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Abstract : 

Identifying and protecting essential fish habitats like spawning grounds requires an accurate knowledge 
of fish spatio-temporal distribution. Commercial declarations coupled with Vessel Monitoring System 
provide fine scale information on the full year to map fish distribution and identify essential habitats. We 
developed an integrated framework to infer fish spatial distribution on a monthly time step by combining 
scientific and commercial data while explicitly considering the preferential sampling of fishermen towards 
areas of higher biomass. We developed a method to identify areas of persistent aggregation of biomass 
during the spawning season and interpret these as spawning areas. The model is applied to infer maps 
of relative biomass for three species (sole, whiting, squids) in the Bay of Biscay on a monthly time step 
over a 9-year period. Integrating several fleets in inference provides a good coverage of the area and 
improves model predictions. The preferential sampling parameters give insights into the temporal 
dynamics of the targeting behavior of the different fleets. Last, persistent aggregation areas reveal 
consistent with the available literature on spawning grounds, highlighting the potential of our approach to 
identify reproduction areas. 
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29  1  INTRODUCTION

30  Integrating fisheries into Marine Spatial Planning (MSP) to preserve ecosystem functions

31  and  ensure  a  sustainable  exploitation  requires  an  accurate  knowledge  of  fish  spatio-

32  temporal distribution and more specifically of fish essential habitats such as reproduction

33  and nursery grounds (Janßen et al. 2018). However, such knowledge is still missing for

34  many  species  due  to  a  lack  of  data  with  sufficient  spatial,  temporal  or  demographic

35  resolution (Delage and Le Pape 2016; Regimbart et al. 2018).

36  The available data to map fish distribution and identify essential habitats mainly rely on

37  either  scientific  survey  data  (fishery-independent  data)  or  commercial  data  available

38  through on-board observer programs (fishery-dependent data) (Pennino et al. 2016). Both

39  data sources benefit of direct on-board recording of catches and are usually considered

40  as high quality data. Furthermore, both data sources were proved to be complementary

41  (Rufener  et  al.  2021).  Scientific  data  benefit  from  a  standardized  sampling  plan,  a

42  standardized  catchability  and  occur  each  year  at  the  same  period.  Consequently,  they

43  provide  standardized  data  on  a  large  spatial  extent  for  most  species  and  size  classes

44  (Hilborn and Walters 2013; Nielsen 2015). Observer data potentially provide data over the

45  full year for all caught species, even though they do not follow a standardized protocol as

46  survey data. However, both scientific survey and onboard observer data are characterized

47  by a relatively low sampling intensity in space and time. Because of material limitations,

48  surveys occur only once or twice a year and provide a limited number of samples each

49  time (ICES 2005) and observer programs only cover a limited fraction of the entire fleet

50  (e.g. only 1% of all sea trips are covered by the French observer programs - Cornou et

51  al.,  2021).  The  low  sampling  density  of  both  data  sources  may  lead  to  imprecise



3

Page 3 of 47 Canadian Journal of Fisheries and Aquatic Sciences (Author's Accepted Manuscript)

52  predictions  (ICES,  2005;  Alglave  et  al.,  2022)  and  constrains  to  consider  only  rough

53  temporal  resolution  (e.g. semesters,  quarters  or  seasons  –  see  for  instance  Kai  et  al.,

54  2017; Pinto et al., 2019; Rufener et al., 2021) to ensure a satisfying spatial coverage of

55  the data at each time step. However, the temporality of key biological events, such as the

56  reproduction peak, may be much tighter than the temporal resolution of data (Biggs et al.

57  2021). Hence, those data alone are likely not sufficient to provide accurate inferences on

58  essential fish habitats such as spawning grounds.

59  Commercial catch declarations combined with their fishing locations available from VMS

60  (Vessel Monitoring System) were proven to be an interesting alternative to obtain landing

61  per unit effort (LPUE) data with fine spatial and temporal resolution (Pedersen et al. 2009;

62  Bastardie et al. 2010; Gerritsen and Lordan 2010; Hintzen et al. 2012; Murray et al. 2013;

63  Azevedo  and  Silva  2020).  However,  considering  commercial  fisheries  data  to  infer  fish

64  spatial  distribution  remains  highly  challenging.  Among  other  challenges,  this  implies

65  accounting  for  fisher  sampling  behavior.  Fisher  typically  tend  to  preferentially  sample

66  areas of higher biomass (a process referred to as preferential sampling, PS - Diggle et al.

67  2010). Hence, because data preferentially represent areas of highest biomass, ignoring

68  PS in the distribution of fishing effort when estimating spatial distribution on larger areas

69  can lead to overestimated biomass predictions  (Conn et al. 2017; Pennino et al. 2019;

70  Alglave et al. 2022).

71  In a recent paper, Alglave et al. (2022) developed an integrated modeling framework to

72  infer  spatial  distribution  of  fish  abundance  by  combining  scientific  survey  CPUE  and

73  commercial LPUE data while accounting for PS in the distribution of fishing effort. They

74  applied their framework to commercial data of a single month to match with the scientific

75  survey and did not consider any temporal dimension.
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76 In this paper, we extend the modeling framework from Alglave et al. (2022) by adding a 

77 temporal dimension to estimate fish spatio-temporal distribution at a monthly time step. 

78 Our new model accounts for the variation over time (monthly time step) in the biomass 

79 field as well as in the intensity of PS for distinct fishing fleets. To demonstrate the value of 

80 the method, we selected and applied the model to 3 demersal species in the Bay of Biscay 

81 (common sole, whiting and squids) characterized by contrasted configurations regarding 

82 the available knowledge of their spawning grounds. We used those applications to 

83 reinforce results obtained in Alglave et al. (2022) demonstrating how the integrated 

84 framework allows to combine the information from several fleets in order to produce 

85 accurate maps of spatio-temporal biomass. To illustrate the capacity of the framework to 

86 identify areas of aggregation during the spawning season, we processed model outputs 

87 to identify areas of recurrent aggregation occurring during the reproduction season and 

88 compared these to the information available in the literature.

89
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90  2  MATERIAL AND METHODS

91  In this section, we first present the different species, the datasets and how we process

92  and combine them to produce LPUE data in space and time. Second, we extend the model

93  proposed by Alglave et al. (2022) to introduce a temporal dimension on a discrete monthly

94  time  step.  In  our  applications,  the  models  were  fitted  to  data  from  2010  to  2018  on  a

95  monthly time step (108 time steps). Then, we illustrate how the PS component modifies

96  model  predictions  and  can  be  interpreted,  and  how  integrating  several  fleets  in  the

97  analysis  further  improves  model  predictions.  Last,  we  detail  the  method  used  to

98  investigate  spatio-temporal  dynamics  from  model  outputs  and  identify  reproduction

99  grounds based on the aggregation patterns of each of three species.

100  2.1  Case studies
101  Sole  is  a  data-rich  case.  Direct  information  about  reproduction  grounds  is  available

102  through egg and larvae surveys (Arbault et al. 1986). Reproduction period fall between

103  January and April, but the peak of the reproduction fall in February. Discard rate is also

104  very low, which makes the landings data a good proxy of the catch (ICES 2019a).

