∥2H, (ω ∈ R, z0 ∈ D(A)).206

Moreover, let P ∈ L(H) be a bounded skew-adjoint operator such that Cϕ ̸= 0 for207

every eigenvector ϕ of A+ P . Then the pair (A+ P,C) is exactly observable in any208

positive time.209

Proof. First, notice that A+P with D(A+P ) = D(A) is still skew-adjoint, thus210

it generates a C0-group of unitary operators on H.211

Using the fact that the pair (A,C) satisfies (2.4), together with triangular and212

Young inequalities, one gets that213

214

2M2(ω)∥(iωI −A− P )z0∥2H + 2M2(ω)∥P∥2L(H)∥z0∥
2
H215

+m2∥Cz0∥2Y ⩾ ∥z0∥2H (ω ∈ R, z0 ∈ D(A)).216217

Since M(ω) → 0 when |ω| → ∞, it follows that for every γ > 0 there exists cγ > 0218

such that219

γ2∥(iωI −A− P )z0∥2H +m2∥Cz0∥2Y ⩾ ∥z0∥2H (|ω| > cγ , z0 ∈ D(A)).220

We have thus shown that (2.3) holds for “high frequencies”. This, combined with the221

fact that Cϕ ̸= 0 for every eigenvector ϕ of A+P and [33, Proposition 6.6.4], implies222

the exact observability of (A+ P,C) in any time τ > γπ.223

Proposition 2.3 allows us to prove, for instance, the robustness of the exact con-224

trollability of a system described by the Schrödinger equation with respect to bounded225

perturbations as stated in Proposition 1.3.226

Proof of Proposition 1.3. Denote by A = −i∆ with D(A) = H2(Ω) ∩ H1
0 (Ω)227

which is skew-adjoint with compact resolvents, C : φ 7→ φχO ∈ L(L2(Ω)) and P :228

φ 7→ −iaφ ∈ L(L2(Ω)) (with a ∈ L∞(Ω,R)) which is also skew-adjoint. Since [28,229

Proof of Theorem 3.4] or [33, Section 6.7], it is known that, when (Σwave) is exactly230

controllable in some time, the Hautus-type condition (2.4) holds with M(ω) = M√
ω

231

with some constant M > 0. Moreover, Cϕ ̸= 0 for every eigenvector ϕ of A+ P (see232

for example [33, Theorem 15.2.1]).233

6
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Therefore, Proposition 2.3 entails that the pair (A + P,C) is exactly observable234

in any positive time, and thus, by a duality argument, that the Schrödinger equation235

with a bounded potential (1.4) is exactly controllable in any positive time.236

The frequency-dependent Hautus-type condition (2.4) can be equivalently ex-237

pressed in terms of wave packets, as done in Miller [29, Theorem 2.16]. For the sake238

of simplicity, we only give below a simplified version of [29, Theorem 2.16], which is239

sufficient for the present work.240

Proposition 2.4. Assume that A is skew-adjoint on H and that it has compact241

resolvents and let C ∈ L(H, Y ). The following statements are equivalent.242

1. There exist δ > 0 and r : R → (0,+∞) which tends to infinity when |ω| →243

+∞ such that for all ω ∈ R and z of the form z =
∑

j∈Jr(ω)(ω)

zjϕj, we have244

(2.5) ∥Cz∥Y ⩾ δ∥z∥H.245

2. There exists m > 0 and M : R → (0,+∞) which tends to zero when |ω| →246

+∞ such that (2.4) holds.247

Our approach to prove the robustness of the exact observability property for248

plate equations with respect to bounded perturbations of the generator, as stated in249

Theorem 1.4, is to show that the considered system satisfies a frequency-dependent250

Hautus condition of type (2.4). To this aim, see Section 3, we first check a frequency-251

dependent wave packets condition. However, the situation is more complicated in252

the case of systems described by the plate equation (1.6) than in the case of the253

Schrödinger equation (1.4), already studied in this section. Indeed, extra difficulties254

are generated by the fact that, when written in first-order form, the generator of255

the perturbed system is no longer skew-adjoint. Thus, instead of directly applying256

Proposition 2.3, we need a special decomposition in low and high frequency parts of257

the state space and the application of a simultaneous controllability result.258

3. A frequency-dependent Hautus condition for systems describing259

plate vibrations. In this section, we show that under appropriate assumptions,260

a class of abstract observation systems, described by plate type equation with distrib-261

uted observation satisfies a frequency-dependent Hautus-type condition (2.4). This262

condition will be essential in the next section where we show that the exact observ-263

ability property is robust with respect to a class of perturbations of the generator.264

Within this section, we continue to denote by H and Y two Hilbert spaces and265

we denote by A0 : D(A0) → H a strictly positive operator with compact resolvents.266

If there is no risk of confusion, the inner product and the norm in H are simply de-267

noted by ⟨·, ·⟩ and ∥ · ∥, respectively. For α > 0, we denote by Hα the space D(Aα
0 )268

endowed with the graph norm of Aα
0 . For α < 0 the space Hα is defined as the dual269

of H−α with respect to the pivot space H. Note that for every α ∈ R the operator270

A0 can be restricted (or extended) to a unitary operator L(Hα,Hα−1). Moreover, let271

C0 ∈ L(H, Y ) be an observation operator.272

273

With the above notation, the class of systems we consider is:274

(3.1)

 δ̈(t) +A2
0δ(t) = 0 (t ⩾ 0),

δ(0) = δ0 ∈ H, δ̇(0) = δ1 ∈ H−1,
y(t) = C0δ(t) (t ⩾ 0).

275

7
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The system (3.1) can be written in a first-order form276  ż(t) = Az(t) (t ⩾ 0),
z(0) = z0,
y(t) = Cz(t) (t ⩾ 0),

277

in the state space H×H−1, which is a Hilbert space with the inner product〈[
f1
g1

]
,

[
f2
g2

]〉
H×H−1

= ⟨f1, f2⟩+ ⟨A−1
0 g1, A

−1
0 g2⟩,

with A : D(A) → H ×H−1, C ∈ L(H ×H−1, Y ) and z defined by D(A) = H1 × H278

and279

A =

[
0 I

−A2
0 0

]
i.e. A

[
f
g

]
=

[
g

−A2
0f

]
,(3.2)280

C =
[
C0 0

]
,(3.3)281

z(t) =

[
δ(t)

δ̇(t)

]
, z0 =

[
δ0
δ1

]
.(3.4)282

283

Since A2
0 > 0 (see [33, Remark 3.3.7]), according to [33, Proposition 3.7.6], the opera-284

tor A is skew-adjoint and 0 ∈ ρ(A). By the theorem of Stone, A generates a unitary285

group on H×H−1.286

287

The main result of this section is:288

Theorem 3.1. With the above notation and assumptions, suppose that the pair289

(Ã, C̃) with290

(3.5) D(Ã) = H1 ×H 1
2
, Ã =

[
0 I

−A0 0

]
, C̃ =

[
0 C0

]
,291

defines a system, with state space H 1
2
× H and output space Y , which is exactly292

observable (in some time).293

Then there exist a functionM1 : R → [0,+∞), which tends to zero when |ω| → ∞,294

and a constant m1 > 0 such that295

(3.6)
M2

1 (ω)∥(iωI −A)z0∥2H×H−1
+m2

1∥Cz0∥2Y ⩾ ∥z0∥2H×H−1
(ω ∈ R, z0 ∈ D(A)),296

where A and C are respectively defined in (3.2) and (3.3).297

Remark 3.2. It is not difficult to check that the above assumption that the pair298

