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Abstract

Three-dimensional (3-D) hyperbolic conservation equations for fully compressible, monodisperse, fluid–particle flows
with added mass and fluid-phase pseudoturbulence are proposed. A particle-phase kinetic model is developed that
accounts for collisional and frictional terms, as well as added mass and internal energy. Transport equations for
3-D velocity moments up to second order (or total kinetic energy) are closed using a Maxwellian distribution. The
resulting two-fluid model is well posed for any fluid–particle material density ratio. The numerical methods associated
with the hyperbolic system of equations are designed to fulfill the main features of a compressible two-phase flow
solver: capturing of sharp particle fronts, preserving contact discontinuities, and ensuring stability in all flow regimes.
This is done by employing a combination of an AUSM+up scheme for the particle phase, and a HLLC scheme for
the fluid phase. Stability is obtained by keeping the discrete consistency between spatial fluxes and buoyancy-like
terms implying derivatives. Test cases involving a high-speed fluid interacting with heavy/light particles are used to
demonstrate that the qualitative behavior of the flow dynamics is captured correctly by the model.

Keywords: fluid–particle flow, kinetic theory of granular flow, hyperbolic quadrature method of moments, added
mass, pseudoturbulence

1. Introduction

High-speed flows in the presence of a particle phase occur in numerous natural and industrial problems such
as volcanic ash plumes [43], dust explosions [12], or rocket propulsion [10]. The complexity of such multiphase
flows stems from the interaction between the shock and the particles, which highly depends on the volume fraction
[54]. While dilute mixtures can be approximated with experiments and numerical simulations of isolated particles
subject to a shock, the presence of neighboring particles cannot be neglected when their volume fraction increases
[32]. In denser mixture, a particle is not only subject to the incident shock wave, but also to shock reflections and
expansion waves coming from the other particles and compaction waves transmitted through the granular phase.
When the mixture becomes highly dense, the particles are always in contact and the inter-particle interactions become
dominant. The proper modeling of granular flows requires to handle these three regimes with an appropriate physical
description. Since the pioneering experiments on a gas-shock interaction with particle curtains [44], both numerical
and experimental studies have been conducted to give a better description of the shock-induced dispersal of particles.
More specifically, experimental studies have been dedicated to the definition of a universal scaling of spread rate with
respect to material properties, Mach number, and particle concentration [9, 11, 49]. These works have been followed
up by numerical studies to assess new multiphase flow models [27, 32, 38]. More recently, these studies have been
extended to hypersonic flows [52] and underwater shocks [2].

In this work, we develop hyperbolic conservation equations for collisional particle flow with added mass and
internal energy derived from the kinetic theory of granular flows. For clarity, we consider monodisperse, spherical
particles with arbitrary material density and identical physical properties so that only the particle velocity distribution
function is needed in the kinetic model. In most applications, the fluid will either be a gas interacting with high-density
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Figure 1: Energy flow in fluid–particle, two-fluid model for monodisperse particles. Spatially uncorrelated particle motion is measured by Θp,
while particle-scale, fluid-phase, fluctuating kinetic energy is measured by k f . The internal energies are ep and e f . Inelastic collisions transform
Θp into an increase in ep. Pseudoturbulent dissipation εpt transform k f into an increase in e f . At each scale, the phases are coupled through drag
and heat transfer, and a drag correlation and the Nusselt number are important inputs to the two-fluid model.

solid particles or a liquid interacting with low-density particles (e.g., bubbles). For simplicity, we assume that the
particle material density remains constant, which implies that the particle volume is constant. However, the extension
to allow for the particle material density (and hence the volume) to vary with the fluid pressure is straightforward
provided that the particle Stokes number for such cases is small (i.e., bubbly flow).

In the proposed two-fluid model, the particle-phase equations are coupled with modified Euler equations for the
fluid phase, including pseudoturbulent kinetic energy (PTKE) [46]. Due to the high-speed nature of the flow, viscous
terms are neglected but can easily be included when needed [30]. Details on the derivation of the forces and fluxes in
the monodisperse two-fluid model can be found in prior work [16, 20, 31]. The fluid phase is treated as inviscid with
coupling terms discussed in [20], and the stiffened gas equation of state is used for the fluid pressure. The particle
phase with added mass and internal energy is treated as inelastic and inviscid, and a frictional pressure term is added
to handle dense cases. Particle velocity moments up to second order (total kinetic energy) are included, which is
sufficient for collisional flows [15]. The model then accounts for conservation of mass, momentum and total energy
for both phases.

The diagram in fig. 1 provides a schematic on how kinetic energy is distributed in the fluid–particle flow. The
mean kinetic energy is found from the phasic velocities appearing in the momentum balances. Due to their finite size,
particles have wakes produced by the slip velocity whose characteristic length scale is proportional to the particle
diameter. These wakes interact with individual particles to generate uncorrelated velocity fluctuations measured by
the granular temperature [15]. This kinetic energy is dissipated to yet smaller scales to modify the internal energy of
both phases. In the absence of body forces (e.g., gravity), the total energy of the two phases is a conserved quantity,
and it must be treated as such in the two-fluid model. In a closed system, the total energy at equilibrium will reside in
the internal energies, such that the thermodynamics temperature of both phases are equal.

The remainder of this paper is organized as follows. In section 2, we present the balance equations for the fluid
phase developed in [20]. In section 3, a kinetic model for the particles is developed, leading to a hyperbolic two-fluid
model very similar to the one in [20]. Then, in section 4, we present a robust numerical algorithm for solving the
model equations for arbitrary material-density ratios ranging from bubbly liquids to gas–particle flows. Section 5 is
devoted to 1-D numerical examples using flow conditions taken from the literature. Finally, in section 6, conclusions
are drawn and possible extensions to low-Mach-number and combusting flows are discussed.

2. Fluid-phase governing equations for compressible fluid–particle flows

The principal objective in this section is to review how added mass, internal energy, and PKTE are treated for the
fluid phase based on the hyperbolic two-fluid model from [17, 20].
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2.1. Definitions
The fluid material density is denoted by ρ f , and the solids material density (assumed to be constant) is ρp. The

fluid- and particle-phase velocities are u f and up, respectively. The total energies of the fluid and particle phases are
denoted as E f and Ep, respectively. The total energy is made up of kinetic + internal energies. We denote the former
for each phase as K f and Kp, and the latter as e f and ep. Hence,

E f = K f + e f , Ep = Kp + ep. (1)

The kinetic energy is further divided into mean and fluctuating components (see fig. 1):

K f =
1
2

u2
f + k f , Kp =

1
2

u2
p +

3
2
Θp. (2)

Here, u2 = u ·u, k f is the PTKE, and Θp is the granular temperature. The former represents fluid-velocity fluctuations
due to finite-size particles, and the square root of the latter represents the velocity magnitude of individual particles
relative to up. In the two-fluid model, the total energy of both phases is conserved. For the fluid phase, it is convenient
to solve transport equations for E f and k f , and to find e f from eq. (1). In contrast, for the particle phase, the kinetic
description leads naturally to transport equations for Kp and ep, and then Θp is found from eq. (2). In any case, the
thermodynamic temperatures T f and Tp are found from the internal energies e f and ep, respectively.

2.2. Added-mass continuity equation
In our modeling approach [8, 20], added mass is handled by assigning a fraction of the fluid phase surrounding a

particle to move with the velocity of the particle phase up. In the context of two-fluid models, we define α⋆p = αp +αa

where αa is the volume fraction of the added-mass phase while αp is the particle-phase volume fraction. In the absence
of particles, both αp and αa are null. It then follows that α⋆f = α f − αa where α f is the fluid-phase volume fraction.
The mass balances for pure particle and added-mass phases are, respectively,

∂tρpαp + ∂x · ρpαpup = 0 (3)

and
∂tρ fαa + ∂x · ρ fαaup = S a (4)

where S a is a mass-transfer rate from the fluid phase to the added-mass phase. If we rewrite the added-mass volume
fraction as αa = cmα fαp where 0 < cm < 1 is the added-mass coefficient with equilibrium value c⋆m, then S a can be
modeled using

S a =
1
τa
ρ fα fαp(c⋆m − cm). (5)

The default value of c⋆m for steady, incompressible flow is set to

c⋆m =
1
2

min(1 + 2αp, 2). (6)

The time scale for relaxation towards equilibrium τa is assumed to be proportional to the time scale for single-particle
drag τp.

Physically, the added-mass phase represents the fluid surrounding a particle [8, 20]. Thus, heat and mass transfer
to (from) the particle phase from (to) the fluid phase pass through the added-mass phase. For simplicity, here we will
assume that the internal energy of the particle + added mass (denoted by ep) is uniform in the particle, leading to
a single temperature Tp.1 This assumption is compatible with [27], and is used to define the temperature difference
Tp − T f that drives heat transfer between the two phases. As usual, the volume fractions are non-negative with
αp + α f = 1 and α⋆p + α

⋆
f = 1.

1The effective heat capacity of the particle + added mass can be approximated using the heat capacities of the fluid and solid weighted by αa
and αp, respectively.
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2.3. Continuous fluid-phase mass, momentum, total energy, and PTKE balances

In conservative form, the continuous fluid phase is governed by mass, momentum, total-energy, and PTKE bal-
ances (neglecting gravity for simplicity) [20]:

∂tρ fα
⋆
f + ∂x · ρ fα

⋆
f u f = − S a (7)

∂tρ fα
⋆
f u f + ∂x · (ρ fα

⋆
f u f ⊗ u f + p̂ f I + Pp f p) = D + α⋆p (∂x p̂ f + Fp f ) + ∂x · Pp f p − Sgp (8)

∂tρ fα
⋆
f E f +∂x · (ρ fα

⋆
f u f E f +α

⋆
f u f p̂ f +α

⋆
p up p̂ f +up ·Pp f p) = DE+α

⋆
p up · (∂x p̂ f +Fp f )+up · (∂x ·Pp f p)+Hp f −S E (9)

∂tρ fα
⋆
f k f + ∂x · ρ fα

⋆
f u f k f +

2
3
ρ fα

⋆
f k f∂x · u f = DPT − ρeα

⋆
p

C f

τp
k f (10)

where p̂ f = p f +
2
3ρ f k f is the modified fluid pressure, and D, DPT , and DE represent drag exchange with the particle

phase. The slip velocity is denoted by up f = up − u f . The fluid pressure is found from an equation of state. In this
work, we will use the stiffened-gas law:

p f = (γ f − 1) ρ f

(
E f − K f

)
− γ f p∞, f = (γ f − 1) ρ f e f − γ f p∞, f (11)

where γ f is the heat-capacity ratio. For an ideal gas, the reference pressure p∞, f is set to 0, leading to the well-known
ideal-gas law. In liquids, p∞, f > 0 is used to control the speed of sound. In the total energy balance, Hp f represents
convective heat transfer from the particle phase due to the temperature difference [27].

For monodisperse particles, the drag-exchange terms are defined by

D =
ρeα

⋆
p

τp
up f , DE =

ρeα
⋆
p

τp
[up · up f + 3aΘp − 2(1 − a)k f ], DPT =

ρeα
⋆
p

τp
[u2

p f + 3aΘp − 2(1 − a)k f ] (12)

where ρe is the effective particle density, with ρeα
⋆
p + ρ fα

⋆
f = ρpαp + ρ fα f . The parameter a depends on the material

densities, and is modeled as
a =
ρp + ρ f amin

ρp + ρ f
(13)

where amin = 0.5 determines the steady-state ratio Θp/k f for gas bubbles in a liquid (i.e., ρp/ρ f ≪ 1). Heavy particles
in a gas correspond to a ⪅ 1. Physically, DPT ≥ 0 represents kinetic energy lost from the particle phase to produce
PTKE in the fluid phase, and PTKE dissipates to heat the fluid phase. For shock–particle interactions, the drag time
scale τp is an important parameter, depending on the particle Reynolds number, Mach number, and volume fraction.