105  By  contrast,  Whiting  is  a  data-poor  case  study  where  only  indirect  information  of

106  reproduction  period  exists  through  spring  trawl  surveys  (Houise  and  Forest  1993).

107  Reproduction period fall between March and May. Discard rates can be high (about 30%)

108  and thus landing data may provide a biased picture of the real catches (ICES 2019b).

109  Our third case study is Squids that represent a mixture of several species declared under

110  a common denomination in the catch (Loliginidae here referred as squids):  Loligo 
Vulgaris

111  (Lamarck, 1798),  Loligo forbesii  (Steenstrup, 1856) and  Alloteuthis sp  (Lamarck, 1798
).

112  Overall  scientific  survey  suggests  that  the  predominant  species  in  the  Bay  of  Biscay  is
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113 Loligo Vulgaris (ICES, 2020a, p.17). All 3 species are data-poor: no information exists 

114 regarding their reproduction grounds but some information of the reproduction period 

115 exists for Loligo Vulgaris (Moreno et al. 2002). For this species, the reproduction period 

116 fall between January and April.

117 2.2 Data

118 2.2.1 High spatial resolution catch per unit effort data for the mature component 
119 of the populations 
120 We pre-processed the VMS and catch declaration (logbook) data to obtain high spatial 

121 resolution LPUE data for the mature component of those three stocks, for three different 

122 fishing fleet, and for each month of the 2010-2018 time series. In the text, we used the 

123 term Landing Per Unit of Effort (LPUE) to refer to commercial observations expressed in 

124 kg of (mature) biomass per hour fished. Discards are neglected in our approach, hence 

125 LPUE are considered as biomass indices. 

126 Our model can integrate data of different fishing fleets. For the purpose of our application, 

127 we selected three different metiers that belong to the same fleet of trawlers (in this case, 

128 the ‘métier’ term refers to a combination of gear and of a set of species that are targeted 

129 by the vessels – see the Data Collection Framework and EC (2008)): OTB_DEF (bottom 

130 otter trawl targeting demersal species), OTB_CEP (bottom otter trawl targeting 

131 cephalopods) and OTT_DEF (multi-rig otter trawl targeting demersal species). In the 

132 following those three métiers are referred as three fleets. These three fleets were selected 

133 as they offer three main advantages. First, their targeting behaviors and technical 

134 characteristics are similar. Second, catch per unit effort of trawlers are generally good 

135 indicator of fish relative abundance while other gears (longline, gillnet) may face saturation 

136 effects leading to non-linear relationship between catches and fishing time (Hovgêrd and 

Page 6 of 47Canadian Journal of Fisheries and Aquatic Sciences (Author's Accepted Manuscript)
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137  Lassen  2008).  Third,  the  combination  of  the  three  fleets  cover  the  full  spatial  domain

138  (Figure 1).

139  Because  one  of  our  primary  goal  is  to  identify  spawning  grounds,  we  filtered  only  the

140  mature  fraction  of  the  landings  (i.e.  the  fraction  of  the  individuals  that  can  potentially

141  reproduce, not per se the fraction of the population that are spawning – this is detailed

142  further in the discussion). This was done by crossing the landings data with length class

143  and maturity data. For most of the landings, information on the commercial size categories

144  is available from the sales notes. These commercial categories are regularly sampled to

145  derive  length  structure  of  each  commercial  category.  This  allows  us  to  estimate  the

146  proportion  of  potentially  mature  fish  in  each  commercial  category  by  applying  maturity

147  ogives and in turn estimate the proportion of mature fish for each landing declaration. See

148  SM1 for more detail. Note that this procedure was not possible for squids, as there are no

149  data on maturity and size classes for this species group.

150  Landing data were then combined with VMS data to finally obtained high spatial resolution

151  LPUE data discretized on a 0.05° x 0.05° grid (i.e. 5.5 km x 3 km) on a monthly time step

152  (see SM2). This combination requires:

153  (1)  to identify the fishing locations within the VMS data. This is realized individually

154  for  each  fishing  vessel  trajectory  based  on  a  speed  threshold  similarly  as  in

155  common data processing methods (Hintzen et al. 2012).

156  (2)  to reallocate the logbooks declaration on the related VMS fishing locations. This

157  reallocation is realized individually for each fishing vessel trajectory by uniformly

158  reallocating  the  landings  on  all  fishing  locations.  The  link  between  both  data

159  sources  is  realized  through  the  combination  ‘vessel  identifier  x  statistical
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160 rectangle x fishing trip x day’. LPUE are then computed by simply dividing the 

161 reallocated landings by the related fishing time.

162 2.2.2 Scientific data
163 We also integrated scientific data in the analysis. For whiting and squids we used the 

164 survey data from the EVHOE survey. The Orhago survey was used for sole (ICES, 2020 

165 - see SM3, Figure S3). The data were extracted from the DATRAS database on the period 

166 2010 - 2018. Only the mature fraction of the survey catches were kept in the analysis to 

167 make it comparable with commercial data.

168 Orhago is an annual beam trawl survey occurring in November and designed to assess 

169 sole stock status in the Bay of Biscay. Each year 50 stations are sampled within 4 strata 

170 all along the Bay of Biscay. Note that this survey is mainly coastal and does not sample 

171 offshore areas. EVHOE is an annual bottom trawl survey occurring in late October, 

172 November and early December with a stratified sampling plan. It is designed for demersal 

173 fishes in the Bay of Biscay and in the Celtic Sea. In the Bay of Biscay, 80 to 90 sampling 

174 hauls are recorded each year.

175 2.3 Spatio-temporal integrated model
176 Alglave et al. (2022) developed a hierarchical integrated statistical model to infer spatial 

177 distribution of fish density through scientific survey data and commercial data. It is 

178 structured in 4 layers:

179 - the latent field that represents biomass spatial distribution, and that is the 

180 main target of the inferences;

Page 8 of 47Canadian Journal of Fisheries and Aquatic Sciences (Author's Accepted Manuscript)
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181  -  the observations from scientific surveys and commercial declarations that

182  are considered as direct zero-inflated observations of the latent field at the

183  registered fishing locations;

184  -  the fishing sampling intensity that relates fishing locations to the latent field

185  and  model  explicitly  the  PS  of  commercial  fleets  towards  areas  of  higher

186  biomass;

187  -  unknown parameters that control the shape of the biomass latent field and

188  the sampling process.

189  This first model was purely spatial as no temporal dimension was included in the model.

190  In this paper, we extend the framework by incorporating a temporal component to model

191  the evolution of the latent field of biomass across the monthly time steps (Figure 2).

192  2.3.1  Biomass field
193  As a notable extension of Alglave et al. (2022), the biomass field (eq.1) is modeled as a

194  spatio-temporal Gaussian Random Field (GRF) through a log link as:

195  log(𝑆(𝑥,𝑡))  =  𝛼𝑆(𝑡)  +  𝛿(𝑥,𝑡)  (1)

196  where 𝑥  ∈  𝐷  ⊂  𝑅2 stands for the spatial locations and 𝑡  ∈  ⟦1,𝑇⟧ for the monthly time steps.

