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EXACT CONTROLLABILITY FOR SYSTEMS DESCRIBING PLATE
VIBRATIONS.
A PERTURBATION APPROACH.*

MEGANE BOURNISSOUT, SYLVAIN ERVEDOZAT, AND MARIUS TUCSNAKT

Abstract. The aim of this paper is to prove new exact controllability properties of systems de-
scribed by perturbations of the classical Kirchhoff plate equation. We first consider systems described
by an abstract plate equation with a bounded control operator. The generator of these systems is
perturbed by bounded operators which are not necessarily compact, thus not falling in the range
of application of compactness-uniqueness arguments. Our first main result is abstract and can be
informally stated as follows: if the system described by the corresponding unperturbed abstract wave
equation, with the same control operator, is exactly controllable (in some time), then the considered
perturbed plate system is exactly controllable in arbitrarily small time. The employed methodology
is based, in particular, on frequency-dependent Hautus type tests for systems with skew-adjoint op-
erators. When applied to systems described by the classical Kirchhoff equations, our abstract results,
combined with some elliptic Carleman-type estimates, yield exact controllability in arbitrarily small
time, provided that the system described by the wave equation in the same spatial domain and with
the same control operator is exactly controllable. The same abstract results can be used to prove the
exact controllability of the system obtained by linearizing the von Karman plate equation around a
real analytic stationary state. This leads, via a fixed-point method, to our second main result: the
nonlinear system described by the von Karman plate equations is locally exactly controllable around
any stationary state defined by a real analytic function.

1. Introduction. The exact controllability for systems described by the linear
plate equation, designed as Kirchhoff plate equation in the remaining part of this
paper, via a distributed internal control is by now a well-understood subject. The
existing type of results asserts that, under appropriate conditions on the domain
where the PDE holds and on the support of the control, exact observability holds in
arbitrarily small time. As far as we know, the first result of this type has been proved
in Zuazua [25, Appendix 1].

In particular, in the case of boundary conditions corresponding (at least for a flat
boundary) to the hinged case, these properties can be derived from the corresponding
properties of the system described by the Schrodinger equation with homogeneous
Dirichlet boundary condition and with the same control operator. Moreover, the ex-
act controllability in any positive time of Schrodinger type systems can be obtained
from the exact controllability (in some time) of the corresponding system described
by the wave equation as done in Miller [28, Remark 10.3] and Tucsnak and Weiss [33,
Section 6.8]. Thus, in the above sense, the exact controllability properties of systems
described by the wave equation implies the same property (in arbitrarily small time)
for the corresponding systems described by the Schrédinger or Kirchhoff plate equa-
tions.

To state the above assertions in a more precise manner, we introduce some nota-
tion that will be used in the remaining part of this paper. Let n € N and let 2 C R”
be an open bounded set with 9Q of class C? or let Q be a rectangular domain. We
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first consider the control system, described by a wave equation,
(L.1)
(Suave) (t,x) — Av(t, z) = u(t, z)xo () (t=0, ze€),
wave v(t,z) =0 (t>=0, z €0,

where O is an open nonempty subset of Q, xo € L°°() is non negative and strictly
positive in O, u is the control function and z is the state trajectory of the system.

This system, with input space L?(£2), is clearly well-posed in the state space Hg (£2) x
L?(2), where, as usual, for every m € N we denote by H™ (), the space of functions
in L?(Q) with distributional derivatives, up to order m in L?(Q) and by HJ*(Q) the
closure of C§°(Q2) in H™(Q2). Using the same notation as for defining (Xyave) we
define two other systems (Yschroa) and (Xpiate) Which correspond, respectively, to the
Schrodinger and Kirchhoff plate equations, by

(1.2)
2(t,x) +iAz(t,x) = u(t,x)xo(x) (t=0, ze),
(Zschrod) { z(t,x) =0 xo (t >0, z € aQ)’
and
(1.3)
(Spate) { W(t, ) + A%w(t, ) = u(t,x)xo(x) (t=0, x €9Q),
plate w(t,z) =0, Aw(t,z) =0 (t>=0, x €00).

It is well-known that (Xsehroa) and (Xpiate) are well-posed control systems, both with
input space L?(2) and with state space L*(Q2) and (H?(Q) N H}(Q)) x L*(Q2), respec-
tively. The exact controllability properties of the three above systems are connected
by a result that goes back to Lebeau [24] (see also Tucsnak and Weiss [33, Sections
6.7 and 6.8]).

PROPOSITION 1.1. Assume that the system (Lwave) is exzactly controllable (in
some time). Then, the systems (Zschrod) and (Zplate) are ezactly controllable in arbi-
trarily small time.

REMARK 1.2. It appears that for the exact controllability in some time 7 of
(Xwave ), a crucial sufficient condition on the control domain is the following:
(BLR): Any light ray, travelling in Q at unit speed and reflected according to geometric
optics laws when it hits the boundary 02, will hit O in time < 7.
This condition was first considered for the wave equation by Rauch and Taylor in [31]
for a manifold, by Bardos, Lebeau and Rauch in [1] for bounded open sets 2 with 02
of class C* and later generalized to domains with 99 of class C® by Burq in [6].

The first aim of this paper is to investigate the robustness of the result in Propo-
sition 1.1 when the Laplacian in (1.2) or the bi-Laplacian in (1.3) are perturbed by
lower order linear operators. In the case of the Schrodinger equation we have:

PROPOSITION 1.3. Assume that the system (Xwave) is exactly controllable (in
some time) and let a € L>°(;R). Then the system
(1.4)

2(t,x) +iAz(t, ) + ia(z)z(t, x) = u(t, z)xo(x) (t=0, x€Q),
{ z(t,x) =0 (t>0, z€09Q),

with state and control space L%(S)), is exactly controllable in any positive time.

Although we did not find the above result explicitly stated in the literature, one
can say that it makes part of the folklore in the field. For the sake of completeness, we
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will explain in Section 2 how Proposition 1.3 follows from known resolvent estimates.
Let us also note that when a stronger version of the (BLR) condition holds, such a per-
turbation can be studied using Carleman estimates which are appropriate to absorb
the lower-order terms (possibly depending on time and space), as done, for instance,
in Baudouin and Puel [3] or Yuan and Yamamoto [34]. Moreover, it has been shown
in Burq and Zworski [7] and Burq, Bourgain and Zworski [5] that if  is a rectangular
domain then the conclusion of Proposition 1.3 holds for any open nonempty set O C €.

Much less is known for similar perturbations (bounded but not compact in the
state space) of the Kirchhoff system (1.3). Our main result linearly perturbed Kirch-
hoff systems is:

THEOREM 1.4. Let (ake)1<k.e<n be functions in W2 (Q;R) such that

age = g (1 <k, < n),
(1.5) — Dagy _
;(%e(:ﬁ) 0 (ke{l,2,...,n}, z€Q).

Let (by)1<k<n be functions in W(Q) and let ¢ € L>°(Q). Moreover, suppose that
the system (Lyave), with state space H} () x L2(Q) and control space L*(Q)), is exactly
controllable (in some time). Then, the equation

" 0w
(1.6) w(t, x) + Aw(t, z) +k;1 are(z) S, (t,z)
£ 30 0e@) (1) - et 2) = u(t, ) xo () (t>0. Q).
st 8.Tk
with the boundary conditions
(1.7) w(t,z) =0, Aw(t,z) =0 (t>=0, z €00),

defines a system, with state space (H?(2) N H§(Q)) x L*(Q) and control space L*(12),
which is exactly controllable in any positive time.

REMARK 1.5. In the particular case when the matrix (axe)1<k,e<n vanishes, the
result in Theorem 1.4 has been proven in Cindea and Tucsnak [11]. Moreover, in the
same reference, the exact controllability in some time (not necessarily in an arbitrarily
small time) of the system (1.6)-(1.7) has been established if ary = —adye, where a > 0
and 0y is the Kronecker symbol.