(Ã, C̃) defines an exactly observable system with state space H 1
2
×H and output space299

Y is equivalent to the fact that
(
Ã,
[
C0 0

])
defines an exactly observable system300

with state space H × H− 1
2
and output space Y . By duality, these conditions are301

equivalent to the exact controllability of the control system, with state space H 1
2
×H302

and input space Y , defined by (Ã, B̃), where B̃ =

[
0
C∗

0

]
.303

The proof of Theorem 3.1 relies on the link between a wave packets condition (first304

introduced in [8]) and resolvent estimates (2.4) as stated by Miller in [29, Proposition305

2.6]. Thus, the proof relies on a wave packet condition for the abstract Kirchhoff306
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system (3.1) which is deduced from a similar condition for an abstract Schrödinger307

system. To this end, one needs first to show that (2.4) holds for a system described308

by an abstract plate equation.309

Proposition 3.3. With the notation and assumptions in Theorem 3.1, there ex-310

ists a constant γ0 > 0 such that311

(3.7)
1

ω
∥(ω2I −A2

0)φ∥2H + ∥ω C0φ∥2Y ⩾ γ0∥ωφ∥2H (ω > 0, φ ∈ D(A2
0)).312

Proof. Since the pair (Ã, C̃) is exactly observable, applying the Hautus type test313

in [27] (see also [30, Proposition 4.5]), it follows that there exists a constant γ0 > 0314

such that315

(3.8) ∥(ωI −A0)φ∥2H + ω∥C0φ∥2Y ⩾ γ0ω∥φ∥2H (ω > 0, φ ∈ D(A0)).316

On the other hand, using the fact that A0 > 0 it follows that

∥(ω2I−A2
0)φ∥2H = ∥(ωI+A0)(ωI−A0)φ∥2H ⩾ ω2∥(ωI−A0)φ∥2H (ω > 0, φ ∈ D(A2

0)).

The last estimate and (3.8) imply the conclusion (3.7).317

As a consequence of the above result we can prove a wave packets condition for318

the abstract Schrödinger equation.319

Proposition 3.4. With the notation and assumptions in Theorem 3.1, let (λn)n∈N∗320

be the nondecreasing sequence formed by the eigenvalues of A0 and let (ϕn)n∈N∗ be a321

corresponding sequence of eigenvectors, forming an orthonormal basis of H. More-322

over, for every ω, r > 0 and ε ∈ (0, 12 ) we set323

(3.9) Ir(ω) = {m ∈ N∗ such that |λm − ω| < r},324

325

(3.10) rε(ω) =

{
ω

1
2−ε (ω ⩾ ω0,ε),

min
{ω
2
,
ρε
3

}
ω ∈ (0, ω0,ε),

326

where ω0,ε = max

{
1,

(
18

γ0

) 1
2ε

}
(with γ0 is the constant in (3.7)) and

ρε = inf{|λ− µ|;λ ̸= µ eigenvalues of A0 in (0, 2ω0,ε)}.

(Notice that ρε > 0 because there is only a finite number of eigenvalues of A0 in327

(0, 2ω0,ε).) Then, for every ε ∈ (0, 12 ), there exists γ1 > 0 such that we have328

(3.11) ∥C0φ∥Y ⩾ γ1∥φ∥H (ω ⩾ 0, φ ∈ span {ϕk}k∈Irε(ω)(ω)).329

Proof. Let ε ∈ (0, 12 ). For the sake of clarity, in this proof, the dependency of ω0,ε330

and ρε with respect to ε is not mentioned. For ω ⩾ ω0, we consider φ of the form331

(3.12) φ =
∑

m∈Irε (ω)

cmϕm.332

Then we clearly have that φ ∈ D(A2
0) and333

(3.13)∥∥(ω2I −A2
0)φ
∥∥2
H =

∑
m∈Irε(ω)(ω)

∣∣ω2 − λ2m
∣∣2 |cm|2 ⩽ ω1−2ε

∑
m∈Irε(ω)(ω)

|ω + λm|2|cm|2.334
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On the other hand, it is clear that for every ω ⩾ 1 and m ∈ Irε(ω)(ω) we have

0 < ω + λm < 2ω + rε(ω) ⩽ 3ω.

The last inequality and (3.13) imply that for every φ of the form (3.12), we have335 ∥∥(ω2I −A2
0)φ
∥∥2
H ⩽ 9ω1−2ε∥ωφ∥2H ⩽

γ0ω

2
∥φ∥2H,336

for ω ⩾ ω0. By applying (3.7) to φ of the form (3.12), the above estimate leads to337

(3.11) for every ω ⩾ ω0.338

Moreover, by construction of rε, for every ω ∈ (0, ω0), there exists λ = λ(ω) such339

that340

span {ϕk}k∈Irε(ω)(ω) = Ker(A0 − λI).341

Indeed, if there exist n,m ∈ Irε(ω)(ω) such that λn ̸= λm,342

ρ ⩽ |λn − λm| ⩽ |λn − ω|+ |λm − ω| ⩽ 2rε(ω) ⩽
2ρ

3
,343

which is a contradiction. Therefore, since C0φ ̸= 0 for every eigenfunction φ of A0344

(because the pair (Ã, C̃) is observable), it follows that for every ω ∈ (0, ω0), there345

exists γ1 = γ1(ω) > 0 such that346

∥C0φ∥Y ⩾ γ1∥φ∥H φ ∈ span {ϕk}k∈Irε(ω)(ω).347

Finally, using the fact that A0 has a finite number of eigenvalues in (0, ω0), the348

constant γ1 can be chosen uniformly with respect to ω ∈ (0, ω0), giving (3.11).349

Remark 3.5. The wave packets condition (3.11) on the pair (A0, C0) allows us350

to prove the existence of constants M,m > 0 such that351

(3.14)
M2

ω1−2ε
∥(ωI −A0)z0∥2H +m2∥Cz0∥2Y ⩾ ∥z0∥2H (ω ∈ R, z0 ∈ D(A0)),352

using the link between wave packets condition and resolvent estimates as stated by353

Miller in [29, Proposition 2.6] and recalled in Proposition 2.4. Taking A0 = −∆ with354

D(A0) = H2(Ω) ∩ H1
0 (Ω) and C : φ 7→ φχO, this gives a Hautus type condition355

(2.4) for the Schrödinger equation which is weaker than the one already proven in [28,356

Proof of Theorem 3.4] or [33, Section 6.7] and used in the proof of Proposition 1.3, in357

Section 2.358

Finally, one can deduce the wave packets condition for the abstract Kirchhoff359

equation, which leads us to the proof the main result of this section.360

Proof of Theorem 3.1. Let A be the operator defined in (3.2), let (λn)n∈N∗ be361

the nondecreasing sequence formed by the eigenvalues of A0 (repeated according to362

their multiplicity) and let (ϕn)n∈N∗ be the corresponding eigenvectors of A0 forming363

an orthonormal basis of H−1. We set ϕ−n = −ϕn for all n ∈ N∗. Then (see, for364

instance, Proposition 3.7.7 in [33]) the eigenvalues of A are (iµn)n∈Z∗ with µn = λn365

if n > 0 and µn = −λ−n if n < 0. Moreover, there is in H × H−1 an orthonormal366

basis formed of eigenvectors of A, given by367

(3.15) ψn =
1√
2

[ 1
iµn

ϕn
ϕn

]
(n ∈ Z∗).368
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With the above notation and introducing, for all ω ∈ R and r > 0, the sets369

