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We consider a pure-jump stable Cox-Ingersoll-Ross (α-stable CIR) process driven by a non-symmetric stable Lévy process with jump activity α ∈ (1, 2) and we address the joint estimation of drift, scaling and jump activity parameters from high-frequency observations of the process on a fixed time period. We first prove the existence of a consistent, rate optimal and asymptotically conditionally Gaussian estimator based on an approximation of the likelihood function. Moreover, uniqueness of the drift estimators is established assuming that the scaling coefficient and the jump activity are known or consistently estimated. Next we propose easy-toimplement preliminary estimators of all parameters and we improve them by a one-step procedure. MSC 2020. 60G51; 60G52; 60J75; 62F12.

Introduction

Stochastic equations with jumps are widely used to model time-varying phenomena in many fields such as finance and neurosciences. Recently some extensions, including jumps, of the classical Cox-Ingersoll-Ross process (CIR process) introduced in [START_REF] Cox | A theory of the term structure of interest rates[END_REF] to model interest rates evolution in finance have been considered in the literature (see Jiao et al. [START_REF] Jiao | Alpha-CIR model with branching processes in sovereign interest rate modeling[END_REF] and [START_REF] Jiao | The alpha-Heston stochastic volatility model[END_REF]). These extensions, called α-stable CIR processes, belong to the larger class of continuousstates branching processes with immigration (CBI processes) appearing in the description of large populations evolutions. An important literature is devoted to CBI processes, we refer to the recent survey paper by Li [START_REF] Li | Continuous-state branching processes with immigration[END_REF], and their dynamics can be described by the stochastic equation (see Fu and Li [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF])

X t = x 0 + at -b t 0 X s ds + σ t 0 X s dB s + δ t 0 X 1/α s-dL α s t ≥ 0, 1
where (B t ) t≥0 is a standard Brownian motion and (L α t ) t≥0 a non-symmetric α-stable Lévy process with α ∈ [START_REF] Barczy | Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations[END_REF][START_REF] Barndorff-Nielsen | Limit theorems for multipower variation in the presence of jumps[END_REF]. In this paper, our aim is to study parametric estimation of the process from high-frequency observations on the time period [0, T ] with T fixed and without loss of generality, we will assume that T = 1. In this framework, we know that the drift parameters cannot be identified in presence of a Brownian Motion. Consequently, we focus in this work on the pure-jump stable CIR process (σ = 0 in the previous equation), for which the estimation of all parameters from the fixed observation window [0, 1] is possible, and we consider the joint estimation of the drift parameters a and b, the scaling parameter δ and the jump activity α.

Before presenting our methodology, we briefly review existing estimation results for the stable CIR process. Although there is an abundant literature devoted to the estimation of stochastic equations with jumps, only few results relate to this process. Barczy et al. [START_REF] Barczy | Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations[END_REF] studied the estimation of the parameter b in presence of a Brownian component, assuming that the process is observed continuously on [0, T ] with T going to infinity. Their approach is based on the explicit form of the likelihood function obtained from Girsanov's Theorem. Li and Ma [START_REF] Li | Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model[END_REF] considered the estimation of a and b by a regression method for a pure-jump stable CIR process observed discretely with fixed time-step and observation window growing to infinity. Yang [START_REF] Xu | Maximum likelihood type estimation for discretely observed CIR model with small α-stable noises[END_REF] estimated the parameters a, b and δ from high-frequency observations of a pure-jump stable CIR process with small noise. Thus joint estimation of all parameters (including the jump activity) has never been studied before for this process and this is the purpose of this work.

To perform the estimation of (a, b, δ, α), the main idea is to approximate the conditional distribution of X t+h given X t by the stable distribution appropriately centered and rescaled. This methodology has been used in Masuda [START_REF] Masuda | Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process[END_REF] and also in Clément and Gloter [START_REF] Clément | Joint estimation for SDE driven by locally stable Lévy processes[END_REF] for stochastic differential equations with Lipschitz coefficients, driven by symmetric stable processes. However these results do not apply to the pure-jump stable CIR process as the driving Lévy process is spectrally positive and the scaling coefficient x 1/α is non-Lipschitz and non-bounded away from zero. Thus parametric estimation of this process requires a specific study. A preliminary key result is a bound of the q-moment of 1/X t , for q > 0. We also establish some accurate rates of convergence in L p -norm (with p < α) for increments of the process in small time. These tools allow to control the error that arrises in approximating the conditional distribution of X t+h given X t by the stable distribution for small time-step h.

The paper is organized as follows. Section 2 presents the pure-jump stable CIR process and gives some key moment estimates. Section 3 describes the estimation method, based on estimating equations. It also contains some limit theorems that allow to prove our main statistical results. The main results are stated in Section 4. We establish the existence of a rate optimal joint estimator, global uniqueness is also obtained for the estimation of the drift parameters. We also propose some first step estimators. Using power variations methods, we first estimate the jump activity α and the scaling parameter δ. Next plugging these estimators in the estimating equations, we estimate the drift parameters. Finally the asymptotic properties of these first step estimators are improved by a one-step procedure. The main results are proved in Section 5.

Throughout the paper, we denote by C (or C p if it depends on some parameter p) all positive constants.

Preliminaries

We consider a stable Lévy process (L α t ) t≥0 with exponent α ∈ (1, 2) defined on a filtered probability space (Ω, F, (F t ) t≥0 , P), where (F t ) t≥0 is the natural augmented filtration generated by (L α t ) t≥0 . We assume that (L α t ) t≥0 is a spectrally positive Lévy process with characteristic function

Φ(u) = E(e iuL α 1 ) = e -|u| α (1-i tan(πα/2)sgn(u)) . (2.1)
This non-symmetric Lévy process is strictly stable (see for example Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]) and admits the representation

L α t = t 0 R + zd Ñ (ds, dz), Ñ = N -N ,
where N is a Poisson random measure with compensator N given by

N (dt, dz) = dtF α (dz) for F α (dz) = C α z α+1 1 ]0,+∞[ (z)dz.
From Lemma 14.11 in Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF], we have

C α = - α(α -1) Γ(2 -α) cos(πα/2) , with Γ(α) = ∞ 0 x α-1 e -x dx, α > 0.
We will study parametric estimation of a pure-jump stable Cox-Ingersoll-Ross process given by the stochastic differential equation

dX t = (a -bX t )dt + δX 1/α t-dL α t , X 0 = x 0 t ∈ [0, 1], (2.2) 
where a, b, δ are real parameters. Assuming a ≥ 0, δ ≥ 0 and x 0 ≥ 0, equation (2.2) admits a pathwise unique strong solution (see Fu and Li [START_REF] Fu | Stochastic equations of non-negative processes with jumps[END_REF], Li and Mytnik [START_REF] Li | Strong solutions for stochastic differential equations with jumps[END_REF]) which is non-negative. It is also shown that (X t ) t∈[0,1] is a Markov process. In all the paper we will assume the stronger condition a > 0, b ∈ R, δ > 0 and x 0 > 0. Under this assumption, it is established that (X t ) t∈[0,1] is positive (see Foucart and Uribe Bravo [START_REF] Foucart | Local extinction in continuous-state branching processes with immigration[END_REF] and Jiao, Ma and Scotti [START_REF] Jiao | Alpha-CIR model with branching processes in sovereign interest rate modeling[END_REF] ), that is

P(∀t ∈ [0, 1]; X t > 0) = 1.
Since (X t ) is not bounded away from zero, we need to control 1/X t and we first establish that (X t ) admits moments of order p < α. As mentioned in the introduction, the process (X t ) t≥0 belongs to the class of CBI processes introduced by Kawasu and Watanabe [START_REF] Kawazu | Branching processes with immigration and related limit theorems[END_REF] (we also refer to Li [START_REF] Li | Continuous-state branching processes with immigration[END_REF]) and consequently its Laplace transform has an explicit expression in terms of its branching mechanism and immigration rate. This allows to establish the following result, where the case (ii) (0 < p < α) is a direct consequence of Proposition 2.8 in Li and Ma [START_REF] Li | Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model[END_REF].

Proposition 2.1. Let (X t ) t∈[0,1] be the solution of (2.2). Then we have

(i) ∀ q > 0, sup t∈[0,1] E 1 X q t < +∞, (2.3) (ii) ∀ 0 < p < α, ∀s, t ∈ [0, 1], E sup s≤u≤t X p u |F s ≤ C p (1 + X p s ). (2.4)
We now assume that we observe the discrete time Markov chain (X i n ) 0≤i≤n , where (X t ) t∈[0,1] solves (2.2). The next result gives some rate of convergence occuring in the discretization of the process (X t ). We mention that (i) follows from Proposition 2.7 in Li and Ma [START_REF] Li | Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model[END_REF].

Proposition 2.2. Let (X t ) t∈[0,1] be the solution of (2.2). We have ∀ 0 < p < α (i) E sup s∈[ i-1 n , i n ] s i-1 n X 1/α t-dL α t p |F i-1 n ≤ Cp n p/α 1 + X p/α i-1 n , (ii) E sup s∈[ i-1 n , i n ] X s -X i-1 n p |F i-1 n ≤ Cp n p/α 1 + X p/α i-1 n , (iii) E i n i-1 n (X 1/α s--X 1/α i-1 n )dL α s p |F i-1 n ≤ Cp n 2p/α 1 + 1 X p i-1 n + X p i-1 n .