The second objective of this paper is to prove the local exact controllability around
equilibrium states for systems describing the nonlinear vibrations of elastic plates. Our
main result in this direction concerns the von Karman plate model, which is described
by the equations

(1.8)
w(t, ) + A%w(t,r) + [w, @(w,w)|(t,z) = f(x) +ut,x)xo(z) (t=0), x€Q),
w(t,r) = Aw(t,z) =0 (t>=0, z€0),
w(0,z) = wo(z), w(0,2) = w1 () (x € Q),

where Q C R? is an open, bounded and nonempty set, f is a given force field, the
3
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Airy stress function ®(v,w) is the solution of the boundary value problem

A?® (v, w)(t,z) = [v,w](t, =) (t>0, z€Q),
(19) { w(t,z) = ai;’(t,x) =0 (t>0, z € 0Q),
and the bracket [-,] : H?(Q) x H%(Q2) — L'(Q) is defined by
0% 2o 9% O % O
(1L10) [pgl = 2902 VT0 _, OV 0% (b, € HA(Q).

o ﬁiﬂc%(?ix% 8%% 8.%% 81'181'2 8%18%2

In the above system, which is one of the most popular nonlinear models describing the
vibrations of elastic plates (see, for instance, Berger and Fife [4], Ciarlet and Rabier
[10] for basic facts on this type of model), w stands for the transverse displacement,
whereas the in-plane and the rotational inertia are neglected. The control function
is u € L?([0,00), L?(Q2)), whereas O is an open nonempty subset of €2, designing the
region where the control acts, and yo € L*(2) is non negative and strictly positive
in O.

Let n be a stationary solution corresponding to the forcing term f, i.e. satisfying

A2n(x) + [0, @(n,n)](z) = f(x) (z €9,
(1.11) { ,7(;; — AU&) :77077 (z € 09).

A natural question is the controllability of the system defined by (1.8) around the
equilibrium 7. As far as we know, the first result in this direction has been proved
in Lagnese [23], who considered a model including rotational inertia (which simplifies
the analysis) and he proved a local controllability result for 7 = 0. The proof in [23]
can be adapted to the system (1.8) by using the sharp regularity of the nonlinear term
in (1.8) obtained in Favini et al. [18, 19] (see also Chueshov and Lasiecka [9]). As
far as we know, the literature contains no local controllability result for (1.8) around
equilibrium states  # 0, or even for the linearization of the system around such
states. Closely related questions are discussed in Eller and Toundykov [17], where the
authors consider a plate system with a local nonlinearity containing no derivatives of
w and they prove a semiglobal controllability result.

The main novelty we bring in on the system defined by (1.8) (which involves
non-local second order nonlinearities) is that we prove its local exact controllability
around any equilibrium 7 defined by a function which is real analytic on €. This
analyticity condition could be replaced by a potentially weaker unique continuation
assumption, which will be discussed in Remark 6.6.

The second main result in this paper is:

THEOREM 1.6. Let Q C R? be a nonempty, open and bounded set, with 09 of
class C® or let 2 be a rectangle. Let f € L*(Q). Assume that O is an open subset
of Q0 such that the system (Lwave) is exactly controllable (in some time). Moreover,
suppose that the function n is in W2°°(Q), satisfies (1.11) and is analytic in Q. Then,
for every T > 0, there exists € > 0 such that for every

wo € H2(Q) N HY (), wy € LA(Q),
with
lwo — nllm2(0) + [willz2@) < e,
there exists u € L%([0,7]; L*(Q)) such that

”(U(T, ) =1, w(Tv ) =0.
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The remaining part of this work is organized as follows. In Section 2, we describe,
in an abstract setting, a strategy, based on resolvent estimates, to deal with bounded
perturbations of the generator of control systems. In Section 3, we give a Hautus-type
condition for the exact observability of systems described by abstract Schrédinger
and Kirchhoff equations. This test is then used in Section 4 to prove the exact
controllability of linear perturbed abstract systems. These abstract results are then
used in Section 5 to prove the exact controllability of linear perturbed Kirchhoff
equations stated in Theorem 1.4. In Section 6, using a fixed-point theorem, one can
deduce the exact controllability of the nonlinear Von Kéarman plate model given in
Theorem 1.6.

2. Some background on the Hautus test for skew-adjoint systems. The
aim of this section is to recall some basic facts on exact controllability and exact
observability of systems with skew-adjoint operators, with a focus on the Hautus test
and its applications for studying perturbations. For more general background on exact
observability and exact controllability, we refer to [33, Ch. 6 and Ch. 11].

Within this section H (the state space), U (the input space) and Y (the output
space) are generic Hilbert spaces. In this work we consider control systems described
by

() = Az(t) + Bu(t) (t>0),
(2.1) { 20 =0,

where A : D(A) C H — H is a skew-adjoint operator generating a unitary C°-group
T on H and B € L(U,H). We say that the pair (A4, B) defines a system, with state
space H and input space U, which is exactly controllable in time 7 if for every z; € H,
there exists u € L2([0, 7]; U) such that the solution of (2.1) satisfies z(7) = z1.

It is well-known that the exact controllability of a well-posed linear system is
equivalent to the exact observability of the dual system. This is true, in particular for
the three systems (Zwave); (Zschrod) and (Zplate) introduced in Section 1. The duals
of these systems can all be written in the form

(2.2) z= Az, y=Cz,

where C' is a linear bounded operator from # into Y. Recall that the pair (A, C) is
said ezxactly observable in time 7 > 0 if there exists K, > 0 such that

K2 [CICTalRde> |l (e,
0

The pair (A, C) is said ezactly observable if it is exactly observable in some time 7 > 0.

REMARK 2.1. In this work we consider only bounded observation operators C' €
L(H,Y). However, some of our abstract results, in particular those in Section 2 and in
Section 3, hold under a weaker assumption on the observation operator, namely that
C € L(D(A),Y) is an admissible observation operator for the semigroup T generated
by A, in the sense of [33, Definition 4.3.1]. However, working with admissible operators
instead of bounded ones entails some technical issues with respect to the functional
setting in which controllability and observability results hold. Thus, due to the main
applications we have in mind and for the sake of clarity, the results below are only
stated in the case of bounded observation operators.

A widely used necessary and sufficient condition for exact observability of systems
with skew-adjoint generator is the following Hautus test, firstly proved in Miller [28,
Theorem 5.1]:
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THEOREM 2.2. With the above notation, let A be skew-adjoint on H and let C €
L(H,Y). Then the pair (A, C) is exactly observable if and only if there exist constants
M, m > 0 such that

(23)  M?||(iwl — A)zolF, +m?[|Coll3 > ll20ll3, (weR, 2z €D(A)).

Moreover, if (2.3) holds then (A, C) is exactly observable in time T for any 7 > M.

An interesting question is to investigate the robustness of exact observability with
respect to bounded (but not necessarily small) perturbations P € L(H) of the genera-
tor. To this purpose, an interesting tool is a reinforced form of the condition (2.3), in
which the constant M is replaced by a positive function tending to zero when |w| — oo,
which is a sufficient condition for exact observability in arbitrarily small time, see [29,
Corollary 2.14]. Such a frequency-dependent Hautus-type condition allows to deal
with bounded skew-adjoint perturbations of the generator. More precisely, we have:

PROPOSITION 2.3. Assume that A is skew-adjoint on H and that it has compact
resolvents. Let C' € L(H,Y). Suppose that there exist a function M : R — [0, 400)
which tends to zero when |w| — 400 and a constant m > 0 such that

(24) M (W)ll(iw] = A)zoll3, +m?|Col3 > llz0l1%, (we R,z € D(A)).