The parameter C f in eq. (10) controls the rate of dissipation of PTKE into internal energy in the fluid phase [46].
Here, we will use the correlation from PR-DNS with frozen particles [39]:

C−1
f = αp[1 + 1.25α3

f exp(−αpα
1/2
f Re1/2

p )], (14)

where the particle Reynolds number is

Rep =
ρ f dpup f

µ f
, (15)

and µ f is the fluid-phase viscosity (which depends on T f ). At a steady state with constant up f , we then find

k f

u2
p f

→ C−1
f , Θp →

2(1 − a)
3a

k f . (16)

The correlation in eq. (14) is valid for uniform αp. When k f is transported from a uniform region to a very dilute region
(e.g., behind a particle curtain), C f from eq. (14) can be much too large. Possible alternatives are to replace, in dilute
regions, C f /τp by C∗f k

1/2
f /dp where C∗f is a constant of order one, or to solve a transport equation for pseudoturbulence

frequency ωpt [17, 46].
The final terms on the right-hand sides of eq. (7)–eq. (9) represent exchanges between the continuous fluid phase
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and the added-mass phase [27].2 They are modeled for mass by eq. (5), for momentum by

Sgp = max(S a, 0) u f +min(S a, 0) up (17)

and for the total energy by
S E = max(S a, 0) E f +min(S a, 0) Ep. (18)

In words, if S a is positive, mass, fluid-phase momentum and total energy are transferred from the continuous phase to
the added-mass phase, while for negative S a the transfer is in the opposite direction.

The slip-pressure tensor R and momentum exchange term Fp f arise due to finite-size particles [20], and are the
same as when added mass is neglected. For a monodisperse system, they were derived from kinetic theory [16] as

R =
1
5

u2
p f I +

2
5

up f ⊗ up f

Fp f = R · ∂xρ f −
2
3
ρ f tr(Γ) up f −

4
5
ρ f S · up f

(19)

where the deformation rate tensor is Γ = 1
2

[
∂xu f + (∂xu f )t

]
and S = Γ − 1

3 tr(Γ)I. The term R · ∂xρ f can be important
when strong shocks are present, i.e., where the fluid density changes rapidly. The second term in Fp f modifies the fluid
drag when 0 < |∂x · u f |, while the third term represents lift. The latter was derived considering only mean gradients
of density and velocity in a compressible flow [16], and should be replaced by a lift model accounting for the particle
Reynolds number [27]. In practice, Fp f can have the same order of magnitude as the buoyancy force (∂x p̂ f ). The
latter must be included in moderately dense and dense flows in order to get the correct eigenvalues for the fluid-phase
spatial flux. Note that tr(R) = u2

p f .
The particle–fluid–particle (pfp) pressure tensor described in [20] can be modeled as

Pp f p = Cp f pρ fα
⋆
p R (20)

with Cp f p = c⋆m ensuring hyperbolicity when ρp ≪ ρ f (e.g., bubbly flows). Note that in eq. (8), the Pp f p term can
be moved inside the flux term on the left-hand side. Thus, the slip-pressure tensor only modifies the particle-phase
pressure tensor. We should note that this term has physical relevance for freely moving particles, i.e., below the
close-packed limit. However, above close packing, its contribution will be very small compared to fluid drag. More
generally, tr(Pp f p) is usually very small compared to the fluid pressure p f , and therefore has essentially no effect on
the fluid-phase speed of sound. Nonetheless, it is important for the particle phase, particularly in dilute cases, and in
high-speed flows with a large slip velocity or steep volume-fraction gradient (e.g., a shock hitting a particle curtain).

Recently [53], the pfp stress tensor Σp f p (= −Pp f p) has been computed for fixed particles (Θp = 0) in an incom-
pressible fluid. These authors found that the pfp-pressure tensor has the form

Pp f p = ρ fα
⋆
p

[
B1(αp,Rep) u2

p f I + B2(αp,Rep) up f ⊗ up f

]
(21)

with positive trace, and they provide correlations for B1 and B2 over limited ranges of αp and Rep. For example, they
find that B1 has a weak dependence on αp (i.e., −0.01 lnαp) and B2 is nearly independent of αp. More generally, the
tensor form in eq. (21) is unique for systems without macroscopic gradients [53]. It may therefore be reasonable to use
B1 and B2 in eq. (21) to redefine the coefficients in R (i.e., replacing 1/5 and 2/5, respectively) such that Cp f p in eq. (20)
is defined by enforcing tr(R) = u2

p f . In any case, for one-dimensional (1-D) flows, only tr(Pp f p) = Cp f pρ fα
⋆
p u2

p f is
required in the 1-D model.

In summary, the inclusion of added mass requires an additional continuity equation eq. (4), along with source terms
to model changes in the added-mass volume fraction, momentum and total energy. The total mass of the particle +
added-mass phase can be expressed as

ρeα
⋆
p = ρpαp + ρ fαa, (22)

which defines the effective density ρe. In the next section, we develop a kinetic model for monodisperse particles with

2These terms correspond to the terms involving Ṁ in [27].

5



added mass and internal energy. This model will be used to find balance equations for the particle-phase variables
ρeα

⋆
p , ρeα

⋆
p up, ρeα

⋆
p Kp, and ρeα

⋆
p ep. In addition, the conserved variable ρpαp, governed by eq. (3), is needed to

determine ρ f when the fluid is compressible.

3. Kinetic model for monodisperse particles with added mass

In order to account for the particle pressure due to collisions and friction in a simplified, but accurate, manner,
we use a kinetic model for the particles [37]. At the kinetic level, individual particles with different velocities u
are represented by a distribution function f (t, x,u, e), the moments of which contain information such as the mass,
momentum and kinetic energy of the particle phase.3 The internal energy of a particle e moves with velocity u, and
is accounted for as an internal variable [37].4 Here, we close the moment equations at the level of the particle-phase
kinetic energy, which is sufficient for describing collisional and/or low-Stokes-number flows. However, the kinetic
model can be used to find transport equations for higher-order moments, such as for the anisotropic Gaussian model
[30, 51] or quadrature-based moment methods [19], that are needed for weakly collisional or collision-less flows.

3.1. Kinetic model
The proposed kinetic model for the distribution function has the following form:

∂t f + ∂x ·

(
u f − Pp

∂ f
∂u

)
+
∂

∂u
·

[
Au f −

1
ρe

(∂x p̂ f + Fp f ) f −
1
ρeα

⋆
p

(∂x · Pp f p) f
]
+
∂

∂e
(Ae f ) =

∂2

∂u∂u
: Bu f +C + F + S . (23)

Below, we define separately each of the terms appearing in this kinetic equation. In words, the distribution function f
is proportional to the average number of particles at space–time location (t, x) with phase-space properties (u, e). Thus,
at the particle level, each particle has its own velocity u and internal energy e, but otherwise the particle properties are
identical. In eq. (23), we treat Pp f p and Fp f as independent of u; however, this is not a requirement for deriving the
two-fluid model.

In what follows, the dependence of functions on (t, x) is dropped, and the following notation is used:

⟨φ⟩ =

∫
φ(u, e) f (u, e) du de (24)

for any function φ. To account for the added mass, the distribution function is scaled such that the conserved particle-
phase variables (i.e., mass, momentum, internal energy, kinetic energy) are defined, respectively, by

⟨1⟩ = ρeα
⋆
p , ⟨u⟩ = ρeα

⋆
p up, ⟨

1
2

u2⟩ = ρeα
⋆
p Kp, ⟨e⟩ = ρeα

⋆
p ep. (25)

Strictly speaking, this scaling requires that ρp + ρ f cmα f be the same for all particles (e.g., cm = 0) so that the particle
mass + added mass is constant. Otherwise, one must account for a distribution of particle masses as must be done
for polydisperse particles [31, 37]. In practice, we can ignore this detail as long as the resulting balance equations
conserve mass, momentum and energy.

3.1.1. Transfer terms
In eq. (23), for the fluid-drag term, the acceleration vector Au has the form

Au =
u f − u
τp

(26)

3In this context, “phase balance” means a balance over the ensemble of all particles. Thus, information concerning individual particles is lost,
but classical conservation of mass, momentum and energy still hold.

4When needed, the chemical composition of the particles is handled in the same manner as internal energy.
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where τp is the drag time scale that depends on αp and up f :

τp =
4ρed2

p

3µ f CDRep
. (27)

Here, dp is the particle diameter and CD is a drag coefficient that depends on the particle Reynolds number5 and other
dimensionless parameters such as the Mach number and volume fraction. For Stokes flow, which is valid for very
small particles and α f = 1, CDRep = 24.

The term in eq. (23) involving Ae accounts for exchange of particle-phase internal energy ep with the fluid phase
due to the temperature difference. Denoting the particle temperature by T , which is in a one-to-one relation with e,
we can define this term by

Ae =
6λ f Nu
ρed2

p
(T f − T ) =⇒ Hp f = −⟨Ae⟩ =

6α⋆pλ f Nu

d2
p

(Tp − T f ) (28)

where the phase temperatures are found from their internal energies. Hereinafter, for simplicity, we will take the heat
capacities as constant such that

T f =
γ f e f

Cp, f
, T =

e
CV,p
, Tp =

ep

CV,p
. (29)

This assumption will be valid as long as the temperatures do not vary too much. The Gunn correlation [25] for the
Nusselt number (Nu) is given in [27] and table 2, and λ f is the fluid-phase thermal conductivity.

The velocity diffusion term on the right-hand side of eq. (23) with coefficient matrix

Bu =
1 − a
τp

(
(u − up) ⊗ (u − up) +

2
3

k f I
)

=⇒ ⟨tr(Bu)⟩ = ρeα
⋆
p

1 − a
τp

(
3Θp + 2k f

)
(30)

is due to fluid-phase PTKE accelerating the particles relative to their mean velocity with drag timescale τp. In ⟨tr(Bu)⟩,
the total fluctuating energy in both phases is 3Θp + 2k f , so that the parameter a controls the amount transferred to the
particles. If PTKE anisotropy were accounted for in the model [17], 2k f /3 would be replaced by the PTKE Reynolds
stress tensor. For gas–particle flows, a is nearly unity and hence Bu is very small, or even negligible.

3.1.2. Added-mass terms
For clarity, here we will assume that particle-mass fluctuations due to added-mass exchange are small enough to

be neglected. Thus, eq. (23) has the same form as without added mass, but with the exchange term S (u, e) on the
right-hand side. To be consistent with the fluid-phase balances, we require that this exchange term have the following
integral properties:∫

S (u, e) du de = S a,

∫
e S (u, e) du de = S e,

∫
uS (u, e) du de = Sgp,

∫
1
2

u2S (u, e) du de = S K (31)

where the kinetic-energy source term is

S K = max(S a, 0) K f +min(S a, 0) Kp, (32)

the internal-energy source term is
S e = max(S a, 0) e f +min(S a, 0) ep, (33)

and the other source terms on the right-hand sides are given in section 2.2. These properties ensure conservation of
mass, internal energy, momentum, and kinetic energy for the sum of the two phases. Note that S E = S K + S e as
expected.

5In the usual definition of Rep, the slip velocity vp f is defined in the absence of added mass. As shown in [20], the slip velocities are related by
α f vp f = α

⋆
f up f . The slip velocity with added mass is larger because part of the fluid moves with the particle velocity up. However, drag models

in the literature are based on vp f , so that τp in eq. (27) can be multiplied by α f /α
⋆
f to recover the correct drag force.
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A simple model for S (u, e) that satisfies these constraints is

S (u, e) = Cξ f +Cu
∂

∂e
(e − e f ) f +Cu

∂

∂u
· (u − u f ) f +

1
2

Cu
∂2

∂u∂u
: Du f (34)

with parameters

Cξ =
S a

ρeα
⋆
p
, Cu =

1
2

(Cξ + |Cξ |), (35)

and velocity diffusion matrix

Du = (u − u f ) ⊗ (u − u f ) +
2
3

k f I. (36)

The final term in eq. (36) represents an isotropic model for the PTKE Reynolds stress tensor. Thus, if the PTKE model
is extended to include the full stress tensor, it should be used in place of the isotropic model.

Note that Cu = 0 when S a ≤ 0 (i.e., when added mass is transferred to the gas phase), otherwise Cu = Cξ. The
first term on the right-hand side of eq. (34) represents the change in added mass, the second is transfer of internal
energy, the third is acceleration due to change in added mass, and the fourth is change in kinetic energy due to change
in added mass; all of which occur with constant solid particle mass, i.e., only the added mass of fluid changes.