Estimating functions and limit theorems

In this paper, our aim is to estimate the parameters (a, b, δ, α) and we will follow the methodology developed in [START_REF] Clément | Joint estimation for SDE driven by locally stable Lévy processes[END_REF] based on estimating equations. From the previous estimates, we prove that the rescaled increment n

1/α (X i n -X i-1 n -a n + b n X i-1 n )/(δX 1/α i-1 n ) converges in L p -norm (for 1 ≤ p < α) to n 1/α (L α i n -L α i-1 n
). Moreover, using the scaling property of the Lévy pro-

cess (L α t ) t≥0 , the distribution of n 1/α (L α i n -L α i-1 n ) is equal to the distribution of L α 1 . Consequently the conditional distribution of X i n given X i-1 n = x
can be approximated by the distribution of x + a/n -bx/n + δx 1/α L α 1 /n 1/α . Denoting by ϕ α the density of the non-symmetric stable variable L α 1 with characteristic function (2.1), we will then approximate the conditional distribution of

X i n given X i-1 n = x by n 1/α δx 1/α ϕ α n 1/α δx 1/α (y -x - a n + bx n ) .
To estimate θ, we therefore consider the following approximation of the loglikelihood function

L n (θ) = n i=1 log   n 1/α δX 1/α i-1 n ϕ α   n 1/α X i n -X i-1 n -a n + b n X i-1 n δX 1/α i-1 n     . (3.1)
The stable density ϕ α has an explicit serie representation (see [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF] and [START_REF] Zolotarev | One-dimensional stable distributions[END_REF]) but in practice, it is more convenient to use the representation given in Nolan [START_REF] Nolan | Numerical calculation of stable densities and distribution functions[END_REF]. To derive our results, we do not need the explicit representation of ϕ α but only the properties that we recall in (3.4).

From now on we assume that the observations (X i/n ) 0≤i≤n are given by the stochastic equation (2.2) for the parameter value θ 0 = (α 0 , β 0 , δ 0 , α 0 ) ∈ (0, +∞) × R × (0, +∞) × (1, 2).

To simplify the presentation, we write L t = L α 0 t , we introduce the notation

∆ n i L = L i n -L i-1 n
and we set for θ = (a, b, δ, α)

z n i (θ) = n 1/α   X i n -X i-1 n -a n + b n X i-1 n δX 1/α i-1 n   . (3.2) 
A natural choice of estimating function is the approximation of the score function based on the quasi-likelihood function (3.1)

G n (θ) = -∇ θ L n (θ) = -(∂ a L n (θ), ∂ b L n (θ), ∂ δ L n (θ), ∂ α L n (θ)) T , (3.3) 
where M T denotes the transpose of a matrix M . We will estimate θ by solving the estimating equation G n (θ) = 0. Since the estimation method requires the computation of the score function G n and also of the hessian matrix ∇ θ G n , we recall some properties of the density ϕ α and introduce some more notation.

The map (x, α) → ϕ α (x), defined on R × (1, 2), admits derivatives of any order with respect to (x, α) and from Theorem 2.5.1, Corollary 2 and Theorem 2.5.2 in Zolotarev [START_REF] Zolotarev | One-dimensional stable distributions[END_REF] (we also refer to Chap.3 -14 in Sato [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]), we have the following equivalents. For each k > 0, p > 0 there exist constants C k,p,α and C k,p,α such that

∂ k x ∂ p α ϕ α (x) ∼ x→+∞ C k,p,α x -1-α-k (ln x) p , (3.4) 
∂ k x ∂ p α ϕ α (x) ∼ x→-∞ C k,p,α ξ 2-α+2k 2α
(ln |x|) p e -ξ , where ξ = (α -1)

x α α α-1 .

For k = p = 0, C 0,0,α and C 0,0,α are uniformly bounded away from 0 for α in any compact subset of [START_REF] Barczy | Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations[END_REF][START_REF] Barndorff-Nielsen | Limit theorems for multipower variation in the presence of jumps[END_REF]. For k = 0 or p = 0, C k,p,α and C k,p,α are uniformly bounded for α in any compact subset of [START_REF] Barczy | Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations[END_REF][START_REF] Barndorff-Nielsen | Limit theorems for multipower variation in the presence of jumps[END_REF]. From these equivalents, we deduce that E|L α 1 | p < ∞ for p ∈ (0, α) and we also have

E(|L α 1 | q 1 L α 1 <0 ) < ∞, ∀q > 0.
In what follows, we will use the notation (where f = ∂ x f ):

h α (x) = ϕ α ϕ α (x), k α (x) = 1 + xh α (x), f α (x) = ∂ α ϕ α ϕ α (x). (3.5) We have h α , k α , f α ∈ C ∞ (R × (1, 2), R), note also that f α = ∂ α h α .
These functions and their derivatives are not bounded (contrarily to the symmetric stable case) but from the previous equivalents they satisfy, as well as their derivatives, Assumption 3.1 below. Assumption 3.1. h : R × (1, 2) → R is continuously differentiable and for any compact set A ⊂ (1, 2), there exist C > 0 and q > 0 such that ∀x ∈ R

sup α∈A (|h(x, α)| + |∂ x h(x, α)| + |∂ α h(x, α)|) ≤ C (1 + |x| q 1 x<0 + (ln(1 + x)) q 1 x>0 ) .
This allows to deduce that h α , k α , f α and their derivatives are integrable with respect to the density ϕ α . Moreover we can prove that

E(h α (L α 1 )) = 0, E(k α (L α 1 )) = 0, E(f α (L α 1 )) = 0, (3.6) 
where the first equality follows from ϕ α (x)dx = 0, the second one from the integration by part formula xϕ α (x)dx = -ϕ α (x)dx = -1 and the third one from Lebesgue dominated Theorem ∂ α ϕ α (x)dx = 0. With similar arguments, we also have the connections

E(h α (L α 1 )) = -E(h 2 α (L α 1 )), E(f α (L α 1 )) = -E((f α h α )(L α 1 )), E((∂ α f α )(L α 1 )) = -E(f 2 α (L α 1 )), E(k α (L α 1 )) = -E((h α k α )(L α 1 )), (3.7) 
E(L α 1 f α (L α 1 )) = -E((f α k α )(L α 1 )), E(L α 1 k α (L α 1 )) = -E(k 2 α (L 1 )).
We just detail the first two ones. Since

h α (x)ϕ α (x)dx = -h α (x)ϕ α (x)dx = -h α (x) 2 ϕ α (x)dx, we deduce the first result. Combining that ∂ α f α = ∂ 2 α ϕ α /ϕ α -f 2 α with ∂ 2 α ϕ α (x)dx = 0, we obtain E((∂ α f α )(L α 1 )) = -E(f 2 α (L α 1 )
). Using the previous notation, we now give an explicit expression of the estimating function G n . We first compute the partial derivatives of z n i (θ)

∂ a z n i (θ) = - n 1/α n 1 δX 1/α i-1 n , ∂ b z n i (θ) = n 1/α n X i-1 n δX 1/α i-1 n , ∂ δ z n i (θ) = - z n i (θ) δ , ∂ α z n i (θ) = - ln n/X i-1 n α 2 z n i (θ),
and we obtain

G 1 n (θ) = -∂ a L n (θ) = n 1/α n n i=1 1 δX 1/α i-1 n h α (z n i (θ)), (3.8) 
G 2 n (θ) = -∂ b L n (θ) = - n 1/α n n i=1 X i-1 n δX 1/α i-1 n h α (z n i (θ)), (3.9) 
G 3 n (θ) = -∂ δ L n (θ) = n i=1 1 δ k α (z n i (θ)), (3.10) 
G 4 n (θ) = -∂ α L n (θ) = n i=1   ln n/X i-1 n α 2 k α (z n i (θ)) -f α (z n i (θ))   . (3.11)
To state our main statistical results, we need to establish some limit theorems for such functions, after appropriate normalizations. The first result is an uniform law of large numbers, where the uniformity is obtained for (a, b) in any compact subset A of (0, +∞) × R and for (δ, α) ∈ W (η) n a neighborhood of (δ 0 , α 0 ) defined for η > 0 by

W (η) n = {(δ, α); w -1 n δ -δ 0 α -α 0 ≤ η} with (ln n) q w n → 0 ∀q > 0, (3.12 
) where || • || denotes the Euclidean norm. This uniform law of large numbers is stated with a rate of convergence (ln n) q for q > 0 to compensate for the loss of a factor ln(n) in the joint estimation of the parameters. Theorem 3.1. Let h satisfying Assumption 3.1 and let f : (0, +∞) × (0, +∞) × (1, 2) → R be continuously differentiable. We assume that for all compact set A ⊂ (0, +∞) × (1, 2), there exist C > 0 and q > 0 such that ∀x ∈ (0, +∞) sup

(δ,α)∈A |f (x, δ, α)| + |f (x, δ, α)| + |∂ (δ,α) f (x, δ, α)| ≤ C 1 + x q + 1 x q . (3.13) With W (η) n
defined in (3.12), for any compact set A ⊂ (0, +∞) × R and ∀q > 0 we have the convergence in probability to zero of

sup θ∈A×W (η) n (ln n) q 1 n n i=1 f (X i-1 n , δ, α)h(z n i (θ), α) - 1 0 f (X s , δ 0 , α 0 )dsEh(L 1 , α 0 ) .
We next state a Central Limit Theorem for triangular arrays. This CLT is obtained for the stable convergence in law which is stronger than the usual convergence in law and appropriate to our statistical problem. This convergence is denoted by L-s --→ and we refer to Jacod and Protter [START_REF] Jacod | Discretization of processes[END_REF] for the definition and properties of the stable convergence in law. Theorem 3.2. Let H = (h j ) 1≤j≤d : R → R d . We assume that ∀ j ∈ {1, ..., d} h j satisfies Assumption 3.1 and E(h j (L 1 )) = 0. Let F = (f kj ) 1≤k,j≤d : (0, +∞) → R d×d be a continuous function. We assume that there exist C > 0 and q > 0 such that

∀x ∈ (0, +∞), ||F (x)|| ≤ C 1 + x q + 1 x q . (3.14)
Then we have the stable convergence in law with respect to σ(L s , s ≤ 1)

1 √ n n i=1 F (X i-1 n )H(z n i (θ 0 )) L-s ---→ n→∞ Σ 1/2 N , (3.15) 
where N is a standard Gaussian variable independent of Σ and

Σ = 1 0 F (X s )Σ F (X s ) T ds with Σ = (Σ k,j ), Σ k,j = E(h k h j (L 1 )) 1 ≤ k, j ≤ d.
With this background, we turn to the estimation problem.