Moreover, let P € L(H) be a bounded skew-adjoint operator such that C¢ # 0 for
every eigenvector ¢ of A+ P. Then the pair (A + P,C) is exactly observable in any
positive time.

Proof. First, notice that A+ P with D(A+ P) = D(A) is still skew-adjoint, thus
it generates a C°-group of unitary operators on H.

Using the fact that the pair (A, C) satisfies (2.4), together with triangular and
Young inequalities, one gets that

2M?(w)||(iwl — A = P)zoll3; + 2M* ()| PlIZ ) 120113
+m?|Czoll¥ > 2013 (weR, z €D(A)).

Since M (w) — 0 when |w| — oo, it follows that for every v > 0 there exists ¢y > 0
such that

V2ll(iwl — A= P)zoll3, +m?||Czol5 > [|20l% (lw] > ¢y, 20 € D(A)).

We have thus shown that (2.3) holds for “high frequencies”. This, combined with the
fact that C'¢ # 0 for every eigenvector ¢ of A+ P and [33, Proposition 6.6.4], implies
the exact observability of (A + P,C) in any time 7 > 7. 0

Proposition 2.3 allows us to prove, for instance, the robustness of the exact con-
trollability of a system described by the Schrédinger equation with respect to bounded

perturbations as stated in Proposition 1.3.

Proof of Proposition 1.3. Denote by A = —iA with D(A) = H?*(Q) N H(Q)
which is skew-adjoint with compact resolvents, C' : ¢ — pxo € L(L?(2)) and P :
o = —iap € L(L*(Q)) (with a € L*°(Q,R)) which is also skew-adjoint. Since [28,
Proof of Theorem 3.4] or [33, Section 6.7], it is known that, when (Zyave) is exactly
controllable in some time, the Hautus-type condition (2.4) holds with M (w) = %

with some constant M > 0. Moreover, C'¢ # 0 for every eigenvector ¢ of A+ P (see
for example [33, Theorem 15.2.1]).
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Therefore, Proposition 2.3 entails that the pair (A + P, C) is exactly observable
in any positive time, and thus, by a duality argument, that the Schrodinger equation
with a bounded potential (1.4) is exactly controllable in any positive time. ]

The frequency-dependent Hautus-type condition (2.4) can be equivalently ex-
pressed in terms of wave packets, as done in Miller [29, Theorem 2.16]. For the sake
of simplicity, we only give below a simplified version of [29, Theorem 2.16], which is
sufficient for the present work.

PROPOSITION 2.4. Assume that A is skew-adjoint on H and that it has compact
resolvents and let C € L(H,Y). The following statements are equivalent.
1. There exist § > 0 and r : R — (0,4+00) which tends to infinity when |w| —

+oo such that for all w € R and z of the form z = > z;¢;, we have
jeJr(w)(w)

(2.5) 1C=]ly = 6|zl

2. There exists m > 0 and M : R — (0, +00) which tends to zero when |w| —
+o0 such that (2.4) holds.

Our approach to prove the robustness of the exact observability property for
plate equations with respect to bounded perturbations of the generator, as stated in
Theorem 1.4, is to show that the considered system satisfies a frequency-dependent
Hautus condition of type (2.4). To this aim, see Section 3, we first check a frequency-
dependent wave packets condition. However, the situation is more complicated in
the case of systems described by the plate equation (1.6) than in the case of the
Schrodinger equation (1.4), already studied in this section. Indeed, extra difficulties
are generated by the fact that, when written in first-order form, the generator of
the perturbed system is no longer skew-adjoint. Thus, instead of directly applying
Proposition 2.3, we need a special decomposition in low and high frequency parts of
the state space and the application of a simultaneous controllability result.

3. A frequency-dependent Hautus condition for systems describing
plate vibrations. In this section, we show that under appropriate assumptions,
a class of abstract observation systems, described by plate type equation with distrib-
uted observation satisfies a frequency-dependent Hautus-type condition (2.4). This
condition will be essential in the next section where we show that the exact observ-
ability property is robust with respect to a class of perturbations of the generator.

Within this section, we continue to denote by H and Y two Hilbert spaces and
we denote by Ag : D(Ag) — H a strictly positive operator with compact resolvents.
If there is no risk of confusion, the inner product and the norm in H are simply de-
noted by (-,-) and || - ||, respectively. For a > 0, we denote by H, the space D(A§)
endowed with the graph norm of Af. For a < 0 the space H, is defined as the dual
of H_, with respect to the pivot space H. Note that for every a € R the operator
Ag can be restricted (or extended) to a unitary operator L(Hq, Hao—1). Moreover, let
Co € L(H,Y) be an observation operator.

With the above notation, the class of systems we consider is:

5(t) + A25(t) =0 (t>0),
(3.1) 5(0) =8y € H, 6(0) =6, € H_1,
y(t) = Cod(t) (t=0).
7
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The system (3.1) can be written in a first-order form

2(t) = Az(t) (t=0),
z(0) = zo,
y(t) = Cz() (t=0),

in the state space ‘H x H_1, which is a Hilbert space with the inner product

<[ﬂ | [ﬂ >m1 = (1 f2) + {40 01, A o),

with A: D(A) > H x H_1, C € L(H X H_1,Y) and z defined by D(A) = H1 x H

and

(3.2) A= [_?4% é} ie. A m = {_j%f] :
(3.3) C=[Cy 0],

(3.4) o) = [28] L= [gﬂ .

Since A3 > 0 (see [33, Remark 3.3.7]), according to [33, Proposition 3.7.6], the opera-
tor A is skew-adjoint and 0 € p(A). By the theorem of Stone, .4 generates a unitary
group on ‘H X H_j.

The main result of this section is:

_ THEOREM 3.1. With the above notation and assumptions, suppose that the pair
(A, C) with

0 I

(3.5) D(A) =HixHy, A= [—Ao 0

:| ) é = [0 C()] )
defines a system, with state space 7-[% X H and output space Y, which is exactly
observable (in some time).

Then there exist a function My : R — [0, 400), which tends to zero when |w| — oo,
and a constant my > 0 such that

(3.6)
ME()||(iwl = ADzolFxr_, +milIC2l5 = llz0ll5ixn_, (@ €R, 2 € D(A)),

where A and C are respectively defined in (3.2) and (3.3).

_ REMARK 3.2. Tt is not difficult to check that the above assumption that the pair
(A, C) defines an exactly observable system with state space 7—[% x H and output space
Y is equivalent to the fact that (/Nl, [Co O]) defines an exactly observable system

with state space H X 7-[7% and output space Y. By duality, these conditions are
equivalent to the exact controllability of the control system, with state space H 1 X H

and input space Y, defined by (fl, B), where B = {CO*] .
0

The proof of Theorem 3.1 relies on the link between a wave packets condition (first

introduced in [8]) and resolvent estimates (2.4) as stated by Miller in [29, Proposition

2.6]. Thus, the proof relies on a wave packet condition for the abstract Kirchhoff

8
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307 system (3.1) which is deduced from a similar condition for an abstract Schrédinger
308 system. To this end, one needs first to show that (2.4) holds for a system described
309 by an abstract plate equation.

310 ProposiTION 3.3. With the notation and assumptions in Theorem 3.1, there ex-
311 ists a constant vy > 0 such that

w
=
[N}

1
37—l = Al + lwCoplly > ollwellz (w >0, ¢ € D(A)).

313 Proof. Since the pair (jl, C’) is exactly observable, applying the Hautus type test
314 in [27] (see also [30, Proposition 4.5]), it follows that there exists a constant vy > 0
315 such that

316 (3.8)  [l(wl = Ao)pll3, +wll Corlly = rowllel3, (w>0, ¢ € D(A)).
On the other hand, using the fact that Ag > 0 it follows that
(@ I=AD)¢l3 = l(WI+Ao)(wI-Ao)¢llF > w?l(wI-Ao)ell,  (w>0, v e D(AY))]

w
—
~

The last estimate and (3.8) imply the conclusion (3.7). O

318 As a consequence of the above result we can prove a wave packets condition for
319 the abstract Schrodinger equation.