(3.16) Jr(ω) = {m ∈ Z∗ such that |µm − ω| < ε},370

we remark that for every ε ∈ (0, 12 ), if the function rε defined in (3.10) is extended by371

rε(ω) = rε(−ω) for ω < 0, we have372

(3.17) Jrε(ω)(ω) = sign(ω)Irε(|ω|)(|ω|)373

where Ir has been defined in (3.9). From (3.15) and (3.17), it follows that if ψ =[
η
φ

]
∈ D(A) is in span {ψk}k∈Jrε(ω)(ω), then η ∈ span {ϕk}k∈Irε(|ω|)(|ω|), ∥ψ∥H×H−1 =

√
2∥η∥H, and ∥Cψ∥Y = ∥C0η∥Y . This facts and Proposition 3.4 imply that

∥Cψ∥Y ⩾ γ1∥η∥H =
γ1√
2
∥ψ∥H×H−1

(
ω ∈ R, ψ =

[
η
φ

]
∈ span {ψk}k∈Jrε(ω)(ω)

)
.

The above estimate implies the announced conclusion by applying the frequency-374

dependent Hautus test given in Miller [29, Theorem 2.16] and recalled in Proposition375

2.4.376

4. Perturbation of abstract Kirchhoff systems. The goal of this section is377

to use the resolvent estimate (3.6) to study the robustness of the exact observability378

property for a system described by an abstract plate equation, with respect to bounded379

(but not necessarily compact) perturbations of the generator. Notice that the similar380

result for the perturbed Schrödinger equation given in Proposition 1.3 has already381

been dealt with in Section 2.382

We continue in this section to use the notation introduced in the previous one.383

More precisely, H and Y are Hilbert spaces, A0 : D(A0) → H is a strictly positive384

operator with compact resolvents, and C0 ∈ L(H, Y ). If needed, the spaces H and Y385

are identified with their duals. Moreover, if V is another Hilbert space with continuous386

embedding V ⊂ H, the dual of V is identified with its dual using the pivot space H.387

For α > 0 we still denote by Hα the space D(Aα
0 ) endowed with the graph norm of Aα

0388

and we define H−α as the dual of Hα with respect to the pivot space H. Moreover, we389

set H0 := H and A still is the operator defined in (3.2). Recall that for every α ∈ R390

we can extend (or restrict) A0 to a unitary operator from Hα onto Hα−1. With a391

slight abuse of notation, we shall still denote by A0 this extension (or restriction).392

The main result of this section is:393

Theorem 4.1. With the notation and assumptions in Theorem 3.1, assume that

P0 ∈ L(H,H−1) ∩ L(H1,H)

is a symmetric operator on H−1, with domain H. Let P :=

[
0 0
P0 0

]
∈ L(H ×H−1)394

and let AP : D(AP ) → H×H−1 be the operator defined by395

(4.1) D(AP ) = D(A), AP = A− P.396

Moreover, let C ∈ L(H×H−1) be defined by C =
[
C0 0

]
and suppose that397

(4.2) Ker (s2I +A2
0 + P0) ∩KerC0 = {0} (s ∈ C).398

Then the system, with state space H×H−1 and output space Y , described by the pair399

(AP , C) is exactly observable in any time τ > 0.400
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The proof of Theorem 4.1 partially relies on a series of results resenting similarities401

with those in [33, Section 7.3]. The first result of this series can be seen as a variation402

of [33, Proposition 7.3.3], so we skip its proof.403

Proposition 4.2. With the above notation, ψ =

[
η
φ

]
∈ D(AP ) is an eigenvector404

of AP , associated to the eigenvalue iµ, if and only if η is an eigenvector of A2
0 + P0,405

associated to the eigenvalue µ2, and φ = iµη (note that µ does not have to be real).406

Clearly, A2
0 + P0, with domain H1, is self-adjoint on H−1 and it has compact407

resolvents. According to a classical result (see, for instance, [33, Proposition 3.2.12])408

it follows that A2
0 + P0 is diagonalizable with an orthonormal basis (ϕ̃k)k∈N∗ in H−1409

formed of eigenvectors of A2
0+P0 and with the corresponding family of real eigenvalues410

(λ̃k)k∈N∗ satisfying lim
k→∞

|λ̃k| = ∞. Moreover, since for all z ∈ H1,411

⟨(A2
0 + P0)z, z⟩H−1 ⩾ ∥A0z∥2H−1

− ∥P0∥L(H,H−1)∥z∥H∥z∥H−1
412

⩾
1

2
∥z∥2H − 1

2
∥P0∥2L(H,H−1)

∥z∥2H−1
,413

414

it follows that limk→∞ λ̃k = +∞. Hence, without loss of generality, we may assume
that the sequence (λ̃k)k∈N∗ is nondecreasing. We extend the sequence (ϕ̃k)k∈N∗ to a
sequence indexed by Z∗ by setting ϕ̃k = −ϕ̃−k for every k ∈ Z−. We introduce the
real sequence (µk)k∈Z∗ by

µk =

√
|λ̃k| if k > 0 and µk = −µ−k if k < 0.

We denote by

W0 = span

{[
1

isign(k) ϕ̃k

ϕ̃k

]∣∣∣∣∣ k ∈ Z∗, µk = 0

}
.

If Ker (A2
0+P0) = {0} then of courseW0 is the zero subspace of H×H−1. Let N ∈ N∗

be such that λ̃N > 0. We denote by

WN = span

{[
1

iµk
ϕ̃k

ϕ̃k

]∣∣∣∣∣ k ∈ Z∗, |k| < N, µk ̸= 0

}
,

and define YN =W0 +WN . We also introduce the space415

(4.3) VN = span

{[
1

iµk
ϕ̃k

ϕ̃k

]∣∣∣∣∣ |k| ⩾ N

}
,416

the closure being taken in H×H−1.417

Lemma 4.3. With the above notation, we have H×H−1 = YN ⊕ VN . Moreover,418

YN and VN are invariant under the semigroup T generated by AP on H×H−1.419

Proof. We adapt below the proof of Lemma 7.3.4 in [33].420

First, to prove that H × H−1 = YN ⊕ VN , one can show that YN = V ⊥
N for421

a suitable inner product to be defined. To deal with the fact that A2
0 + P0 is not a422

positive operator, we introduce a new operator A1, whose eigenfunctions are the same423

as the one of A2
0 + P0, but its eigenvalues are all strictly positive. More precisely, let424

A1 : H1 → H−1 be defined by425

(4.4) A1f =
∑
λ̃k=0

⟨f, ϕ̃k⟩Hϕ̃k +
∑
λ̃k ̸=0

|λ̃k|⟨f, ϕ̃k⟩Hϕ̃k (f ∈ H1).426
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Since the family (ϕ̃k)k∈N∗ is an orthonormal basis inH−1 and each ϕ̃k is an eigenvector427

of A1, it follows that A1 is diagonalizable. Moreover, since the eigenvalues of A1 are428

strictly positive, it follows that A1 > 0. Following line by line the proof of Proposition429

3.4.9 in [33], it can be checked that the inner product on H×H−1 defined by430

(4.5)〈[
f1
g1

]
,

[
f2
g2

]〉
1

= ⟨f1, f2⟩H + ⟨A− 1
2

1 g1, A
− 1

2
1 g2⟩H

([
f1
g1

]
,

[
f2
g2

]
∈ H ×H−1

)
,431

is equivalent to the original one, meaning that it induces a norm equivalent to the432

original one.433

Let A1 be the operator on H×H−1 defined by

D(A1) = H1 ×H, A1 =

[
0 I

−A1 0

]
.