4 Main results

Joint estimation

We first prove the existence of a rate optimal joint estimator. To this end we consider u n the block-diagonal rate matrix

u n = 1 n 1/α 0 -1/2 Id 2 0 0 1 √ n v n where Id 2 = 1 0 0 1 , v n = v 11 n v 12 n v 21 n v 22 n . (4.1) We assume that r n (θ 0 )v n → v = v 11 v 12 v 21 v 22 with det(v) > 0 and r n (θ) = 1 δ ln(n) α 2 0 1 . (4.2) We can choose for example v n = r -1
n (θ 0 ) and in that case v = Id 2 . We next define the information matrix I(θ) by

I(θ) = I 11 (θ) I 21 (θ) T I 21 (θ) I 22 (θ) . (4.3) 
I 11 (θ) and I 22 (θ) are symmetric matrices (for such symmetric matrices, we only write the lower diagonal terms and just write symm for the upper diagonal terms) given respectively by

I 11 (θ) =   1 δ 2 1 0 1 X 2/α s dsE(h 2 α (L α 1 )) symm -1 δ 2 1 0 Xs X 2/α s dsE(h 2 α (L α 1 )) 1 δ 2 1 0 X 2 s X 2/α s dsE(h 2 α (L α 1 ))   , I 22 (θ) = E(k 2 α (L α 1 )) symm -1 α 2 1 0 ln(X s )dsE(k 2 α (L α 1 )) -E(f α k α (L α 1 )) I 22 22 (θ)
, with

I 22 22 (θ) = 1 α 4 1 0 (ln X s ) 2 dsE(k 2 α (L α 1 ))+ 2 α 2 1 0 ln(X s )dsE(f α k α (L α 1 ))+E(f 2 α (L α 1 )).
The matrix I 21 (θ) is given by

I 21 (θ) = 1 δ 1 0 ds X 1/α s E(h α k α (L α 1 )) -1 δ 1 0 Xs X 1/α s dsE(h α k α (L α 1 )) I 21 21 (θ) I 21 22 (θ)
, where

I 21 21 (θ) = - 1 δα 2 1 0 ln(X s ) X 1/α s dsE(h α k α (L α 1 )) - 1 δ 1 0 ds X 1/α s E(f α h α (L α 1 )), I 21 22 (θ) = 1 δα 2 1 0 ln(X s )X s X 1/α s dsE(h α k α (L α 1 )) + 1 δ 1 0 X s X 1/α s dsE(f α h α (L α 1 )).
With this notation, we can state our main result.

Theorem 4.1. Let G n be defined by (3.3). Then there exists an estimator ( θn ) solving the equation G n (θ) = 0 with probability tending to 1, that converges in probability to θ 0 . The information matrix I(θ 0 ) defined in (4.3) is positive definite and we have the stable convergence in law with respect to σ(L s , s ≤ 1)

u -1 n ( θn -θ 0 ) L-s ---→ n→∞ I v (θ 0 ) -1/2 N , (4.4) 
where N is a standard Gaussian variable independent of I v (θ 0 ) and I v (θ 0 ) is defined by

I v (θ 0 ) = Id 2 0 0 v T I(θ 0 )
Id 2 0 0 v with v given by (4.2).

Remark 4.1. Let us discuss the optimality of the previous estimation procedure. The Local Asymptotic Normality (LAN) property or Local Asymptotic Mixed Normality (LAMN) property allows to identify the optimal rate of convergence and the minimal asymptotic variance in estimating a parameter θ. The LAN property has been established in Brouste and Masuda [START_REF] Brouste | Efficient estimation of stable Lévy process with symmetric jumps[END_REF] for the joint estimation of (a, δ, α) based on high-frequency observations of the process X t = at + δS α t , where (S α t ) is a symmetric α-stable Lévy process. Extending their result to the non-symmetric Lévy process (L α t ), one can show that the LAN property holds in the non-symmetric case with rate u n = diag(

1 n 1/α-1/2 , 1 √ n r -1
n (θ)) and information given by

I(a, δ, α) =   1 δ 2 Eh 2 α (L α 1 ) 1 δ Eh α k α (L α 1 ) -1 δ Ef α h α (L α 1 ) 1 δ Eh α k α (L α 1 ) Ek 2 α (L α 1 ) -Ef α k α (L α 1 ) -1 δ Ef α h α (L α 1 ) -Ef α k α (L α 1 ) Ef 2 α (L α 1 )   .
For the pure-jump CIR process, the optimality of estimation procedure is still an open problem (the LAMN property has not been yet established and only partial results exist for pure-jump equations, see for example [START_REF] Clément | LAMN property for the drift and volatility parameters of a sde driven by a stable Lévy process[END_REF]) but we conjecture that our estimator is rate optimal and probably efficient.

The previous result states the existence of a consistent and rate optimal estimator but does not ensure the existence of a unique root to the equation G n (θ) = 0, there might be other sequences solution to the estimating equation that are not consistent. However, global uniqueness can be obtained in the drift estimation if we assume that δ 0 and α 0 are known or are consistently estimated by δn and αn . We focus now on the estimation of the drift parameters (a, b) and consider the estimating function restricted to the drift

G (d) n (a, b) = -∇ (a,b) L n (a, b, δn , αn ) = -(∂ a L n (a, b, δn , αn ), ∂ b L n (a, b, δn , αn )) T . (4.5)
In that case, we can prove global uniqueness. Theorem 4.2. We assume that (a 0 , b 0 ) belongs to the interior of A, a compact subset of (0, +∞) × R. Let G (d) n be defined by (4.5) with

√ n ln n ( δn - δ 0 , αn -α 0 ) tight. Then any sequence (â n , bn ) that solves G (d) n (a, b) = 0 converges in probability to (a 0 , b 0 ). Such a sequence exists and is unique in the sense that if (â n , b n ) is another sequence that solves G (d) n (a, b) = 0 then P((â n , b n ) = (â n , bn ))
goes to zero as n goes to infinity. Moreover

n 1/α 0 -1/2 (ln n) 2 ân -a 0 bn -b 0 is tight.
In the next section, we give preliminary estimators ( δn , αn ) satisfying the assumptions of Theorem 4.2. Obviously, if δ 0 and α 0 are known then (â n , bn ) has the asymptotic distribution of Theorem 4.1

n 1/α 0 -1/2 ân -a 0 bn -b 0 L-s ---→ n→∞ I 11 (θ 0 ) -1/2 N with I 11 (θ 0 ) defined in (4.3).
Remark 4.2. We have not been able to prove a global result in estimating θ due to the non-symmetry of the stable process.

Preliminary estimators and one-step improvement

We now propose some preliminary estimators of the jump activity α 0 and the scaling parameter δ 0 . We will use well known power variation methods studied for stochastic processes with jumps in Barndorff-Nielsen et al. [START_REF] Barndorff-Nielsen | Limit theorems for multipower variation in the presence of jumps[END_REF]. We also refer to Woerner [START_REF] Jeannette | Purely discontinuous lévy processes and power variation: inference for integrated volatility and the scale parameter. Ofrc working papers series[END_REF], Todorov and Tauchen [START_REF] Todorov | Limit theorems for power variations of pure-jump processes with application to activity estimation[END_REF], Todorov [START_REF] Todorov | Power variation from second order differences for pure jump semimartingales[END_REF].

Following Todorov [START_REF] Todorov | Power variation from second order differences for pure jump semimartingales[END_REF], we define the p-th order power-variation of the second order differences of a pure-jump semimartingale X by

V 1 n (p, X) = n i=2 |∆ n i X -∆ n i-1 X| p where ∆ n i X = X i n -X i-1 n , V 2 n (p, X) = n i=4 |∆ n i X -∆ n i-1 X + ∆ n i-2 X -∆ n i-3 X| p ,
and consider the estimator of the jump activity

αn (p) = p log 2 log(V 2 n (p, X)/V 1 n (p, X)) 1 V 1 n (p,X) =V 2 n (p,X) . (4.6) 
From Corollary 1 in [START_REF] Todorov | Power variation from second order differences for pure jump semimartingales[END_REF], we know that αn (p) is consistent if p < α 0 and if α 0 -1

2 < p < α 0 2 ,
√ n(α n (p) -α 0 ) stably converges in law. Since we have α 0 > 1, we can use this result with p = 1/2 to estimate α 0 .

Next we estimate δ 0 by plugging αn ( 12 ) in the normalized 1/2-power variation of second order differences of the process X. Let L α 1 be an independent copy of L α 1 and set

m p (α) = E|L α 1 -L α 1 | p . (4.7)
Using (2.1), we check that E(e iu(L α

1 -L α 1 ) ) = e -2|u| α . So L α 1 -L α 1
has a symmetric stable distribution and from Masuda [START_REF] Masuda | Joint estimation of discretely observed stable Lévy processes with symmetric Lévy density[END_REF] we have for 0

< p < α m p (α) = 2 p/α 2 p Γ( p+1 2 )Γ(1 -p α ) √ πΓ(1 -p 2 ) with Γ(a) = ∞ 0 x a-1 e -x dx. (4.8)
We next define for p < α 0

δn (p) = 1 m p (α n (p)) 1 n n i=2 n p/ αn(p) ∆ n i X -∆ n i-1 X p X p/ αn(p) i-2 n . (4.9)
We will prove that the estimator δn (1/2) converges in probability to δ

1/2 0
with rate of convergence √ n ln(n) and we estimate δ 0 by [ δn ( 12 )] 2 .