320 PROPOSITION 3.4. With the notation and assumptions in Theorem 3.1, let (An)nen-li
321 be the nondecreasing sequence formed by the eigenvalues of Ay and let (dn)nen+ be a
322 corresponding sequence of eigenvectors, forming an orthonormal basis of H. More-
323 over, for every w, >0 and € € (0, %) we set

324 (3.9) I.(w) = {m € N* such that |\,, —w| < r},
325
1
w2"¢ W= Wwoe),
326 (3.10) re(w) = L (W pe ( o)
mln{g,g} w € (0,wpe),

1
18\ 2=
where wg . = max {1, <8> } (with o is the constant in (3.7)) and
o

pe = Inf{|X — pl; A # u eigenvalues of Ag in (0,2wqe)}.

(Notice that p. > 0 because there is only a finite number of eigenvalues of Ag in
328 (0,2wp¢).) Then, for every e € (0, %), there exists v > 0 such that we have

w W
NN
BN

320 (3.11) [Coplly = nllelln (w >0, ¢ €span{¢xtrer, . (w))-
330 Proof. Let e € (0, %) For the sake of clarity, in this proof, the dependency of wg .
331 and p. with respect to € is not mentioned. For w > wy, we consider ¢ of the form
332 (3.12) Y= Z Cm P

mel,, (w)

333 Then we clearly have that ¢ € D(A3) and
(3.13)

334 ||(W?T - A%)ngi = Z |w? — /\,271}2 lem | < w'™2 Z |lw + A %] em?-

mel,  (w)(w) mel, (w)(w)
9
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On the other hand, it is clear that for every w > 1 and m € I,_(,,)(w) we have
0<w—+ Ay < 2w+ r.(w) < 3w.

The last inequality and (3.13) imply that for every ¢ of the form (3.12), we have

2 - Yow
@21~ 43)e]l%, < 90wl < 2ol
for w > wp. By applying (3.7) to ¢ of the form (3.12), the above estimate leads to
(3.11) for every w > wy.
Moreover, by construction of r., for every w € (0,wyp), there exists A = A(w) such

that

span { @k brer, ., (w) = Ker(Ao — Al).
Indeed, if there exist n,m € I,_«,(w) such that A, # A,

2
P < P = Al < An =l + A — 0] < 2re(w) <
which is a contradiction. Therefore, since Cop # 0 for every eigenfunction ¢ of Ag
(because the pair (A4,C) is observable), it follows that for every w € (0,wp), there

exists 71 = y1(w) > 0 such that

[Coelly = nllelln ¢ € span{ oy trer,_ . (w)-

Finally, using the fact that Ay has a finite number of eigenvalues in (0,wy), the
constant 7 can be chosen uniformly with respect to w € (0,wp), giving (3.11). d

REMARK 3.5. The wave packets condition (3.11) on the pair (A4, Cy) allows us
to prove the existence of constants M, m > 0 such that

2

(3.14) wl — Ag)zo||3, + m?||C20ll¥ = ll20l3;, (W€ R, 20 € D(Ay)),

el
using the link between wave packets condition and resolvent estimates as stated by
Miller in [29, Proposition 2.6] and recalled in Proposition 2.4. Taking Ay = —A with
D(Ag) = H?(Q) N HE(Q) and C : ¢ — ¢@xo, this gives a Hautus type condition
(2.4) for the Schrodinger equation which is weaker than the one already proven in [28,
Proof of Theorem 3.4] or [33, Section 6.7] and used in the proof of Proposition 1.3, in
Section 2.

Finally, one can deduce the wave packets condition for the abstract Kirchhoff
equation, which leads us to the proof the main result of this section.

Proof of Theorem 3.1. Let A be the operator defined in (3.2), let (A;)nen+ be
the nondecreasing sequence formed by the eigenvalues of Ay (repeated according to
their multiplicity) and let (¢, )nen+ be the corresponding eigenvectors of Aj forming
an orthonormal basis of H_;. We set ¢_,, = —¢,, for all n € N*. Then (see, for
instance, Proposition 3.7.7 in [33]) the eigenvalues of A are (iun)neze with p, = A,
if n >0 and p, = —A_, if n < 0. Moreover, there is in H X H_; an orthonormal
basis formed of eigenvectors of A, given by

(3.15) Py = % [ﬁd)j"} (n ez

10
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With the above notation and introducing, for all w € R and r > 0, the sets
(3.16) Jr(w) = {m € Z" such that |, —w| < e},

we remark that for every e € (0, 3), if the function r. defined in (3.10) is extended by
re(w) = ro(—w) for w < 0, we have

(3.17) Jrs(w) (w) = sign(w)[rs(|w‘)(\w|)
where I, has been defined in (3.9). From (3.15) and (3.17), it follows that if ¢ =

[Z] € D(A) is in span {¢x e, ., (w): then n € span{oxtrer, ., (w)s [VlHxm_, =
7|3, an y = ||Con||y- 1s facts and Proposition 3.4 imply that
V2 d ||Cy C This f: dP ition 3.4 imply th

B! n
(ol >l = Lelobor, (wer v= 7] espantihies, o )
The above estimate implies the announced conclusion by applying the frequency-
dependent Hautus test given in Miller [29, Theorem 2.16] and recalled in Proposition
2.4. |

4. Perturbation of abstract Kirchhoff systems. The goal of this section is
to use the resolvent estimate (3.6) to study the robustness of the exact observability
property for a system described by an abstract plate equation, with respect to bounded
(but not necessarily compact) perturbations of the generator. Notice that the similar
result for the perturbed Schrodinger equation given in Proposition 1.3 has already
been dealt with in Section 2.

We continue in this section to use the notation introduced in the previous one.
More precisely, H and Y are Hilbert spaces, Ay : D(Ag) — H is a strictly positive
operator with compact resolvents, and Cy € L(H,Y). If needed, the spaces H and Y
are identified with their duals. Moreover, if V' is another Hilbert space with continuous
embedding V' C H, the dual of V is identified with its dual using the pivot space H.
For o > 0 we still denote by H,, the space D(A§) endowed with the graph norm of A§
and we define H_,, as the dual of H, with respect to the pivot space H. Moreover, we
set Ho := H and A still is the operator defined in (3.2). Recall that for every ao € R
we can extend (or restrict) Ap to a unitary operator from H, onto H,—_1. With a
slight abuse of notation, we shall still denote by Ag this extension (or restriction).

The main result of this section is:

THEOREM 4.1. With the notation and assumptions in Theorem 3.1, assume that

Pye L(H,H_1)NL(H1,H)

is a symmetric operator on H_1, with domain H. Let P := [g 8} € L(H X H_q)
0

and let Ap : D(Ap) — H x H_1 be the operator defined by

(4.1) D(Ap)=D(A), Ap=A—-P.

Moreover, let C € L(H x H_1) be defined by C = [Cy 0] and suppose that
(4.2) Ker (s*I + A% + Py) N Ker Cy = {0} (s eC).

Then the system, with state space H X H_1 and output space Y, described by the pair
(Ap, Q) is exactly observable in any time T > 0.

11
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The proof of Theorem 4.1 partially relies on a series of results resenting similarities
with those in [33, Section 7.3]. The first result of this series can be seen as a variation
of [33, Proposition 7.3.3], so we skip its proof.

PrOPOSITION 4.2. With the above notation, 1 = [Z] € D(Ap) is an eigenvector

of Ap, associated to the eigenvalue iy, if and only if n is an eigenvector of A3 + Py,
associated to the eigenvalue u?, and ¢ = iun (note that u does not have to be real).

