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Posets and Fractional Calabi-Yau Categories

F. Chapoton

March 20, 2023

To see a World in a Grain of Sand
And a Heaven in a Wild Flower
Hold Infinity in the palm of your hand
And Eternity in an hour

William Blake

Abstract

This article deals with a relationship between derived categories of

modules over some partially ordered sets and hypothetical triangulated

categories arising from quasi-homogeneous isolated singularities. It pro-

duces heuristics for the existence of derived equivalences between posets,

using the geometric category as a phantom intermediate. The notion of

Weight plays a central role as a simple footprint of the derived categories

under consideration.

Introduction

The aim of this article is to explain a simple idea that starts from combina-
torics of partially ordered sets (posets) and leads to conjectures about fractional
Calabi-Yau categories and their derived equivalences.

Let us start with an infinite family of combinatorial objects, given as the
disjoint union of finite sets Pn indexed for example by positive integers. Suppose
that for every n, the cardinality of Pn can be written under the specific shape

|Pn| =

∏m
i=1(D − di)
∏m

i=1 di
,

where m is a positive integer, d1, . . . , dm is a multi-set of positive integers and
D is a positive integer, all depending on n in a regular way.

Then, one can hope for the following statement (♣):

There exists a family of partial orders (Pn,≤) such that, for all n, the
derived category of (Pn,≤) is derived-equivalent to the fractional Calabi-
Yau category associated with a generic isolated quasi-homogeneous sin-
gularity with variable weights (d1, . . . , dm) and total weight D.

In this statement, the derived category of a poset (P,≤) means the bounded
derived category of finite-dimensional modules over its incidence algebra over a
field. The meaning of the category attached to the singularity is less clear, but
should provide a categorified version of the classical Milnor theory of isolated
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hypersurface singularities. Milnor theory is briefly recalled in section 1 and the
expected categorical framework is explained later in section 2.

If the property (♣) holds, it has a much more concrete consequence, namely
the Coxeter polynomial of the poset (Pn,≤) gets identified with the characteris-
tic polynomial of the monodromy for the isolated singularity and can therefore
be computed by just knowing the numbers d1, . . . , dm and D, by results of Mil-
nor and Orlik explained in section 1. The data of d1, . . . , dm and D, satisfying
the appropriate conditions, will be called a Weight.

As the Coxeter polynomial is also easy to compute directly for any given
poset (using the Coxeter matrix, see App. A), this gives a criterion to check if a
family of partial orders on Pn could have the expected property. When the first
Coxeter polynomials for small n are as expected, this gives a strong evidence
for the statement (♣) above. In this case, let us say that the Coxeter criterion
holds for this family of posets.

Here is a schematic description of the situation.

posets

triangulated
categories
with Serre
functor

fractional
Calabi-Yau
triangulated
categories

Weights

polynomials
products of
cyclotomic
polynomials

The top-left arrow sends a poset to the derived category of modules over
its incidence algebra over a field. This is a many-to-one application, as one
can easily find examples of derived-equivalent but not isomorphic posets. The
top-right arrow is the expected categorification of the Milnor fibre construction.
The arrows from triangulated categories to polynomials are given by the charac-
teristic polynomial of the Auslander-Reiten functor (which is a shifted version
of the Serre functor). As said above, there are direct constructions of these
polynomials from posets and from Weights, which give the diagonal arrows.

This diagram is compatible with the natural monoidal structures, namely
cartesian product of posets, tensor product of triangulated categories, and the
monoid structure on Weights introduced in section 3. For the bottom line, one
can use a tensor product of polynomials, but we will not need that.

So the Coxeter criterion means that we have a sequence of polynomials
coming from the top-left that can be identified with a sequence of polynomials
coming from the top-right. The main idea is to take this equality as a rather
strong hint that the triangulated categories should be themselves equivalent.

As we will see in the examples below, partial orders on a given combinatorial
family that satisfy the Coxeter criterion are not necessarily unique. There can
very well be several distinct families of posets with the same cardinalities, all
having their derived categories derived-equivalent to the same singularity cate-
gory. In this case, the implied derived equivalences between the different posets
of the same cardinality can sometimes be proved by other means.
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Given a family of combinatorial objects, finding some correct partial orders
is not easy in general. Sometimes the most natural partial orders all fail to
satisfy the Coxeter criterion. One can then look for more subtle partial orders
on the same combinatorial objects, or maybe on other combinatorial objects
counted by the same sequence of numbers.