Theorem 4.3. Let δn = [ δn ( 12 )] 2 , with δn (p) defined by (4.9). Then δn converges in probability to δ 0 and

√ n ln(n) ( δn -δ 0 ) is tight.
From the preliminary estimators δn and αn := αn (1/2), and using the global uniqueness result of Theorem 4.2, we estimate (a, b) with the estimating equation G (d) n defined by (4.5) and denote by (ã n , bn ) the resulting estimators. We obtain a preliminary estimator θ0,n = (ã n , bn , δn , αn ) which is consistent and from Theorems 4.2 and 4.3, we know that ln(n) -2 u -1 n ( θ0,nθ 0 ) is tight. We now describe a one-step method to improve the asymptotic properties of θ0,n . We also refer to Masuda [START_REF] Masuda | Optimal stable Ornstein-Uhlenbeck regression[END_REF] where a one-step method is proposed for the estimation of Ornstein-Ulhenbeck type processes.

We define θ1,n by

θ1,n = θ0,n -J n ( θ0,n ) -1 G n ( θ0,n ), (4.10) 
where

J n (θ) = ∇ θ G n (θ). It is shown in Section 5.6 that the convergence in probability holds sup (a,b)∈A, (δ,α)∈W (η) n ||u T n J n (θ)u n -I v (θ 0 )|| - → 0, (4.11) 
where

I v (θ 0 ) is positive definite, W (η) 
n is defined by (3.12) and A is a compact subset of (0, +∞) × R. We deduce then that u T n J n ( θ0,n )u n converges to I v (θ 0 ). Let us denote by D n the set where u T n J n ( θ0,n )u n is invertible. We have P(D n ) → 1 and θ1,n is well defined on this set. Considering θn the estimator defined in Theorem 4.1, we will prove that u -1 n ( θ1,nθn ) -→ 0 in probability.

From now on, we assume that u n is given by (4.1) with v n = r -1 n (θ 0 ) (defined in (4.2)) such that v = Id. We have G n ( θn ) = 0 on D n with P(D n ) → 1 and so from Taylor's formula, we have on

D n ∩ D n θ1,n = θ0,n -J n ( θ0,n ) -1 1 0 J n ( θn + t( θ0,n -θn ))dt ( θ0,n -θn ). Hence θ1,n -θn = J n ( θ0,n ) -1 J n ( θ0,n ) - 1 0 J n ( θn + t( θ0,n -θn ))dt ( θ0,n -θn ),
and we deduce

u -1 n ( θ1,n -θn ) =(u T n J n ( θ0,n )u n ) -1 u T n J n ( θ0,n )u n -u T n 1 0 J n ( θn + t( θ0,n -θn ))dt u n u -1 n ( θ0,n -θn ).
Using the tightness of (ln n) -2 u -1 n ( θ0,n -θ 0 ), we may assume that θ0,n ∈ A × W (η) n (as well as θn + t( θ0,nθn ) for t ∈ [0, 1]), so we obtain from (4.11) and Remark 5.1 that ∀q > 0

(ln n) q u T n J n ( θ0,n )u n -u T n 1 0 J n ( θn + t( θ0,n -θn ))dt u n → 0,
and it yields the convergence in probability u -1 n ( θ1,nθn ) -→ 0. Recalling that θn satisfies

u -1 n ( θn -θ 0 ) L-s ---→ n→∞ I v (θ 0 ) -1/2 N ,
we obtain the following result.

Corollary 4.1. The one-step estimator θ1,n converges in probability to θ 0 and we have the stable convergence in law

u -1 n ( θ1,n -θ 0 ) L-s ---→ n→∞ I(θ 0 ) -1/2 N ,
with I(θ 0 ) defined by (4.3), and u n given by (4.1)

with v n = r -1 n (θ 0 ).
We conclude with some comments on the implementation of our estimation method. From (4.6), (4.9) and (4.8) with p = 1/2, the estimators αn and δn are very simple to compute. Moreover, from the proof Theorem 4.2 (ã n , bn ) is the unique maximum of the approximated log-likelihood function L n (a, b, δn , αn ) given by (3.1), where the density of the non-symmetric stable distribution ϕ α can be evaluated from the results of Nolan [START_REF] Nolan | Numerical calculation of stable densities and distribution functions[END_REF]. Finally, the score function G n and the hessian matrix J n appearing in the one-step correction can be computed using finite differences.

Proofs

Proof of Proposition 2.1

Only (i) requires a proof since (ii) is stated in Proposition 2.8 of [START_REF] Li | Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model[END_REF].

We recall that ∀t ≥ 0, X t > 0. By Fubini and integration by parts, we can show that

E 1 X q t = C q R + u q-1 E(e -uXt )du.
The Laplace transform of X t has the explicit expression (we refer to Li [START_REF] Li | Continuous-state branching processes with immigration[END_REF], see also Section 3.1 in [START_REF] Jiao | Alpha-CIR model with branching processes in sovereign interest rate modeling[END_REF] and Proposition 2.1. in [START_REF] Barczy | Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations[END_REF])

E(e -uXt ) = exp -x 0 v t (u) - u vt(u) F (z) R(z) dz , (5.1) 
where t → v t (u) is the unique locally bounded solution of

∂ ∂t v t (u) = -R(v t (u)), v 0 (u) = u. (5.2)
For the α-CIR process, the branching mechanism and the immigration rate are given by

R(z) = δ α α z α + bz, F (z) = az, z ∈ [0, +∞), with δ = δ(α/| cos( πα 2 )|) 1/α . Equation (5.
2) is a Bernoulli differential equation, which we solve using the change of variables z t (u) = 1 vt(u) α-1 . We get the following expressions of v t (u) (see example 2.3 in Li [START_REF] Li | Continuous-state branching processes with immigration[END_REF])

if b = 0 v t (u) = ue -bt 1 + δ α αb u α-1 1 -e -(α-1)bt 1 α-1 , (5.3 
)

if b = 0 v t (u) = u α α + (α -1)δ α u α-1 t 1 α-1 .
(5.4)

We have v 0 (u) = u and by equation (5.2) t → v t (u) is non-increasing for u > u 0 , where

u 0 = 0 if b ≥ 0, ( α|b| δ α ) 1 α-1 if b < 0. Hence for u > u 0 we have ∀t > 0, u > v t (u) ≥ 0. Splitting E(1/X q t ) in two parts E 1 X q t = C q u 0 +1 0 u q-1 E(e -uXt )du + C q ∞ u 0 +1 u q-1 E(e -uXt )du ≤ C q (u 0 ) + C q ∞ u 0 +1 u q-1 E(e -uXt )du,
we deduce that to prove (2.3) we only have to check that sup

t∈[0,1] ∞ u 0 +1 u q-1 E(e -uXt )du < +∞. (5.5) Let us fix η ∈ ]0, α -1[. We have sup t∈[0,1] ∞ u 0 +1 u q-1 E(e -uXt )du ≤ ∞ u 0 +1 u q-1 sup t∈[0, 1 u η ]
E(e -uXt )du

+ ∞ u 0 +1 u q-1 sup t∈[ 1 u η ,1]
E(e -uXt )du.

But using that t → v t (u) is non-increasing for u > u 0 , we obtain from (5.1)

sup t∈[0, 1 u η ] E(e -uXt ) ≤ sup t∈[0, 1 u η ] exp(-x 0 v t (u)) ≤ exp(-x 0 v 1 u η (u)), sup t∈[ 1 u η ,1] E(e -uXt ) ≤ sup t∈[ 1 u η ,1] exp - u vt(u) F (z) R(z) dz ≤ exp -u -v 1 u η (u) a δ α α u α-1 + b , and then sup t∈[0,1] ∞ u 0 +1 u q-1 E(e -uXt )du ≤ ∞ u 0 +1 u q-1 exp(-x 0 v 1 u η (u))du + ∞ u 0 +1 u q-1 exp -(u -v 1 u η (u)) a δ α α u α-1 + b du.
From expressions (5.4) and (5.3), we have v 1 u η (u) ∼ u→∞ Cu η α-1 , and recalling that 0 < η α-1 < 1 and α < 2, we get (5.5).

Proof of Proposition 2.2

(i) The result can be deduced from Proposition 2.7 in [START_REF] Li | Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model[END_REF], but we give here a different proof. Using the Markov property

E   sup s∈[ i-1 n , i n ] s i-1 n X 1/α t-dL α t p |F i-1 n   = E x=X i-1 n sup s∈[0, 1 n ] s 0 X 1/α t-dL α t p .
Using Lemma 2.4 in [START_REF] Long | Parameter estimation for a class of stochastic differential equations driven by small stable noises from discrete observations[END_REF] with F (u) = u p and p < α

E x sup s∈[0, 1 n ] s 0 X 1/α t-dL α t p ≤ C p E x   1 n 0 X t-dt p/α   .
Hence using Proposition 2.1 equation (2.4)

E x sup s∈[0, 1 n ] s 0 X 1/α t-dL α t p ≤ C p n p/α 1 + x p/α .
(ii) Similarly we have

E   sup s∈[ i-1 n , i n ] X s -X i-1 n p |F i-1 n   = E x=X i-1 n sup s∈[0, 1 n ] |X s -x| p .
From equation (2.2) we have that

∀s ∈ 0, 1 n , X s -x = s 0 adt - s 0 bX t dt + δ s 0 X 1/α t-dL α t .
Using Proposition 2.1 equation (2.4) and Proposition 2.2 (i), we get that

E x sup s∈[0, 1 n ] |X s -x| p ≤ C p 1 n p (1 + x p ) + 1 n p/α 1 + x p/α ≤ C p n p/α (1 + x p ) . (iii) E i n i-1 n (X 1/α s--X 1/α i-1 n )dL α s p |F i-1 n = E x=X i-1 n 1 n 0 (X 1/α s--x 1/α )dL α s p .
Using Lemma 2.8 in [START_REF] Li | Asymptotic properties of estimators in a stable Cox-Ingersoll-Ross model[END_REF] with p < α

E x 1 n 0 (X 1/α s--x 1/α )dL α s p ≤ C p E x   1 n 0 X 1/α s--x 1/α α ds p/α   .
But from Taylor's Formula, we have

∀x, y ∈]0, +∞[, |y 1/α -x 1/α | = |y -x| α 1 0 ((1-u)x+uy) 1/α-1 du ≤ C|y -x| x 1-1/α , (5.6 
) and we obtain

E x   1 n 0 X 1/α s--x 1/α α ds p/α   ≤ C p x p-p/α 1 n p/α E x sup s∈[0, 1 n ] |X s -x| p .
Hence combining with (ii) it yields

E x 1 n 0 (X 1/α s--x 1/α )dL s p ≤ C p n 2p/α 1 + 1 x p + x p .