According to Proposition 3.7.6 of [33], A1 is skew-adjoint on X (if endowed with the434

inner product ⟨·, ·⟩1 defined in (4.5)). Thus, Proposition 3.7.7 of [33] entails that435

YN = V ⊥
N (for the inner product ⟨·, ·⟩1) giving that H×H−1 = YN ⊕ VN .436

We next prove that YN and VN are invariant under the semigroup T generated by437

AP . First, using the fact that λ̃k > 0 for every k > N and Proposition 4.2, it follows438

that VN is a closed subspace spanned by a set of eigenvectors of AP , thus is invariant439

under the action of T. To prove that W0 is also invariant under the action of T, one440

can notice that for every k in Z∗ such that µk = 0,441

AP

[
1

isign(k) ϕ̃k

ϕ̃k

]
=

[
ϕ̃k
0

]
=
isign(k)

2

([
1

isign(k) ϕ̃k

ϕ̃k

]
+

[
1

isign(−k) ϕ̃−k

ϕ̃−k

])
∈W0.442

To prove that WN is invariant under the action of T, one can first notice that for443

every k in Z∗, |k| < N such that µk ̸= 0, µ2
k = sign(λ̃|k|)λ̃|k| and [A2

0+P0]ϕ̃k = λ̃|k|ϕ̃k.444

Thus, one gets that445

AP

[
1

iµk
ϕ̃k

ϕ̃k

]
=

[
ϕ̃k

λ̃|k|
iµk

ϕ̃k

]
= iµk

[
1

iµk
ϕ̃k

−sign(λ̃|k|)ϕ̃k

]
∈WN ,446

because

[
1

iµk
ϕ̃k

−ϕ̃k

]
=

[
1

iµ−k
ϕ̃−k

ϕ̃−k

]
∈WN . Finally, YN =W0+WN is invariant under the447

action of T.448

We are now in a position to prove the main result of this section.449

Proof of Theorem 4.1. We first note that Theorem 3.1 implies that

M2
1 (ω)∥(iωI−AP−P )z0∥2H×H−1

+m2
1∥Cz0∥2Y ⩾ ∥z0∥2H×H−1

(ω ∈ R, z0 ∈ D(A)).

Using an elementary inequality, we obtain that450
451

2M2
1 (ω)∥(iωI −AP )z0∥2H×H−1

+ 2M2
1 (ω)∥P0∥2L(H,H−1)

∥z0∥2H×H−1
452

+m2
1∥Cz0∥2Y ⩾ ∥z0∥2H×H−1

(ω ∈ R, z0 ∈ D(A)).453
454

Since we know from Theorem 3.1 that M1(ω) → 0 when |ω| → ∞, it follows that for455

every γ > 0 there exists cγ > 0 such that456

(4.6)
γ2∥(iωI−AP )z0∥2H×H−1

+2m2
1∥Cz0∥2Y ⩾ ∥z0∥2H×H−1

(|ω| ⩾ cγ , z0 ∈ D(A)).457
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Moreover, using the inner product (4.5) associated with the operator A1 defined in458

(4.4) (which is equivalent to the original one), (4.6) implies that for every γ > 0 there459

exist c̃γ , mγ > 0 such that460

(4.7) γ2∥(iωI −AP )z0∥21 +m2
γ∥Cz0∥2Y ⩾ ∥z0∥21 (|ω| ⩾ c̃γ , z0 ∈ D(A)).461

For N ∈ N∗ such that λ̃N > 0, we denote by AP,N the part of AP in VN , where VN is462

the space defined in (4.3). Since AP,N coincides with the part of A1 in VN , it follows463

that AP,N is skew-adjoint on VN (endowed with the inner product ⟨·, ·⟩1). Moreover,464

using (4.7), it follows that, for every γ > 0, there exist c̃γ , mγ > 0 such that the465

following estimate holds466

(4.8) γ2∥(iωI−AP,N )z0∥21+m2
γ∥Cz0∥2Y ⩾ ∥z0∥21 (|ω| ⩾ c̃γ , z0 ∈ D(A)∩VN ).467

Since AP,N is skew-adjoint (thus normal) on VN , it follows that there exists Nγ ∈ N∗

such that

∥(iωI −AP,Nγ
)z0∥1 ⩾ γ−1∥z0∥1 (|ω| < c̃γ , z0 ∈ D(A) ∩ VNγ

).

The above estimate and (4.8) imply that for every γ > 0 there exist mγ > 0 and468

Nγ ∈ N∗ such that469

(4.9) γ2∥(iωI−AP,Nγ
)z0∥21+m2

γ∥Cz0∥2Y ⩾ ∥z0∥21 (ω ∈ R, z0 ∈ D(A)∩VNγ
).470

The above estimate and the fact that AP,Nγ is skew-adjoint imply, according to the471

Hautus-type test for systems with skew-adjoint generator proved in Miller [28] (see472

also [33, Theorem 6.6.1]), that the pair (AP,Nγ
, CNγ

), where CNγ
is the restriction of473

C to VNγ
, is exactly observable in any time τ > γπ.474

Denoting by ÃP,Nγ the part of AP in YNγ and by C̃Nγ
the restriction of C to YNγ

,475

we obtain that the finite-dimensional system (ÃP,Nγ
, C̃Nγ

) is observable by applying476

the classical Hautus test thanks to (4.2). Since ÃP,Nγ and AP,Nγ have no common477

eigenvalues and (AP,Nγ
, CNγ

) is exactly observable in any time larger than γπ, we478

can apply Theorem 6.4.2 in [33] to obtain that (AP , C) is exactly observable in any479

time τ > γπ. Since γ > 0 can be arbitrarily small, this implies the conclusion of the480

theorem.481

As a consequence of Theorem 4.1, we can obtain a second perturbation result.482

More precisely, the result below shows that the exact observability property still483

holds if, besides the perturbation P0, we add a perturbation Q0 whose contribution484

is compact with respect to the topolgy of the state space.485

Corollary 4.4. With the notation and assumptions in Theorem 4.1, let Q0 ∈486

L(H,H−1) be a compact operator and let Q =

[
0 0
Q0 0

]
∈ L(H × H−1). Let APQ :487

D(APQ) → H×H−1 be the operator defined by488

(4.10) D(APQ) = D(A), APQ = A− P −Q.489

Then APQ generates a C0-semigroup T on H×H−1. Moreover, assuming that490

(4.11) Ker (s2I +A2
0 + P0 +Q0) ∩KerC0 = {0} (s ∈ C),491

the pair (APQ, C) is exactly observable in any time τ > 0.492
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Proof. The fact that APQ generates a C0-semigroup on H×H−1 follows from the
obvious property P +Q ∈ L(H×H−1). Moreover, we can remark that the result in
Proposition 4.2 holds for every P0 ∈ L(H,H−1) (no symmetry of P0 is needed), thus,

in particular, if we replace P0 by P0 + Q0. It follows that ψ =

[
η
φ

]
∈ D(APQ) is an

eigenvector of APQ, associated to the eigenvalue iµ, if and only if η is an eigenvector
of A2

0 + P0 +Q0, associated to the eigenvalue µ2, and φ = iµη. This fact and (4.11)
imply that

Ker (sI −APQ) ∩KerC = {0} (s ∈ C).