Another implication is that one can use factorisations in the monoid of
Weights to propose conjectural derived equivalences. If a Weight is associated
with a poset P , and factors into simpler Weights associated with smaller posets
Q1, . . . , Qk, then one should expect a derived equivalence between P and the
cartesian product of posets Q1 × · · · ×Qk. A very simple case is given by the
Dynkin quivers D4 and A2 × A2.

Acknowledgements: Thanks to Guo-Niu Han for the proof of Lemma 5.1.
Thanks to Pierre Baumann and Sefi Ladkani for interesting discussions and
useful comments.

This research has been supported by the ANR project Charms (ANR-19-
CE40-0017).

1 Quasi-homogeneous isolated singularities

The theory of singularities of algebraic functions from Cm to C is a very classical
topic, with a vast literature. One could cite for instance the famous classifica-
tion by Arnold of rigid isolated singularities by the Dynkin diagrams of type
ADE. Even more well-studied is the case of singularities of quasi-homogeneous
algebraic functions, where each coordinate on Cm is given a specific weight and
the function is assumed to be homogeneous for the total degree with respect to
these weights.

Let us sketch briefly the celebrated construction of Milnor for isolated sin-
gularities. For more details, the reader may consult [Mil68, Dim92]. Let f be
a quasi-homogeneous polynomial function from Cm to C. Assume that f has
an isolated critical point at 0 ∈ Cm above 0 ∈ C. Milnor has shown that over
a sufficiently small circle Sε around 0 ∈ C, all the fibres of f (intersected with
a small sphere around 0 ∈ Cm) are smooth and diffeomorphic, with the ho-
motopy type of a bouquet of µf spheres of dimension m − 1. The fibres have
therefore only one interesting homology group Hm−1, of dimension µf . This
locally-trivial fibration over the circle Sε is called the Milnor fibration of f and
µf is called the Milnor number of the singularity.

By turning once over the circle Sε and following the cycles using local triv-
iality of the Milnor fibration, one gets a linear endomorphism of the homology
group Hm−1(f

−1(ε)). This is called the monodromy of the singularity.
In the case of a quasi-homogeneous polynomial f with an isolated singularity,

Milnor and Orlik [MO70] have given an explicit formula for the characteristic
polynomial of the monodromy (or rather for its roots) depending only on the
degrees d1, . . . , dm of the variables and the total degree D of f . As a special
case of this formula, the Milnor number is given by

µf =

∏m
i=1(D − di)
∏m

i=1 di
. (1)

Let us now present their formula briefly. The following description is a
streamlined presentation, with slightly modified notations, of Milnor and Orlik

3



result in [MO70, §3], see also [Mil68, §9]. Let ui be the numerator of D/di as a
reduced fraction, for i = 1, . . . ,m. For each divisor j of D, define

χj =

m
∏

i=1

ui|j

di −D

di
. (2)

Then for each divisor j of D, there is a relative integer sj such that

jsj =
∑

d|j

µj/d χd, (3)

where µ is (just here) the standard number-theoretic Möbius function. The
characteristic polynomial of the monodromy is then





∏

j|D

(tj − 1)sj





(−1)m

. (4)

Consider for example the degrees (d1, d2, d3) = (2, 3, 4) and D = 10. Then
(u1, u2, u3) = (5, 10, 5). One computes that (χ1, χ2, χ5, χ10) = (1, 1, 6,−14)
and it follows that (s1, s2, s5, s10) = (1, 0, 1,−2). As a product of cyclotomic
polynomials, the characteristic polynomial is therefore Φ2

2Φ5Φ
2
10.

1.1 Hodge structure and q-Milnor number

This information about the characteristic polynomial can been refined as follows.
Let us consider the formula

∏m
i=1[D − di]q
∏m

i=1[di]q
, (5)

where [d]q = (qd − 1)/(q − 1) is the q-analogue of an integer d.
For the degrees (d1, . . . , dm) and D of an isolated quasi-homogeneous singu-

larity, it is known that (5) is a polynomial in N[q], whose coefficients are the
dimensions of the homogeneous components of the Jacobian algebra of the sin-
gularity. This is a classical statement, see [AGZV85], [HM22, Theorem 6.4] or
[Ste77, 5.11].