Estimation of z n

We prove in this section that the rescaled increment z n i (θ) defined by (3.2) converges to n 1/α 0 ∆ n i L. We also give a bound for the conditional expectation of |z n i (θ)| q 1 {z n i (θ)<0} . We recall that W (η)

n is defined by (3.12).

Lemma 5.1. Let 0 < p < α 0 . Then for A ⊂ (0, +∞) × R a compact set we have for some constant q > 0

E   sup (a,b)∈A, (δ,α)∈W (η) n z n i (θ) -n 1/α 0 ∆ n i L p |F i-1 n   ≤ C p   1 + 1 X q i-1 n + X q i-1 n   n p/α 0 n p + (ln(n)w n ) p , (5.7) 
and for the true value θ 0 we have the better rate of convergence

E z n i (θ 0 ) -n 1/α 0 ∆ n i L p |F i-1 n ≤ C p n p/α 0   1 + 1 X q i-1 n + X p i-1 n   .
(

Proof. We first prove (5.7). Using the Markov property, we have to bound

E x=X i-1 n sup (a,b)∈A,(δ,α)∈W (η) n z n 1 (θ) -n 1/α 0 L 1 n p .
Since X solves (2.2) for the parameter value θ 0 , we have conditionally to

X 0 = x z n 1 (θ) = n 1/α δx 1/α 1 n (a 0 -a) - 1 n 0 (b 0 X s -bx)ds + δ 0 1 n 0 X 1/α 0 s-dL s .
(5.9)

Observing that z n 1 (θ) -n 1/α 0 L 1 n = z n 1 (θ) -δ 0 δ n 1/α 0 L 1 n + δ 0 -δ δ n 1/α 0 L 1 n , we deduce z n 1 (θ) -n 1/α 0 L 1 n = n 1/α n (a 0 -a) δx 1/α - n 1/α n (b 0 -b)x δx 1/α - n 1/α δx 1/α b 0 1 n 0 (X s -x) ds + δ 0 δ n 1/α 0 x 1/α 0 1 n 0 (X 1/α 0 s--x 1/α 0 )dL s - δ 0 δ n 1/α 0 x 1/α 0 1 - n 1/α-1/α 0 x 1/α-1/α 0 1 n 0 X 1/α 0 s-dL s + δ 0 -δ δ n 1/α 0 L 1 n . For (δ, α) ∈ W (η)
n , we have |δ -δ 0 | ≤ Cw n and |α -α 0 | ≤ Cw n . Moreover using Taylor's formula

1 - n 1/α-1/α 0 x 1/α-1/α 0 = |ln(n/x)(1/α -1/α 0 )| e y , with |y| ≤ | ln(n/x)(1/α -1/α 0 )|. We have | ln(n/x)(1/α -1/α 0 )| ≤ C ln(n) 1 + x + 1
x w n and using that w n ln(n) goes to zero, we also observe that e |y| ≤ Ce c| ln(x)| ≤ C(1 + x c + 1

x c ) for c > 0. We then deduce

1 - n 1/α-1/α 0 x 1/α-1/α 0 ≤ C 1 + x q + 1
x q ln(n)w n for q > 0.

(5.10)

It yields sup (a,b)∈A, (δ,α)∈W (η) n z n 1 (θ) -n 1/α 0 L 1/n ≤ C 1 + x q + 1 x q n 1/α 0 n + n 1/α 0 n sup s∈[0, 1 n ] |X s -x| + n 1/α 0 | 1 n 0 (X 1/α 0 s--x 1/α 0 )dL s | + ln(n)w n n 1/α 0 | 1 n 0 X 1/α 0 s-dL s | + Cw n n 1/α 0 |L 1 n |.
Combining this result with Proposition 2.2, and using that E(|n

1/α 0 L 1/n | p ) = E(|L 1 | p ) < +∞, for p ∈ (0, α 0 ), we deduce finally for some q > 0 E x sup (a,b)∈A, (δ,α)∈W (η) n z n 1 (θ) -n 1/α 0 L 1/n p ≤ C p (1 + 1 x q + x q ) n p/α 0 n p + 1 n p/α 0 +(ln(n)w n ) p ] ,
and (5.7) is proved.

Turning to (5.8), we have the simpler decomposition conditionally to

X 0 = x z n 1 (θ 0 ) -n 1/α 0 L 1/n = -b 0 n 1/α 0 δ 0 x 1/α 0 1 n 0 (X s -x) ds + n 1/α 0 x 1/α 0 1 n 0 (X 1/α 0 s--x 1/α 0 )dL s .
Using Proposition 2.2 we obtain

E x z n 1 (θ 0 ) -n 1/α 0 L 1/n p ≤ C p n p/α 0 1 + 1 x q + x p . Lemma 5.2. Let Ω K = {sup s∈[0,1] X s ≤ K} and W (η)
n be defined by (3.12). We have for any compact set A ⊂ (0, +∞) × R and ∀q > 0

E   sup (a,b)∈A, (δ,α)∈W (η) n |z n i (θ)| q 1 z n i (θ)<0 1 Ω K |F i-1 n   ≤ C q,K   1 + 1 X q i-1 n   . Proof. We introduce the localisation Ω i,n K = {sup s∈[ i-1 n , i n ] X s ≤ K}. Since Ω K ⊂ Ω i,n
K , we just have to bound

E   sup (a,b)∈A, (δ,α)∈W (η) n |z n i (θ)| q 1 z n i (θ)<0 1 Ω i,n K |F i-1 n   ,
and from the Markov property, this reduces to bound

E x=X i-1 n   sup (a,b)∈A, (δ,α)∈W (η) n |z n 1 (θ)| q 1 z n 1 (θ)<0 1 Ω 1,n K   .
From equation (5.9), conditionally to X 0 = x, we can write

z n 1 (θ) = 1 x 1/α Y θ,n + δ 0 δ n 1/α-1/α 0 I n 1 ,
where

Y θ,n = n 1/α δ 1 n (a 0 -a) - 1 n 0 (b 0 X s -bx)ds ,
and

I n 1 = n 1/α 0 1 n 0 X 1/α 0 s-dL s .
Observing that sup

(a,b)∈A, (δ,α)∈W (η) n |Y θ,n |1 Ω 1,n K ≤ C K ,
there exists a constant M K > 0 such that

z n 1 (θ) ≤ -M K x 1/α ∩ Ω 1,n K ⊂ {I n 1 < 0} ∩ Ω 1,n K .
Using the decomposition

1 z n 1 (θ)<0 = 1 z n 1 (θ)≤ -M K x 1/α + 1 -M K x 1/α <z n 1 (θ)<0 , we deduce then sup (a,b)∈A, (δ,α)∈W (η) n |z n 1 (θ)| q 1 z n 1 (θ)<0 1 Ω 1,n K ≤ C K 1 + 1 x q 1 + |I n 1 | q 1 {I n 1 <0} 1 Ω 1,n K .
Consequently, we just have to bound

E x |I n 1 | q 1 {I n 1 <0} 1 Ω 1,n K .
To this end, we first remark that from Fubini's Theorem we have

E x |I n 1 | q 1 {I n 1 <0} 1 Ω 1,n K = +∞ 0 qs q-1 P x Ω 1,n K ∩ {I n 1 < -s} ds. (5.11)
Using the change of time described in Theorem 1.5 of [START_REF] Kallsen | Time change representation of stochastic integrals[END_REF], that we can apply as ∀t > 0, X t ≥ 0, we have the representation

I n 1 = L Tn,1
, where Tn,1 =

1 n 0 X s ds,
and ( Lt ) t≥0 is a α 0 -stable Lévy process (with characteristic function (2.1)) defined on the same probability space. By definition of Ω 1,n

K 0 ≤ 1 Ω 1,n K Tn,1 ≤ K, then ∀s > 0, P x Ω 1,n K ∩ {I n 1 < -s} ≤ P x inf t∈[0,K] Lt < -s ,
and from Lemma 2.4 in [START_REF] Fleischmann | Optimal local Hölder index for density states of superprocesses with (1+β)-branching mechanism[END_REF] we obtain

∀s > 0, P x Ω 1,n K ∩ {I n 1 < -s} ≤ exp - α 0 -1 α 0 α 0 α 0 -1 s α 0 α 0 -1 K 1 α 0 -1 .
(5.12) Reporting (5.12) in (5.11), it yields

E x |I n 1 | q 1 {I n 1 <0} 1 Ω 1,n K ≤ C q,K .
This allows to conclude that

E x   sup (a,b)∈A, (δ,α)∈W (η) n |z n 1 (θ)| q 1 z n 1 (θ)<0 1 Ω 1,n K   ≤ C q,K 1 + 1 x q .