3.1.3. Pressure terms
The particle-phase pressure Pp = Pc + P f depends on the velocity moments up to second order [16], and is the

sum of a collisional component:

Pc = 2(1 + ec)αpg0Θp, g0 =
1 + α f

2α3
f

(37)

where ec is the coefficient of restitution; and a frictional component, modeled here as

P f =
p fαpg0

ρeα
⋆
p

1
2

[
1 + tanh

(
αp − αmax

∆ f

)]
(38)

where αmax = 0.63 is the closed-packed limit and ∆ f = 0.01 is chosen to have a sharp transition at αmax. The parameter
p f fixes the speed of sound in the particle phase above the closed-packed limit. The functional form of eq. (38) causes
P f to rapidly increase from zero near αp = αmax. In general, the functional form for P f must ensure that the frictional
pressure increases monotonely with volume fraction, i.e., dρeα

⋆
p P f /dαp > 0. For αp < αmax, the particle-phase speed

of sound scales with
√

3Θp. Finally, note that added mass plays no role in ρeα
⋆
p P f because the particles are in contact.

Other forms for Pc that account for velocity correlations between colliding particles are also available [29]. Here, for
clarity, when the particle pressure depends on both αp and Θp, we refer to it as collisional; otherwise, when it depends
only on αp, we refer to it as frictional.

3.1.4. Collisional source term
The microscale (particle-level) model for binary collisions has the following properties. Let (u, e)1, (u, e)2 be the

particle velocities and internal energies before a collision, and (u′, e′)1, (u′, e′)2 be the values after collision. Then, for
monodisperse particles with equal (and constant) masses, we have the following four identities:

u′1 + u′2 = u1 + u2

u′21 + u′22 = e2
c(u2

1 + u2
2)

u′21 + u′22 + e′1 + e′2 = u2
1 + u2

2 + e1 + e2

e′1 − e′2 = e1 − e2

(39)

corresponding, respectively, to conservation of momentum, kinetic energy, total energy, and equal distribution of
change in internal energy. The first three come from Newton’s laws of motion, while the fourth comes from the
assumption that the change in internal energy for each particle is the same, regardless of its velocity or internal energy.
It is straightforward to show that e′1 − e1 =

1
2 (1 − e2

c)(u2
1 + u2

2), i.e., the increase in internal energy is proportional to

8



the kinetic energy of the particles before collision. Because collisions are Galilean invariant, a frame of reference
with zero mean velocity can be chosen such that u1 and u2 correspond to fluctuating velocities. Hence, the change in
internal energy of the particle phase ep is proportional to Θp.

The collisional source term C on the right-hand side of eq. (23) is modeled using the inelastic BGK closure [4, 42],
extended to include internal energy. Using eq. (39), the particle-phase kinetic-energy balance requires ⟨u2C⟩ ≤ 0, and
the equality holds for elastic collisions (ec = 1). In general, the inelastic BGK model can be written as

C(u, e) =
ρeα

⋆
p fG(u, e) − f (u, e)

τc
(40)

where fG is a Gaussian distribution with the same mean velocity as f (i.e., ⟨u fG⟩ = up) and τc is the collision time
that depends on αp and Θp:

τc =
dp
√
π

12αpg0Θ
1/2
p

. (41)

For inelastic collisions (ec < 1), the covariance matrix of fG depends on ω = (1+ ec)/2 [37], as well as its mean value
in e, which is ⟨e fG⟩ = ep + (1 − e2

c)Θp. This leads to the collisional contribution to the particle-phase heating term:

⟨eC⟩ = − ∂tρeα
⋆
p Kp

∣∣∣
c
= ρeα

⋆
p

(1 − e2
c)

τc
Θp. (42)

Although they are not needed in this work, the identities in eq. (39) also fix ⟨e2C⟩ and ⟨euC⟩, and hence the corre-
sponding terms in the covariance matrix of fG.

3.1.5. Frictional source term and other force terms
The frictional source term F is applicable to dense flows with sustained contacts. Physically, the sole purpose of

F is to drive the granular temperature Θp to a negligible value when αp > αmax, thereby producing particle-phase
internal energy ep such that the total energy Ep is conserved. The frictional model used in this work is

F(u, e) =
ρeα

⋆
pδ(u − up)δ(e − ep − Θp) − f (u, e)

τ f
(43)

where τ f is a time scale that depends on τc and ∂x · up:

τ f =
2c f

max(|∂x · up|, 1/τc)

[
1 + tanh

(
αp − αmax

∆ f

)]−1

. (44)

Here, c f = 0.01 controls the frictional time scale above close packing. The τc dependence makes τ f very small when
αp > αmax. The |∂x · up| dependence attempts to capture the effect of relative particle motion under such conditions
(i.e., in the absence of deformation there is no friction). The frictional contribution to the particle-phase heating term
is

⟨eF⟩ = − ∂tρeα
⋆
p Kp

∣∣∣
f
= ρeα

⋆
p

1
τ f
Θp. (45)

In any case, the primary purpose of the frictional model is to drive Θp quickly to zero above close packing.
The Archimedes force (∂x p̂ f ) depends on the fluid-pressure gradient, and Fp f and Pp f p are defined as in eq. (19)

and eq. (20). Compared to the full kinetic-theory expression for hard-sphere collisions, the main simplification in
eq. (23) is the treatment of collisional pressure. In the full model for hard spheres, the collisional pressure depends on
a complicated integral with respect to the two-particle velocity distribution function [16].
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3.2. Moment equations

3.2.1. Internal-energy moments
Only two moments involving internal energy are needed for closure: ep and the flux

⟨eu⟩ =
∫

eu f (u, e) du de. (46)

Consistent with [27], we use the closure ⟨eu⟩ = ρeα
⋆
p epup. In fact, coherently with the use of only zero- and first-order

moments in e, we assume that f (u, e) = f (u)δ(e−ep); however, including a term for conduction in low-speed granular
flows is also possible [3, 29]. The kinetic model in eq. (23) yields the balance equation for particle-phase internal
energy:

∂tρeα
⋆
p ep + ∂x · ρeα

⋆
p epup = −Hp f + ⟨eC⟩ + ⟨eF⟩ + S e. (47)

The collisional and frictional terms, ⟨eC⟩ and ⟨eF⟩, are strictly non-negative [27]. The particle-phase heating rate is
given by

Hp = ⟨eC⟩ + ⟨eF⟩ = ρeα
⋆
p

[
1
τc

(1 − e2
c) +

1
τ f

]
Θp (48)

where the collision time τc is defined in eq. (41) and the frictional time scale τ f is defined in eq. (44).

3.2.2. Velocity moments
The velocity moment of integer order l = i + j + k is defined by6

Ml
i, j,k =

∫
uiv jwk f (u, e) du de =

∫
uiv jwk f (u) du = ⟨uiv jwk⟩ (49)

where the vector u = (u, v,w)t corresponds to the velocity components in directions x = (x, y, z)t. The lower-order
moments have a physical interpretation. For example,

M0 = ρeα
⋆
p (50)

is the mass of the particle + added-mass phase, and the vector

M1 = (M1,0,0,M0,1,0,M0,0,1)t = ρeα
⋆
p up (51)

with mean velocity up = (up, vp,wp)t is its momentum. The non-negative, symmetric, second-order tensor M2 is the
total-energy tensor:

M2 =

M2,0,0 M1,1,0 M1,0,1
M1,1,0 M0,2,0 M0,1,1
M1,0,1 M0,1,1 M0,0,2

 , (52)

and can be decomposed as M2 = ρeα
⋆
p (up ⊗ up + σ) where σ is the non-negative velocity covariance matrix. A full

second-order moment closure will solve ten transport equations for the independent moments in eq. (50)–eq. (52)
[51]. In this work, we use a reduced second-order moment closure where σ is replaced by 1

3 tr(σ)I = ΘpI, which
corresponds to a Maxwellian distribution. The particle-phase kinetic energy will then be a scalar:

M2 = tr(M2) = M2,0,0 + M0,2,0 + M0,0,2 = ρeα
⋆
p (u2

p + 3Θp) =⇒ M2 = 2ρeα
⋆
p Kp. (53)

6The velocity moments can also be defined using a vector/tensor notation. For example, the vector of first-order moments is M1 = ⟨u⟩, and the
second-order tensor is M2 = ⟨u ⊗ u⟩. Higher-order moments are defined similarly using direct products of u. Such notation is particularly useful
when working with non-Cartesian coordinates, and when decomposing the velocity into its mean and fluctuating components.
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This level of closure corresponds to the Euler equation for the particle phase, and corresponds for example to the case
where f (u) is Maxwellian. The central moments, defined by

Cl
i, j,k =

1
M0

∫
(u − up)i(v − vp) j(w − wp)k f (u) du, (54)

are thus null when l is odd. This fact will be needed to close the spatial flux of M2, which depends on third-order
moments.

3.3. Transport equation for velocity moments
The kinetic model in eq. (23) yields a transport equation for the particle-phase velocity moments. In Cartesian

coordinates, we find for i, j, k ≥ 0 and l = i + j + k:7

∂t Ml
i, j,k + ∂x(Ml+1

i+1, j,k + iPpMl−1
i−1, j,k) + ∂y(Ml+1

i, j+1,k + jPpMl−1
i, j−1,k) + ∂z(Ml+1

i, j,k+1 + kPpMl−1
i, j,k−1) =

i⟨ui−1v jwkAu,x⟩ + j⟨uiv j−1wkAu,y⟩ + k⟨uiv jwk−1Au,z⟩

+ i(i − 1)⟨ui−2v jwkBu,xx⟩ + j( j − 1)⟨uiv j−2wkBu,yy⟩ + k(k − 1)⟨uiv jwk−2Bu,zz⟩

+ 2i j⟨ui−1v j−1wkBu,xy⟩ + 2ik⟨uiv jwk−1Bu,xz⟩ + 2 jk⟨uiv j−1wk−1Bu,zz⟩

−
i
ρe

(∂x p̂ f + Fp f ,x)Ml−1
i−1, j,k −

j
ρe

(∂y p̂ f + Fp f ,y)Ml−1
i, j−1,k −

k
ρe

(∂z p̂ f + Fp f ,z)Ml−1
i, j,k−1

− i
Ml−1

i−1, j,k

ρeα
⋆
p

(∂x · Pp f p)x − j
Ml−1

i, j−1,k

ρeα
⋆
p

(∂x · Pp f p)y − k
Ml−1

i, j,k−1

ρeα
⋆
p

(∂x · Pp f p)z +Ci, j,k + Fi, j,k + S i, j,k. (55)

Here, Ci, j,k, Fi, j,k, and S i, j,k are closed given the three moments M0, M1 and M2. Due to conservation of mass and
momentum, C0,0,0 = C1,0,0 = C0,1,0 = C0,0,1 = 0 and F0,0,0 = F1,0,0 = F0,1,0 = F0,0,1 = 0.

3.3.1. Source terms for velocity moments
The fluid-drag source terms are

⟨ui−1v jwkAu,x⟩ =
1
τp

(
u f Ml−1

i−1, j,k − Ml
i, j,k

)
⟨uiv j−1wkAu,y⟩ =

1
τp

(
v f Ml−1

i, j−1,k − Ml
i, j,k

)
⟨uiv jwk−1Au,z⟩ =

1
τp

(
w f Ml−1

i, j,k−1 − Ml
i, j,k

)
⟨ui−2v jwkBu,xx⟩ =

1 − a
τp

[
Ml

i, j,k − 2upMl−1
i−1, j,k +

(
u2

p +
2
3

k f

)
Ml−2

i−2, j,k

]
⟨uiv j−2wkBu,yy⟩ =

1 − a
τp

[
Ml

i, j,k − 2vpMl−1
i, j−1,k +

(
v2

p +
2
3

k f

)
Ml−2

i, j−2,k

]
⟨uiv jwk−2Bu,zz⟩ =

1 − a
τp

[
Ml

i, j,k − 2wpMl−1
i, j,k−1 +

(
w2

p +
2
3

k f

)
Ml−2

i, j,k−2

]
⟨ui−1v j−1wkBu,xy⟩ =

1 − a
τp

(
Ml

i, j,k − upMl−1
i−1, j,k − vpMl−1

i, j−1,k + upvpMl−2
i−1, j−1,k

)
⟨ui−1v jwk−1Bu,xz⟩ =

1 − a
τp

(
Ml

i, j,k − upMl−1
i−1, j,k − wpMl−1

i, j,k−1 + upwpMl−2
i−1, j,k−1

)
⟨uiv j−1wk−1Bu,yz⟩ =

1 − a
τp

(
Ml

i, j,k − vpMl−1
i, j−1,k − wpMl−1

i, j,k−1 + vpwpMl−2
i, j−1,k−1

)

(56)