We also note that, under our assumptions, Q ∈ L(H ×H−1) is a compact operator.493

Moreover, we know from Theorem 4.1 that the pair (AP , C), with AP defined in (4.1),494

is exactly observable in any time τ > 0. Since APQ = AP −Q, the conclusion follows495

now using the duality of the exact observability and of exact controllability properties496

and by applying Theorem 1.2 in [16] to deal with the compact perturbation using a497

compactness-uniqueness method.498

By duality, Corollary 4.4 yields the follwing exact controllability result:499

Corollary 4.5. With the notation and assumptions in Corollary 4.4, let R0 ∈500

L(H1,H) be the operator defined by501

(4.12) ⟨R0φ,ψ⟩H = ⟨φ,Q0ψ⟩H1,H−1
(φ ∈ H1, ψ ∈ H).502

Then the equation503

(4.13) ẅ(t) +A2
0w(t) + (P0 +R0)w(t) = C∗

0u(t) (t ⩾ 0),504

determines a well-posed control system with state space H1 × H and input space Y .505

Moreover, this system is exactly controllable in arbitrarily small time.506

Proof. Recall that the Hilbert spaces H and Y are identified with their duals.507

Moreover, if V is another Hilbert space, with continuous embedding V ⊂ H, the dual508

of V is identified with its dual using the pivot space H.509

We next consider, for every τ > 0, the input map Φτ ∈ L(L2([0, τ ];Y ),H1 ×H)510

defined by511

(4.14) Φτu =

[
w(τ)
ẇ(τ)

]
(u ∈ L2([0, τ ];Y )),512

where w is the unique solution of (4.13) satisfying the initial conditions w(0) = 0 and513

ẇ(0) = 0. In order to write Φ′
τ ∈ L(H−1 ×H, L2([0, τ ];Y )) in a convenient manner514

we consider the system515

(4.15)

{
ÿ(t) +A2

0y(t) + P0y(t) +Q0y(t) = 0 (t ∈ [0, τ ]),
y(τ) = y1, ẏ(τ) = −y0,

516

where Q0 is defined by (4.12). After some standard calculations, it is not difficult to517

check that518

(4.16)

(
Φ′

τ

[
y0
y1

])
(t) = C0y(t) (y0 ∈ H−1, y1 ∈ H, t ∈ [0, τ ]),519

where y satisfies (4.15).520
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On the other hand, from (4.15), it is clear that

[
y(t)
ẏ(t)

]
= Tt−τ

[
y1
−y0

]
, where T is

the C0-group introduced in Corollary 4.4. By combining (4.16) and Corollary 4.4 it
follows that there exists a constant Kτ > 0 such that

Kτ

∥∥∥∥Φ′
τ

[
y0
y1

]∥∥∥∥
L2([0,τ ];Y )

⩾

∥∥∥∥[y0y1
]∥∥∥∥

H−1×H
(y0 ∈ H−1, y1 ∈ H).

Using a classical result (see, for instance, Barnes [2, Theorem 7]) it follows that Φτ is521

onto from L2([0, τ ];Y ) to H1 ×H, which implies the announced exact controllability522

result.523

5. Proof of the main result on linear systems. The goal of this section is524

to prove Theorem 1.4 on the controllability of the perturbations of a plate equation.525

Within this section, we specify the spaces H, Y and the operators A0 and C0 which526

have been introduced in an abstract context in Sections 3 and 4. More precisely, we527

set:528

• H = L2(Ω), where Ω is an open bounded set of Rn, with ∂Ω of class C3 or Ω529

is a rectangular domain;530

• −A0 is the Dirichlet Laplacian on L2(Ω). More precisely,531

D(A0) = H2(Ω) ∩H1
0 (Ω),(5.1)532

A0φ = −∆φ (φ ∈ D(A0));(5.2)533534

The operator A0 is strictly positive with compact resolvents;535

• Y = L2(Ω) and C0 ∈ L(H, Y ) is defined by536

(5.3) C0φ = φχO (φ ∈ H),537

where O is an open subset of Ω and χO ∈ L∞(Ω) is a nonnegative function538

which is positive on O.539

With H and A0 chosen above, it is known (see, for instance, [33, Section 3.6])
that

H2 =
{
φ ∈ H4(Ω) ∩H1

0 (Ω) | ∆φ = 0 on ∂Ω
}
, H1 = H2(Ω) ∩H1

0 (Ω).

Moreover, we have

H−1 =
[
H2(Ω) ∩H1

0 (Ω)
]′
,

where
[
H2(Ω) ∩H1

0 (Ω)
]′
is the dual of H2(Ω)∩H1

0 (Ω) with respect to the pivot space540

L2(Ω).541

Proof of Theorem 1.4. The proof consists in applying Corollary 4.5 with the ap-542

propriate choice of spaces and operators. We first remark that, since the system543

(Σwave) described by the wave equation is exactly controllable in some time, a stan-544

dard duality argument implies that the pair (Ã, C̃) defined in (3.5) is exactly observ-545

able in some time. Thus, since the spaces H, Y , the operators A0, C0 and the spaces546

Hα have been specified in the preamble of this section, it only remains to define the547

operators P0 and R0.548

Let P0 ∈ L(H1,H) be the operator defined by549

(5.4) P0φ =

n∑
k,ℓ=1

akℓ
∂2φ

∂xk∂xℓ
(φ ∈ H1).550
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Using (1.5) and the fact that (akℓ)1⩽k,ℓ⩽n are real-valued, it is easy to check that P0

is well-defined and

⟨P0φ,ψ⟩H = ⟨φ, P0ψ⟩H (φ, ψ ∈ H1).

Moreover, the above formula implies that

|⟨P0φ,ψ⟩H| ⩽
n∑

k,ℓ=1

∥akℓ∥L∞(Ω)∥φ∥H∥ψ∥H1
(φ, ψ ∈ H1).

It follows that P0 can be uniquely extended to an unbounded symmetric operator on551

H−1 (still denoted by P0), with domain H, by setting552

(5.5) ⟨P0φ,ψ⟩H = ⟨φ, P0ψ⟩H1,H−1 (φ ∈ H1, ψ ∈ H).553

Let R0 ∈ L(H1,H) be the operator defined by

R0φ =

n∑
k=1

bk
∂φ

∂xk
+ cφ (φ ∈ H1).