Proof of Theorem 3.1

We first remark that if h satisfies Assumption 3.1 then using Taylor's formula we have ∀α, α ∈ (1, 2) and ∀x, z ∈ R

|h(x, α) -h(z, α)| ≤C |x -z| (1 + |x| q 1 x<0 + (ln(1 + x)) q 1 x>0
+|z| q 1 z<0 + (ln(1 + z)) q 1 z>0 ) , (5.13)

h(x, α) -h(x, α ) ≤ C α -α (1 + |x| q 1 x<0 + (ln(1 + x)) q 1 x>0 ) .
To prove the result of Theorem 3.1, we check the following convergences in probability sup

θ∈A×W (η) n (ln n) q 1 n n i=1 f (X i-1 n , δ, α) -f (X i-1 n , δ 0 , α 0 ) h(z n i (θ), α) → 0, (5.14) sup θ∈A×W (η) n (ln n) q 1 n n i=1 f (X i-1 n , δ 0 , α 0 ) h(z n i (θ), α) -h(n 1/α 0 ∆ n i L, α) → 0, (5.15) sup θ∈A×W (η) n (ln n) q 1 n n i=1 f (X i-1 n , δ 0 , α 0 ) h(n 1/α 0 ∆ n i L, α) -h(n 1/α 0 ∆ n i L, α 0 ) → 0, (5.16) 
(ln n) q 1 n n i=1 f (X i-1 n , δ 0 , α 0 ) h(n 1/α 0 ∆ n i L, α 0 ) -E(h(L 1 , α 0 )) → 0, (5.17) 
(ln n) q 1 n n i=1 f (X i-1 n , δ 0 , α 0 ) - 1 0 f (X s , δ 0 , α 0 )ds → 0. (5.18)
To simplify the presentation, in the proof of (5.15)-(5.18), we omit the dependence in (δ 0 , α 0 ) in the expression of f . Proof of (5.18). First we have 1 0 |f (X s )| ds < +∞ a.e. as a consequence of Proposition 2.1 and as s → X s is càdlàg. Next we set

I n = (ln n) q 1 n n i=1 f (X i-1 n ) - 1 0 f (X s )ds .
Introducing the localisation Ω K = {sup s∈[0,1] X s ≤ K}, we just have to prove the convergence to zero of I n 1 Ω K , ∀ K > 0. But from Taylor's formula

I n 1 Ω K ≤ (ln n) q 1 0 f (X s ) -f (X ns n ) ds 1 Ω K ≤ C K (ln n) q 1 0 X s -X ns n   1 + 1 X q s + 1 X q ns n   ds.
Therefore using successively Fubini's Theorem and Hölder's inequality with 1 < p < α 0

E (I n 1 Ω K ) ≤ C K (ln n) q 1 0 E X s -X ns n p 1/p   E   1 + 1 X q s + 1 X q ns n   p    1/p ds.
From Proposition 2.2 and Proposition 2.1, we get E (I n 1 Ω K ) ≤ C p,K (ln n) q /n 1/α 0 and we deduce the result. Proof of (5.17). We recall classical results on the convergence in probability of triangular arrays (see [START_REF] Jacod | Discretization of processes[END_REF]). Let (ζ n i ) be a triangular array such that

ζ n i is F i-1 n -measurable. To prove that n i=1 ζ n i → 0 in probability, it is sufficient to check the following convergences in probability n i=1 E(ζ n i |F i-1 n ) → 0 and n i=1 E(|ζ n i | 2 |F i-1 n ) → 0.
Setting

ζ n i = (ln n) q n f (X i-1 n ) h(n 1/α 0 ∆ n i L, α 0 ) -E(h(L 1 , α 0 )) , we check immediately E(ζ n i |F i-1 n ) = 0. Next we deduce from Assumption 3.1 ∀p > 0, E (|h(L 1 , α 0 )| p ) < +∞,
and it yields

E(|ζ n i | 2 |F i-1 n ) = (ln n) 2q n 2 f (X i-1 n ) 2 Var(h(L 1 , α 0 )).
We conclude using the convergence in probability 5.18

1 n n i=1 f (X i-1 n ) 2 → 1 0 f (X s ) 2 ds.
Proof of (5.14). We use as previously the truncation Ω K and set

T n = sup (a,b)∈A, (δ,α)∈W (η) n (ln n) q n n i=1 f (X i-1 n , δ, α)-f (X i-1 n , δ 0 , α 0 ) h(z n i (θ), α) 1 Ω K .
A Taylor expansion, assumption (3.13), and the definition of

W (η) n give T n ≤ C K (ln n) q w n n n i=1   1 + 1 X q i-1 n   sup (a,b)∈A, (δ,α)∈W (η) n |h(z n i (θ), α)| 1 Ω K ,
and taking the expectation

ET n ≤ C K (ln n) q w n n n i=1 E   (1 + 1 X p i-1 n )E   sup (a,b)∈A, (δ,α)∈W (η) n |h(z n i (θ), α)| 1 Ω K |F i-1 n     .
But from Assumption

n |h(z n i (θ), α)| 1 Ω K ≤ C   1 + sup (a,b)∈A, (δ,α)∈W (η) n |z n i (θ)| q 1 z n i (θ)<0 + sup (a,b)∈A, (δ,α)∈W (η) n (ln(1 + z n i (θ))) q 1 z n i (θ)>0   1 Ω K . Observing from (3.2) that sup (a,b)∈A, (δ,α)∈W (η) n ln(1 + |z n i (θ)|)1 Ω K ≤ C K ln(n) 1 + 1 X i-1 n , 3.1 sup (a,b)∈A, (δ,α)∈W (η) 
and using Lemma 5.2, we deduce

E   sup (a,b)∈A, (δ,α)∈W (η) n |h(z n i (θ), α)| 1 Ω K |F i-1 n   ≤ C K (ln n) q   1 + 1 X q i-1 n   .
Hence from Proposition 2.1 ET n ≤ C K (ln n) q w n and we conclude using (3.12). Proof of (5.16). We get from Assumption 3.1, (3.13), (5.13) and the defini-

tion of W (η) n sup (a,b)∈A, (δ,α)∈W (η) n (ln n) q n n i=1 f (X i-1 n ) h(n 1/α 0 ∆ n i L, α) -h(n 1/α 0 ∆ n i L, α 0 ) 1 Ω K ≤ C K (ln n) q w n n n i=1 (1 + 1 X q i-1 n ) 1 + |n 1/α 0 ∆ n i L| q 1 n 1/α 0 ∆ n i L<0 +(ln(1 + n 1/α 0 ∆ n i L)) q 1 n 1/α 0 ∆ n i L>0 .
Taking the expectation, using the properties of the Lévy process (L t ) and Proposition 2.1, we deduce the result. Proof of (5.15). Using Assumption 3.1, (3.13) and (5.13)

E sup (a,b)∈A, (δ,α)∈W (η) n (ln n) q n n i=1 f (X i-1 n ) h(z n i (θ), α) -h(n 1/α 0 ∆ n i L, α) 1 Ω K ≤ C K (ln n) q n n i=1 E   sup (a,b)∈A, (δ,α)∈W (η) n z n i (θ) -n 1/α 0 ∆ n i L 1 Ω K H i,n   , (5.20) 
where

H i,n = (1 + 1 X q i-1 n )   1 + sup (a,b)∈A, (δ,α)∈W (η) n |z n i (θ)| q 1 z n i (θ)<0 1 Ω K + sup (a,b)∈A, (δ,α)∈W (η) n ln 
(1 + z n i (θ)) q 1 z n i (θ)>0 1 Ω K + n 1/α 0 ∆ n i L q 1 n 1/α 0 ∆ n i L<0 + ln(1 + |n 1/α 0 ∆ n i L|) q 1 n 1/α 0 ∆ n i L>0
. We use Hölder's inequality with 

z n i (θ) -n 1/α 0 ∆ n i L p 1 Ω K   ≤ C p,K ( n p/α 0 n p + (ln(n)w n ) p ).
Since ∀q > 0 (ln n) q w n → 0, we obtain the convergence to zero of the righthand side term of (5.20).

Proof of Theorem 3.2

We first prove the following convergence in probability for k, j ∈ {1, ..., d} 

1 √ n n i=1 f kj (X i-1 n ) h j (z n i (θ 0 )) -h j (n 1/α 0 ∆ n i L) → 0. ( 5 
E 1 √ n n i=1 f kj (X i-1 n ) h j (z n i (θ 0 )) -h j (n 1/α 0 ∆ n i L) 1 Ω K ≤ C K 1 √ n n i=1 E z n i (θ 0 ) -n 1/α 0 ∆ n i L 1 Ω K H i,n,0 ,
where

H i,n,0 =   1 + 1 X q i-1 n   1 + |z n i (θ 0 )| q 1 z n i (θ 0 )<0 1 Ω K + ln(1 + z n i (θ 0 )) q 1 z n i (θ 0 )>0 1 Ω K + |n 1/α 0 ∆ n i L| q 1 n 1/α 0 ∆ n i L<0 + ln(1 + |n 1/α 0 ∆ n i L|) q 1 n 1/α 0 ∆ n i L>0 .
We use Hölder's inequality with 

E z n i (θ 0 ) -n 1/α 0 ∆ n i L p 1 Ω K ≤ C p,K 1 n p/α 0 .
Consequently we obtain

E 1 √ n n i=1 f kj (X i-1 n , θ 0 ) h j (z n i (θ 0 )) -h j (n 1/α 0 ∆ n i L) 1 Ω K ≤ C p,K √ n ln n n 1/α 0 .
The results follows from 1 α 0 > 1 2 . We now show that

1 √ n n i=1 F (X i-1 n )H(n 1/α 0 ∆ n i L) L-s ---→ n→∞ Σ 1/2 N . (5.22)
We will prove the stable convergence in law with respect to σ(L s , s ≤ 1) of the process

Γ n t = 1 √ n nt i=1 F (X i-1 n )H(n 1/α 0 ∆ n i L), t ∈ [0, 1],
in D([0, 1], R d ) equipped with the Skorokhod topology, following the proof of Theorem 3.2 in [START_REF] Clément | Estimating functions for SDE driven by stable Lévy processes[END_REF]. To this end we introduce the processes

L n t = nt i=1 ∆ n i L, t ∈ [0, 1], Γ n t = 1 √ n nt i=1 H(n 1/α 0 ∆ n i L), t ∈ [0, 1].
The process (L n t ) t converges in probability to (L t ) t for the Skorokhod topology and according to Lemma 2.8 in [START_REF] Jacod | The Euler scheme for Lévy driven stochastic differential equations: limit theorems[END_REF], if (L n 1 , Γ n 1 ) converges in law to (L 1 , γ ) where γ is a Gaussian variable independent of L 1 with variance Σ where for 1 ≤ j, k ≤ d Σ jk = E(h j h k (L 1 )), (5.23) then there exists a d-dimensional standard Brownian motion (B t ) = (B j t ) 1≤j≤d independent of (L t ) such that the processes (L n , Γ n , Γ n ) converge in law to (L, Γ, (Σ ) 1/2 B), where

Γ t = t 0 F (X s )(Σ ) 1/2 dB s .
This result implies the stable convergence stated in Theorem 3.2.