Clearly, A% + Py, with domain #;, is self-adjoint on H_; and it has compact
resolvents. According to a classical result (see, for instance, [33, Proposition 3.2.12])
it follows that A2 + Py is diagonalizable with an orthonormal basis (¢x)ren- in H_1
formed of eigenvectors of A2+ Py and with the corresponding family of real eigenvalues
(S\k)keN* satisfying klirglo |5\k| = 0o. Moreover, since for all z € Hq,

(43 + Po)z 2y > Mozl = IPollcouanlliadizloe
1 1
> Szl = 5Pl I121Be

it follows that limy_,eo Ay = +00. Hence, without loss of generality, we may assume
that the sequence (S\k)keN* is nondecreasing. We extend the sequence (sz)keN* to a
sequence indexed by Z* by setting q@k = —é,k for every k € Z_. We introduce the
real sequence (pug)kez+ by

,uk:\/|5\k\ if k>0 and pr=-—-p_ if k<O.

R
WO = span { [isigrék) k]

k

We denote by

keZr, /.Lk:O}.

If Ker (A3 + Py) = {0} then of course Wy is the zero subspace of Hx H_;. Let N € N*
be such that Ay > 0. We denote by

-
Wy = span { li~$¢k] keZ* |kl <N, up# o},

k

and define Yy = Wy + Wy. We also introduce the space

BN
’L’H&. ¢k |k| 2 N 7
Pk
the closure being taken in H x H_;.

LEMMA 4.3. With the above notation, we have H X H_1 = Yn ® Vn. Moreover,
Yn and Vi are invariant under the semigroup T generated by Ap on H X H_1.

Proof. We adapt below the proof of Lemma 7.3.4 in [33].

First, to prove that H x H_1 = Yn @ Vu, one can show that Yy = VJ\% for
a suitable inner product to be defined. To deal with the fact that A3 + P, is not a
positive operator, we introduce a new operator Ay, whose eigenfunctions are the same

as the one of A2 + Py, but its eigenvalues are all strictly positive. More precisely, let
Ay : Hqy — H_1 be defined by

(4.4) Arf = ok + Y IMl(f, dr)uon (f € H).

Ar=0 Ap#£0

(4.3) VN = span {

12
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Since the family (d;k) en- is an orthonormal basis in H_; and each ¢y, is an eigenvector
of Ay, it follows that A; is diagonalizable. Moreover, since the eigenvalues of A, are
strictly positive, it follows that A; > 0. Following line by line the proof of Proposition
3.4.9 in [33], it can be checked that the inner product on H x H_; defined by

(4.5)

<Ej ) Bﬂ >1 = (1, f2)o + (A7 200 AT E ga) (Bﬂ : Bﬂ €M x ’H—1> ;

is equivalent to the original one, meaning that it induces a norm equivalent to the
original one.
Let A; be the operator on ‘H x H_; defined by

D(AL) = Hy x H, A = [_211 é] .
According to Proposition 3.7.6 of [33], A; is skew-adjoint on X (if endowed with the
inner product (-,-); defined in (4.5)). Thus, Proposition 3.7.7 of [33] entails that
Yy = Vi (for the inner product (-,-)1) giving that H x H_1 = Yy @& Vy.

We next prove that Yy and Vi are invariant under the semigroup T generated by
Ap. First, using the fact that A, > 0 for every k > N and Proposition 4.2, it follows
that Vi is a closed subspace spanned by a set of eigenvectors of Ap, thus is invariant
under the action of T. To prove that W is also invariant under the action of T, one
can notice that for every k in Z* such that u; =0,

. -
isign(:k)¢—k > € Wo.
Pk

Ap isig;(k) P _ [ng] _ isign(k) isig}gk) Pk
Pk 0 2 P

To prove that Wy is invariant under the action of T, one can first notice that for

every k in Z*, |k| < N such that py # 0, pi = sign(Xjg) A and [A3+ Poldr = Ak dx-

Thus, one gets that

4i¢~>k sz . »iqgk
A TfLg — |+ . — ] - %% ,
[5) -[a] o L e

because l“"}g ] = [”‘—"" ¢ k] € Wy. Finally, Yy = Wy 4+ Wy is invariant under the
— Pk k
action of T. ]

+

We are now in a position to prove the main result of this section.
Proof of Theorem 4.1. We first note that Theorem 3.1 implies that

M} (w)||(iwI=Ap—=P) 20353, +mICz0l13 = 20l xn_, (weR, zeDA)]
Using an elementary inequality, we obtain that
2M7 (W) (wI = Ap)zoll3nr_, +2MT (@) PollZ 1) 1201 F0ne_,
+mi|[Czolly = 20/ Fxr_, (w € R, 20 € D(A)).

Since we know from Theorem 3.1 that M;(w) — 0 when |w| — o0, it follows that for

every v > 0 there exists ¢, > 0 such that

(4.6)

VIl = Ap)zol3a_, +2m31C20l3 > 2003, (lw] = ¢y 20 € D(A)).
13
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Moreover, using the inner product (4.5) associated with the operator A; defined in
(4.4) (which is equivalent to the original one), (4.6) implies that for every v > 0 there
exist ¢, m, > 0 such that

47)  Plwl = Ap)zollf +m3 | Czolly > llzollt (lw[ = &y, 20 € D(A)).

For N € N* such that S\N > 0, we denote by Ap n the part of Ap in Vi, where Vi is
the space defined in (4.3). Since Ap y coincides with the part of A; in Vi, it follows
that Ap n is skew-adjoint on Vi (endowed with the inner product (-,-)1). Moreover,
using (4.7), it follows that, for every v > 0, there exist ¢,, m, > 0 such that the
following estimate holds

(4.8) V?||(iwI—Apn)z0llf+m2[|C20ll3 = ||20]I7 (|w| = &y, 20 € D(A)NVN).

Since Ap y is skew-adjoint (thus normal) on Vi, it follows that there exists N, € N*
such that

I(iw! — Ap,n, )20l = 7~V l0]l1 (lwf < &, 20 € D(A) NV, ).

The above estimate and (4.8) imply that for every v > 0 there exist m, > 0 and
N, € N* such that

(4.9) V?[l(iw] = Ap,n,)z0l[i+m3lIC20l13 > (1201t (weR, 20 € D(A)NVN, ).

The above estimate and the fact that Ap ., is skew-adjoint imply, according to the
Hautus-type test for systems with skew-adjoint generator proved in Miller [28] (see
also [33, Theorem 6.6.1]), that the pair (Ap ., ,Cn, ), where Cy, is the restriction of
C to V., is exactly observable in any time 7 > 7.

Denoting by /ip’ N, the part of Ap in Yy and by C N, the restriction of C to Y.,
we obtain that the finite-dimensional system (/N(p, Ny CN’NW) is observable by applying
the classical Hautus test thanks to (4.2). Since le N, and Ap n., have no common
eigenvalues and (Ap,n. ,Cn,) is exactly observable in any time larger than ym, we
can apply Theorem 6.4.2 in [33] to obtain that (Ap,C) is exactly observable in any
time 7 > ~m. Since v > 0 can be arbitrarily small, this implies the conclusion of the
theorem. |

As a consequence of Theorem 4.1, we can obtain a second perturbation result.
More precisely, the result below shows that the exact observability property still
holds if, besides the perturbation P,, we add a perturbation Qg whose contribution
is compact with respect to the topolgy of the state space.