In this situation, the polynomial (5) is also closely related to the eigenvalues
of the monodromy. As shown by J. Steenbrink [Ste77, Ste22], the homology
group Hm−1 carries a mixed Hodge structure, compatible with the monodromy.
In the case of quasi-homogeneous isolated singularities, the dimensions of the
successive quotients of the Hodge filtration can be encoded by the coefficients
of a polynomial in q, which according to [Ste77, 5.11] turns out to be (5).

The polynomial (5) in fact also contains complete information on the mul-
tiplicities of the eigenvalues of the monodromy, hence gives an alternative way
to access them, different from the Milnor-Orlik method recalled above. It suf-
fices to look at the coefficients of the unique polynomial representative of (5)
modulo qD − 1 with degree at most D − 1. The coefficients, appropriately cen-
tered, are then the multiplicities of the D-th roots of unity as eigenvalues of the
monodromy.
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For a more precise account of these aspects, see [HM22, §5, §6].

One can note that setting q = 1 in (5) recovers the expression (1) for the
Milnor number µf . The expression (5) will be called the q-Milnor number of
the singularity.

In the example of degrees (2, 3, 4) and total degree 10, one finds

q12 + q10 + q9 + 2q8 + q7 + 2q6 + q5 + 2q4 + q3 + q2 + 1,

which reduces modulo q10 − 1 to

q9 + 2q8 + q7 + 2q6 + q5 + 2q4 + q3 + 2q2 + 2.

This is compatible with the characteristic polynomial, which is

(t5 + 1)2(t4 + t3 + t2 + t+ 1),

as seen in the previous section.

2 Fractional Calabi-Yau categories

Fractional Calabi-Yau categories were introduced by M. Kontsevich around 1998
[Kon] as a natural generalisation of Calabi-Yau categories, themselves moti-
vated by the properties of coherent sheaves on Calabi-Yau manifolds. Fractional
Calabi-Yau categories sometimes appear in the semi-orthogonal decompositions
of bounded derived categories of coherent sheaves on algebraic varieties, and in
particular Fano varieties, see for example [Kuz19].

Recall that a Serre functor in a triangulated category T is an auto-equivalence
S of T such that there is a bi-natural isomorphism

Hom(X,Y )∗ ≃ Hom(Y, SX),

where ∗ is the linear dual over the ground field. For more on this notion, we
refer to [BK89, Kel08]. The existence of a Serre functor S on a triangulated cat-
egory is equivalent to the existence of an Auslander-Reiten translation functor
τ . These two functors are unique up to isomorphism and related by S = τ [1].
They both exist for example for the bounded derived categories of modules over
a finite dimensional algebra of finite global dimension over a field, see [Kel08,
§3.1]. This includes incidence algebras of finite posets over a field.

A triangulated category T is a fractional Calabi-Yau category if it has a
Serre functor S and there exist integers p and q such that Sq ≃ [p] as functors.
Here [p] is the p-th power of the shift functor [1]. In this case, the Calabi-Yau
dimension is the pair (p, q), often denoted p/q by a common abuse of notation.

Attached to each quasi-homogeneous isolated singularity f , keeping the same
notations as in the previous section, there should exist a triangulated category
Df which is a categorification of the Milnor geometric theory described in section
1. It should have the property that the Grothendieck group K0(Df ) is identified
with the homology group Hm−1, in such a way that the Auslander-Reiten func-
tor on Df induces a linear endomorphism on K0(Df ) which is identified with
the monodromy (maybe up to an appropriate shift). This hypothetical category
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of geometric origin is expected to be fractional Calabi-Yau, with Calabi-Yau di-
mension (C,D) where

C =

m
∑

i=1

(D − 2di). (6)

One also expects this construction to be monoidal, sending the Thom-Sebastiani
sum of singularities to the tensor product of triangulated categories.

It is not clear if this construction has been achieved somewhere in full gen-
erality. Apparently, the category can be constructed by two different strategies.
The first one is symplectic by nature, and goes through some kind of directed
Fukaya category based on the Milnor fibration, as proposed in [Sei01b, Sei01a].
The second strategy is by passing through mirror symmetry, to reach another
singularity, and then use more algebraic methods, for instance the homologi-
cal matrix factorisations. For a more precise view on this, the reader may see
[KST09], [Ebe17, §4] and [EP13]. For some recent development, see [Jef22].