To study the convergence in law of (L n 1 , Γ n 1 ), we denote by Φ n the characteristic function of (L n 1 , Γ n 1 ) and by φ n the characteristic function of the

(L 1 n , 1 √ n H(n 1/α 0 L 1 n )). Then we have log Φ n = n log φ n ,
and we just have to study the asymptotic behaviour of φ n . By definition

∀u ∈ R, v ∈ R d , φ n (u, v) = E e iuL 1 n +i d j=1 v j 1 √ n h j (n 1/α 0 L 1 n ) .
A Taylor expansion of the exponential function gives

φ n (u, v) = Ee iuL 1 n + i 1 √ n d j=1 v j Ee iuL 1 n h j (n 1/α 0 L 1 n ) - 1 2n d j=1 v 2 j Ee iuL 1 n h 2 j (n 1/α 0 L 1 n ) - 1 n 1≤j<k≤d v j v k Ee iuL 1 n h j h k (n 1/α 0 L 1 n ) + o(1/n),
where we used that ∀ 1 ≤ j ≤ d, ∀ p > 0, E (|h j (L 1 )| p ) < +∞ to get

∀ 1 ≤ j, k, l ≤ d 1 n √ n E(e iuL 1 n h j h k h l (n 1/α 0 L 1 n )) ≤ 1 n √ n E(|h j h k h l | (L 1 )) = o(1/n).
We now study each term in the expansion of φ n . 1. Ee

iuL 1 n = (Ee iuL 1 ) 1/n = 1 + ψ(u)/n + o(1/n)
where ψ is the Lévy-Khintchine exponent of L 1 . 2. For 1 ≤ j ≤ d using the self-similarity property Ee andE(|L 1 h j (L 1 )|) < +∞ by Hölder's inequality using α 0 > 1. Hence

iuL 1 n h j (n 1/α 0 L 1 n ) = Ee iuL 1 /n 1/α 0 h j (L 1 ). But E(e iuL 1 /n 1/α 0 -1)h j (L 1 ) ≤ |u| n 1/α 0 E(|L 1 h j (L 1 )|),
Ee iuL 1 n h j (n 1/α 0 L 1 n ) = o(1/
√ n) since Eh j (L 1 ) = 0. 3. For 1 ≤ j ≤ d using the self-similarity property and by dominated convergence

Ee iuL 1 n h 2 j (n 1/α 0 L 1 n ) = Ee iuL 1 /n 1/α 0 h 2 j (L 1 ) = Eh 2 j (L 1 ) + o(1).
4. In the same way for 1 ≤ j, k ≤ d, Ee

iuL 1 n h j h k (n 1/α 0 L 1 n ) = Eh j h k (L 1 )+ o(1).
Putting all these results together, we finally obtain the convergence

log Φ n = n log φ n → ψ(u) - 1 2 d j=1 v 2 j Eh 2 j (L 1 ) - 1≤j<k≤d v j v k Eh j h k (L 1 ),
and we get the convergence in law of the vector (L n 1 , Γ n 1 ) to (L 1 , γ ) where γ is a Gaussian variable independent of L 1 with variance where γ is a Gaussian variable independent of L 1 with variance γ defined by (5.23). This achieves the proof of Theorem (3.2).

Proof of Theorem 4.1

To prove existence, consistency and asymptotic normality of estimating functions based estimators, we adapt to our framework the sufficient conditions established in Sørensen [START_REF] Sørensen | On asymptotics of estimating functions[END_REF] (to obtain Theorem 2.3, Corollary 2.5 and Theorem 2.8), we also refer to Jacod and Sørensen [START_REF] Jacod | A review of asymptotic theory of estimating functions[END_REF]. We recall that the estimating function G n is given by (3.8)- (3.11), that u n is defined in (4.1) and we set J n (θ) = ∇ θ G n (θ). With this notation, Theorem 4.1 is a consequence of the two following sufficient conditions :

1. ∀η > 0 we have the following convergence in probability sup

θ∈{||u -1 n (θ-θ 0 )||≤η} u T n J n (θ)u n -I v (θ 0 ) → 0,
where I v (θ 0 ) is a positive definite matrix.

2. (u T n G n (θ 0 )) n stably converges in law with respect to the σ-field σ(L s , s ≤ 1) to I v (θ 0 ) 1/2 N where N is a standard Gaussian variable independent of I v (θ 0 ). The matrix J n (θ) = ∇ θ G n (θ) has the following expression

J n (θ) =     ∇ θ G 1 n (θ) T ∇ θ G 2 n (θ) T ∇ θ G 3 n (θ) T ∇ θ G 4 n (θ) T     = J 11 n (θ) J 21 n (θ) T J 21 n (θ) J 22 n (θ) , (5.24) 
with

J 11 n (θ) = n 2/α n 2 n i=1     -1 δ 2 X 2/α i-1 n h α (z n i (θ)) symm X i-1 n δ 2 X 2/α i-1 n h α (z n i (θ)) - X 2 i-1 n δ 2 X 2/α i-1 n h α (z n i (θ))     , J 21 n (θ) = n 1/α n n i=1       -1 δ 2 X 1/α i-1 n k α (z n i (θ)) X i-1 n δ 2 X 1/α i-1 n k α (z n i (θ)) - ln n/X i-1 n δα 2 X 1/α i-1 n k α (z n i (θ)) + 1 δX 1/α i-1 n f α (z n i (θ)) J 21 n,i,22 (θ)       , J 22 n (θ) = n i=1   -1 δ 2 [k α (z n i (θ)) + z n i (θ)k α (z n i (θ))] symm - ln n/X i-1 n α 2 δ z n i (θ)k α (z n i (θ)) + z n i (θ) δ f α (z n i (θ)) J 22 n,i,22 (θ))   , J 21 n,i,22 (θ) = ln n/X i-1 n X i-1 n δα 2 X 1/α i-1 n k α (z n i (θ)) - X i-1 n δX 1/α i-1 n f α (z n i (θ)), J 22 n,i,22 (θ) = -∂ α f α (z n i (θ)) - ln(n/X i-1 n ) 2 α 4 z n i (θ)k α (z n i (θ)) + ln n/X i-1 n α 2 - 2 α k α (z n i (θ)) + 2z n i (θ)f α (z n i (θ)) .
1. Convergence of u T n J n (θ)u n . We will prove the convergence in probability sup

(a,b)∈A, (δ,α)∈W (η) n u T n J n (θ)u n -I v (θ 0 ) - → 0,
for A a compact subset of (0, +∞) × R and W (η) n defined in (3.12). Using the expressions of J n , u n and r n (defined in (4.2)), we obtain after some calculus

u T n J n (θ)u n = n 2/α n 2/α 0 I 11 n (θ) n 1/α n 1/α 0 I 21 n (θ) T r n (θ)v n n 1/α n 1/α 0 v T n r T n (θ)I 21 n (θ) v T n r T n (θ)I 22 n (θ)r n (θ)v n + v T n R n (θ)v n , (5.25) with 
I 11 n (θ) = 1 n n i=1     -1 δ 2 X 2/α i-1 n h α (z n i (θ)) symm X i-1 n δ 2 X 2/α i-1 n h α (z n i (θ)) - X 2 i-1 n δ 2 X 2/α i-1 n h α (z n i (θ))     , I 21 n (θ) = 1 n n i=1       -1 δX 1/α i-1 n k α (z n i (θ)) X i-1 n δX 1/α i-1 n k α (z n i (θ)) ln X i-1 n δα 2 X 1/α i-1 n k α (z n i (θ)) + 1 δX 1/α i-1 n f α (z n i (θ)) I 21 n,i,22 (θ)       , I 22 n (θ) = 1 n n i=1 -z n i (θ)k α (z n i (θ)) symm ln(X i-1 n ) α 2 z n i (θ)k α (z n i (θ)) + z n i (θ)f α (z n i (θ)) I 22 n,i,22 (θ) , I 21 n,i,22 (θ) = - ln X i-1 n X i-1 n δα 2 X 1/α i-1 n k α (z n i (θ)) - X i-1 n δX 1/α i-1 n f α (z n i (θ)), I 22 n,i,22 (θ) = - (ln(X i-1 n )) 2 α 4 z n i (θ)k α (z n i (θ))-2 ln(X i-1 n ) α 2 z n i (θ)f α (z n i (θ))-∂ α f α (z n i (θ)), R n (θ) = 1 n n i=1 -1 δ 2 k α (z n i (θ)) 0 0 2 α 3 k α (z n i (θ))(ln(X i-1 n ) -ln(n)) .
Now using the definition of r n and W (η)

n we have sup (δ,α)∈W (η) n ||r n (θ) -r n (θ 0 )|| ≤ C ln(n)w n , hence by definition of v sup (δ,α)∈W (η) n ||v n r n (θ) -v|| = sup (δ,α)∈W (η) n ||v n r n (θ 0 ) -v + v n (r n (θ) -r n (θ 0 ))|| → 0.
Moreover from Theorem 3.1, observing that E(k α 0 (L 1 )) = 0 from (3.6) and that

||v n || ≤ C ln(n), it is immediate that sup (a,b)∈A, (δ,α)∈W (η) n v T n R n (θ)v n → 0.
Consequently from the factorisation (5.25) and observing also that sup (ln n) q u T n J n (θ)u n -I(θ 0 ) -→ 0.