197  𝑆(𝑥,𝑡)  is in the same unit as the data (here kg/hr fished as data are CPUE for survey trawls

198  or LPUE for commercial landing declarations). The term 𝛼𝑆(𝑡) is a time varying intercept

199  modeled as a fixed effect and 𝛿(𝑥,𝑡) is a GRF spatio-temporal process which represents

200  the spatio-temporal correlation structure of the biomass field. As commercial data may not

201  always cover all time steps, the temporal correlation is a critical component that allows to

202  interpolate between time-steps. Here, the spatio-temporal term has a classical stationary

203  first-order autoregressive form (eq.2) following (Cameletti et al. 2013):
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204     for 𝛿(𝑥,𝑡) = 𝜑 ∙ 𝛿(𝑥,𝑡 ― 1) +𝜔(𝑥,𝑡) 𝑡 = 2,...𝑇  (2)

205 The autocorrelation coefficient  is a scalar with ,  are spatial random 𝜑 𝜑 ∈ ―1,1 𝜔(𝑥,𝑡)

206 effects that represents the spatial innovation, modeled as a 0 mean GRF (with no temporal 

207 correlation). Spatial random effects  are parameterized through a range parameter 𝜔(𝑥,𝑡)

208  that corresponds to the distance at which spatial autocorrelation falls below 0.1.𝜌

209 Note that no covariate is included in the latent field to keep the model as simple as possible. 

210 If any, the covariates effects are captured through the spatio-temporal term . 𝛿(𝑥,𝑡)

211 Similarly, the intercept  was modeled through a simple fixed effect but more complex 𝛼𝑆(𝑡)

212 specifications including some seasonal, yearly and interaction effects could be adopted 

213 such as in Thorson et al. (2020).

214 2.3.2 Sampling process for the commercial fishing points
215 For most scientific surveys targeting a variety of species or covering wide areas, even if 

216 the sampling plan is a stratified-random sampling and sampling takes into account the 

217 most important commercial species in the area, the final distribution of the sampling 

218 location can be considered independent from the biomass field distribution (see S3 for the 

219 scientific survey used in this paper),  and scientific sampling locations do not need to be 

220 modeled explicitly (Diggle et al. 2010). By contrasts, the dependence between the 

221 commercial fishing locations and the biomass field has to be modeled and included in the 

222 likelihood function to capture preferential sampling. We extended the model proposed by 

223 Alglave et al. (2022) to account for temporal variations in PS. Because the fishing behavior 

224 is potentially different among fishing fleet, PS is modeled specifically for each fleet 

225 denoted  (in the next section,  is also used to denote the scientific suvey). Observed 𝑗 𝑗

226 fishing locations of any fishing fleet  are integrated in the likelihood through an 𝑗

Page 10 of 47Canadian Journal of Fisheries and Aquatic Sciences (Author's Accepted Manuscript)
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227 inhomogeneous point process (  in the Figure 2) whose intensity  (eq.3) controls 𝑋𝑐𝑜𝑚𝑗 𝜆𝑗(𝑥,𝑡)

228 the expected number of fishing points within a given area: 

229 𝑙𝑜𝑔(𝜆𝑗(𝑥,𝑡)) = 𝛼𝑋𝑗(𝑡) + 𝑏𝑗(𝑡) ⋅ 𝑙𝑜𝑔(𝑆(𝑥,𝑡)) + 𝜂𝑗(𝑥,𝑡)  (3)

230 where:

231 - the time varying intercept  quantifies the average fishing intensity on the 𝛼𝑋𝑗(𝑡)

232 whole area; it is modeled as a fixed effect;

233 - the time varying  quantifies the strength of PS towards biomass ; it is 𝑏𝑗(𝑡) 𝑆(𝑥,𝑡)

234 modeled as a fixed effect too. If , then PS is null. If , then PS 𝑏𝑗(𝑡) = 0 𝑏𝑗(𝑡) > 0

235 occurs and the greater, the stronger PS. Alternatively,  would indicate that 𝑏𝑗(𝑡) < 0

236 fisher have a repulsive behavior towards the resource.

237 - the pure spatial GRF  captures the remaining spatial variability in the fishing 𝜂𝑗(𝑥,𝑡)

238 point pattern not captured by the PS term (for instance, dependence of the fishing 

239 locations towards management regulations, distribution of other targeted species, 

240 habits/tradition).

241 2.3.3 Observation process
242 All observations for both scientific and commercial data of any fleet  are assumed all 𝑗

243 mutually independent conditionally on the latent field of biomass and the sampling 

244 locations. As data (both scientific and commercial) eventually present a high proportion of 

245 zero values, we model the observations through a Poisson-link zero-inflated model 

246 introduced by Thorson (2018) and already used in Alglave et al. (2022). The observation 

247 model explicitly considers that each fleet can have its own catchability and its own zero 

248 inflation parameter.

Page 11 of 47 Canadian Journal of Fisheries and Aquatic Sciences (Author's Accepted Manuscript)
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249 The probability to observe a catch data  conditionally on the location  (with  the 𝑦𝑖 𝑥𝑖 𝑖

250 observation index), the time-step , the biomass field value  and the fleet  is 𝑡𝑖 𝑆(𝑥𝑖,𝑡𝑖) 𝑗

251 expressed as follow:

252 P(𝑌𝑖 = 𝑦𝑖|𝑥𝑖,𝑡𝑖,𝑆(𝑥𝑖,𝑡𝑖),𝑗) = { 𝑝𝑖  if 𝑦𝑖 = 0

(1 ― 𝑝𝑖) ⋅ L(𝑦𝑖,
𝜇𝑗(𝑥𝑖,𝑡𝑖)
(1 ― 𝑝𝑖)

,𝜎2
𝑗 )  if 𝑦𝑖 > 0  (4)

253 𝑝𝑖 = exp( ― 𝑒𝜉𝑗 ⋅ 𝜇𝑗(𝑥𝑖,𝑡𝑖))  (5)

254  is the expected catch of fleet  at location  and time step . It is the 𝜇𝑗(𝑥𝑖,𝑡𝑖) = 𝑞𝑗.𝑆(𝑥𝑖,𝑡𝑖) 𝑗 𝑥𝑖 𝑡𝑖

255 product of the latent field value  and of the relative catchability coefficient specific 𝑆(𝑥𝑖,𝑡𝑖)

256 for fleet  denoted . Specifically for each fleet ,   is a zero-inflation parameter controlling 𝑗 𝑞𝑗 𝑗 𝜉𝑗

257 the proportion of zero in the data,  is the observation variance when the catch is positive.𝜎2
𝑗

258 Equation (4) shows the two components that compose the probability to observe a catch 

259 :𝑦𝑖

260  the probability to obtain a zero catch ( ). It is modeled as a Bernoulli variable 𝑦𝑖 = 0