In the language of theoretical physics, the category Df has something to
do with the A-model for the Landau-Ginzburg potential f , and it should be
related to A-branes of this model. The mirror symmetry is supposed to identify
these A-branes with B-branes on the mirror manifold, which seem to be better
understood in mathematical terms.

3 The monoid of Weights

Let us define in this section a monoid W whose elements will be called Weights.
Our notion of Weight is closely related to what is called a weight system in
singularity theory, see for example [HM22].

Definition 1. A Weight is a pair ((d1, d2, . . . , dm), D) where d1, d2, . . . , dm and
D are positive integers such that the formula

∏m
i=1[D − di]q
∏m

i=1[di]q
(7)

defines a polynomial in N[q]. This Weight will be denoted (d1, . . . , dm;D).
The order of the di is irrelevant. Weights that only differ by multiplying all

di and D by a common positive integer N are considered to be the same.

Note that m = 0 is allowed, as the formula is then the empty product.
One will always assume that di < D − di for all i, as factors where 2di = D

do not contribute to the product (7).
Dividing every di and D by their greatest common divisor and then sorting

the di in increasing order gives a unique canonical representative.
For example, in the case (2, 3; 8), one finds the fraction

[6]q[5]q
[2]q[3]q

= q6 + q4 + q3 + q2 + 1, (8)

so that this is indeed a Weight.
The value at q = 1 of the formula (7) for a Weight α will be called the Milnor

number µα of the Weight. For example, the Milnor number of (2, 3; 8) is 5.
The expression (7) will be called the q-Milnor number of the Weight. Note

that it depends on the choice of a representative, but only up to substitution of
q by some power of q.
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3.1 Variations

One can make several variants of the definition above, some weaker and some
stronger.

When the condition on the pair ((d1, d2, . . . , dm), D) in this definition is
weakened to require only that the value of (7) at q = 1 is an integer, this will
be called a weak Weight.

One could similarly require that the quotient should be a polynomial in Z[q]
with value at q = 1 in N. We will not use this intermediate notion. It is not
clear if one can find something like this which is not a Weight.

For a given Weight, one can consider a generic polynomial of degree D in
variables x1, . . . , xm of degrees d1, . . . , dm. In order for such a polynomial to
define an isolated hypersurface singularity, a stronger condition must be imposed
on the Weight, which can be found for example in [HK12, §2]. Examples of
Weights not satisfying this stronger condition, such as (16, 18, 21, 55; 165), are
displayed in [HM22, Table 1].

3.2 Product

Let W be the set of all Weights. The set W can be endowed with the following
binary operation. In terms of singularity theory, this corresponds to the Thom-
Sebastiani direct sum of hypersurface singularities.

Let α = (a1, . . . , am;A) and β = (b1, . . . , bm;B) be two Weights. Then one
defines

α× β = (Ba1, Ba2, . . . , Ban, Ab1, . . . , Abn;AB), (9)

One can check that this is indeed a Weight. This could also be defined as

α× β = (B′a1, B
′a2, . . . , B

′an, A
′b1, . . . , A

′bn; lcm(A,B)),

where A′ = A/ gcd(A,B) and B′ = B/ gcd(A,B), which is a simpler represen-
tative of the same Weight. One could also define the same operation as disjoint
union of the ai and bi by assuming without loss of generality that A = B.

This defines a commutative and associative product × on the set W , with
unit the empty Weight (∅; 1).

For example (3, 5; 20)× (1; 5) = (3, 4, 5; 20).

There are a few interesting morphisms from W to other monoids.
The formula (7) evaluated at q = t1/D defines a morphism to the multiplica-

tive monoid of Puiseux polynomials in t.
Similarly, the evaluation of (7) at q = 1 defines a morphism to the multi-

plicative monoid N. This is just the Milnor number.
From (6), one obtains the formula

∑m
i=1(D − 2di)

D
(10)

for the Calabi-Yau dimension seen as a positive rational number. This defines
a morphism to the additive monoid Q>0. This is clear when seeing × as con-
catenation of Weights sharing the same D. This quantity could be called the
central charge of the Weight1.

For example, the central charge of (2, 3, 5, 5; 15) is 2.

1It is one third of the central charge appearing in the related N = (2, 2) super-conformal
field theory.
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3.3 Factorisation and prime Weights

Let us say that a Weight is prime if it is not the product of several strictly
smaller Weights, namely with smaller number of degrees.