COROLLARY 4.4. With the notation and assumptions in Theorem 4.1, let Qp €
L(H,H_1) be a compact operator and let QQ = {QO 8] € L(H xH_1). Let Apg :
0
D(Apg) — H X H_1 be the operator defined by

(4.10) D(Apg) =D(A), Apg=A—-—P—-Q.
Then Apg generates a CO-semigroup T on H x H_1. Moreover, assuming that
(4.11) Ker (s2I + A3 + Py + Qo) N Ker Cy = {0} (s € C),

the pair (Apg, C) is exactly observable in any time T > 0.
14
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Proof. The fact that Apg generates a C°-semigroup on H x H_; follows from the
obvious property P+ Q € L(H x H_1). Moreover, we can remark that the result in
Proposition 4.2 holds for every Py € L(#H,H_1) (no symmetry of Py is needed), thus,

in particular, if we replace Py by Py + Qq. It follows that ¢ = Lﬂ € D(Apg) is an

eigenvector of Apq, associated to the eigenvalue ¢, if and only if 1 is an eigenvector
of A% + Py + Qo, associated to the eigenvalue 2, and o = iun. This fact and (4.11)
imply that
Ker (sI — Apg) NKer C = {0} (s € C).

We also note that, under our assumptions, @ € L(H x H_1) is a compact operator.
Moreover, we know from Theorem 4.1 that the pair (Ap, C), with Ap defined in (4.1),
is exactly observable in any time 7 > 0. Since Apg = Ap — @, the conclusion follows
now using the duality of the exact observability and of exact controllability properties
and by applying Theorem 1.2 in [16] to deal with the compact perturbation using a
compactness-uniqueness method. 0

By duality, Corollary 4.4 yields the follwing exact controllability result:

COROLLARY 4.5. With the notation and assumptions in Corollary 4.4, let Ry €
L(H1,H) be the operator defined by

(412) <ROQP,7~//>7-L = <§03 Q0¢>H17’H71 (4,0 c Hl, d) € H)

Then the equation
(4.13) W(t) + AZw(t) + (Po + Ro)w(t) = Cyu(t) (t>0),

determines a well-posed control system with state space Hqi X H and input space Y.
Moreover, this system is exactly controllable in arbitrarily small time.

Proof. Recall that the Hilbert spaces H and Y are identified with their duals.
Moreover, if V' is another Hilbert space, with continuous embedding V' C H, the dual
of V is identified with its dual using the pivot space H.

We next consider, for every 7 > 0, the input map ®, € L(L?*([0,7];Y),H1 x H)
defined by

(4.14) & u = [58] (u e L2([0,7):Y)),

where w is the unique solution of (4.13) satisfying the initial conditions w(0) = 0 and
w(0) = 0. In order to write ®. € L(H_1 x H,L?*([0,7];Y)) in a convenient manner
we consider the system

§(t) + Agy(t) + Poy(t) + Qoy(t) =0 (t €[0,7]),
(4.15) { y(r) = y(i y(7) :O—yo, ’

where Q) is defined by (4.12). After some standard calculations, it is not difficult to
check that

(4.16) (cb; [Zf]) (t) = Coy(t) (yo € H_1, 91 € H,t €[0,7]),

where y satisfies (4.15).
15
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y(t)
the C°-group introduced in Corollary 4.4. By combining (4.16) and Corollary 4.4 it
follows that there exists a constant K, > 0 such that

[l
Yl ory) - 1

Using a classical result (see, for instance, Barnes [2, Theorem 7]) it follows that ®, is
onto from L%([0,7];Y) to Hi x H, which implies the announced exact controllability
result. 0

On the other hand, from (4.15), it is clear that [y(t)] =T, [ y; ], where T is
—%0

K, (yo € Hov, 1 € H).

H_1XH

5. Proof of the main result on linear systems. The goal of this section is
to prove Theorem 1.4 on the controllability of the perturbations of a plate equation.
Within this section, we specify the spaces H, Y and the operators Ay and Cj which
have been introduced in an abstract context in Sections 3 and 4. More precisely, we
set:

o H = L?(2), where 2 is an open bounded set of R", with 9 of class C3 or
is a rectangular domain;
e —Aj is the Dirichlet Laplacian on L?(£2). More precisely,

(5.1) D(Ag) = H*(Q) N H(Q),
(5.2) Agp = —Agp (¢ € D(Ay));

The operator A is strictly positive with compact resolvents;
o Y =12%(Q) and Cy € L(H,Y) is defined by

(5.3) Cop = pxo (peH),

where O is an open subset of Q and xpo € L*°(Q) is a nonnegative function
which is positive on O.
With H and Ay chosen above, it is known (see, for instance, [33, Section 3.6])
that

Ho={pe HHQNHNQ) | Ap=0 on 09}, Hy=H(Q)N H(Q).

Moreover, we have
Moy = [H*(Q) N H ()],

where [H?(Q) N H} (Q)]' is the dual of H?(Q)N Hg () with respect to the pivot space
L3(Q).

Proof of Theorem 1.4. The proof consists in applying Corollary 4.5 with the ap-
propriate choice of spaces and operators. We first remark that, since the system
(Xwave) described by the wave equation is exactly controllable in some time, a stan-
dard duality argument implies that the pair (A, é) defined in (3.5) is exactly observ-
able in some time. Thus, since the spaces H, Y, the operators Ag, Cy and the spaces
H, have been specified in the preamble of this section, it only remains to define the
operators Py and Ry.

Let Py € L(H1,H) be the operator defined by

(5.4) Pop= > an Fordoe (p € Ha).
k,t=1
16
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Using (1.5) and the fact that (ax¢)1<k,e<n are real-valued, it is easy to check that Py
is well-defined and

(Pow,¥)y = (@, Pov)n (@, ¥ € Hy).

Moreover, the above formula implies that

n

[(Poe, )l <Y llanell L l@lla 4], (¢, ¥ € Ha).
k=1

It follows that Py can be uniquely extended to an unbounded symmetric operator on
H_1 (still denoted by Pp), with domain H, by setting

(55> <P0(10aw>H = <L)Oa PO,(/)>'H1,H71 (SD S Hh w € H)

Let Ry € L(H1,H) be the operator defined by
Ro@Zibka—@er (¢ € Ha).
1 a’Ek

An integration by parts shows that

<R090a1/}>7'l = <@5Q0¢>'H (()07 1/’ € Hl)a

where

(5.6) Qo = —div (b)) + e (VY € Hy).

From the last two formulas, it follows that Qg can be extended uniquely to a compact
operator (still denoted by Qo) in L(H,H_1).

To conclude using Corollary 4.5, we still have to check the unique continuation
properties (4.2) and (4.11). More precisely, we need to prove that for ¢ € {0, 1},
¥ € H2(Q) N HY(Q) and p € C we have

PP+ A%+ Pop +eQop =0 in €,
(5.7) =0, A =0 on 01, = 1 = 0.
=0 in O,

This unique continuation is a direct consequence of the Carleman estimate given in
Theorem A.1 of Appendix A. Indeed, denote

g=—Pop — Qo — o

Applying Theorem A.1, there exists a function 3 € C?(Q) and a positive constant
C > 0 such that for all s > 1,

(5.8) / (82|D2¢|2 4 S4|V1/)|2 =+ 86|1/J|2)628ﬁ dx < C/ |g|2623ﬂ dx,
Q Q

where D21 designs the Hessian matrix of 9, |-| stands for the euclidian norm on finite
dimensional spaces and we have used the fact that ¢» = 0 in O. Moreover, using the

17
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definition of the operators Py and Qg given in (5.4) and (5.6), one can easily check
that, for all z € Q,

lg(z)] < S imax l|ael| Lo o) | D*(2)]
= ,n
+ € max 6k Lo () [V ()] + (elle]| oo () + |ul*) ()]

Therefore, this estimate combined with (5.8) implies that for every s > 1,

/ (52|DQ¢|2 + 84|V¢|2 + 86|¢|2)6285 < C<k eril1ax HakZ”%w(Q)/ |D2¢\2€286
Q Sg=1,....n Q
e max [l [ [VOPE? 4 € el + i) [ [0PE?).
=1,...,n Q Q

Taking s large enough in the last inequality, we obtain that ¥ = 0, which concludes
the proof. ]

6. Proof of Theorem 1.6. The main ingredient in the proof of Theorem 1.6 is
an exact controllability result for the system obtained by linearizing (1.8) around the
stationary state (1,0). To write down this system, we insert the formula

w(t,z) = n(x) + d(t, ) (t=0, z€Q),

in (1.8) and we develop in a power series with respect to e. Identifying the terms of

order 1, we obtain the system:

(6.1)
5(t,2) + A20(t,2) + [6,D(n, )] + 20, (0, 8)] = u(t, x)x0(x)  (t>0, v Q),
o(t,x) = Ad(t, :1:): (t>0, ze€dN),
5(0,2) = do(a), (0,) = 61 () (x € ),

where the Airy stress function @ is the solution of (1.9). The main result in this
section is the following.