7Moments with negative subscripts i, j, k are null.
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with fluid velocity components (u f , v f ,w f ). The inelastic BGK model for collisions introduced in section 3.1.4 yields

Ci, j,k =
1
τc

(
ρeα

⋆
pGi, j,k − Ml

i, j,k

)
(57)

where Gi, j,k is the moment from fG. Similarly, the frictional model yields

Fi, j,k =
1
τ f

(
ρeα

⋆
p ui

pv j
pwk

p − Ml
i, j,k

)
. (58)

Finally, the added-mass source term with the coefficients Cξ and Cu given by (35) is

S i, j,k = CξMl
i, j,k +Cui

(
u f Ml−1

i−1, j,k − Ml
i, j,k

)
+Cu j

(
v f Ml−1

i, j−1,k − Ml
i, j,k

)
+Cuk

(
w f Ml−1

i, j,k−1 − Ml
i, j,k

)
+

1
2

Cui(i − 1)
[
Ml

i, j,k − 2u f Ml−1
i−1, j,k +

(
u2

f +
2
3

k f

)
Ml−2

i−2, j,k

]
+Cui j

[
Ml

i, j,k − u f Ml−1
i, j−1,k − v f Ml−1

i−1, j,k + u f v f Ml−2
i−1, j−1,k

]
+

1
2

Cu j( j − 1)
[
Ml

i, j,k − 2v f Ml−1
i, j−1,k +

(
v2

f +
2
3

k f

)
Ml−2

i, j−2,k

]
+Cuik

[
Ml

i, j,k − u f Ml−1
i, j,k−1 − w f Ml−1

i−1, j,k + u f w f Ml−2
i−1, j,k−1

]
+

1
2

Cuk(k−1)
[
Ml

i, j,k − 2w f Ml−1
i, j,k−1 +

(
w2

f +
2
3

k f

)
Ml−2

i, j,k−2

]
+Cu jk

[
Ml

i, j,k − v f Ml−1
i, j,k−1 − w f Ml−1

i, j−1,k + v f w f Ml−2
i, j−1,k−1

]
.

(59)

For the two-fluid model using in this work, we will need source terms for seven moments up to second order, i.e., for
(i, j, k) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2)}.

3.3.2. Free-transport flux of velocity moments
The only unclosed term in eq. (55) is the free-transport spatial flux M3, which is closed using HyQMOM [18, 19].

In the absence of Pp (i.e., very dilute flow), HyQMOM ensures that the system of moment equations is hyperbolic. In
general, if we keep moments up to M2, HyQMOM requires that the central moments C3 = 0, which corresponds to
the anisotropic Gaussian closure [51]. In particular,

M3
3,0,0 = M0(3upC2

2,0,0 + u3
p) = ρeα

⋆
p (3Θp + u2

p)up

M3
2,1,0 = M0(vpC2

2,0,0 + 2upC2
1,1,0 + u2

pvp) = ρeα
⋆
p (Θp + u2

p)vp

M3
2,0,1 = M0(wpC2

2,0,0 + 2upC2
1,0,1 + u2

pwp) = ρeα
⋆
p (Θp + u2

p)wp

M3
1,1,1 = M0(upC2

0,1,1 + vpC2
1,0,1 + wpC2

1,1,0 + upvpwp) = ρeα
⋆
p upvpwp

(60)

and the other third-order moments are found by permuting the indices. In these closures, the second-order central
moments are treated as isotropic:

C2
i, j,k = Θp(δi,2 + δ j,2 + δk,2) =⇒ C2 = ΘpI. (61)

The components of the spatial flux for M2 are then

F2
x = M3

3,0,0 + M3
1,2,0 + M3

1,0,2 = ρeα
⋆
p (5Θp + u2

p + v2
p + w2

p)up

F2
y = M3

2,1,0 + M3
0,3,0 + M3

0,1,2 = ρeα
⋆
p (5Θp + u2

p + v2
p + w2

p)vp

F2
z = M3

2,0,1 + M3
0,2,1 + M3

0,0,3 = ρeα
⋆
p (5Θp + u2

p + v2
p + w2

p)wp

(62)

i.e., the flux vector is F2 = 2ρeα
⋆
p (Kp + Θp)up = M2up + 2ρeα

⋆
pΘpup. Using, for example, extended kinetic theory

[3], the momentum flux could be extended to viscous granular flows by adding the appropriate closures. For the
high-speed flows considered in this work, such terms are very small compared to the granular pressure terms.
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3.3.3. Velocity moment equations in two-fluid model
In this work, we consider velocity moments up to second order. Thus, we must solve five transport equations, four

equations for mass and momentum,

∂t M0
0,0,0 + ∂xM1

1,0,0 + ∂yM1
0,1,0 + ∂zM1

0,0,1 = S a (63)

∂t M1
1,0,0 + ∂x(M2

2,0,0 + PpM0
0,0,0) + ∂yM2

1,1,0 + ∂zM2
1,0,1 = ⟨Au,x⟩ − α

⋆
p (∂x p̂ f + Fp f ,x) − (∂x · Pp f p)x + (Sgp)x

∂t M1
0,1,0 + ∂xM2

1,1,0 + ∂y(M2
0,2,0 + PpM0

0,0,0) + ∂zM2
0,1,1 = ⟨Au,y⟩ − α

⋆
p (∂y p̂ f + Fp f ,y) − (∂x · Pp f p)y + (Sgp)y

∂t M1
0,0,1 + ∂xM2

1,0,1 + ∂yM2
0,1,1 + ∂z(M2

0,0,2 + PpM0
0,0,0) = ⟨Au,z⟩ − α

⋆
p (∂z p̂ f + Fp f ,z) − (∂x · Pp f p)z + (Sgp)z

(64)

and the sum of the three equations for M2,0,0, M0,2,0 and M0,0,2 (using tensor notation):

∂t M2 + ∂x · (M2 + 2ρeα
⋆
pΘp + 2ρeα

⋆
p Pp)up = −2DE − 2α⋆p up · (∂x p̂ f + Fp f ) − 2up · (∂x · Pp f p) − 2Hp + 2S K . (65)

The free-transport pressure tensor in eq. (64) is
M2

2,0,0 M2
1,1,0 M2

1,0,1
M2

1,1,0 M2
0,2,0 M2

0,1,1
M2

1,0,1 M2
0,1,1 M2

0,0,2

 = M0
0,0,0(up ⊗ up + ΘpI), (66)

whose trace is M2 = M2,0,0 + M0,2,0 + M0,0,2 = 2M0
0,0,0Kp. In eq. (65), Hp is particle-phase kinetic-to-internal-energy

transfer due to inelastic collisions and friction. In the fluid-phase total energy balance, the fluid-drag contribution is

DE =
1
τp

[M2 − ρeα
⋆
p u f · up − (1 − a)(⟨Bu,xx⟩ + ⟨Bu,yy⟩ + ⟨Bu,zz⟩)] =

ρeα
⋆
p

τp
[3aΘp − 2(1 − a)k f + up f · up]. (67)

Thus, DE represents kinetic-energy transfer to the fluid from particles (DE > 0) or vice versa (DE < 0).

3.4. Final form of the nine-equation, two-fluid model

The mass balance in eq. (63) can be rewritten in a more familiar form using tensor notation:

∂tρeα
⋆
p + ∂x · ρeα

⋆
p up = S a. (68)

Likewise, the momentum balance in eq. (64) can be rewritten as

∂tρeα
⋆
p up + ∂x · ρeα

⋆
p (up ⊗ up + ΘpI + PpI) = −

ρeα
⋆
p

τp
up f − α

⋆
p (∂x p̂ f + Fp f ) − ∂x · Pp f p + Sgp. (69)

Conservation of momentum requires that the drag contribution in the fluid phase be defined by

D =
ρeα

⋆
p

τp
up f (70)

in eq. (8). The kinetic-energy balance in eq. (65) can be rewritten as

∂tρeα
⋆
p Kp + ∂x · [ρeα

⋆
p (Kp + Θp + Pp)up] = −DE − α

⋆
p up · (∂x p̂ f + Fp f ) − up · (∂x · Pp f p) + S K − Hp. (71)

The balance for the total energy Ep can be found by summing eq. (47) and eq. (71). Comparing the total-energy
balance with eq. (9) (see table 1), it can be easily shown that the total energy of the two phases is conserved.

To conclude the definition of the two-fluid model, note that given αp and the two conserved variables for the phase
masses, αa is found from

αa =
κ

1 + κ
α f for κ =

ρeα
⋆
p − ρpαp

ρ fα
⋆
f

=
αa

α⋆f
(72)
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Table 1: Nine-equation, two-fluid model for monodisperse fluid–particle flow with added mass, internal energy, and PTKE. Gravity g is included
in the model for completeness. The Pp f p term is written here as a force in the momentum balances, but could also be written as a particle-phase
pressure flux. In either case, Pp f p does not act as a source term for Θp.
Mass balances:

∂tρ fα
⋆
f + ∂x · ρ fα

⋆
f u f = −S a

∂tρeα
⋆
p + ∂x · ρeα

⋆
p up = S a

∂tρpαp + ∂x · ρpαpup = 0

Momentum balances:

∂tρ fα
⋆
f u f + ∂x · (ρ fα

⋆
f u f ⊗ u f + p̂ f I + Pp f p) =

ρeα
⋆
p

τp
up f + α

⋆
p (∂x p̂ f + Fp f ) + ∂x · Pp f p − S f p + ρ fα

⋆
f g

∂tρeα
⋆
p up + ∂x · ρeα

⋆
p (up ⊗ up + ΘpI + PpI) = −

ρeα
⋆
p

τp
up f − α

⋆
p (∂x p̂ f + Fp f ) − ∂x · Pp f p + S f p + ρeα

⋆
p g

Fluid-phase energy balances (total + PTKE):

∂tρ fα
⋆
f E f + ∂x · (ρ fα

⋆
f u f E f + α

⋆
f u f p̂ f + α

⋆
p up p̂ f + up · Pp f p) =

ρeα
⋆
p

τp
[3aΘp − 2(1 − a)k f + up f · up] + α⋆p up · (∂x p̂ f + Fp f ) + up · (∂x · Pp f p) + Hp f − S E + ρ fα

⋆
f u f · g

∂tρ fα
⋆
f k f + ∂x · ρ fα

⋆
f u f k f = −

2
3
ρ fα

⋆
f k f∂x · u f +

ρeα
⋆
p

τp
[3aΘp − 2(1 − a)k f + u2

p f −C f k f ]

Particle-phase energy balances (kinetic + internal):

∂tρeα
⋆
p Kp + ∂x · ρeα

⋆
p (Kp + Θp + Pp)up =

−
ρeα

⋆
p

τp
[3aΘp − 2(1 − a)k f + up f · up] − α⋆p up · (∂x p̂ f + Fp f ) − up · (∂x · Pp f p) + S K − Hp + ρeα

⋆
p up · g

∂tρeα
⋆
p ep + ∂x · ρeα

⋆
p epup = −Hp f + S e + Hp

with α f = 1 − αp, and then α⋆p = αp + αa and α⋆f = α f − αa. Thus, for constant ρp, the primitive variables (αp, ρe,
ρ f , up, u f , Kp, ep, E f , k f ) are uniquely defined from the conserved variables (ρpαp, ρeα

⋆
p , ρ fα

⋆
f , ρeα

⋆
p up, ρ fα

⋆
f u f ,

ρeα
⋆
p Kp, ρeα

⋆
p ep, ρ fα

⋆
f E f , ρ fα

⋆
f k f ). The nine-equation, two-fluid model for fluid–particle flow with added mass,

internal energy, and PTKE is summarized in table 1 with parameters defined in table 2. Example values for the model
constants in gas–particle flows are given in table 3. However, for specific fluid and solid phases, the thermodynamic
properties must be specified for each application. For example, it may be necessary to account for the temperature
dependence of the heat capacities when defining the internal energies, and the fluid-phase viscosity. For the shock–
particle cases, the definition of the drag coefficient CD may need to a depend on the Mach number [5].