In order to check that a Weight (d1, . . . , dm;D) is prime or not, one needs to
look for non-empty subsets of the di that define a Weight and whose non-empty
complement also defines a Weight (keeping the same D). This can be done using
the expression of q-integers as products of cyclotomic polynomials Φd. In small
cases, one can easily check in this way that some Weight is prime.

As a simple example, let us prove that the Weight (3, 4, 5, 6; 15) is prime.
The factors in the q-Milnor number are, after simplification,

Φ2Φ4Φ6Φ12

1
×

Φ11

Φ2Φ4
×

Φ2Φ10

1
×

Φ9

Φ2Φ6
. (11)

Because of Φ6 in its denominator, the fourth term must be grouped with the
first one. Then because of Φ4 in its denominator, the second term must also be
grouped with the first one. Then there remains a Φ2 in the denominator of the
result which forces to also group with the third term.

Consider now the Weight (2, 4, 6, 7; 18) with Milnor number 88. One can
check that it can be written both as

(1; 9)× (4, 6, 7; 18) and as (1; 3)× (2, 6, 7; 18), (12)

where in both factorisations all factors are prime. Something similar happens
for the Weight (3, 4, 7, 10; 24). It follows that in the monoid W there is no unique
factorisation in prime elements.

4 The Catalan family

In this section and the following ones, we consider several examples of families
of Weights, starting from a simple case.

The Catalan numbers are defined by the formula

cn =
1

n+ 1

(

2n

n

)

, (13)

which can be written as

cn =
2n . . . n+ 2

2 . . . n

for n ≥ 1. This comes from the Weight (2, 3, . . . , n; 2n + 2). In this case, it
is known that the q-Milnor number is a polynomial in q with positive coeffi-
cients. Indeed, this polynomial is enumerating Dyck paths according to the
major index, see [RS+, St000027] and [Mac60].

For small n, the Weights in this family are A1,A2,D5, S1,0,D7 × E6, using
factorisation in W and the notations in the tables of section B.

It turns out that there are at least two different families of posets that seem
to satisfy the Coxeter criterion.

The first family is made of the Tamari lattices Tn, introduced by Tamari
in [Tam62]. They have been studied a lot since then, in particular as a special
case of the Cambrian lattices in the theory of cluster algebras, see for instance
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[MHPS12]. The underlying set is the set of planar rooted binary trees with n
inner vertices and n+ 1 leaves, endowed with the partial order whose covering
relations are rotations. The cardinality of Tn is known to be the Catalan number
cn.

In the case of the Tamari lattices, the Coxeter polynomial has been com-
puted by operadic methods in [Cha11]. It is therefore possible to check the
Coxeter criterion for large values of n. In principle, one could hope to prove
that this general formula coincides with the formula obtained from the sequence
of Weights, although this has never been done to our knowledge.

Moreover, B. Rognerud has proved in [Rog21] that the derived category of
Tn is indeed fractional Calabi-Yau, of the expected dimension (n(n−1), 2n+2).

The second family of posets is even simpler. The underlying set is the set
Dn of Dyck paths of size n, which are lattice paths of length 2n using steps
(+1,+1) and (+1,−1), starting from (0, 0), ending at (2n, 0) and never going
strictly below the horizontal axis. The number of such paths is known to be
cn too. The partial order on Dn is defined by one path being always weakly
below another path. This defines a distributive lattice. In this case, no general
formula is known for the Coxeter polynomials, but one can check by computer
that they coincide with those of the Tamari lattices for n ≤ 9.

All this strongly suggests that the posets Tn and Dn are derived-equivalent,
and that both are derived-equivalent to the same triangulated category of ge-
ometric origin associated with an isolated singularity. For this reason, this
derived equivalence has been stated as a conjecture in [Cha12].

Recently, some intermediate lattices (named the alt-Tamari lattices) have
been introduced in [Che22], that generalize the previous two families and ap-
parently share the same Coxeter polynomials. In a manuscript in preparation
with S. Ladkani [CL23], we establish the derived equivalences among these in-
termediate lattices and in particular solve the above conjecture on the derived
equivalence of the lattices Tn and Dn.

Let us now briefly talk about closely related posets where the Coxeter crite-
rion seems to hold, for other sequences of cardinalities given by similar formulas.
In each case, one can guess the Weights from the formula.