An integration by parts shows that

⟨R0φ,ψ⟩H = ⟨φ,Q0ψ⟩H (φ, ψ ∈ H1),

where554

(5.6) Q0ψ = −div
(
bψ
)
+ cψ (ψ ∈ H1).555

From the last two formulas, it follows that Q0 can be extended uniquely to a compact556

operator (still denoted by Q0) in L(H,H−1).557

To conclude using Corollary 4.5, we still have to check the unique continuation558

properties (4.2) and (4.11). More precisely, we need to prove that for ε ∈ {0, 1},559

ψ ∈ H2(Ω) ∩H1
0 (Ω) and µ ∈ C we have560

(5.7)
µ2ψ +∆2ψ + P0ψ + εQ0ψ = 0 in Ω,
ψ = 0, ∆ψ = 0 on ∂Ω,
ψ = 0 in O,

 ⇒ ψ = 0.561

This unique continuation is a direct consequence of the Carleman estimate given in
Theorem A.1 of Appendix A. Indeed, denote

g = −P0ψ − εQ0ψ − µ2ψ.

Applying Theorem A.1, there exists a function β ∈ C2(Ω) and a positive constant562

C > 0 such that for all s ⩾ 1,563

(5.8)

∫
Ω

(
s2|D2ψ|2 + s4|∇ψ|2 + s6|ψ|2

)
e2sβ dx ⩽ C

∫
Ω

|g|2e2sβ dx,564

where D2ψ designs the Hessian matrix of ψ, | · | stands for the euclidian norm on finite565

dimensional spaces and we have used the fact that ψ = 0 in O. Moreover, using the566
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definition of the operators P0 and Q0 given in (5.4) and (5.6), one can easily check567

that, for all x ∈ Ω,568

569

|g(x)| ⩽ max
k,ℓ=1,...,n

∥akℓ∥L∞(Ω)|D2ψ(x)|570

+ ε max
k=1,...,n

∥bk∥L∞(Ω)|∇ψ(x)|+ (ε∥c∥L∞(Ω) + |µ|2)|ψ(x)|.571
572

Therefore, this estimate combined with (5.8) implies that for every s ⩾ 1,573

574 ∫
Ω

(
s2|D2ψ|2 + s4|∇ψ|2 + s6|ψ|2

)
e2sβ ⩽ C

(
max

k,ℓ=1,...,n
∥akℓ∥2L∞(Ω)

∫
Ω

|D2ψ|2e2sβ575

+ ε2 max
k=1,...,n

∥bk∥2L∞(Ω)

∫
Ω

|∇ψ|2e2sβ + (ε2∥c∥2L∞(Ω) + |µ|4)
∫
Ω

|ψ|2e2sβ
)
.576

577

Taking s large enough in the last inequality, we obtain that ψ = 0, which concludes578

the proof.579

6. Proof of Theorem 1.6. The main ingredient in the proof of Theorem 1.6 is
an exact controllability result for the system obtained by linearizing (1.8) around the
stationary state (η, 0). To write down this system, we insert the formula

w(t, x) = η(x) + εδ(t, x) (t ⩾ 0, x ∈ Ω),

in (1.8) and we develop in a power series with respect to ε. Identifying the terms of580

order 1, we obtain the system:581

(6.1) δ̈(t, x) + ∆2δ(t, x) + [δ,Φ(η, η)] + 2[η,Φ(η, δ)] = u(t, x)χO(x) (t ⩾ 0, x ∈ Ω),
δ(t, x) = ∆δ(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω),

δ(0, x) = δ0(x), δ̇(0, x) = δ1(x) (x ∈ Ω),

582

where the Airy stress function Φ is the solution of (1.9). The main result in this583

section is the following.584

Theorem 6.1. Assume that Ω, O and η satisfy the assumptions in Theorem 1.6.
Then (6.1) determines a well-posed control system with state space[

H2(Ω) ∩H1
0 (Ω)

]
× L2(Ω),

and control space L2(Ω). Moreover, this system is exactly controllable in any time585

τ > 0.586

To write (6.1) as a well-posed control system, we have to introduce some spaces587

and operators. To this aim, we first recall some properties of the Airy stress function588

Φ defined in (1.9) given in [9, Corollary 1.4.4].589

Proposition 6.2. For every p ∈ [1,∞], the Airy stress function Φ defines a590

bounded bilinear operator from H2(Ω)×H2(Ω) to W 2+ 2
p ,p(Ω)∩H2

0 (Ω). In particular,591

there exists a positive constant KΩ such that592

(6.2) ∥Φ(v, w)∥W 2,∞(Ω) ⩽ KΩ∥v∥H2(Ω) ∥w∥H2(Ω) (v, w ∈ H2(Ω)).593

Then, we also recall the following property of the von Kármán bracket defined in594

(1.10), given in [9, Proposition 1.4.5].595
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Proposition 6.3. For any u ∈ H2(Ω) and v, w ∈ H2 ∩ H1
0 (Ω), the following596

relation holds597 ∫
Ω

[u, v]wdx =

∫
Ω

[u,w]vdx.598

Corollary 6.4. For every η ∈ H2(Ω), the mapping P0,1 : δ 7→ [η,Φ(η, δ)] defines599

a linear bounded operator from H2∩H1
0 (Ω) to L

2(Ω). Moreover, P0,1 can be extended600

to an operator in L(L2(Ω), [H2 ∩H1
0 (Ω)]

′) and is symmetric on [H2 ∩H1
0 (Ω)]

′.601

Proof. The fact that for every η ∈ H2(Ω), we have P0,1 ∈ L(H2(Ω), L2(Ω)) is a602

direct consequence of (6.2). Moreover, for every δ, ψ ∈ H2 ∩H1
0 (Ω),603

(6.3) ⟨P0,1δ, ψ⟩L2(Ω) = ⟨δ, P0,1ψ⟩L2(Ω).604

To prove this relation, introduce the operator AD defined by605 {
D(AD) = H4(Ω) ∩H2

0 (Ω),
ADφ = ∆2φ (φ ∈ D(AD)).

606

This operator is known to be strictly positive on L2(Ω) and the definition of P0,1 can
be rewritten as

P0,1δ =
[
η,A−1

D [η, δ]
]

(δ ∈ H2(Ω) ∩H1
0 (Ω)).

Using Proposition 6.3 and the self-adjointness of A−1
D , it follows that, for every δ, ψ ∈607

H2 ∩H1
0 (Ω),608

609

⟨P0,1δ, ψ⟩L2(Ω) =
〈[
η,A−1

D [η, δ]
]
, ψ
〉
L2(Ω)

=
〈
A−1

D [η, δ], [η, ψ]
〉
L2(Ω)

610

=
〈
[η, δ], A−1

D [η, ψ]
〉
L2(Ω)

=
〈
δ,
[
η,A−1

D [η, ψ]
]〉

L2(Ω)
= ⟨δ, P0,1ψ⟩L2(Ω).611

612

Then, the relation (6.3) and the continuity of P0,1 from H2 ∩H1
0 (Ω) to L

2(Ω) imply613

that there exists C > 0 such that for all δ, ψ ∈ H2 ∩H1
0 (Ω),614 ∣∣⟨P0,1δ, ψ⟩L2(Ω)

∣∣ ⩽ C∥δ∥L2(Ω)∥ψ∥H2∩H1
0 (Ω).615

Therefore, P0,1 can be extended uniquely to an operator in L(L2(Ω), [H2 ∩H1
0 (Ω)]

′)616

(still denoted by P0,1) with617

⟨P0φ,ψ⟩L2(Ω) = ⟨φ, P0ψ⟩H2∩H1
0 (Ω),[H2∩H1

0 (Ω)]′ (φ ∈ H2 ∩H1
0 (Ω), ψ ∈ L2(Ω)).618

Proposition 6.5. For all η ∈ W 2,∞(Ω), we define the operator P0,2 ∈ L(H2 ∩
H1

0 (Ω), L
2(Ω)) by

P0,2δ = [δ,Φ(η, η)] (δ ∈ H2 ∩H1
0 (Ω)).