α∈W (η) n n 1/α n 1/α 0 -1 → 0,

Stable convergence in law.

To study the convergence in law of u T n G n (θ 0 ) we write

u T n G n (θ 0 ) = 1 √ n Id 2 0 0 v T n r n (θ 0 ) T n i=1           1 δ 0 X 1/α 0 i-1 n h α 0 (z n i (θ 0 )) - X i-1 n δ 0 X 1/α 0 i-1 n h α 0 (z n i (θ 0 )) k α 0 (z n i (θ 0 )) - ln(X i-1 n ) α 2 0 k α 0 (z n i (θ 0 )) -f α 0 (z n i (θ 0 ))          
, where h α 0 , k α 0 and f α 0 satisfy Assumption 3. 

α 2 0 -1      , H =     h α 0 h α 0 k α 0 f α 0     ,
and since by assumption r n (θ 0 )v n → v, we conclude that u T n G n (θ 0 ) stably converges in law with respect to the σ-field σ(L s , s ≤ 1) to I v (θ 0 ) 1/2 N where N is a standard Gaussian variable independent of I v (θ 0 ).

Proof of Theorem 4.2

We consider the normalised criteria

G n (a, b, δ, α) = n n 2/α G 1 n (θ) G 2 n (θ) = 1 n 1/α n i=1     1 δX 1/α i-1 n h α (z n i (θ)) -X i-1 n δX 1/α i-1 n h α (z n i (θ))     , (5.26) 
and we set G n (a, b) = 0 and using Theorem 2.7.a) of Jacod and Sørensen [START_REF] Jacod | A review of asymptotic theory of estimating functions[END_REF], the global uniqueness result is a consequence of the following conditions (recalling that (a 0 , b 0 ) is an interior point of A, where A is a compact subset of (0, +∞) × R) : ∇ (δ,α) G n (a 0 , b 0 , δ 0 + t( δn -δ 0 ), α 0 + t(α n -α 0 ))dt δn -δ 0 αn -α 0 .

. 21 )

 21 Using Assumption 3.1, (3.14) and (5.13) with the truncation Ω K

2 ,

 2 the uniform convergence of u T n J n (θ)u n reduces to the uniform convergence of I n (θ), for θ ∈ (a, b) × W (η) n . From Theorem 3.1 combined with the connections (3.7) we deduce the convergence in probability, sup (a,b)∈A, (δ,α)∈W (η) n ||I n (θ) -I(θ 0 )|| → 0, with I(θ 0 ) defined by (4.3) and finally from (5.25), we obtain sup (a,b)∈A, (δ,α)∈W(η) n u T n J n (θ)u n -I v (θ 0 ) → 0.It remains to check that I(θ 0 ) is positive definite. Let X = (x, y, z, w) T ∈ R 4 and consider the quadratic form Q(X) = X T I(θ 0 )X. An explicit calculus leads to the factorisation 0 s h α 0 (u)y +k α 0 (u)z -[f α 0 (u) + ln(X s ) α 0 k α 0 (u)]w and the result follows.

Remark 5 . 1 .

 51 If v n = r n (θ 0 ) -1 , then v = Id 2 and sup (δ,α)∈W (η) n ||v n r n (θ) -v|| ≤ (ln n) 2 w n .So in that case we obtain the convergence in probability ∀q > 0, sup (a,b)∈A, (δ,α)∈W (η) n

F

  1 and from (3.6)E(h α 0 (L 1 )) = E(k α 0 (L 1 )) = E(f α 0 (L 1 )) = 0.So we can apply Theorem 3.2 with

n

  (a, b) = G n (a, b, δn , αn ). Solving G (d) n (a, b) = 0 is equivalent to solve G (d)

hhn

  (i) there exists G(d) defined on A, continuously differentiable, such that we have the convergence in probabilityG (d) n (a 0 , b 0 ) → 0, G (d) (a 0 , b 0 ) = 0 and (a 0 , b 0 ) is the unique root of G (d) (a, b) = 0,(ii) we have the convergence in probability sup(a,b)∈A ∇ (a,b) G (d) n (a, b) -∇ (a,b) G (d) (a, b) → 0,and∇ (a,b) G (d) (a 0 , b 0 ) is non-singular with probability one.We start by proving (ii). A simple computation gives∇ (a,b) G αn (z n i (a, b, δn , αn )) αn (z n i (a, b, δn , αn ))For η > 0, we consider the neighborhood of (δ 0 , α 0 ) W (η) n = {(δ, α); satisfies (3.12) and since√ n ln n ( δn -δ 0 , αn -α 0 ) is tight, we have sup n P(( δn , αn ) / ∈ W (η) n ) ---→ η→∞ 0.So introducing the localisation 1 ( δn, αn)∈W (η) n , we just have to prove the convergence in probability sup(a,b)∈A, (δ,α)∈W (η) n ∇ (a,b) G n (a, b, δ, α) -∇ (a,b) G (d) (a, b) → 0.This convergence is immediate from Theorem 3.1. Moreover, from (3.7) we check∇ (a,b) G (d) (a 0 , b 0 ) = I 11 (θ 0 ),which is non-singular from Theorem 4.1. We now turn to (i). We have from Taylor's formula G (d) n (a 0 , b 0 ) = G n (a 0 , b 0 , δ 0 , α 0 ) (5.27) + 1 0

  1 p + 1 p = 1 and p < α 0 to bound (5.20). From Lemma 5.2, Proposition 2.1 and (5.19) we have immediately

				E H p i,n ≤ C p ,K (ln n) p .
	n Moreover since Ω K ⊂ {X i-1	≤ K}, we deduce combining Lemma 5.1 equa-
	tion (5.7) with Proposition 2.1
			
	E		sup
			(a,b)∈A, (δ,α)∈W	(η) n

Since E(h α 0 (L 1 )) = 0, we deduce from Theorem 3.2 that n 1/α 0 √ n G n (a 0 , b 0 , δ 0 , α 0 ) converges in law and using 1/α 0 > 1/2, we conclude that G n (a 0 , b 0 , δ 0 , α 0 ) converges in probability to zero.

For the second term, introducing as previously the localisation 1 ( δn, αn)∈W (η) n , we just have to prove the convergence in probability sup (δ,α)∈W (η) n 1 0 ∇ (δ,α) G n (a 0 , b 0 , δ 0 + t(δ -δ 0 ), α 0 + t(α -α 0 ))dt δ -δ 0 α -α 0 → 0.

(5.28) But from (5.26)

Using Theorem 3.1, we see from the expression of

we deduce (5.28) and we conclude that G To finish the proof of Theorem 4.2, it remains to show that

n (â n , bn ) = 0 on a set D n with P(D n ) → 1, and from Taylor's formula, we obtain on

From ii) and using that (â n , bn ) converges in probability to (a 0 , b 0 ), we have the convergence in probability

where I 11 (θ 0 ) is non-singular.

Consequently, we just have to prove the tightness of

n (a 0 , b 0 ). We study each term of the expansion (5.27). As in the proof of (i), we see from Theorem 3.2 that n 1/α 0 √ n(ln n) 2 G n (a 0 , b 0 , δ 0 , α 0 ) converges in probability to zero. Turning to the second term in (5.27) and proceeding as in (i), we have the tightness of sup (δ,α)∈W (η)

This shows the tightness of

Proof of Theorem 4.3

Using that δn -

and that

0 ) is tight. We recall that αn := αn ( 12 ) and δn ( 12 ) are respectively defined by (4.6) and (4.9). We start with the decomposition δn (

where

.

We will prove below that 

) .

Combining these results with (5.29), we can write

and recalling that √ n(α n -α 0 ) stably converges in law we obtain both the convergence of δn ( 12 ) to δ

and the tightness of

We end the proof of Theorem 4.3 by showing that

0 in probability and that

0 ) converges stably in law. We have the decomposition

Following Todorov [START_REF] Todorov | Power variation from second order differences for pure jump semimartingales[END_REF] (Term A 1 in the proof of Theorem 2), we have that

converges stably in law and we conclude by showing that

(5.30)

We have from (2.2) after some calculus

with

Consequently with this notation

(5.31) But we have the bound

where from Proposition (2.1) and Proposition (2.2),

Now using the fact that the density of a symmetric α-stable distribution is bounded, we have P(|ξ

From Hölder's inequality with p < α 0 , choosing p arbitrarily close to α 0 hence 1/p arbitrarily close to α 0 -1 α 0 and p /2 > 1

with l > 0 arbitrarily small. Moreover using Hölder's inequality with p/2 < α 0 , choosing p arbitrarily close to 2α 0 hence 1/p arbitrarily close to α 0 -1/2

Taking n = n -1 α 0 +1 and observing that 1 α 0 + 1 α 0 +1 ( α 0 -1 α 0 -1/2) > 1/2 and

> 1/2, we conclude that for some l > 0

Taking the expectation in (5.31) and combining with the previous inequality we obtain (5.30).
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