261 with probability .  is equivalent to the probability to obtain a 𝑝𝑖 = exp( ― 𝑒𝜉𝑗 ⋅ 𝜇𝑗(𝑥𝑖,𝑡𝑖)) 𝑝𝑖

262 0 value with a Poisson distribution of intensity . The value of  controls 𝑒𝜉𝑗 ⋅ 𝜇𝑗(𝑥𝑖,𝑡𝑖) 𝜉𝑗

263 the intensity of the zero inflation, when  increases, the amount of zero in the data 𝜉𝑗

264 decreases. Then the probability to obtain a positive catch is given by .1 ― 𝑝𝑖

265  the value of the positive catch is modeled through a lognormal distribution  with L

266 expected value  and observation error . The standardization by  
𝜇𝑗(𝑥𝑖,𝑡𝑖)
(1 ― 𝑝𝑖) 𝜎2

𝑗 (1 ― 𝑝𝑖)

267 allows to keep the expectancy of the observation model to .𝜇𝑗(𝑥)
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268 The catchabilities  are not identifiable per se and some additional constraints need to be 𝑞𝑗

269 set to estimate the relative catchability of each fleet (Alglave et al., (2022)). To ensure 

270 identifiability, one fleet catchability is set as reference level (e.g. , here OTB_DEF 𝑞𝑟𝑒𝑓 = 1

271 was used as the reference fleet) and the other fleets’ catchabilities are estimated relatively 

272 to the reference fleet through the equation:

273 𝑞𝑗 = 𝑘𝑗.𝑞𝑟𝑒𝑓  (6)

274 2.3.4 Maximum likelihood estimation
275 The estimation of the spatio-temporal model is achieved through maximum likelihood 

276 estimation. We used the Stochastic Partial Differential Equation (SPDE) approach that 

277 allows to benefit from the nice computational properties of Gaussian Markov Random 

278 Fields while working on a continuous domain (Lindgren et al. 2011). In practice our model 

279 is coded with Template Model Builder (TMB - Kristensen et al., 2016) which benefits from 

280 the Laplace approximation to integrate over random effects, automatic differentiation and 

281 sparse matrix computation technics for a fast estimation of the model through maximum 

282 likelihood estimation. Details on estimation are provided in SM 4, 5 and 6.

283 2.4 Evaluating the interest of integrating multiple fleets
284 Integrating several fleets in inference allows to cover the whole area (Figure 1) and is 

285 expected to improve inferences. To illustrate the value of integrating the data from multiple 

286 fleets within a single integrated model, we compared the spatial predictions obtained by 

287 fitting the model to all available data with those obtained by integrating only one fleet. In 

288 addition, we investigated if integrating all the fleets in inference increased the correlation 

289 between scientific data and model predictions. 
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290 We also compared the coefficient of variation of the prediction between each model on a 

291 single time step (here November 2018).

292 Note that scientific data was systematically integrated into inference (either in the 

293 integrated model or in the single-fleet models). However, due to the low sample size 

294 compared with intensive ‘VMS x logbooks’ data (about 80 scientific samples each year in 

295 November compared with 17000 samples per month on average), they have very low 

296 contribution to inference. This was extensively discussed in Alglave et al. (2022). Here 

297 they mainly provide some standardized and reference data to assess the performance of 

298 the framework.

299 2.5 Evaluating the value of modeling PS

300 2.5.1 Comparing the inferences with and without PS
301 We first assessed the impact of PS on the distribution of biomass by comparing 

302 estimations obtained from integrated models (i.e. models fitted to all data sources) 

303 accounting for PS with those obtained when ignoring PS. We computed the log-likelihood 

304 related to each data source (commercial and scientific data) to assess if there is an 

305 improvement in model goodness-of-fit when accounting or not for PS. Note that fitting a 

306 model without PS is straightforward as it only requires to remove the sampling process 

307 component from the likelihood function.

308 2.5.2 Interpreting the intensity of preferential sampling
309 The estimates of PS parameters  in eq. (3) may bring valuable information on the 𝑏𝑗(𝑡)

310 dynamics of the fishery as they inform on the strength of the relationship between 

311 commercial sampling distribution and species distribution. We investigate the variability of 

312 the PS parameters among the three species and the different fleets. Then, focusing on 
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313 the sole case study, we highlight the insights brought by the model on the temporal 

314 evolution of PS and its seasonal variations.

315 2.6 Investigating spatio-temporal distribution and identifying reproduction 
316 grounds
317 The spatio-temporal model provides some insight on the temporal dynamics of species 

318 distribution both at inter- and intra-annual levels. We applied a method to identify recurrent 

319 aggregation areas from the maps of abundance inferred at each time step. 

320 2.6.1 Aggregation index
321 We used the Getis and Ord index  (Getis and Ord 1992; Ord and Getis 1995) to 𝐺𝑑(𝑥,𝑡)

322 determine persistent aggregation areas (see for instance Milisenda et al., (2021)). The 

323 generalized version of the Getis and Ord index is given in Bivand and Wong (2018) and 

324 Ord and Getis (1995). Basically,  is a normalized version of the ratio between the 𝐺𝑑(𝑥,𝑡)

325 sum of the log-biomass (denoted ) within a fixed neighborhood  and the sum of 𝑠(𝑥,𝑡) 𝑑 𝑠

326  on the entire area (for a fixed time step) (Getis and Ord 1992). We computed these (𝑥,𝑡)

327 indices on  so that the  are Gaussian, which makes  Gaussian 𝑠(𝑥,𝑡) = log(𝑆(𝑥,𝑡)) 𝑠(𝑥,𝑡) 𝐺𝑑

328 too. In the application, we used a neighborhood distance d=7.5 km which defines a small 

329 neighborhood of 8 cells (the direct neighbors of each cell grid) and allows to identify very 

330 localized aggregation areas. Positive values for the aggregation index  indicates that 𝐺𝑑 𝑠

331  fall within a local patch of high values while negative  indicates that  fall within (𝑥,𝑡) 𝐺𝑑 𝑠(𝑥,𝑡)

332 a local patch of low values. Near 0 values , indicates that  does not fall in some 𝐺𝑑 𝑠(𝑥,𝑡)

333 local aggregation patch.  As  follows a standardized Gaussian distribution, the 𝐺𝑑

334 comparison between the value of the index and the quantiles of a standard Gaussian 

335 distribution can be used to evaluate whether or not the latent field of biomass fall within a 

336 statistically significant high or low aggregation patch. We used the quantile 99% (2.58) as 
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337 a threshold to ensure a high level of significance for patch detection (only local patch of 

338 positive values are considered) and applied the Bonferroni correction to account for the 

339 multiple statistical tests that are conducted.

340 Then, we define the persistence indices  as the proportion of times point  falls 𝐼𝑃(𝑥,𝑚) 𝑥

341 significantly within an aggregation area for a specific month/season  (can be either a 𝑚

342 month or several months) among several years. Areas marked with high values of  are 𝐼𝑃

343 persistent aggregation areas throughout the time series. 