Then, there exist functions (akℓ)1⩽k,ℓ⩽2 in H2(Ω) such that619

(6.4) P0,2δ =

2∑
k,ℓ=1

akℓ
∂2δ

∂xk∂xℓ
(δ ∈ H2 ∩H1

0 (Ω)),620

19

This manuscript is for review purposes only.



with621

(6.5)


akℓ = aℓk ∈ H2(Ω) (k, ℓ ∈ {1, 2}),
2∑

ℓ=1

∂akℓ

∂xℓ
= 0 (k ∈ {1, 2}).622

Moreover, P0,2 can be extended to an operator in L(L2(Ω), [H2 ∩ H1
0 (Ω)]

′) which is623

symmetric on [H2 ∩H1
0 (Ω)]

′.624

Finally, if η is analytic, then the functions (akℓ)1⩽k,ℓ⩽2 in (6.4) are also analytic.625

Proof. The definition of P0,2 implies that (6.4) holds with626

(6.6) a11 =
∂2

∂x22
Φ(η, η), a12 = a21 = − ∂2

∂x1∂x2
Φ(η, η), a22 =

∂2

∂x21
Φ(η, η).627

The fact that (akℓ)1⩽k,ℓ⩽2 satisfies (6.5) is a direct consequence of (6.6). The regu-628

larity of (akℓ)1⩽k,ℓ⩽2 follows from the elliptic regularity: As η is in W 2,∞(Ω), [η, η] is629

in L2(Ω) and thus, Φ(η, η) is in H4(Ω).630

The fact that P0,2 is in L(H,H−1) ∩ L(H1,H) and it is symmetric on H−1, can631

be checked as in the proof of Theorem 1.4, in Section 5.632

We are now in a position to prove the main result in this section.633

Proof of Theorem 6.1. To prove Theorem 6.1, we apply Corollary 4.5 with the634

spaces H, Y , the operators A0 and C0 given at the beginning of Section 5 and635

P0 = P0,1 + P0,2, with P0,1 and P0,2 defined in Corollary 6.4 and Proposition 6.5,636

respectively. Moreover, since the system (Σwave) is supposed to be exactly control-637

lable in some time, we can use a standard duality argument (see Remark 3.2), to638

deduce that the pair (Ã, C̃) defined in (3.5) is exactly observable in some time.639

Therefore, to apply Corollary 4.5, it remains to prove the unique continuation640

(4.2): if φ is the solution of641

s2φ+∆2φ+ P0,1φ+ P0,2φ = 0 in Ω,642

φ = 0, ∆φ = 0 on ∂Ω,643

φ = 0, in O,644645

for some s ∈ C, then φ = 0. Using (6.4), the above property is equivalent to proving646

that if φ and Γ satisfy for some s ∈ C647

(6.7)


s2φ+∆2φ+

2∑
k,ℓ=1

akℓ
∂2φ

∂xk∂xℓ
+ [η,Γ] = 0 in Ω,

φ = 0, ∆φ = 0 on ∂Ω,
φ = 0, in O,

648

and649

(6.8)

 ∆2Γ = [η, φ] in Ω,

Γ = 0,
∂Γ

∂ν
= 0 on ∂Ω,

650

then φ = 0. This follows from the fact that φ is analytic on Ω, which in turn is651

a consequence of the analyticity of η and of the coefficients (akℓ)1⩽k,ℓ⩽2 in Ω (see652

Proposition 6.5) and of the classical results in [32, Section 4.1.4] or [22, Ch.7].653
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Remark 6.6. The analyticity of η, assumed in Theorem 1.6, is used only to654

ensure the following unique continuation property: if φ and Γ satisfy (6.7)–(6.8) for655

some s ∈ C, then φ vanishes everywhere (and thus Γ too). This unique continuation656

property may hold with different assumptions on η. One could, for instance, use the657

algebraic resolubility method of Gromov to give sufficient algebraic conditions on the658

derivatives of η guaranteeing that the unique continuation holds for (6.7)–(6.8). More659

precisely, these conditions would require that under that a large determinant involving660

derivatives of η to be non zero, similarly to Condition (1.8) in Duprez and Lissy [14,661

Theorem 1.2] (see also [15, 13] or [26, Ex. 1, Section 1.3, p.18–19]). Nevertheless,662

we have no reason to think that this unique continuation property holds for any η663

smooth enough. However, due to the the above considerations, we conjecture that664

this property generically holds for smooth η.665

We next consider the nonlinear controlled system666
667

(6.9) δ̈(t, x) + ∆2δ(t, x) + [δ,Φ(η, η)](t, x) + 2[η,Φ(δ, η)](t, x) + [η,Φ(δ, δ)](t, x)668

+ 2[δ,Φ(η, δ)](t, x) + [δ,Φ(δ, δ)](t, x) = u(t, x)χO(x) (t ⩾ 0, x ∈ Ω),669670

with the boundary conditions and initial conditions671

δ(t, x) = ∆δ(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω),(6.10)672

δ(0, x) = δ0(x), δ̇(0, x) = δ1(x) (x ∈ Ω).(6.11)673674

It is easily seen that Theorem 1.6 (with w = δ + η) directly follows from the result675

below.676

Theorem 6.7. Under the assumptions in Theorem 1.6, for every τ > 0 there
exists α > 0 such that for every

δ0 ∈ H2(Ω) ∩H1
0 (Ω), δ1 ∈ L2(Ω),

with
∥δ0∥H2(Ω) + ∥δ1∥L2(Ω) ⩽ α,

there exists u ∈ L2([0, τ ];L2(Ω)) such that the solution of (6.9)-(6.11) satisfies

δ(τ, ·) = 0, δ̇(τ, ·) = 0.

Proof. Let τ > 0. In this proof, for convenience, the dependency of the objects677

with respect to τ is not mentioned. First, from the exact controllability in time τ678

of the linearized equation (6.1), stated in Theorem 6.1, it follows that there exists a679

continuous linear operator680

L :
(
H2 ∩H1

0 (Ω)
)
× L2(Ω)× L2([0, τ ];L2(Ω)) → L2([0, τ ];L2(Ω))681

such that for every δ0 ∈ H2 ∩ H1
0 (Ω), δ1 ∈ L2(Ω) and g ∈ L2([0, τ ];L2(Ω)), the682

solution δg of683

(6.12)

 δ̈g +∆2δg + [δg,Φ(η, η)] + 2[η,Φ(η, δg)] = g + ugχO (t ⩾ 0, x ∈ Ω),
δg(t, x) = ∆δg(t, x) = 0 (t ⩾ 0, x ∈ ∂Ω),

δg(0, x) = δ0(x), δ̇g(0, x) = δ1(x) (x ∈ Ω),

684

with ug = L(δ0, δ1, g), satisfies685

(6.13) δg(τ, ·) = 0 and δ̇g(τ, ·) = 0.686
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Our goal is to prove the local exact controllability of the nonlinear system (6.9) via a687

fixed-point argument. To this aim, let δ0 ∈ H2∩H1
0 (Ω) and δ1 ∈ L2(Ω). We construct688

a map G : L2([0, τ ];L2(Ω)) → L2([0, τ ];L2(Ω)) by setting, for g ∈ L2([0, τ ];L2(Ω)),689