First there are some posets enumerated by the Fuss-Catalan numbers, namely
the m-Tamari lattices introduced by F. Bergeron and L.-F. Préville-Ratelle
[BPR12] and also the simpler posets of m-Dyck paths under the relation of
being weakly below. The larger family of rational Tamari lattices can also be
considered, as they are counted by a similar formula.

Second, there are the Cambrian lattices associated with a finite Coxeter
group W , all enumerated by the “Coxeter-Catalan number” for W . In this case,
the derived equivalence between these posets, for a given W and all choices of
Coxeter element, has been proved by Ladkani in [Lad07a].

Third, there are the partial order on tilting modules (or positive clusters) for
a Weyl group W , enumerated by the “positive Coxeter-Catalan numbers” for
W . In this case too, the derived equivalence between these posets, for a given
W and all choices of Coxeter element, has been proved by Ladkani in [Lad07b].
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5 Alternating Sign Matrices

Alternating sign matrices are combinatorial objects generalizing permutation
matrices, that appeared in the Dodgson condensation algorithm for computing
the determinant. The number of alternating sign matrices of size n is given by
the famous formula

n−1
∏

k=0

(3k + 1)!

(n+ k)!
, (14)

which was conjectured by Mills, Robbins and Rumsey [MRR83], first proved
by Zeilberger [Zei96] and proved again by Kuperberg [Kup96] using methods
of statistical mechanics. It is an open problem to find an explicit bijection
between alternating sign matrices and totally symmetric self-complementary
plane partitions, which were enumerated by the same formula by Andrews in
[And94]. For a detailed account of the full story, see [BP99, Bre99].

Lemma 5.1. The formula (14) is the Milnor number of the weak Weight

({3k + 2, . . . , n+ k}0≤k≤n−k−2; 3n). (15)

Proof. Formula (14) is the quotient of a product of factorials by a product of
factorials. Consider the k-th and (n − 1 − k)-th factorials in the numerator,
together with the k-th and (n − 1 − k)-th factorials in the denominator. This
gives the quotient

(3k + 1)!(3n− 3k − 2)!

(n+ k)!(2n− k − 1)!
.

Assuming that k < n− 1− k, this is

(2n− k) . . . (3n− 3k − 2)

(3k + 2) . . . (n+ k)

which can be written as the product

∏

i

D − di
di

where (d1, . . . , dm) = (3k + 2, . . . , n + k) and D = 3n. When n is odd and
2k = n− 1, the middle terms in the numerator and the denominator of (14) are
both (3k+1)! hence can be neglected. So the full expression is indeed associated
with this weak Weight.

In fact, this weak Weight should be a Weight, and its q-Milnor number
should be a polynomial with positive integer coefficients. This can be checked for
n ≤ 30, but there is no known combinatorial statistics to explain this property.

For small n, the Weights in this family are A1,A2,E7,D7 × E6.
The expected Calabi-Yau dimension is then (2

(

n+1
3

)

, 3n).

There are several natural partial orders on objects enumerated by formula
(14). The first one is the enveloping lattice (or Dedekind-MacNeille completion)
of the Bruhat order on the symmetric group Sn, as proved in [LS96]. These
posets do not meet the Coxeter criterion.

10



J. Striker has introduced in [Str11, §5], as part of a more general construction
involving a choice among colours, two families of distributive lattices having (14)
as cardinalities.

The first family (for the colours blue, yellow, orange and green in the termi-
nology of [Str11]) has elements in bijection with the alternating sign matrices,
and is in fact isomorphic to the enveloping lattice above.

The second family (for the colours red, yellow, orange and green) has el-
ements in bijection with the totally symmetric self-complementary plane par-
titions. Experimentally, the posets in this family do have the correct Coxeter
polynomial for n ≤ 5, hence satisfy the Coxeter criterion. So conjecturally, all
these posets should be fractional Calabi-Yau.

As a side remark, one can note that the poset of size 42 in this family seems
to be derived-equivalent to the posets of size 42 in the Catalan family, and they
share the same Weight D7 × E6.

Remark 5.2. The same idea can be applied to other symmetry classes of plane
partitions, which are often enumerated by a closed formula involving a product.
This includes the full set of plane partitions inside an a×b×c box and the famous
formula of MacMahon. This also seems to work for totally symmetric plane
partitions (A005157) and cyclically symmetric plane partitions (A006366). In
the totally symmetric case, one observes amusing coincidences:

• in cardinality 66, for the Weight A11 × E6 with the Weight for the poset
of tilting modules of type F4.