THEOREM 6.1. Assume that 2, O and n satisfy the assumptions in Theorem 1.6.
Then (6.1) determines a well-posed control system with state space

[H*(Q) N Hy ()] x L*(),
and control space L*(Q)). Moreover, this system is exactly controllable in any time

7> 0.

To write (6.1) as a well-posed control system, we have to introduce some spaces
and operators. To this aim, we first recall some properties of the Airy stress function
® defined in (1.9) given in [9, Corollary 1.4.4].

PROPOSITION 6.2. For every p € [1,00], the Airy stress function ® defines a
bounded bilinear operator from H?(2) x H%(Q) to WH%’p(Q) NHZ(Q). In particular,
there exists a positive constant Kq such that

(6.2) 1@ (v, w)[w2 () < Kallvlla2 @) w2 (v, we H*(Q)).

Then, we also recall the following property of the von Karman bracket defined in
(1.10), given in [9, Proposition 1.4.5].
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PROPOSITION 6.3. For any v € H2(Q) and v,w € H? N HE(Q), the following

relation holds
/[u,v]wdmz/[u, wvde.
Q Q

COROLLARY 6.4. For everyn € H*(Q), the mapping Po 1 : 6 — [, ®(n, )] defines
a linear bounded operator from H? N H}(Q) to L?(Y). Moreover, Py 1 can be extended
to an operator in L(L?(),[H? N HE()]") and is symmetric on [H? N HL(Q)]'.

Proof. The fact that for every n € H?(2), we have Py1 € L(H?(Q),L?(Q2)) is a
direct consequence of (6.2). Moreover, for every §,79 € H2 N H}(Q),

(6.3) (Po,16,9) 12 () = (6, Po1¥) 12(q)-
To prove this relation, introduce the operator Ap defined by

{ D(Ap) = H*(Q) N HZ(QY),
App = A?p (¢ € D(Ap)).

This operator is known to be strictly positive on L?(Q2) and the definition of P ; can
be rewritten as

Po1d = [n,Ap'[n,0]] (6 € H*(Q) N HL(Q)).

Using Proposition 6.3 and the self-adjointness of ABl, it follows that, for every 4,1 €
H? N Hj(Q),

<P0,157 ¢>L2(Q) = < [777 A51 [77, 5]] ) ¢>L2(Q) = <A1_)1 [’r]a 6]a [7% w]>L2(Q)
= <[773 5]a Al_)l [777 w]>L2(Q) = <5; [773 Al_jl [77, 7/}]] >L2(Q) = <5a PO,11/)>L2(Q)-

Then, the relation (6.3) and the continuity of Py from H? N Hg(Q) to L*(Q) imply
that there exists C' > 0 such that for all §,v € H? N Hg (),

[(P0.16,9) 2| < Clloll 2@ ll¥ll 2z o) -
Therefore, Py can be extended uniquely to an operator in £(L?*(Q),[H? N H(Q)]')

(still denoted by Py 1) with
|

(Pop, V) r2@) = (@, Po) menma oy menmi )y (p € HX N Hy(Q), ¢ € L*(2)).

PROPOSITION 6.5. For all n € W>(Q), we define the operator Py € L(H? N
Hi (), L*(Q)) by

P20 = [6,®(n, n)] (6 € H* N Hy (42)).

Then, there exist functions (age)i1<k.o<2 in H*(Q) such that

2
2%
4 Pyod = 5e H N HYO
(6.4) 0,2 k;““axkaxe (6 € H" N Hy(9)),
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with

a;cf = ag € H*(Q) (k, £e{1,2}),
(6.5) S fa — g (k€ {1,2}).
=1

Moreover, Pyo can be extended to an operator in L(L*(Q),[H? N HY(Q)]') which is
symmetric on [H? N H ()]’
Finally, if n is analytic, then the functions (age)i<k,e<2 @ (6.4) are also analytic.

Proof. The definition of Py o implies that (6.4) holds with

92 2 2
(6.6) a1 = 873@(77,77)7 Q12 = ag1 = —axlam@(nm% A9 = 67%@(77,77). o

The fact that (axe)1<ke<2 satisfies (6.5) is a direct consequence of (6.6). The regu-
larity of (ake)1<k e<2 follows from the elliptic regularity: As 7 is in W2°°(Q), [n, 7] is
in L2(Q) and thus, ®(n,n) is in H4().

The fact that Py is in L(H,H_1) N L(H1,H) and it is symmetric on H_;, can
be checked as in the proof of Theorem 1.4, in Section 5.

We are now in a position to prove the main result in this section.

Proof of Theorem 6.1. To prove Theorem 6.1, we apply Corollary 4.5 with the
spaces H,Y, the operators Ag and Cj given at the beginning of Section 5 and
Py = Py + Py, with Py; and Fyo defined in Corollary 6.4 and Proposition 6.5,
respectively. Moreover, since the system (Xyave) is supposed to be exactly control-
lable in some time, we can use a standard duality argument (see Remark 3.2), to
deduce that the pair (A,C) defined in (3.5) is exactly observable in some time.

Therefore, to apply Corollary 4.5, it remains to prove the unique continuation
(4.2): if ¢ is the solution of

52¢+A2<P+P071¢+P0,2(p:0 in Q,
=0, Ap=0 on 0f),
Y= 07 in O,

for some s € C, then ¢ = 0. Using (6.4), the above property is equivalent to proving
that if ¢ and I' satisfy for some s € C

2
0? .

s2o+ Ap + Z ey gx +[nT]=0 in Q,
(6.7) ko t=1 REL

=0, Ap=0 on 012,

=20, in O,
and

AT = [n, ¢ in Q,
6.8
(6.8) I‘:O,a—rzo on 01,
v

then ¢ = 0. This follows from the fact that ¢ is analytic on €2, which in turn is
a consequence of the analyticity of 1 and of the coefficients (ags)1<k,e<2 In Q (see
Proposition 6.5) and of the classical results in [32, Section 4.1.4] or [22, Ch.7]. d
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REMARK 6.6. The analyticity of 7, assumed in Theorem 1.6, is used only to
ensure the following unique continuation property: if ¢ and I' satisfy (6.7)—(6.8) for
some s € C, then ¢ vanishes everywhere (and thus I' too). This unique continuation
property may hold with different assumptions on 7. One could, for instance, use the
algebraic resolubility method of Gromov to give sufficient algebraic conditions on the
derivatives of 7 guaranteeing that the unique continuation holds for (6.7)—(6.8). More
precisely, these conditions would require that under that a large determinant involving
derivatives of 1 to be non zero, similarly to Condition (1.8) in Duprez and Lissy [14,
Theorem 1.2] (see also [15, 13] or [26, Ex. 1, Section 1.3, p.18-19]). Nevertheless,
we have no reason to think that this unique continuation property holds for any 7
smooth enough. However, due to the the above considerations, we conjecture that
this property generically holds for smooth 7.