(6.14) G(g) = [η,Φ(δg, δg)] + 2[δg,Φ(η, δg)] + [δg,Φ(δg, δg)]690

where δg is the solution of (6.12) with the source term g and the control691

(6.15) ug = L(δ0, δ1, g).692

To conclude the proof of the theorem, it clearly suffices to check the existence of a693

fixed-point of G.694

Step 1: The map G is well-defined. First, using the property of the Airy function given695

in Proposition 6.2 and the definition (1.10) of the bracket [·, ·], there exists C > 0696

such that, for every δ0 ∈ H2 ∩H1
0 (Ω), δ1 ∈ L2(Ω), g ∈ L2([0, τ ];L2(Ω)),697

∥G(g)∥L2([0,τ ];L2(Ω)) ⩽ C

3∑
i=2

(
∥δg∥C([0,τ ];H2(Ω)) + ∥δ̇g∥C([0,τ ];L2(Ω))

)i
.698

Moreover, using the continuity of L (see (6.15)), it follows that there exists C > 0699

such that, for every δ0 ∈ H2 ∩H1
0 (Ω), δ1 ∈ L2(Ω), g ∈ L2([0, τ ];L2(Ω)), the solution700

δg of (6.12) satisfies701

702

(6.16) ∥δg∥C([0,τ ];H2(Ω)) + ∥δ̇g∥C([0,τ ];L2(Ω))703

⩽ C
(
∥δ0∥H2(Ω) + ∥δ1∥L2(Ω) + ∥g∥L2([0,τ ];L2(Ω))

)
.704705

Combining the two previous estimates, one gets the existence C > 0 such that706

(6.17) ∥G(g)∥L2([0,τ ];L2(Ω)) ⩽ C

3∑
i=2

(
∥δ0∥iH2(Ω) + ∥δ1∥iL2(Ω) + ∥g∥iL2([0,τ ];L2(Ω))

)
.707

Step 2: The map G maps Br into itself. Let C > 0 be the constant in (6.17). Let708

r > 0 such that709

(6.18) C(r + r2) <
1

2
,710

and define the associated ball of L2([0, τ ];L2(Ω)) by711

Br = {g ∈ L2([0, τ ];L2(Ω)); ∥g∥L2([0,τ ];L2(Ω)) ⩽ r}.712

Let α > 0 be such that713

(6.19) 2C(α+ α2) <
r

2
,714

and let δ0 ∈ H2 ∩H1
0 (Ω) and δ1 ∈ L2(Ω) satisfy715

(6.20) ∥δ0∥H2(Ω) + ∥δ1∥L2(Ω) ⩽ α.716

Using (6.17), (6.18) and (6.19), it follows that for every g ∈ Br we have717

∥G(g)∥L2([0,τ ];L2(Ω)) ⩽ 2C(α+ α2) + C(r2 + r3) ⩽ r.718
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Consequently, the ball Br in invariant under the action of G.719

Step 3: The map G is a contraction on Br. This can be proved by a light variation720

of the arguments at step 2, so we omit the details.721

Conclusion. By the Banach fixed-point theorem, the map G has a fixed point, which,722

as explained at the beginning of this proof, implies the announced conclusion.723

Appendix A. A Carleman estimate for the bi-Laplacian.724

The goal of this section is to prove the global Carleman estimate for the bi-725

Laplacian which has been used in the proof of Theorem 1.4. To give the precise726

statement of this result, we introduce some notation, which will be used in all the727

remaining part of this section. Firstly, given n ∈ N, the euclidian norms on Cn and728

Mn(C) are denoted by | · |. We denote by Ω a nonempty bounded open set of Rn729

with a C2 boundary or a rectangular domain and by O an open and nonempty subset730

of Ω. Moreover, for g ∈ H2(Ω), we write (D2g)(x) and ∇g(x) for the Hessian matrix731

and the gradient of g at x ∈ Ω, respectively. For the remaining part of this section,732

let α be a C2(Ω) function satisfying733

(A.1) ∀x ∈ ∂Ω, α(x) = 0, ∀x ∈ Ω, α(x) > 0, and inf
Ω\O

|∇α| > 0.734

The existence of a function α with the above properties has been proved in Fursikov735

and Imanuvilov [20] (see also [33, Chapter 14] or [12, Lemma 2.68]).736

We are now in a position to state the main result in this section.737

Theorem A.1. With the above notation and assumptions, there exist a constant738

C > 0 and λ̂ > 0 such that for every s ⩾ 1 and every ψ ∈ H4(Ω) satisfying ψ =739

∆ψ = 0 on ∂Ω we have740
741

(A.2)

∫
Ω

(
s2|D2ψ|2 + s4|∇ψ|2 + s6|ψ|2

)
e2sβ dx742

⩽ C
(∫

Ω

|∆2ψ|2e2sβ dx+

∫
O
[s3|∆ψ|2 + s6|ψ|2]e2sβ dx

)
,743

744

where β is given by β = eλ̂α, with α ∈ C2(Ω) as in (A.1).745

The strategy used to prove Theorem A.1 is the same as the one in [11, Proposition746

1]. More precisely, we apply twice a global Carleman estimate for the Laplacian, which747

is a slight variation of Imanuvilov [21, Lemma 2.7]:748

Theorem A.2. With the notation and assumptions in Theorem A.1, there exist749

λ̂ > 0 and a constant C > 0 such that for every s ⩾ 1, for every y ∈ H2(Ω) ∩H1
0 (Ω)750

we have751

(A.3)∫
Ω

(1
s
|D2y|2 + s|∇y|2 + s3|y|2

)
e2sβ dx ⩽ C

(∫
Ω

|∆y|2e2sβ dx+ s3
∫
O
|y|2e2sβ dx

)
,752

where β = eλ̂α with α ∈ C2(Ω) as in (A.1).753

Using twice the Carleman estimate (A.3) for the Laplacian, one can deduce the754

Carleman estimate (A.2) for the bi-Laplacian and prove Theorem A.1.755

Proof of Theorem A.1. Let g ∈ L2(Ω) and ψ ∈ H4(Ω) satisfying ψ = ∆ψ = 0 on756

∂Ω. Then y = ∆ψ satisfies757 {
∆y = ∆2ψ in Ω,
y = 0 in ∂Ω.

758
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Then, by applying the Carleman estimate (A.3) (neglecting the terms involving de-759

rivatives of order one and two in y, i.e. of order three and four in ψ), one gets the760

existence of λ̂ > 0 and C > 0 such that for every s ⩾ 1,761

(A.4) s3
∫
Ω

|∆ψ|2e2sβ dx ⩽ C
(∫

Ω

|∆2ψ|2e2sβ dx+ s3
∫
O
|∆ψ|2e2sβ dx

)
.762

One the other hand, applying the Carleman estimate (A.3) to ψ, we have for all s ⩾ 1,763

(A.5)∫
Ω

(1
s
|D2ψ|2 + s|∇ψ|2 + s3|ψ|2

)
e2sβ dx ⩽ C

(∫
Ω

|∆ψ|2e2sβ dx+ s3
∫
O
|ψ|2e2sβ dx

)
.764

Combining (A.4) and (A.5), we deduced that for every s ⩾ 1, estimate (A.2) holds.765
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