• in cardinality 2431, for the Weight A17 × Z13 × Q11 with the Weight for
the poset of tilting modules of type E7.

6 The West family

In his famous article [Wes93], West introduced the notion of 2-stack sortable
permutations and conjectured that the number of such permutations on n letters
is given by the formula

2
(3n)!

(2n+ 1)!(n+ 1)!
. (16)

This was first proved by Zeilberger in [Zei92].
The formula (16) can be written as

(3n) . . . (2n+ 2)

(3) . . . (n+ 1)
,

which comes from the weak Weight

(3, . . . , n+ 1; 3n+ 3). (17)

Here again, it is not clear that the q-Milnor number is a polynomial in q with
positive coefficients. One can check by computer that this is the case for n ≤ 50.
Assuming that this always holds and therefore that (17) defines a Weight, one
can look for posets satisfying the Coxeter criterion.

For small n, the Weights in this family are A1,A2,E6,A2 × Z11,E7 × Z13.
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Besides 2-stack sortable permutations, there are several other families of
combinatorial objects with the same cardinality: left-ternary-trees [DLDRP00],
fighting fishes [DGRS17], non-separable planar maps [BT64] and synchronized
Tamari intervals [PRV17]. The last family is in bijection with the maximal cells
in the diagonal of the associahedra [MTTV21, Com20].

On these combinatorial objects, one can find several partial orders. One pos-
sibility is by restriction of partial orders on permutations (weak order, Bruhat
order, etc.) to the subset of 2-stack sortable permutations. Another is to use
the geometry of the diagonal of the associahedra, which is naturally oriented.

These tentatives have met no success so far, always failing the Coxeter cri-
terion as soon as n is not very small. So, the question remains whether there
does exist such a family of posets. One can even hope for the existence of posets
whose Hasse diagrams would be the oriented 1-skeletons of a sequence of simple
polytopes having their h-vectors given by A082680.

7 The Tamari-intervals family

In the 1960’s, Tutte [Tut62] has enumerated several kinds of rooted planar
maps, obtaining elegant formulas. Among these, planar rooted triangulations
are counted by the formula

2
(4n+ 1)!

(n+ 1)!(3n+ 2)!
. (18)

This formula can be written as

(4n+ 1) . . . (3n+ 3)

(3) . . . (n+ 1)
,

hence comes from the weak Weight

(3, . . . , n+ 1; 4n+ 4). (19)

Once again, it is not clear if the q-Milnor number is a polynomial with positive
coefficients. This property can be checked for n ≤ 60, but there is no known
combinatorial statistics to explain this property.

For small n, the Weights in this family are A1,A3,W13,A4 ×W17.
Assuming that (19) always defines a Weight, one can look for posets satis-

fying the Coxeter criterion. Besides triangulations, there are now several other
families of combinatorial objects counted by formula (18): the set of all intervals
in Tamari lattices [Cha07], extended fighting fishes [DH23], etc.

So far, no sequence of partial orders with the correct Coxeter polynomials
has been found. The most natural partial order on Tamari intervals, involved in
the relation with the diagonals of the associahedra, is defined by [a, b] ≤ [a′, b′]
if and only if a ≤ a′ and b ≤ b′. It does not meet the Coxeter criterion. The
naive partial order by inclusion of intervals does not work either.

8 Green mutation poset for the cyclic quivers

In the theory of cluster algebras, one can associate mutations graphs to quiv-
ers. Using the notion of green mutations, one can define an orientation of the
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mutation graph. When the mutation graph is finite, one obtains finite posets,
among which the Tamari lattice considered in section 4. For details, see the
survey [KD20].

Let us consider here the sequence of posets defined in this way, starting from
the cyclic quivers on n vertices, with n ≥ 2. In the classification by Fomin and
Zelevinsky of quivers of finite type [FZ03], these quivers have type Dn. The
number of elements in the posets (clusters) is therefore given by the Coxeter-
Catalan number of type Dn, which is

(3n− 2)cn−1, (20)

where cn is the Catalan number (13). This can be written as the Milnor number
of the weak Weight

(4, 2n, [6, 9, 12, . . . , 3n− 3]; 6n), (21)

where the subsequence of degrees inside the bracket is an arithmetic progression
of step 3.