344 2.6.2 Comparing the results with the available literature 
345 Persistent aggregation areas derived from our model during the reproduction period (as 

346 defined from the literature) were interpreted as potential recurrent reproduction grounds. 

347 We compare those inferences with the information of reproduction ground available from 

348 the literature (for sole and whiting).

349 Arbault et al. (1986) investigated the reproduction of sole along the Bay of Biscay based 

350 on several egg surveys occurring in 1982. Five surveys were conducted between January 

351 and May. Egg density was sampled in different locations from Hendaye to Pointe du Raz 

352 (43°30N-48°N) and allowed to map the distribution of egg production on the full study 

353 domain. The peak of reproduction occurred in February; thus we compare the maps 

354 obtained from the February survey with the persistence index obtained from our model in 

355 February.

356 For whiting, only two EVHOE trawl surveys occurred during spring (considered as the 

357 reproduction period of whiting) between 1987 and 1992 in the Bay of Biscay (Houise and 

358 Forest 1993). For each haul, the individuals were counted and aged. Individual of two 

359 years and older were considered mature. We compare the distribution of mature 
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360 individuals obtained with these surveys and the index of persistence from our model 

361 during spring (March to May).

362 No available information exists regarding the reproduction grounds of squids in this area, 

363 however the study from Moreno et al. (2002) investigated the reproduction period for 

364 Loligo vulgaris in the Eastern Atlantic and highlighted that their reproduction falls in winter 

365 and spring with a peak from January to April. We compute the persistence index for this 

366 period to identify the spatial aggregation patterns that emerge from the model outputs and 

367 that could be considered as spawning grounds.

368 To assess whether the aggregation patterns within the reproduction period are stable over 

369 the time period, we iteratively computed the persistence index over a 5-year mobile time-

370 span while pushing forward one year each time.
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371 3 RESULTS

372 3.1 Assessing the contribution of each data sources to inference
373 Results highlight how combining several commercial fleets in the framework brings a 

374 better picture of the spatial distribution on the whole domain. For instance, when 

375 comparing model predictions  with survey data (for the month of the survey), integrating 

376 several fleets into the analysis improves correlation with scientific data (Figure 3). It also 

377 reduces the standard deviation of the predictions on the full domain (SM 7, Figure S7).

378 When looking at the predictions within the spatial range of the fleets, single-fleet models 

379 logically provide similar spatial predictions compared with the integrated model (Figure 4; 

380 red dots). However, when using single fleet data, predictions realized outside the spatial 

381 range of the fleet largely depart from the ones realized through the integrated models 

382 (black dots, Figure 4), emphasizing the contribution of the other fleets to improve 

383 inferences on areas poorly covered by single fleet. This is particularly evidenced with the 

384 OTB_CEP and OTT_DEF fleets that partially cover the study area compared with 

385 OTB_DEF that better cover the whole study area (Figure 1).

386 3.2 Interpreting estimates PS intensity
387 Estimates of the PS intensity (  parameters in eq. (3)) for the different species, the 𝑏

388 different fleets and the different time steps provide information on the targeting behavior 

389 that are consistent with expertise. Estimates of  are positive for each species and each 𝑏

390 fleet (Figure 5, left column). For squids, PS is the strongest for OTB_CEP followed by 

391 OTB_DEF and OTT_DEF. This is consistent with the expert knowledge of the targeting 

392 behavior of these fleets: OTB_CEP target cephalopods and catch on average 15% of 

393 squids while OTB_DEF and OTT_DEF catch respectively 5% and 1% of squid). A similar 

394 pattern can be identified for whiting ( ); this is consistent with species 𝑏𝑂𝑇𝐵𝐶𝐸𝑃 > 𝑏𝑂𝑇𝐵 > 𝑏𝑂𝑇𝑇
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395  spatial distribution as whiting (like squids) are found in coastal areas where the OTB_CEP

396  fleet is preferentially operating (Figure 1). For sole, the strength of PS is on average higher

397  for OTB_CEP and OTT_DEF than for OTB_DEF but with less contrast between the three

398  commercial fleets which is also consistent with expertise as those three fleet target this

399  high commercial value species.

400  Interestingly, some of the 𝑏 parameters time series emphasize seasonal patterns (Figure

401  6, top). For instance, in the sole case study for the OTB_CEP fleet, the 𝑏 parameters are

402  higher in summer and autumn emphasizing relatively stronger PS, while being lower in

403  winter and early spring (but see section 3.4 below for a more detailed interpretation of this

404  seasonality pattern).

405  3.3  Evaluating the influence of PS on spatial inferences
406  Because estimates of 𝑏 are positive, spatial density of fishing points is positively correlated

407  with biomass density. Then logically, ignoring PS leads to a positive bias (overestimate)

408  in  biomass  estimates  in  areas  not  sampled  by  the  commercial  fleets  compared  to

409  estimates obtained while considering (Figure 5, right column, black points), but does not

410  strongly  affect  predictions  in  locations  within  the  range  of  the  fleets  (blue  points).

411  Considering PS only slightly improves the fit of the model to the data. For the Sole case

412  study, some improvement of the likelihood occurred for both the likelihood associated with

413  the  commercial  and  the  scientific  data  (Table  1).  For  whiting  and  squids,  there  are  no

414  strong modifications in both scientific and commercial likelihoods. Overall, accounting or

415  not for PS does not strongly modify the overall pattern of species abundance (SM 8).

416  3.4  Investigating spatio-temporal dynamics of fish biomass
417  Results provide biomass density maps on a monthly time step that emphasize seasonal

418  distribution  patterns  and  from  which  aggregation  index  were  calculated.  The  temporal
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419  correlation parameter (𝜑) is estimated around 0.8 for all the species emphasizing strong

420  between months temporal correlations in the biomass field values. The range parameters

421  are  estimated  to  55  km  for  sole  and  squids  while  being  estimated  to  67  km  for  whiting

422  emphasizing wider spatial autocorrelation for this species.

423  Concerning  the  sole  case  study,  model  predictions  highlight  the  relatively  offshore

424  distribution from November to April and a more coastal distribution from June to October

425  suggesting some offshore-coastal migrations between these 2 periods (Figure 6, bottom).

426  In  particular,  the  migration  in  June/July  is  associated  with  a  contraction  of  the  sole

427  distribution around the Vendée coast, the Gironde Estuary and the Landes coast (45.5°N-

428  46°N) while the migration in November leads to an expansion of the species distribution

429  towards  the  offshore  areas  all  along  the  Bay  of  Biscay.  Interestingly,  such  seasonality

430  coincides with the seasonality of PS intensity for the OTB_CEP (Top of Figure 6 and SM

431  9).  Higher  PS  parameter  values  are  associated  with  a  coastal  distribution  of  sole  while

432  lower values correspond to offshore distribution of sole.