We next consider the nonlinear controlled system

(6.9) 0(t, ) + A%6(t, x) + [8, D(n, n)](t, x) + 2[n, (6, )] (L, 2) + [, B(6,6)](t, x)
+2[8,®(n,0)](t, z) + [0, (8, 9)](t, ) = u(t,x)xo(x) (t>0, x€Q),

with the boundary conditions and initial conditions

(6.10) O(t,x) = Ad(t,z) =0 (t>0, x €09Q),

(6.11) 0(0,2) = do(z), 9(0,2) = d1(x) (x € Q).
It is easily seen that Theorem 1.6 (with w = ¢ + 7)) directly follows from the result
below.

THEOREM 6.7. Under the assumptions in Theorem 1.6, for every T > 0 there
exists a > 0 such that for every

So € H*(Q) N H(Q), 51 € L*(),
with
160l zr2(0) + 1011 22(0) < o

there exists u € L?([0,7]; L?(2)) such that the solution of (6.9)-(6.11) satisfies

5(r,-)=0,  §(r,-)=0.

Proof. Let 7 > 0. In this proof, for convenience, the dependency of the objects
with respect to 7 is not mentioned. First, from the exact controllability in time 7
of the linearized equation (6.1), stated in Theorem 6.1, it follows that there exists a
continuous linear operator

L: (H>NHQ)) x L*(Q) x L*([0,7); L*(Q)) —  L*([0,7]; L*(Q))

such that for every 8o € H? N HE(Q), 61 € L*(Q) and g € L?([0,7]; L?(2)), the
solution d, of

59 + A269 + [69,(1)(77777)] + 2[77,(1)(77769)] =g +ugxo (t 20, ze Q)7
(6.12) b4(t,z) = Ady(t,z) =0 (t=0, z€d),
6¢(0,2) = do(z), 64(0,2) = d1(z) (z € ),

with ug = L(dg, 01, g), satisfies

(6.13) 6,(t,)=0 and §,(r,-) = 0.
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Our goal is to prove the local exact controllability of the nonlinear system (6.9) via a
fixed-point argument. To this aim, let 5o € H2NHZ () and §; € L*(2). We construct
amap G : L2([0,7]; L>(Q)) — L*([0, 7]; L?(Q2)) by setting, for g € L2([0,7]; L3()),

(6.14) G(g) = [n, ®(dg, 6g)] + 2[64, (1, 09)] + [04, ©(dg, )]
where d, is the solution of (6.12) with the source term g and the control
(615) Ug = ['(607 61) g)

To conclude the proof of the theorem, it clearly suffices to check the existence of a
fixed-point of G.

Step 1: The map G is well-defined. First, using the property of the Airy function given
in Proposition 6.2 and the definition (1.10) of the bracket [-,], there exists C' > 0
such that, for every 6o € H2 N HE(2), & € L3(Q), g € L*([0,7]; L*(Q)),

1G (D L2(o,7;22(0)) < C (||5g||c([0,r};H2(Q)) + ||5g\|c([o,r];L2(Q))> :

3
=2

Moreover, using the continuity of £ (see (6.15)), it follows that there exists C > 0
such that, for every 8o € H2 N HY(Q), & € L*(Q), g € L*([0,7]; L*(Q2)), the solution
dg of (6.12) satisfies

(6.16)  [19gllcqo,m1:m2(2) + 19l (0.71:22 ()
< C (60l 2y + 1611l 2202) + gl L2(p0,73;22(02))) -

Combining the two previous estimates, one gets the existence C' > 0 such that

3
(6.17)  1G(9)IL2(jo,71iz2(2)) < C Y (H(SO“;P(Q) +101172(0) + HgHZL?([O,T];L"’(Q))) :
=2

Step 2: The map G maps B, into itself. Let C > 0 be the constant in (6.17). Let
r > 0 such that

1
(6.13) clr+r) < 2,
and define the associated ball of L%([0,7]; L%(Q)) by

By ={g € L*([0,7; L*()); llgllz2(o.riL2 () < 7}-
Let o > 0 be such that

)

(6.19) 2C(a+a?) <

N3

and let dp € H2 N H}(Q) and §; € L*(Q) satisfy
(6.20) ||50||H2(Q) + ||61||L2(Q) < a.

Using (6.17), (6.18) and (6.19), it follows that for every g € B, we have

1G (9| L2(j0,7;L2(0)) < 2C(a + A+ 0 +r3) <.
22
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Consequently, the ball B, in invariant under the action of G.
Step 3: The map G is a contraction on B,.. This can be proved by a light variation
of the arguments at step 2, so we omit the details.
Conclusion. By the Banach fixed-point theorem, the map G has a fixed point, which,
as explained at the beginning of this proof, implies the announced conclusion. 0
Appendix A. A Carleman estimate for the bi-Laplacian.
The goal of this section is to prove the global Carleman estimate for the bi-

Laplacian which has been used in the proof of Theorem 1.4. To give the precise
statement of this result, we introduce some notation, which will be used in all the
remaining part of this section. Firstly, given n € N, the euclidian norms on C™ and
M, (C) are denoted by | - |. We denote by  a nonempty bounded open set of R"
with a C? boundary or a rectangular domain and by O an open and nonempty subset
of Q. Moreover, for g € H?(Q), we write (D?g)(x) and Vg(z) for the Hessian matrix
and the gradient of g at x € (), respectively. For the remaining part of this section,
let a be a C%(Q) function satisfying

(A1) Ve e 9, a(z) =0, VzeQ, a(z)>0, and ér\l(fg [Va| > 0.

The existence of a function « with the above properties has been proved in Fursikov
and Imanuvilov [20] (see also [33, Chapter 14] or [12, Lemma 2.68]).
We are now in a position to state the main result in this section.

THEOREM A.1. With the above notation and assumptions, there exist a constant
C > 0 and A > 0 such that for every s > 1 and every ¢ € H*(Q) satisfying 1 =
Ay =0 on 0 we have

(A.2) / (52\D21/J|2+54|V1/)|2+s6|1/1|2)6235 da
Q
<c(/ |A2¢|26286dx+/[53\A¢|2+s6|¢|2]623ﬂdx),
Q O

where B is given by B = e>*, with a € C%(Q) as in (A.1).

The strategy used to prove Theorem A.1 is the same as the one in [11, Proposition
1]. More precisely, we apply twice a global Carleman estimate for the Laplacian, which
is a slight variation of Imanuvilov [21, Lemma 2.7]:

~ THEOREM A.2. With the notation and assumptions in Theorem A.1, there exist
A > 0 and a constant C > 0 such that for every s > 1, for every y € H*(2) N HL(Q)
we have

(A.3)
1
/ (7|D2y|2 + s|Vy|® + 53|y\2)6235 dz < C(/ |Ay[2e?*P dz + 33/ |y|e?8 dx),
Q\$ Q o

where B = e with a € C?(Q) as in (A.1).
Using twice the Carleman estimate (A.3) for the Laplacian, one can deduce the

Carleman estimate (A.2) for the bi-Laplacian and prove Theorem A.1.

Proof of Theorem A.1. Let g € L*(Q) and v € H*(Q) satisfying ¢ = Ay = 0 on
09. Then y = A satisfies

Ay = A% in Q,
y=20 in 0Q).
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Then, by applying the Carleman estimate (A.3) (neglecting the terms involving de-
rivatives of order one and two in y, i.e. of order three and four in v), one gets the
existence of A > 0 and C' > 0 such that for every s > 1,

(A4) 53/ |AY|2e?P dx < C(/ |A%Y|2e?P dx + 53/ |Ay|2esP dx).

Q Q o
One the other hand, applying the Carleman estimate (A.3) to 1, we have for all s > 1,
(A.5)

1
/ (7|D21/)|2+5|V1/)|2+s3|1/1|2)628ﬁdx<C(/ |Aw|26285dx+s3/ |¢\2e285dx).
QS Q o

Combining (A.4) and (A.5), we deduced that for every s > 1, estimate (A.2) holds.O

(1
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