One can check that this indeed defines Weights for n ≤ 50.
For small n ≥ 2, the Weights in this family are A2 ×A2,A2 ×E7,A2 ×A5 ×

D5,E13 × S1,0.
Experimentally, the green-mutation partial orders for the cyclic quivers sat-

isfy the Coxeter criterion for the Weight given above. One therefore expects
them to be fractional Calabi-Yau with the prescribed dimension.

Remark 8.1. Let Catn be the Catalan Weight introduced in section 4. One
can note that the Weight associated above to the green mutation poset for the
cyclic quiver of type Dn is a multiple of Catn−1. A similar phenomenon seems
to happen for the sub-poset consisting of positive clusters, namely those not
meeting the initial cluster, for the Weight An−1 × Catn−1.

A Derived categories of posets and Coxeter poly-

nomials

Let (P,≤) be a finite partial order. One can define the incidence algebra of P
over a field, and consider the category of finite dimensional modules over this
algebra and its bounded derived category D(P ). The category D(P ) has finite
global dimension and possesses Serre and Auslander-Reiten functors.

On the triangulated category D(P ), the Auslander-Reiten translation func-
tor τ is an auto-equivalence. It induces a linear map on the Grothendieck group
K0(D(P )), which is a free abelian group of rank |P |. The matrix of this linear
map in the basis made of classes of simple modules can be described as follows.

Pick any total order on P which is an extension of the partial order ≤. Let
LP be the triangular matrix with coefficient 1 in position (i, j) if i ≤ j and 0
elsewhere. The Coxeter matrix CP is then −LPL

−t
P , where L−t

P is the transpose
of the inverse of LP . The Coxeter polynomial is the characteristic polynomial
of the Coxeter matrix.

The Coxeter polynomial of a poset is concretely available in several computer
algebra systems.
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B Tables and names

Here are small tables of named Weights, some of which have appeared in the
article to describe the first few Weights in the families. The names come either
from quivers, root systems or singularity theory.

For most of these Weights, one can find at least one poset whose derived
category should be the hypothetical geometric category associated with the
Weight.

Dynkin quivers
An (1;n+ 1)
Dn (2, n− 2; 2n− 2)
E6 = A2 × A3 (3, 4; 12)
E7 (2, 3; 9)
E8 = A2 × A4 (3, 5; 15)

Elliptic root systems

E
(1,1)
6 = A2 × A2 × A2 (1, 1, 1; 3)

E
(1,1)
7 = A3 × A3 (1, 1; 4)

E
(1,1)
8 = A2 × A5 (1, 2; 6)

Arnold’s unimodal singularities
E12 = A2 × A6 (3, 7; 21)
E13 (2, 5; 15)
E14 = A2 × A7 (3, 8; 24)
Z11 (3, 4; 15)
Z12 (2, 3; 11)
Z13 (3, 5; 18)
Q10 = A2 × D5 (6, 8, 9; 24)
Q11 (4, 6, 7; 18)
Q12 = A2 × D6 (3, 5, 6; 15)
W12 = A3 × A4 (4, 5; 20)
W13 (3, 4; 16)
S11 (4, 5, 6; 16)
S12 (3, 4, 5; 13)
U12 = A2 × A2 × A3 (3, 4, 4; 12)

Arnold’s bimodal singularities
E18 = A2 × A9 (3, 10; 30)
E19 (2, 7; 21)
E20 = A2 × A10 (3, 11; 33)
Z17 (3, 7; 24)
Z18 (2, 5; 17)
Z19 (3, 8; 27)
Q16 = A2 × D8 (3, 7, 9; 21)
Q17 (4, 10, 13; 30)
Q18 = A2 × D9 (6, 16, 21; 48)
W17 (3, 5; 20)
W18 = A3 × A6 (4, 7; 28)
S16 (3, 5, 7; 17)
S17 (4, 7, 10; 24)
U16 = A2 × A2 × A4 (3, 5, 5; 15)

Quadrilateral singularities
J3,0 = A2 × A8 (1, 3; 9)
Z1,0 (1, 2; 7)
Q2,0 = A2 × D7 (2, 4, 5; 12)
W1,0 = A3 × A5 (2, 3; 12)
S1,0 (2, 3, 4; 10)
U1,0 = A2 × E7 (2, 3, 3; 9)
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