433  Similar maps can be computed for the other species and are presented in SM10.

434  3.5  Aggregation index and reproduction grounds
435  For both sole and squids, areas of aggregation persistent over the years identified during

436  the  spawning  period  exhibit  strong  aggregation  patterns  that  match  the  available

437  knowledge of their reproduction grounds. For sole, the aggregation areas globally match

438  with the observed area of maximum egg concentration (Figure 7), although the spawning

439  grounds identified by egg maps are slightly further East of those identified by our method.

440  This  slight  discrepancy  could  be  interpreted  as  an  effect  of  the  larval  drift  as  the  maps

441  provided by Arbault et al. (1986) are concentration of eggs and not reproduction grounds

442  per se. This is consistent with the simulation analysis of Ramzi et al. (2001) showing that
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443 the eggs and larval drift is this area of the Biscay Bay is oriented to the East. Overall, 

444 these aggregation areas are stable over time (Figure 8).

445 For whiting, similar patterns can be identified during the reproduction period (Figure 7); 

446 they match with previous studies investigating the spatial distribution of mature whitings 

447 (Houise and Forest 1993). In particular, the Northern (3°W-47°N) and the Southern (2°W-

448 45.5°N) aggregation patches are almost systematically significantly considered as 

449 aggregation areas (aggregation index equals 1) while the other middle one (2.5°W-46.5°N) 

450 is classified as an aggregation area that appears less frequently over the years. An 

451 additional persistent aggregation area can be identified in the North of the Bay of Biscay 

452 (4.5°W-48°N) suggesting that reproduction may also occur in this area which was not 

453 identified in the report of Houise and Forest (1993). Interestingly, the Northern aggregation 

454 area (3°W-47°N) is more intense at the end of the period (Figure 8).

455 For squids, no information related to any reproduction ground exists in the literature, only 

456 the time period of the reproduction is known (the peak fall between January to April). On 

457 this time period, some persistent aggregation areas can be evidenced in coastal areas 

458 (Figure 7) along the Vendée coast (2.5°W-46.5°N), the Landes coasts (1.5°W-44°N to 

459 45°N) and around Belle-Île-en-Mer (3°W-47.25°N). Interestingly, the two Northern 

460 aggregation areas are more intense at the end of the time series compared to the 

461 beginning of the time series (Figure 8).

462 Maps of persistent aggregation areas are available for all month and evidence some other 

463 aggregation areas outside of the reproduction period (SM11). For instance, for sole a 

464 persistent patch can be identified offshore the Gironde Estuary (1.5°W – 45.5°N) from 

465 August to December. 
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466  4  DISCUSSION

467  Main findings

468  In  this  paper,  we  develop  a  framework  to  infer  fish  spatio-temporal  distribution  on  a

469  monthly  time  step  while  combining  scientific  survey  data  and  commercial  catch

470  declarations from several fleets. Commercial catch data constitute a valuable data source

471  that  complements  scientific  survey  or  onboard  sampling  programs  by  providing  much

472  higher  spatio-temporal  sampling  density.  Those  complementary  sources  of  data  were

473  integrated  through  a  spatio-temporal  hierarchical  model  taking  into  account  spatio-

474  temporal variation within the biomass field and PS on a monthly time step. We fitted the

475  model  to  VMS-logbooks  data  filtered  and  processed  over  the  period  2010-2018  for  3

476  demersal species (sole, squids and whiting) in the Bay of Biscay.

477  We  emphasize  the  benefit  of  integrating  several  spatially  complementary  fleets  to  infer

478  fish distribution throughout the year. We demonstrate how the within-year dynamic of the

479  PS parameters can be interpreted with regards to the joint dynamics of species distribution

480  and fishing distribution and to the overall targeting behavior of the fleets (e.g. OTB_CEP

481  for the squids case study). Even though PS parameters are not fishing intention per se

482  (Bourdaud et al. 2019), these could advantageously complement information provided by

483  landing  profiles  to  estimate  the  targeting  behavior  of  any  group  of  vessels  (either

484  métier/fleet or any group that would seem appropriate).

485  Interestingly, although interpretation of the PS parameters provide insight into the spatio-

486  temporal fleet dynamics, accounting for PS in the inferences does not significantly improve

487  model fitting even when some fleets emphasize strong PS (e.g. squids, OTB_CEP). These

488  results contrast with Alglave et al. (2022), and could result from the integration of several
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489  fleets in the analysis that allow a full coverage of the area. Indeed, in Alglave et al. (2022),

490  the fleet emphasizing strong PS only covered a restricted (and coastal) part of the area.

491  As introducing PS mainly affects inferences on poorly sampled areas, predictions in the

492  offshore  areas  where  mostly  affected.  Here,  as  the  fleets  are  all  estimated  to  have  a

493  positive PS and cover the whole area, PS only downscale the predictions in the few areas

494  that remain unsampled.

495  Filtering  the  mature  fraction  of  the  population  in  both  the  scientific  and  the  commercial

496  data make possible to infer the spatio-temporal distribution of the fraction of the biomass

497  that could be potentially mature through the year on a monthly time step. We developed

498  an index to infer aggregation areas of the potentially mature fraction of the biomass that

499  are persistent across years. When calculated on a temporal window predefined following

500  the  available  information  on  the  reproduction  period  for  each  species,  the  aggregation

501  index  enables  to  identify  the  main  recurrent  spatial  aggregation  areas  within  the

502  reproduction period. Results demonstrate that the recurrent aggregation areas identified

503  from our method for Sole and Whiting were highly consistent with those already identified

504  in  the  literature.  Our  results  demonstrate  how  the  aggregation  index  can  provide  new

505  insights on the spawning grounds for species like squids for which no information on the

506  spawning  grounds  is  available  on  the  literature.  Areas  of  high  aggregation  persistent

507  across  years  were  identified  during  the  expected  period  of  reproduction  and  could  be

508  interpreted  as  spawning  grounds.  This  opens  perspectives  for  applying  more

509  systematically the approach for species where no information of reproduction grounds is

510  available to fill the gaps in our knowledge with minimum cost (Delage and Le Pape 2016;

511  Regimbart et al. 2018).

512
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513

514  Combining  our  results  with  other  data  sources  to  refine  the  identification  of

515  spawning grounds

516  Persistent  aggregation  areas  should  be  considered  as  potential  spawning  areas  rather

517  than  actual  spawning  areas.  Indeed,  although  the  mature  fraction  of  the  biomass  was

518  filtered  in  the  data,  our  maps  do  not  directly  inform  whether  individuals  are  actually

519  reproducing or not. The outputs of the model provide maps of the mature fraction of the

520  population (i.e. the individuals that can reproduce) and not the spawning fraction of the

521  population (i.e. the individuals that are actually spawning). However, by focusing on the

522  temporal  window  identified  as  reproduction  period  in  the  literature,  we  limit  the  risk  of

523  misinterpreting  the aggregation areas as reproduction areas.