4. Numerical implementation

In this work, the coupled fluid–particle moment equations are implemented in a 1-D hyperbolic equation solver.
Given that the overall system of equations is hyperbolic, the extension to three dimensions on a structured Cartesian
grid would use the same approach with directional splitting [27]. To increase robustness and stability, we employ
operator splitting for the spatial fluxes and source terms.
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Table 2: Parameters appearing in two-fluid model for monodisperse fluid–particle flow in table 1. In the definition of R, the parameters must satisfy
3B1 + B2 > 0 so that tr(R) = u2

p f and Cp f p > 0. The correlations for B1 and B2 come from [53], and are valid for a limited range of Rep and
αp > 0.01. For smaller αp, B1 can be taken as constant. The thermodynamic temperatures T f and Tp are found from the internal energies of their
respective phases. λ f is the fluid-phase thermal conductivity.

κ =
ρeα

⋆
p − ρpαp

ρ fα
⋆
f

α f = 1 − αp αa =
κ

1 + κ
α f α⋆p = αp + αa α⋆f = α f − αa up f = up − u f

R =
B1u2

p f I + B2up f ⊗ up f

3B1 + B2
Pp f p = Cp f pρ fα

⋆
p R Fp f = R · ∂xρ f − (γ f − 1)ρ f (∂x · u f )up f +Cl ρ f up f × (∂x × u f )

S a =
ρ f

τa
(c⋆mα fαp − αa) S f p = max(S a, 0) u f +min(S a, 0) up S E = max(S a, 0) E f +min(S a, 0) Ep

S K = max(S a, 0) K f +min(S a, 0) Kp S e = max(S a, 0) e f +min(S a, 0) ep Hp f =
6α⋆pλ f Nu

d2
p

(Tp − T f )

Rep =
dpup f

ν f
Pr f =

ρ f Cp, f ν f

λ f
Nu = (7 − 10α f + 5α2

f )(1 + 0.7Re0.2
p Pr1/3

f ) + (1.33 − 2.4α f + 1.2α2
f )Re0.7

p Pr1/3
f

c⋆m =
1
2

min(1 + 2αp, 2) τa = Caτp τp =
4ρed2

p

3µ f CDRep
CD =

24
Rep

(
1 + 0.15Re0.687

p

)
α−2.65

f

τc =
dp
√
π

12αpg0Θ
1/2
p

τ f =
2c f

max(|∂x · up|, 1/τc)

[
1 + tanh

(
αp − αmax

∆ f

)]−1

g0 =
1 + α f

2α3
f

p f = (γ f − 1) ρ f e f − γ f p∞, f e f = E f −
1
2

u2
f − k f Θp =

2
3

Kp −
1
3

u2
p Hp = ρeα

⋆
p

[
1
τc

(1 − e2
c) +

1
τ f

]
Θp

p̂ f = p f +
2
3
ρ f k f Pp = Pc + P f Pc = 2(1 + ec)αpg0Θp P f =

p fαpg0

2ρeα
⋆
p

[
1 + tanh

(
αp − αmax

∆ f

)]
T f =

γ f e f

Cp, f
Tp =

ep

CV,p
C−1

f = αp[1 + 1.25α3
f exp(−αpα

1/2
f Re1/2

p )] a =
ρp + ρ f amin

ρp + ρ f
Cp f p = c⋆m

Table 3: Example model constants for gas–particle flows.

B1 = max(1.0915 − 0.95Re0.02
p + 0.01 lnαp,−B2) B2 = −max(0.4046Re−0.3

p − 0.042, 0)

ec = 0.9 amin = 0.5 Cl = 0.5 Ca = 1 c f = 0.01 αmax = 0.63 ∆ f = 0.01 p f = 533, 333 kg/m/s2

ν f = 1.36 × 10−5 m2/s γ f = 1.4 λ f = 0.03 kg m/s3/K Cp, f = 1300 m2/s2/K CV,p = 900 m2/s2/K
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4.1. Overall solution algorithm

Fluid and added-mass phases. The following terms have been implemented for the fluid phase when solving the 1-D
versions of eq. (7)–eq. (10):

1. The pfp pressure Pp f p in the spatial flux.
2. The buoyancy, unsteady drag Fp f , and pfp pressure coupled to the particle phase.
3. The drag terms, including PTKE, coupled to the particle phase.
4. The convective heat-transfer term coupled to the particle phase.
5. The added-mass source terms coupled to the particle phase.

Particle phase. The following items have been implemented for the particle phase when solving the 1-D versions of
eq. (68)–eq. (71):

1. HyQMOM to compute the free-transport closures with realizability checking.
2. The collisional and frictional particle pressures.
3. The buoyancy, unsteady drag, and pfp pressure coupled to the fluid phase (see section 4.2.4).
4. The collision source terms, including internal energy.
5. The friction source terms, including internal energy.
6. The drag terms, including PTKE, coupled to the fluid phase.
7. The convective heat-transfer term.
8. The added-mass source terms (see section 4.4).

A operator-splitting approach is employed to solve the coupled moment equations (i.e., for fluid and particles)
separately for each item listed above. The splitting errors are reduced by using a Strang operator splitting as in [27]
such that

Yn H
∆t
2

−−−→ Yn+ 1
4
S∆t

−−→ Yn+ 3
4
H
∆t
2

−−−→ Yn+1 (73)

with Yn the vector of conserved variables at time tn, Yn+1 the vector of conserved variables at time tn+1, H
∆t
2 the

hyperbolic step for half a time step and S∆t the integration of all source terms for a time step.
In the first step, the hyperbolic part of the system is solved including spatial fluxes and buoyancy-like terms. The

spatial fluxes are approximated by an AUSM+up scheme [34] for the particle phase and a HLLC scheme [50] for the
fluid phase in the same fashion as in [27]. The eigenvalues for the spatial flux are found numerically using a subroutine
for the Jacobian matrix that was generated symbolically. The first four eigenvalues are used to compute the particle
speed of sound required for the AUSM+up scheme, while the three other eigenvalues are used to define the left and
right wave speeds in HLLC. The overall time step is based on the maximum particle and fluid eigenvalue. To complete
the hyperbolic step, the changes due to buoyancy-like terms are computed using the HLLC reconstructions of primitive
variables. Next, the changes in the moments due to the collisional and frictional source terms are computed. Finally,
the changes in the moments due to drag and heat transfer are computed. The collisions, friction, drag, and heat transfer
are handled with semi-analytical solutions.

When the velocity variance is extremely small (or negative due to round-off error), application of HyQMOM to
find M3 is ill-conditioned. Thus, realizability is checked after each sub-step and the velocity moments are corrected
if needed. Based on numerical experiments, corrections are rarely applied and when they are it usually occurs at
the interface with ‘particle-free’ regions. In the simulations, to avoid division by zero, such regions are initialized
with a tiny particle number density. Thus, applying the realizability corrections has no impact on the observable
quantities. The Jacobian matrix needed for the hyperbolic solver is computed symbolically from eq. (74), and only
the magnitudes of the largest and smallest eigenvalues are required to define the HLL fluxes. In general, unless the
particle phase is very dense so that P f is significant, the largest/smallest eigenvalues correspond to the fluid phase,
albeit modified by the presence of the particles.
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4.2. Numerical treatment of the hyperbolic step

The hyperbolic step encompasses the 1-D spatial fluxes and the buoyancy-like terms leading to the following
system:

∂tρpαp = −∂xρpαpup,

∂tρeα
⋆
p = −∂xρeα

⋆
p up,

∂tρeα
⋆
p up = −∂xρeα

⋆
p (u2

p + Θp + Pp) − B,

∂tρeα
⋆
p Kp = −∂xρeα

⋆
p (Kp + Θp + Pp)up − Bup,

∂tρeα
⋆
p ep = −∂xρeα

⋆
p epup,

∂t ρ fα
⋆
f = −∂xρ fα

⋆
f u f ,

∂tρ fα
⋆
f u f = −∂x(ρ fα

⋆
f u2

f + p̂ f + Pp f p) + B,

∂tρ fα
⋆
f E f = −∂x · (ρ fα

⋆
f u f E f + α

⋆
f u f p̂ f + α

⋆
p up p̂ f + Pp f pup) + Bup,

∂tρ fα
⋆
f k f = −∂xρ fα

⋆
f u f k f −

2
3
ρ fα

⋆
f k f∂xu f ,

(74)

where Pp f p = Cp f pρ fα
⋆
p u2

p f , Fp f = u2
p f∂xρ f − (γ f − 1)ρ f up f∂xu f with up f = up − u f , and the 1-D buoyancy-like term:

B = α⋆p (∂x p̂ f + Fp f ) + ∂xPp f p (75)

are computed from reconstructed quantities. These terms are also included in this step to keep a discrete consistency
between the pressure gradients.

The computation of spatial fluxes can be tedious because of the discontinuous nature of shocks in the fluid phase
and particle moments for particle fronts. One approach is to employ a classic HLL scheme for the full system of
equations with first-order reconstructions of quantities [20]. This approach is very robust, but introduces excessive
diffusion of discontinuities, which can be prohibitive for the accurate simulation of strong shocks or thin particle
layers. An improvement can be obtained by considering higher-order reconstructions to better capture discontinuities.
In [51], a MUSCL reconstruction with a second-order Runge–Kutta integration in time is applied to a moment method
leading to a clear reduction of numerical diffusion. However, this improvement does not cure the severe diffusion
of the particle front in our case because of the large disparity in magnitude of the fluid and particle eigenvalues. As
explained above, the particle eigenvalues are usually smaller by several orders of magnitude unless the volume fraction
approaches the packing limit. Indeed, the HLL scheme relying on minimum and maximum eigenvalues of the full
system overestimates the particle propagation waves, leading to undesirable numerical diffusion of the particle-phase
quantities.

This observation is the main motivation of splitting the system into particle and fluid parts treated with different
flux reconstructions. In this work, the approach proposed in [27] is applied to the system of equations in eq. (74).
It consists of a combination of AUSM+up scheme [34] for the particle phase, and an HLLC scheme [50] for the
fluid phase. As for the HLL scheme used in [20], the numerical fluxes using upwind reconstruction are first order
in space and time, but with enhanced particle front capturing due to the AUSM+up scheme and contact discontinuity
capturing in the fluid thanks to the HLLC scheme. A higher-order extension of the fluid part is also proposed by using
higher-order reconstructions and a multistage integration in time based on Runge–Kutta schemes [23].
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4.2.1. AUSM+up scheme for particle phase
The 1-D equation system for the particle phase, supplemented with the continuity equation of the pure particle

phase, is written as
∂tρpαp = −∂xρpαpup,

∂tρeα
⋆
p = −∂xρeα

⋆
p up,

∂tρeα
⋆
p up = −∂xρeα

⋆
p (u2

p + Θp + Pp),

∂tρeα
⋆
p Kp = −∂xρeα

⋆
p (Kp + Θp + Pp)up,

∂tρeα
⋆
p ep = −∂xρeα

⋆
p epup.

(76)

The particle phase has its own equation of state where compressibility is a result of volume-fraction variations:

pp = ρeα
⋆
p (Θp + Pp) = EOS (ρeα

⋆
p , αp, Θp). (77)

The compaction wave speed ap (analogous to the fluid speed of sound) can be computed from the pressure derivatives
[45]:

ap =
1
ρp

√√
ρp
∂pp

∂αp

∣∣∣∣∣∣
Θp

+
2
3
Θp

α2
p

∂pp

∂Θp

∣∣∣∣∣∣2
αp

. (78)

However, eq. (78) was developed for standard particle systems where pressure is defined such that pp = EOS (αp, Θp)
with constant ρp.

In our model, pp also depends on fluid moments, and ap is computed from the eigenvalues of the reduced system
eq. (76) to account for added mass. The eigenvalues are not necessarily symmetric and the speed of sound is computed
using the minimum and maximum values as

ap = max(up − λp,min, λp,max − up). (79)

In gas–particle systems where ρe ≈ ρp, computing ap from eq. (78) or eq. (79) is almost equivalent. However, ρe can
become several orders of magnitude higher than ρp in bubbly flows and ap needs to be computed from the eigenvalues
of the system to avoid stability issues.

The main difficulty when dealing with eq. (76) is the granular pressure pp, which can take values from zero
(low volume fraction) to extremely large (close to packing limit when P f prevails). In other words, the Riemann
solver needs to deal with a pressure-less system and a low-Mach limit, which are both known to cause problems with
standard Godunov-type solvers [24]. AUSM-family schemes [35] are perfect candidates to handle the pressure-less
limit as they split the flux into convective and pressure parts, and have the capability to solve near-vacuum flows [33].
Moreover, extra diffusion terms are introduced in the AUSM+up scheme to handle the low-Mach limit [34].

The AUSM+up scheme applied to the particle system from eq. (76) leads to the particle flux vector:

fp = ṁpΨp +Πp (80)

with the mass flux ṁp = ρeα
⋆
p up, the quantity vector Ψp = (αpρp/α

⋆
pρe, 1, up,Kp, ep) and the pressure flux Πp =

(0, 0, pp, ppup, 0). In the original AUSM scheme [34], the pressure flux is only non-zero for momentum, while en-
thalpy was transported for energy. In [27], the pseudo-thermal energy Θp is solved, and the pressure term is not
included in the flux. Here, the kinetic energy Kp is solved and requires to consider a pressure flux consistent with the
momentum. To do so, the quantity vector is simply upwinded:

Ψp =

ΨL
p, if ṁp ⩽ 0;
ΨR

p , otherwise,
(81)

with ΨL
p and ΨR

p the left and right reconstructions of Ψp at a given face.
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Then the mass flux is computed from the face Mach numberM1/2
p as

ṁp = a1/2
p M

1/2
p

ρL
eα
⋆,L
p , ifM1/2

p ⩽ 0;
ρR

eα
⋆,R
p , otherwise.

(82)

The face compaction wave speed a1/2
p is computed as in [27] from the following mass average:

a1/2
p =

√√
ρL

eα
⋆,L
p (aL

p)2 + ρR
eα
⋆,R
p (aR

p)2

ρL
eα
⋆,L
p + ρR

eα
⋆,R
p

+ ϵ (83)

with ϵ = 1 × 10−10 a small number to avoid division by zero when the compaction wave speed is null. In the same
manner, the face density is defined as

ρ1/2
e =

ρL
eα
⋆,L
p + ρ

R
eα
⋆,R
p

2
, (84)

and the left, right, and averaged Mach numbers are computed from a1/2
p :

ML
p =

uL
p

a1/2
p

, MR
p =

uR
p

a1/2
p

, M̄2
p =

(uL
p)2 + (uR

p)2

2(a1/2
p )2

. (85)

Finally, the face Mach numberM1/2
p related to the convective flux and the face pressureP1/2

p related to the pressure
flux are computed from the split Mach number and pressure polynomials M ±

4 and P±
5 [33] as

M1/2
p =M +

4 (ML
p) +M −

4 (MR
p) −

kp

fa
max(1 − σM̄2

p, 0)
pR

p − pL
p

(ρ1/2
e + ϵ)(a

1/2
p )2
, (86)

p1/2
p =P+

5 (ML
p)pL

p +P−
5 (MR

p)pR
p − 2ku faP+

5 (ML
p)P−

5 (MR
p)ρ1/2

e (a1/2
p − ϵ)(u

R
p − uL

p) (87)

with kp = 0.25, ku = 0.75, fa = 1, and σ = 1 parameters controlling the pressure and velocity diffusion terms. The
pressure flux for energy is then computed as a1/2

p M
1/2
p p1/2

p .
In [27], left and right reconstructions were computed with a WENO5 scheme. However, the low dissipation

properties of such reconstructions require a slope limiter and an additional diffusion term in the mass flux to remain
stable near strong particle discontinuities or close to the packing limit. It has been found in this work that adding
diffusion in the mass flux leads to the loss of realizability of the scheme. This could be due to the tight coupling of
fluid and particle phases through the added-mass part. Then, a small diffusion in the particle part can lead to some
inconsistency of the fluid quantities. Hence, first-order upwind reconstructions are used in the following numerical
examples. Note that this choice does not imply the loss of the inherent capturing of the particle front of AUSM+up as
it will be demonstrated below.

4.2.2. HLLC scheme for fluid phase
The fluid fluxes do not require as much attention apart from the treatment of pressure p̂ f . Usually, an interfacial

pressure pΓ appears in the multi-fluid model and is approximated by a combination of phase pressures. The modeling
of this term depends on the application and is usually taken as pΓ = p f for granular flows [22]. In the present solver,
the interfacial pressure modeling comes from kinetic theory [16] and is treated separately as a buoyancy term. The
1-D problem for the fluid flux is then

∂t ρ fα
⋆
f = −∂xρ fα

⋆
f u f ,

∂tρ fα
⋆
f u f = −∂x · (ρ fα

⋆
f u2

f + p̂ f + Pp f p),

∂tρ fα
⋆
f E f = −∂x(ρ fα

⋆
f u f E f + α

⋆
f u f p̂ f + α

⋆
p up p̂ f + Pp f pup),

∂tρ fα
⋆
f k f = −∂x · ρ fα

⋆
f u f k f .

(88)
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While the flux contains pressure, it does not correspond to a standard Euler step weighted by the volume fraction α⋆f .
For this reason, the numerical scheme must be able to compute the reconstruction of pressure apart from the flux,
which is not the case for the standard HLL scheme. Hence, the HLLC scheme is used to reconstruct the primitive
variables X f = (ρ f , u f , p̂ f , E f , k f , Pp f p). The slip pressure Pp f p is also included in the primitive variables of the fluid
system as it appears in the momentum and energy fluxes and is required to compute buoyancy-like terms.

The HLLC scheme is a 3-wave approximate Riemann solver with four intermediate states such that

XHLLC
f =


XL

f , if 0 ⩽ S L;
XL⋆

f , if S L ⩽ 0 ⩽ S ⋆;
XR⋆

f , if S ⋆ ⩽ 0 ⩽ S R;
XR

f , if S R ⩽ 0

(89)

with XK
f left (K = L) and right (K = R) states reconstructed at the face, and XK⋆

f the intermediate states at left and right
side of the contact wave computed as detailed below. In the standard HLLC method, the left and right wave speed S K

are reconstructed as in HLL [13] or from the Roe-average [14]. In our solver, they are retrieved from the minimum
and maximum eigenvalues of the fluid system eq. (88), which accounts for added-mass terms, and the contact wave
speed S ⋆ is computed as in [1]:

S L = λ f ,min, S R = λ f ,max, S ⋆ =
p̂R

f − p̂L
f + ρ

L
f u

L
f (S

L − uL
f ) − ρ

R
f uR

f (S R − uR
f )

ρL
f (S

L − uL
f ) − ρ

R
f (S R − uR

f )
. (90)

The contact pressure can then be computed as

p̂⋆f =
1
2

(
p̂L

f + p̂R
f + ρ

L
f (S

L − uL
f )(S

⋆ − uL
f ) + ρ

R
f (S R − uR

f )(S ⋆ − uR
f )
)
. (91)

Finally, the left and right states apart from the contact wave can be computed as XK⋆
f = (ρK⋆

f , S
⋆, p̂⋆f , E

K∗
f , k

K⋆
f , P

K
p f p),

such that

ρK⋆
f = ρ

K
f

S K − uK
f

S K − S ⋆
, EK⋆

f = EK
f +

S ⋆ p̂⋆f − S K p̂K
f

ρK
f (S K − uK

f )
, kK⋆

f = kK
f

ρK
f

ρK⋆
f

S K − uK
f

S K − S ⋆
. (92)

The scheme results in an upwinding of the pfp pressure Pp f p. This is a key component of the method to ensure
stability of the model as Pp f p is also discontinuous across a particle front. While the term is not significant in dense
gas–particle systems, it needs to be treated carefully for bubbly flows.

To complete the fluid fluxes, the face volume fraction α⋆f is reconstructed at the face from the particle fluxes:

α⋆
f ,i+ 1

2
=

α
⋆,L
f ,i+ 1

2
, if u1/2

p,i+ 1
2
⩽ 0;

α⋆,R
f ,i+ 1

2
, otherwise

(93)

where u1/2
p = a1/2

p M
1/2
p . The fluid fluxes are finally defined with XHLLC

f at face i + 1
2 such that

f f ,i+ 1
2
=


α⋆

f ,i+ 1
2
ρ f ,i+ 1

2
u f ,i+ 1

2

α⋆
f ,i+ 1

2
ρ f ,i+ 1

2
u f ,i+ 1

2
u f ,i+ 1

2
+ p̂ f ,i+ 1

2
+ Pp f p,i+ 1

2

α⋆
f ,i+ 1

2
ρ f ,i+ 1

2
E f ,i+ 1

2
u f ,i+ 1

2
+ α⋆

f ,i+ 1
2
u1/2

p,i+ 1
2
p̂ f ,i+ 1

2
+ u1/2

p,i+ 1
2
Pp f p,i+ 1

2

α⋆
f ,i+ 1

2
ρ f ,i+ 1

2
k f ,i+ 1

2
u f ,i+ 1

2


. (94)

In [27], the left and right reconstructions are performed with an optimized bandwidth version of WENO5 with
non-linear error control [48] and a TVD slope limiter [28]. For a quantity Φ at face i+ 1

2 and its left-biased high-order
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approximation ΦHO,L
i+ 1

2
, the left reconstruction ΦL

i+ 1
2

is expressed as

ΦL
i+ 1

2
= Φi + 0.5∆xsTVD

i (95)

with the limited slope sTVD
i defined as

sTVD
i = max

[
0,min

(
2sL

i , 2sR
i , 2sHO

i

)]
, sL

i =
Φi − Φi−1

∆x
, sR

i =
Φi+1 − Φi

∆x
, sHO

i =

Φ
HO,L
i+ 1

2
− Φi

∆x
. (96)

In this work, the extension to higher order is done by employing HOUC5 reconstructions [40] instead. This high-
order scheme is less dissipative than WENO5, but does not ensure boundedness. This last feature can be cured by
employing an upwind scheme when overshoot or undershoot of the quantity occurs [26]. Here, the TVD slope limiter
eq. (96) has shown to remove oscillations. This modification reduces significantly computational time as it does not
require to compute non-linear sensors and adaptive stencils required for the WENO5 scheme at each time step.

4.2.3. Buoyancy-like exchange terms
Finally, the buoyancy-like terms contained in B are computed from the reconstructed particle and fluid quantities

introduced above. The spatial discretization of ∂x p̂ f , Fp f , and ∂xPp f p has to be done carefully to remain consistent
with the HLLC fluxes. In practice, the face reconstructions defined in eq. (89) are used to compute B such that

∂x p̂ f =
p̂ f ,1+ 1

2
− p̂ f ,1− 1

2

∆x
, ∂xρ f =

ρ f ,1+ 1
2
− ρ f ,1− 1

2

∆x
, ∂xu f =

u f ,1+ 1
2
− u f ,1− 1

2

∆x
, ∂xPp f p =

Pp f p,1+ 1
2
− Pp f p,1− 1

2

∆x
. (97)

The extension to higher dimensions is straightforward employing directional splitting. Note that the curl velocity
∂x × u f related to the lift force is a 3-D operator that can also be computed from the reconstructed variables.

4.2.4. Time integration in hyperbolic step
The hyperbolic step is the only one treated explicitly. In order to remain stable with HOUC5 reconstructions, a

RK3-SSP scheme is employed that also preserves realizability [51]. Given the hyperbolic step, eq. (74) is rewritten as

∂tY = H(Y), (98)

and the time integration proceeds as follows [47]:

Y(1) = Yn + ∆tH(Yn),

Y(2) =
3
4

Yn +
1
4

(
Y(1) + ∆tH(Y(1))

)
,

Yn+1 =
1
3

Yn +
2
3

(
Y(2) + ∆tH(Y(2))

)
.

(99)

As noted earlier, the overall time step is based on the maximum particle and fluid eigenvalues.

21



4.3. Numerical treatment of drag terms

Time splitting and a semi-analytical solution are used to update the drag terms in the 1-D momentum and energy
balances, which amounts to solving the following system of ODEs:

∂tρ fα
⋆
f = 0

∂tρeα
⋆
p = 0

∂tρ fα
⋆
f u f =

ρeα
⋆
p

τp
(up − u f )

∂tρeα
⋆
p up =

ρeα
⋆
p

τp
(u f − up)

∂tρ fα
⋆
f k f =

ρeα
⋆
p

τp
[3aΘp − 2(1 − a)k f + u2

p f −C f k f ]

∂tρeα
⋆
p Kp = −

ρeα
⋆
p

τp
[3aΘp − 2(1 − a)k f + up f up]

=⇒

r =
ρeα

⋆
p

ρ fα
⋆
f

∂t(u f − up) = −
1 + r
τp

(u f − up)

∂t(u f + rup) = 0

∂tk f =
r
τp

[3aΘp − 2(1 − a)k f ] +
r
τp

[u2
p f (t) −C f k f ]

∂tΘp =
1
τp

[
4
3

(1 − a)k f − 2aΘp

]
(100)

with r constant. The particle-phase internal energy ep does not change due to drag, and the change in fluid-phase total
energy ρ fα

⋆
f E f is determined from conservation of total energy, i.e., ρ fα

⋆
f E f + ρeα

⋆
p Ep is constant during drag. Note

that the right-hand side for k f has exchange terms and production/dissipation terms. In the following, we handle each
part separately.