524  Our  results  can  also  be  used  to  help  gathering  additional  data  to  identify  reproduction

525  grounds.  Typically,  our  maps  could  be  of  great  help  to  design  surveys  to  record  eggs,

526  larvae  and  spawning  individuals  that  would  provide  direct  information  of  species

527  reproduction  (Fox  et  al.  2008).  Because  developing  such  additional  surveys  would  be

528  highly  expensive,  our  maps  could  provide  valuable  a  priori  information  to  optimize  the

529  survey design and potentially find a compromise between the cost, the spatial extent, the

530  temporal coverage of the survey and the accuracy of the expected estimates/predictions.

531  Similar ideas were already applied to the sole case study to investigate more precisely

532  the space-time variation of sole reproduction. Arbault et al. (1986) work provided a priori

533  information  of  reproduction  grounds  that  allowed  designing  more  localized  surveys  to

534  study inter- and intra-annual variability of one specific sole spawning area (Petitgas 1997).

535  Several statistical methods have been developed since and are suitable to optimize such

536  adaptive sampling design; see for instance the recent work of Leach et al. (2021).
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537 Our results could also be combined with fisher expert knowledge (Yochum et al. 2011) to 

538 complement our knowledge of fish reproduction (Delage and Le Pape 2016). For instance, 

539 Bezerra et al. (2021) and Silvano et al. (2006) proved the usefulness of fishers knowledge 

540 to determine the temporality of fish spawning and to identify some spawning grounds by 

541 crossing the information of aggregation areas provided by several fisher. These were 

542 proved complementary with scientific data as they can be available at low cost and provide 

543 local knowledge of fish ecology.

544 Limits and perspectives for the approach

545 Our framework has several limitations that are all material for future research avenues. 

546 Our model remains relatively simple with regards to all the temporal processes that 

547 actually occur within a fishery. It is both a strength and a weakness: the model remains 

548 relatively generic, but one might want to extend it further to account for other temporal and 

549 spatio-temporal processes affecting fisheries dynamics. For instance, we opted for a non-

550 seasonal representation of the model. One could make it seasonal by decomposing the 

551 intercepts  and  as well as the random effects  and  into yearly and 𝛼𝑆(𝑡) 𝛼𝑋𝑗(𝑡) 𝛿(𝑥,𝑡) 𝜂(𝑥,𝑡)

552 seasonal terms in addition to some ‘season x year’ interaction terms as performed in 

553 Thorson et al. (2020). In their work, such specification mainly allowed to provide 

554 information over the time-steps where data was lacking. In the configuration of our case 

555 studies, data is available for all time steps and have a relatively good coverage of the 

556 study domain. Consequently, even though it provides a nice conceptual view of 

557 seasonality, complexifying our model in that direction should not deeply modify our  

558 inference of the biomass field. Alternatively, our framework could integrate orthogonal 

559 spatio-temporal terms in the latent field to capture the main mode of variability of the 

Page 25 of 47 Canadian Journal of Fisheries and Aquatic Sciences (Author's Accepted Manuscript)



26

560 biomass field (Thorson et al. 2020b). Such orthogonal terms would allow to capture the 

561 main spatial patterns that structure the latent field as well as their variation in time. These 

562 could prove very useful to identify the structuring processes that affect species distribution 

563 and could give a valuable insight in the space-time dynamics of the species. Another 

564 exciting research avenue would consist in integrating population dynamics in the latent 

565 field of biomass (Cao et al. 2020). This would require to refine further the demographic 

566 resolution of the VMS-logbooks data (see for instance Azevedo and Silva 2020), but once 

567 done, it would give access to huge data for inferring the space-time dynamics of fish 

568 populations. Finally, our model considers fisher preferentially sample areas where the 

569 biomass is higher (preferential sampling), but does not consider any other drivers and 

570 specifically the temporal and spatio-temporal relations that can affect fishers behavior. 

571 These can be highly complex and may depend on the distribution of the resource, 

572 tradition/habits, management regulations (Abbott et al., 2015; Girardin et al., 2017; Salas 

573 and Gaertner, 2004; Hintzen, 2021). These drivers are rarely studied in both space and 

574 time (although see Tidd et al., 2015). Our framework could allow to jointly model the 

575 dynamics of the species, the distribution of the effort, the link that relates species 

576 distribution and effort in space/time and all the other spatial and/or temporal drivers that 

577 affect the distribution of fishing effort. For instance, we could relate the fishing intensity to 

578 the biomass field from the previous time steps, or alternatively consider that the locational 

579 choice depends on the catches of the previous time steps. Adding such covariates and 

580 spatio-temporal dependencies in the sampling equation (eq.3) will probably not modify the 

581 overall pattern of biomass distribution, but it would make possible to quantify the drivers 

582 of fisher behavior and give valuable insight to the fishery dynamics.
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583  Including  discards  would  potentially  improve  our  approach.  Indeed,  logbooks  data  are

584  landings declarations data which means they inform on the landings and not on the true

585  catch. Thus, by assuming the landings per unit effort are proportional to the biomass, we

586  make  the  hypothesis  that  the  discard  rate  is  constant  in  space  and  time  and  does  not

587  affect model predictions. This should not be a problem for sole and squids as the discards

588  are  low  and  TAC  have  not  been  really  binding  during  the  studied  period.  However,  the

589  issue  might  be  more  stringent  for  whiting  and/or  other  species  with  a  high  and  non-

590  stationary  level  of  discards.  Integrating  discards  data  in  the  analysis  could  help  solving

591  this issue. Stock et al. (2019) and Yan et al. (2022) used observer data to model bycatch

592  in both space and time and Breivik et al. (2017) used bycatch data from onboard surveys

593  to predict the temporal evolution of bycatch realized in the full commercial data. Similarly,

594  we could integrate into the same analysis the logbooks and the observer data by assuming

595  that the catch of observer represents the sum of landings (which is also observed in the

596  logbooks data) and discards (which is unobserved in the logbooks data). This way, the

597  discards information available from observer data would be shared with the logbooks data

598  and would allow correcting for the missing portion of catch declarations data while possibly

599  accounting for possible space or time variation in the discard rate.

600  Our analysis rely on the hypothesis that the spawning season is known a priori. Extending

601  the  approach  to  infer  the  spawning  season  based  on  the  temporal  dynamics  of  the

602  aggregation patterns could improve our knowledge of species spatio-temporal distribution.

603  In particular, identifying the main species phenomenological phases and their consistency

604  (or shift) in time is crucial in the context of global change (Thorson et al. 2020a). In our

605  study, we computed  the aggregation index on a  predefined temporal window  based on

606  literature assumed to be the reproduction period (Arbault et al. 1986; Houise and Forest
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607  1993;  Moreno  et  al.  2002).  Several  methods  exist  and  could  be  adapted  to  extract  the

608  spatial patterns that shape model outputs, their related temporal variation and identify the

609  main  phenological  phases  that  characterize  species  distribution  (e.g.  reproduction,

610  feeding - see for instance Empirical Orthogonal Functions or Principal Oscillation Patterns

611  -  Cressie  and  Wikle  2015;  Wikle  et  al.  2019).  While  the  approach  we  adopted  in  the

612  manuscript  requires  to  know  the  reproduction  period  of  the  species  and  would  be

613  inappropriate  in  a  context  of  a  changing  reproduction  time-span,  those  alternative

614  methods would not require any a priori. Hence, these methods would be more appropriate

615  to identify phenological modifications in species life cycle in response to climate change.