Holding τp constant over the time step, the updated phase velocities are approximated by

u f (t) − up(t) = (u f (0) − up(0))e−(1+r)t/τp

u f (t) + rup(t) = u f (0) + rup(0)
=⇒

u f (t) =
u f (0)
1 + r

(1 + re−(1+r)t/τp ) +
rup(0)
1 + r

(1 − e−(1+r)t/τp )

up(t) =
u f (0)
1 + r

(1 − e−(1+r)t/τp ) +
up(0)
1 + r

(r + e−(1+r)t/τp )
(101)

and thus the source term for k f is given by

u2
p f (t) = u2

p f (0)e−2(1+r)t/τp . (102)

The evolution of k f (t) is written in two steps. First due to production and dissipation, it is written

k̂ f = k f (0)e−C f rt/τp +
ru2

p f (0)

2 + (2 −C f )r

(
e−C f rt/τp − e−2(1+r)t/τp

)
. (103)

Second, the exchange terms form a linear system:

∂t

[
k f

Θp

]
= −

1
τp

A
[

k f

Θp

]
where A =

[
2(1 − a)r −3ar
− 4

3 (1 − a) 2a

]
. (104)

Since 0.5 ≤ a ≤ 1, the two eigenvalues of A are non-negative: λ1 = 0 and λ2 = 2r(1 − a) + 2a. Hence, the solution is

k f (t) =
1
λ2

[
2r(1 − a)k̂ f e−λ2t/τp + 2ak̂ f + 3raΘp(0)(1 − e−λ2t/τp )

]
,

Θp(t) =
1
λ2

[
2r(1 − a)Θp(0) + 2aΘp(0)e−λ2t/τp +

4
3

(1 − a)k̂ f (1 − e−λ2t/τp )
]
.

(105)

Note that 2k f (t)+3rΘp(t) = 2k̂ f +3rΘp(0) is constant for the exchange terms, and the parameter a fixes the steady-state
value of k f .

The collisional, frictional, and heat-transfer terms are handled in the same manner as the drag terms. For each
term, a separate semi-analytical solution is derived and used to update the conserved variables in each phase. In this
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Table 4: Default physical properties of the fluids used for test cases.

Fluid γ f p∞, f (GPa) ν f (Pa·s) Cp, f (J/kg/K) λ f (m2/s)
Air 1.4 0 2.12 · 10−5 1005 2.56 · 10−2

Water 4.4 0.6 1 · 10−6 5250 6 · 10−2

manner, strict conservation of mass, momentum, and total energy is enforced at every time step. The extension to 3-D
flows is done analogously.

4.4. Numerical treatment of added-mass source terms

Time splitting and a semi-analytical solution are used to handle the 1-D added-mass source terms. For the particle
phase, this amounts to solving a linear system of ODEs:

∂tρeα
⋆
p = Cξρeα

⋆
p

∂tρeα
⋆
p ep = Cue fρeα

⋆
p + (Cξ −Cu)ρeα

⋆
p ep

∂tρeα
⋆
p up = Cuu fρeα

⋆
p + (Cξ −Cu)ρeα

⋆
p up

∂tρeα
⋆
p Kp = CuK fρeα

⋆
p + (Cξ −Cu)ρeα

⋆
p Kp

=⇒

∂tρeα
⋆
p = Cξρeα

⋆
p

∂tep = Cu(e f − ep)
∂tup = Cu(u f − up)
∂tKp = Cu(K f − Kp)

(106)

with e f , u f , K f , Cξ, and Cu held constant. The analytical solution for the mass at time t is

(ρeα
⋆
p )(t) = (ρeα

⋆
p )(0) eCξ t. (107)

The change of mass in the fluid phase over the time step ∆t is then (ρeα
⋆
p )(0) − (ρeα

⋆
p )(∆t). For the internal energy,

momentum, and kinetic energy, the analytical solutions are

ep(t) = ep(0)e−Cut + e f

(
1 − e−Cut

)
, (108)

up(t) = up(0)e−Cut + u f

(
1 − e−Cut

)
, (109)

Kp(t) = Kp(0)e−Cut + K f

(
1 − e−Cut

)
. (110)

The change in momentum and total energy in the fluid phase are computed in the same manner as for mass. The
extension to 3-D flows is done analogously.

5. Numerical examples

This section consists of various 1-D test cases to assess the solver’s capabilities to handle a large range of Mach
numbers, volume fractions, and material-density ratios between the fluid and particles. For this purpose, the fluid can
be either air or water with properties given in table 4. The particle phase can be solid particles or non-deformable
spherical bubbles with properties provided in the corresponding test case. In the solver, the minimum value of the
particle-phase volume fraction αϵ is set at a small value (10−12) to avoid division by zero. Therefore, the quantities for
the disperse phase are only displayed when αp > 10−8 to provide meaningful values. In all test cases, if not specified,
the model parameters take the values ec = 1, ∆ f = 0.01, αmax = 0.65 and Cp f p = 0.2 and the CFL number takes the
value of 0.5.

In general, for gas–particle test cases, the model formulation, numerical solver, and results are very similar to
[27]. In contrast, the bubbly flow cases are more challenging for the hyperbolic solver because of the strong phase
coupling due to buoyancy and added mass. Unlike for gas–particle flows wherein the largest eigenvalues can arise in
the particle phase, this does not occur for bubbly flows. Nonetheless, complex eigenvalues are likely to arise in bubbly
flow due to buoyancy when the pfp pressure Pp f p is too small,leading to nonphysical behavior of the two-fluid model
[20]. For the model proposed in this work, this behavior is avoided if Cp f p ≥ 0.5.
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Figure 2: Gas-phase pressure (a) and particle volume fraction (b) for the dense shock tube case at t = 100 µs using HLL (red) and NFO (blue). The
three levels of grid refinement are Nx = 200 ( ), 400 ( ) and 800 ( ).

Figure 3: Gas-phase pressure (a) and particle volume fraction (b) for the dense shock tube case at t = 100 µs using NFO (red) and NHO (blue).
The three levels of grid refinement are Nx = 200 ( ), 400 ( ) and 800 ( ).

5.1. Validation of the hyperbolic solver
First, the proposed computational scheme is compared to the first-order HLL scheme employed in [20]. A first-

order version of the present scheme is also studied to compare the features of the schemes setting aside the order of
reconstruction of the quantities. The first-order version of the scheme then uses Euler integration in time and upwind
reconstructions for both phases. The first-order and high-order versions of the new scheme will be referred as NFO
and NHO, respectively. The validation test case is taken from [27] where a strong shock interacts with a dense particle
cloud. It consists of a shock tube where the left chamber contains pure high-pressure air, while the right chamber is
filled with a mixture of air and particles.

The particle concentration is chosen to be high, such that the volume fraction front approaches the packing limit
as the shock pushes the particle phase to the right of the domain. The method should be able to remain stable
when P f controls the eigenvalues. Moreover, the strong shock creates a sudden heating of the gas that is partially
absorbed by the particle phase, which has the effect of highly weakening the shock. The computational domain length
is L = 0.06 m, and the left and right states are separated by a diaphragm located at x = 0.03 m. Solid particles
are defined with ρp = 1470 kg/m3, dp = 5 µm, and CV,p = 987 J/kg/K. The left and right states for the gas are
pL

f = 100 atm, pR
f = 1 atm, T L

f ,p = T R
f ,p = 300 K, αL

f = 1, and αR
f = 0.6. The three schemes are compared for three

levels of grid refinement: Nx = 200, 400, and 800.
The fluid pressure and particle volume fraction at t = 100 µs are shown in fig. 2 for HLL versus NFO, and in
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Figure 4: Gas-phase pressure (a) and mass densities (b) for the dilute shock tube at t = 184 µs.

fig. 3 for NFO versus NHO. It is clear from both the pressure and volume fraction that the new scheme combining
AUSM+up and HLLC is better at capturing discontinuities. Even though first-order reconstructions are used, the new
scheme is able to capture the particle front accurately. More quantitatively, the HLL scheme requires Nx = 800 to
give the same degree of details compared to NFO with Nx = 200 on this test case. In comparison, the higher-order
reconstructions allow to better capture the pressure discontinuities, while no substantial differences can be observed
for the particle front. This can be explained by the first-order upwind reconstructions used in the AUSM+up scheme
for both NFO and NHO.

Interestingly, using higher-order reconstructions has less impact on the results than using AUSM+up and HLLC
instead of HLL. This is partly due to the lack of complex fluid structures in 1-D, which would better showcase the
impact of using higher-order reconstructions [27]. Overall, all the schemes converge with mesh refinement. Now
that the proposed scheme has been validated and mesh convergence has been assessed on a demanding test case, the
remaining numerical examples are computed using the high-order scheme NHO and the highest mesh refinement:
Nx = 800.

5.2. Air shock wave interacting with a particle cloud
In this example, a dilute shock tube and the dense shock tube presented above are investigated. In general, gas–

particle flows are simpler to simulate than bubbly flows due to relatively small effect of buoyancy. However, due to
differences in the model formulation (e.g., the frictional source and slip-pressure tensor), results from the two-fluid
model in table 1 can be expected to exhibit some differences with the model in [27] for gas–particle flows.

5.2.1. Dilute shock tube
In this shock tube, the right state contains a very dilute particle phase such that the solver must handle an almost

pressure-less system. The domain length is L = 0.257798 m and the left and right states are separated by a diaphragm
located at x = 0.129 m to reproduce the same setup as in [27]. Even though no exact solution exists for this case,
results can be compared to the results presented in [27]. Solid particles are defined with ρp = 2500 kg/m3, dp = 10 µm,
and CV,p = 720 J/kg/K. The left and right states are pL

f = 10 atm, pR
f = 1 atm, T L

f ,p = T R
f ,p = 270 K, αL

p = 0, and
αR

p = 5.172 · 10−4. The quantities of interest are plotted at t = 184 µs in fig. 4. While the shock is progressing in
the gas–particle mixture, it experiences momentum and heat loss because of drag forces. As noted in [27], the hook-
like structure of p̂ f near the initial shock position is well captured. The main difference with [27] is the profile of
particle mass density near x = 0.15, which is higher with our model. This is likely due to the unsteady force Fp f that
accelerates the particles near the shock and contact surface. Overall, the physical behavior is retrieved and showcases
the performance of the proposed scheme near pressure-less conditions.

5.2.2. Dense shock tube
The problem introduced in section 5.1 is repeated with more details to better describe the weakening of the shock,

the balance of particle pressure in the dense part of the granular phase, and the effect of drag on phase velocities. In
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Figure 5: Pressures (a), velocities (b), temperatures (c), and mass densities (d) for the dense shock tube at t = 1 ms.
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Table 5: Physical properties of the fluid and particle phases for particle-curtain cases.

Configuration Material ρp (kg/m3) dp (µm) δ0 (mm) αp Ms

1 316 stainless steel 8170 115 1.7 0.17 1.4
2 Tungsten 17070 115 2.3 0.18 1.55
3 Cast stainless steel 7390 328 4.0 0.09 1.7
4 Soda lime glass 2420 115 2.0 0.19 4.24

fig. 5, the phase pressures, velocities, temperatures and mass densities are provided. The solutions agree well with
[27], apart from the granular pressure which experiences an abrupt decrease at the particle front. By plotting the
collisional and frictional parts of the particle pressure (which are clearly separated at αp = αmax), it can be seen that
the frictional pressure is controlling where the volume fraction approaches the packing limit, but decreases abruptly at
the particle front. This behavior is due to the different functional forms used for the frictional pressure in the present
model compared to what was used in [27]. By increasing the parameter ∆ f , the transition zone is larger and frictional
pressure is applied at lower volume fractions. The temperature profiles showcase the heating of particles through the
shock, which explains the weakening of the shock with an amount equivalent to what was observed in [27].