616  Applying  those  kind  of  methods  to  the  huge  amount  of  data  available  from  mandatory

617  declarations, would make possible to track the effect of climate change on fish phenology

618  at  a  monthly/seasonal  scale,  while  it  is  generally  only  possible  at  a  yearly  time  step

619  through scientific survey data (Maureaud et al. 2020).

620  Last, confidentiality remains a major limitation to the massive use of VMS data (Hintzen

621  2021). Indeed, there are strong confidentiality constraints on these data due to the huge

622  information available on fisher fishing grounds. Few countries are now giving free access

623  to their data (e.g. Norway), but in most cases administrative procedures to get access to

624  the data remain a burden and still constitute a limitation for the use of ‘VMS x logbooks’

625  data for routine operational use.

626  Future use for Marine Spatial Planning

627  Our  model  has  potential  application  for  Marine  Spatial  Planning  (MSP).  Janßen  et  al.

628  (2018)  highlighted  that  one  of  the  main  requirements  for  implementing  MSP  is  the

629  availability of fine scale information on species distribution and of their essential habitats.

630  Here  we  propose  a  method  which  can  provide  such  information  for  the  fraction  of  the
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631 population available through catch declarations (i.e. mainly the adult fraction and in some 

632 cases part of the juvenile fraction). This knowledge is required to design Marine Protected 

633 Areas (MPA – see for instance Lambert et al. (2017) or Loiselle et al. (2003)), Fishery 

634 Conservation Zones (Delage et Le Pape, 2016 ; Regimbart et al., 2018), or alternatively 

635 identify areas that should be kept for fishing in a context where many other human 

636 activities are competing in space and time with fishing (Campbell et al. 2014; Bastardie et 

637 al. 2015). This would require to integrate our results into bio-economic models in order to 

638 evaluate alternative management regulations and assess their tradeoffs in regards to all 

639 the sets of ecosystem services provided through activities such as fishing, aquaculture, 

640 energy, shipping, recreation and conservation (Nielsen et al. 2018).

641
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660  CODES

661  Toy example codes of the model are available on the github link:

662  https://github.com/balglave/sdm_vms_logbooks
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888 TABLES

889
890 Table 1. Ratio between the negative log-likelihood values (either commercial or 
891 scientific) from the integrated model accounting for preferential sampling and the 
892 integrated model ignoring preferential sampling.

Species Negative log-likelihood ratio

Scientific data Commercial data

Sole 0.97 0.92

Squids 1.00 1.01

Whiting 0.99 1.00

893 Note. The ratio between negative log-likelihoods ( ) is given as: . ―𝑙𝑜𝑔(𝑙𝑘𝑙) 𝑟 =
―𝑙𝑜𝑔 (𝑙𝑘𝑙𝑃𝑆)

―𝑙𝑜𝑔 (𝑙𝑘𝑙𝑛𝑜𝑃𝑆)

894 If , the model accounting for PS better fits the data than the model ignoring PS (no PS).𝑟 < 1
895
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896 FIGURES CAPTION

897 Figure 1.   Spatial distribution of each fleet on the whole period (2010-2018). Unit: fishing 
898 effort in fishing hour. Coordinate system: WGS84.
899
900 Figure 2.   Diagram of the integrated spatio-temporal model.
901
902 Figure 3.   Sole case study. Comparison between the observed scientific CPUE (y-axis) 
903 and the corresponding model predictions (x-axis) on the month of the survey, based on 
904 model integrating data from one commercial fleet only (either OTB_CEP, OTB_DEF, 
905 OTT_DEF) or from all commercial fleets (Integrated model). x-axis: model predictions. y-
906 axis: scientific data observations (CPUE in kg/hour). Black line: linear regression 
907 ‘log(scientific observations) ~ log(model predictions)’. r: Spearman correlation coefficient. 
908 Scientific data are integrated to inference for all models. *** stands for the level of 
909 significance. Each point is a grid cell in which fall a scientific data point. We compare the 
910 scientific observation values to the related prediction values.
911
912 Figure 4.   Sole case study. Comparison between predictions (each point is a combination 
913 ‘grid cell x time step’.) from the integrated model (using all fishing fleets) and the model 
914 integrating only one commercial fleet for the 12 months of year 2018. Left: OTB_CEP 
915 fleet, middle: OTB_DEF fleet, right: OTT_DEF fleet. x-axis: integrated model predictions. 
916 y-axis: single-fleet model predictions.  The prediction values are log-scaled. Red points: 
917 predictions within the sampling area of the related fleets (i.e. the cells sampled by the 
918 fleet). Black points: predictions outside the sampling area of the related fleets. Black line: 
919  axis. Note that the intercept of the x-y line has been scaled to account for differences 𝑥 = 𝑦
920 in the intercept values between models. Scientific data are integrated to inference for all 
921 models.  
922
923
924 Figure 5.   Estimates of PS parameters for each commercial fleet (left) and effect of PS 
925 on model outputs (right). Left: boxplot represent the variability of maximum likelihood 
926 estimates of parameters  across all monthly time steps. Right: log-predictions of the 𝑏
927 integrated model accounting for PS (y-axis) versus log-predictions of the integrated model 
928 ignoring PS (x-axis) for the 12 months of year 2018. Blue points: predictions within the 
929 sampling area of the commercial fleets (i.e. the cells sampled by commercial fleets). Black 
930 point: predictions outside the sampling area of the commercial fleets. Black line:  𝑥 = 𝑦
931 axis.
932
933 Figure 6.  Sole case study. (Top) Temporal evolution of the  parameters for the three 𝑏
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934  commercial  fleets  fitted  to  the  integrated  model.  Blue  vertical  lines:  January.  (Bottom)
935  Monthly  biomass  distribution  averaged  on  the  full  period.  Only  quantile  values  are
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936 represented. Model predictions come from the integrated model accounting for PS. 
937 Coordinate system: WGS84.
938
939 Figure 7.   Left: index of persistence (average over 2010-2018) during the reproduction 
940 period of sole (February), whiting (March-May) and squids (January-April). Reproduction 
941 period defined from ecological expertise. Right: literature information on  reproduction 
942 grounds when available. For sole, the map represents egg concentration from an egg and 
943 larvae survey conducted in 1982 (Arbault et al., 1986). For whiting, the map represents 
944 records of age-2+ whiting (i.e. mature individuals), from two spring trawl surveys that 
945 occurred between 1987 and 1992 (Houise and Forest, 1993). Model predictions come 
946 from the integrated model accounting for PS. Coordinate system: WGS84.
947
948 Figure 8.  Persistence indices within the reproduction period computed on a 5-years 
949 mobile time-span for each 3 species (5-years time span indicated on the top of each map). 
950 Model predictions come from the integrated model accounting for PS. Coordinate system: 
951 WGS84.
952
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