Finally, it is interesting to notice that the present model is stable and without particle-pressure oscillations, even
when ec = 1. In [27], strong oscillations were observed and additional dissipation was needed in the numerical
scheme to control them. In the current model, the granular temperature Θp is strongly damped to negligible values
in the frictional regime by the frictional source term included in Hp. Moreover, we use a sharper cut-off between the
frictional and collisional regimes in the definition of P f (see individual particle pressure contribution in fig. 5(a)), and
compute the particle-phase eigenvalues directly from the Jacobian matrix. As a result, the proposed hyperbolic solver
is robust with ec = 1 without additional dissipation even when αp > αmax.

5.3. Shock-induced dispersal of particle curtains

Next, the gas–particle solver is validated against experimental data. The most commonly used experiment is the
interaction of a shock with a particle curtain. Usually solutions are compared with the famous experiment of Rogue et
al. [44]. Here, the recent experiments of Daniel et al. [9] are reproduced with volume fraction ranging from αp = 0.09
to αp = 0.2, Mach number of the air shock ranging fromM f = 1.4 toM f = 1.7, and four different particles with
variable density and diameter. A recent hypersonic configuration withM f = 4.24 from the same group [52] is also
simulated. The four configurations are summarized in table 5.

The computational domain is [−L/2, L/2] with L = 0.2 m and non-reflective boundary conditions are used to
imitate the experiments. The shock is produced by a pressure ratio with the diaphragm located upstream of the curtain
at xd = −L/4. The pressure ratio between driver (state 2) and driven (state 1) chambers are related to the shock Mach
numberMs:

p2

p1
=

1 + 2γ1
γ1+1

(
M2

s − 1
)

(1 − γ2−1
γ1+1

c1
c4

M2
s−1
Ms

)
2γ2
γ2−1

. (111)

The driver gas is not expected to be relevant for the interaction with the curtain and has been taken as air, while
nitrogen was used in the experiments [9]. The driven air is at ambient conditions T1 = 297 K and p1 = 84.1 kPa. The
driver air temperature is also taken at T2 = 297 K. Example results obtained with the solver are represented in fig. 6a
where an x-t diagram of density with isocontours of αp are plotted. When the diaphragm is released, a contact wave
and a shock wave are created and propagate towards the curtain. The time is defined such that t = 0 represents the
moment where the shock wave hits the upstream edge of the curtain. Then a part of the shock wave is transmitted,
while a reflected shock wave travels back upstream. Complex patterns are then generated by the combination of the
initial contact wave and reflected shock wave.

The spread rate is compared with the experiments where all four configurations are displayed in fig. 6b. It can be
observed that the results fairly compare with the experiments, but with deviations when the Mach number increases.
This can hide an underlying relation between drag and Mach number, which can be modeled for hard spheres [36].
A detailed study of the effect of the drag model on the physical behavior of the particles is outside the scope of this
paper.
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(a) x-t diagram of density with isocontours of αp (white)
for configuration 1.

(b) Comparison of the results obtained by the experiment (symbols) and the numer-
ical results (solid lines) for the four configurations detailed in table 5.

Figure 6: Shock-induced dispersal of particle curtains illustrated with the x-t diagram of density (left) and the comparison of the spread rate with
experimental data (right).

Figure 7: Comparison of upstream edge position x1 (a) and downstream edge position x2 (b) for different values of Cp f p in configuration 1.
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Table 6: Two configurations from [2] tested for a water shock in a fixed particle array. τ corresponds to the transit time dp/us.

Configuration Ms αp pL
f (MPa) ρL

f (kg/m3) uL
f (m/s) τ (ns)

LM10 1.22 0.1 477.73 1136.1 241.2 50.39
HM20 3 0.2 7823.7 1487.8 1606.5 20.49

Figure 8: Mach number (a) and PTKE (b) for the two configurations LM10 and HM20 at t = 16τ.

Another explanation for the difference between the numerical and experimental results can be due to the value of
Cp f p, which has been taken equal to 0.2. This coefficient controls the magnitude of the pfp pressure, which can have
a strong implication on the spreading of the particles in the curtain, especially for high Mach numbers with large slip
velocity. To investigate this model parameter, the first configuration has been simulated with different values of Cp f p

ranging from 0 to 0.6 and the related spread rates are plotted in fig. 7. The results illustrate the impact of Cp f p on the
granular phase dynamics. When the pfp-pressure magnitude is increased using Cp f p, the upstream edge position x1 is
highly impacted. The curtain can even go backward in the case of Cp f p = 0.6, while the upstream edge does not move
as much when Cp f p is set to 0. For the downstream edge location x2, the difference is not as significant and all three
curves almost collapse.

5.4. Underwater shock wave in a fixed particle array

Now that gas–particle systems have been investigated, the interaction of an underwater shock with fixed particles
is considered. The main particularity of a water shock compared to a gas shock is that the resulting post-shock Mach
number is subsonic. The set-up is based on the DNS study presented in [2] where a random array of fixed particles
is defined in a part of the domain and a strong shock is initialized upstream of the array. In the model, the particle
density is fixed at ρp = 109 kg/m3 to make sure that the granular phase remain fixed. However, α⋆p is still able to vary
because of the added mass. The mean particle diameter is dp = 100 µm and heat transfer is deactivated as in the DNS.
The domain is taken as L = 26dp, while the particle array is located at xp = 9dp and extends until the right end of the
domain. The shock is initially positioned one diameter before the particle array xs = 8dp.

In [2], two Mach numbers and volume fractions are simulated, leading to four configurations. Here, the two
configurations, referred as LM10 and HM20, are tested and compared to the DNS results. The volume fraction and
post-shock (left) state corresponding to the two configurations are summarized in table 6. The pre-shock (right) state
is defined as pR

f = 1 atm, ρR
f = 998.0 kg/m3. The simulations stop at t = 16τ with τ = dp/us the transit time. In the

simulations, large fluctuations of the fluid velocity (corresponding to PTKE) can be observed for HM20, while only
small interactions with the particle array are observed for LM10. To compare with the DNS results, the Mach number
u f /a f and dimensionless PTKE 2k f /u2

f are shown in fig. 8.
The velocity fluctuations correspond to PTKE in the model and are well reproduced in the 1-D simulation wherein

dimensionless PTKE reaches 50% for HM20. The results compare well with the Mach contour provided in [2] where
reflections are only observed for HM20. In fig. 9, the volume fractions of pure particle phase αp and particle with
added mass α⋆p are also presented. It is interesting to notice that αp remains constant, as particle material density is
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Figure 9: Volume fractions αp and α⋆p for the two configurations LM10 (a) and HM20 (b) for at t = 16τ.

Figure 10: Fluid pressure (a) and phase velocities (b) for low aeration at t = 79 µs.

very high. However, α⋆p increases in the particle phase as a result of fluid-density variations. This added-mass rise has
an impact on the mean and fluctuating velocities of the fluid. Indeed, a bump of Mach and a spike in PTKE can be
observed in fig. 8 at the exact location where added-mass increases. This illustrates the effects of added mass even for
a case where the particles are fixed. The predicted magnitude of this effect can be modified using the parameter Ca in
the definition of τa.

5.5. Shock wave in a bubbly flow

The final numerical example is adapted from the shock tube test cases of section 5.2, but the fluid is water and the
particle phase has a low material density such that it mimics non-deform-able spherical bubbles. The domain length
is L = 1 m and the left and right states are separated by a diaphragm located at x = 0.5 m to reproduce the same setup
as in [21]. Particles are defined with ρp = 1 kg/m3, dp = 500 µm, and CV,p = 987 J/kg/K. The left and right states
are taken as pL

f = 109 Pa, pR
f = 105 Pa, ρL

f = ρ
R
f = 1000 kg/m3. The left state is pure water, while the right state

corresponds to a bubbly flow with different aeration levels αR
p . Note that a proper bubble model would use a bubble

pressure to determine the bubble diameter and material density. Nevertheless, the setup is still relevant to show the
capability of the solver to handle large material-density ratios between the fluid and particles, and the resultant slip
velocity. In such systems, the buoyancy terms become important and hyperbolicity is only preserved thanks to the
slip-pressure tensor [20]. For this reason, the Cp f p coefficient needs to be at least 0.5 to preserve hyperbolicity of the
two-fluid model [20].
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Figure 11: Fluid pressure (a), velocities (b), temperatures (c), and mass densities (d) for high aeration at t = 79 µs.

5.5.1. Low aeration
As done for the gas–particle system, a first test is defined with a low volume fraction of αR

p = 10−4. The pressure
and phase velocities at t = 79 µs are displayed in fig. 10. As expected, the bubble swarm is too dilute to impact the
water shock. The shock wave then crosses the bubble swarm without decelerating. From the velocity profiles, it is
interesting to notice that the slip velocity is especially large compared to the gas–particle systems. This is due to the
predominant buoyancy-like terms in bubbly flows. At the shock front, the pressure gradient is very large and creates
a strong acceleration of the bubble swarm. The bubble velocity subsequently relaxes back to the fluid velocity behind
the shock due to drag. Similar, but not as strong, behavior is observed for smaller bubbles. As expected, the predicted
values of Θp are small in bubbly flows due to the small Stokes number.

5.5.2. High aeration
In this case, the same setup is used with a volume fraction of αR

p = 0.4. The fluid pressure, phase velocities,
temperatures and mass densities at t = 79 µs are displayed in fig. 11. In opposition to the gas–particle dense case, the
shock is not weakened by the dense bubble swarm. On the contrary, it is accelerated because of the reduction of cross
section experienced by water as αp increases. However, the same velocity peak observed in gas–particle flows appears
at the upstream edge of bubble swarm. Finally, the pressure gradient is smoothed at the shock front, which does not
produce an acceleration comparable to the dilute case. As a result, the bubble volume fraction does not increase
significantly as was observed for the heavy particles. This last test case demonstrates the capability of the solver
to simulate water–bubble systems where added mass and buoyancy-like terms are predominant. In gravity-driven
systems, large volume-fraction regions (e.g., foams) can be produced, leading to a frictional-pressure contributions.
However, such flow dynamics occur on much longer time scales than the shock waves investigated here.
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6. Conclusions

In this work, a hyperbolic two-fluid model for high-speed, fully compressible, monodisperse fluid–particle flows
with added mass and fluid-phase pseudoturbulence has been developed and tested. The particle-phase equations
have been derived from a kinetic model with terms for the collisional, frictional, and pfp-pressure contributions to
the particle pressure, accounting as well for the particle-phase internal energy to capture heat transfer with the fluid
phase. For simplicity, only velocity moments up to second order are considered, which is valid for collisional and/or
low-Stokes-number flows.

For the numerical solver, the resulting nine-equation two-fluid model was discretized with a higher-order method
along the lines of the pioneering work of [27]. The main issue was to adapt the combination of AUSM+up and HLLC
initially proposed in the context of a seven-equation two-fluid model to the present model without loss of robustness.
This has been done by treating carefully the additional buoyancy-like terms with a consistent discretization. Moreover,
the complex coupling of particle- and fluid-phase quantities through the added mass was treated by computing the
eigenvalues directly from the Jacobian of the spatial fluxes.

The first numerical study assessed the solver on a challenging gas–particle test case, including a granular phase
reaching the packing limit and a strong shock in the fluid phase. The advantages of the proposed method have been
showcased in comparison to the first-order HLL scheme used in [20]. Then, the numerical examples presented in
the results section demonstrate the capability of the numerical solver to handle a wide range of two-phase systems
from supersonic to hypersonic flows, dilute-to-dense granular phases, and gas–particle to bubbly flows. Generally
speaking, the proposed model is able to reproduce the global behavior of DNS and experiments in the literature.

In future work, the two-fluid model and numerical scheme developed in this work could be extended in several
directions. For example, to handle reacting flows, chemical species in the fluid and particle phases can be modeled as
done in [27, 28]. Another interesting and important improvement would be to include polydispersity of the particle
phase along the lines of the kinetic model developed in [31] and using quadrature-based moments methods for the
numerical solver [37]. Finally, in order to simulate the numerous applications involving low-speed, low-Mach-number
flows with mean shear, it would be useful to develop a low-Mach-number solver for the proposed two-fluid model that
neglects the acoustic waves in the fluid phase [41]. For such applications, it will be necessary to include constitutive
relations for the viscous and thermal fluxes [3, 6, 7, 29], which have no effect on the hyperbolicity of the two-fluid
model [20]. These additions would allow the proposed two-fluid model to be used for gravity-driven and/or pressure-
driven multiphase flows such as bubble columns, sedimentation, and fluidized beds.
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