
HAL Id: hal-04037001
https://hal.science/hal-04037001v1

Submitted on 20 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards an unified experimentation framework for
protocol engineering

Laurent Dairaine, Ernesto Exposito, Hervé Thalmensy

To cite this version:
Laurent Dairaine, Ernesto Exposito, Hervé Thalmensy. Towards an unified experimentation frame-
work for protocol engineering. The IEEE 20th International Conference on Advanced Information
Networking and Applications, Workshop on Service Oriented Architectures in Converging Networked
Environments (SOCNE06), Apr 2006, Vienne, Austria. pp.555-559. �hal-04037001�

https://hal.science/hal-04037001v1
https://hal.archives-ouvertes.fr

Towards an Unified Experimentation Framework for Protocol Engineering

Laurent Dairaine, Ernesto Exposito, Hervé Thalmensy
ENSICA/LAAS-CNRS

Applied Mathematics and Computer Science Department
1, Place Emile Blouin, 31000 Toulouse, France

Laurent.Dairaine@ensica.fr

Abstract

The design and development process of complex systems
require an adequate methodology and efficient instrumental
support in order to early detect and correct anomalies in the
functional and non-functional properties of the solution. In
this article, an Unified Experimentation Framework (UEF)
providing experimentation facilities at both design and de-
velopment stages is introduced. This UEF provides a mean
to achieve experiment in both simulation mode with UML2
models of the designed protocol and emulation mode using
real protocol implementation. A practical use case of the
experimentation framework is illustrated in the context of
satellite environment.

1. Introduction

Designing and developing communication protocols and
real-time systems is a complex and long process. During
the initial phase dedicated to the analysis, the modelers try
to represent and describe the current state of the studied sys-
tem thus creating a model of the reality aimed at detect-
ing and understanding the problem to be solved. From this
phase, the designers use this model to start proposing and
designing solutions to the problem. These solutions will
be generally specified using high level languages in a high
abstraction level context. Different resulting specifications
will need to be evaluated in order to study their efficiency
and that they are not disturbing the normal behavior of the
system. During this evaluation phase, not only the func-
tional properties of the solutions have to be studied, but also
the performance or the Quality of Service (QoS) provided.
The following phase consists in the implementation of the
solution and its integration in the real system. However, be-
fore deploying the solution in the real system, an evaluation
process has to be carried out again, in order to verify that
both functional and non-functional properties have been re-
spected during the implementation.

In this article, an Unified Experimentation Framework
(UEF) for Protocol Conception and Implementation is pre-
sented. This framework is intended to provide sufficient
support to the designer with the experimentation phases in
both design and development phases. The framework is de-
signed to allow an accurate specification of the packet im-
pairments and, thanks to object oriented approach, to al-
low extension to be achieved in such a way to provide high
level modelisation tools for representing arbitrary complex
networking scenario. All experimentation models are de-
signed using UML2. As study case, the experimentation
framework is used for designing an experimentation envi-
ronment able to evaluate end-to-end protocols in the context
of a satellite environment providing QoS guarantees.

This paper presents the following structure: the first sec-
tion presents a background providing the basis to this plat-
form and briefly describes the various components of the
xQoS platform. Section 3 provides details on the UEF, pre-
senting the principle and its logical components. Section 4
proposes a particular study case describing how to use the
UEF to build a communication platform able to experiment
with QoS GEO satellite link. Finally, section 5 proposes
few conclusions.

2 Background

Various methods and languages have been proposed to
optimize the design and development process[7]. We con-
sider that an effort should be done in order to connect these
two worlds. The Unified Development Process method-
ology (UDP) [2, 5] and the Unified Modeling Language
(UML)[6] have been selected in the framework of our xQoS
platform [3] for being considered as an adequate and effi-
cient methodology and tool for designing and developing
complex systems.

In this context, the conception process should be punctu-
ated by many experimentations. This is needed to evaluate
both functional and non functional properties of the target
protocol. Ad-hoc experimentation environment should be

Specification Development

Multimedia
System

Framework

Network
Experimentation

Framework

Unified Multimedia System Development Methodology

Simulation Emulation

Implementation
UML

components

QoS Semantic Namespace

Figure 1. The xQoS System component

provided to properly achieve this task. The classical ways
to achieve these experimentations are currently used: sim-
ulation (e.g., event-driven), live testing (not considered in
this paper) and emulation (production of realtime controlled
communication behavior, see e.g., [8, 1, 11, 10]). Network
emulation is used achieve experiments using both real pro-
tocol implementation and network models allowing to cre-
ate a controlled communication environment.

Simulation and emulation experimentation approaches
can be considered as complementary because they allow
providing a way to tackle different problems during the pro-
tocol conception phases. Simulation is used at early stage
to evaluate various solutions while emulation is used at
implementation stage for achieving experiments with real
codes. The xQoS platform proposes a design and devel-
opment platform integrated in a specialized methodology
intended to model, specify, test and deploy real-time appli-
cations and advanced communication services [3]. Figure 1
illustrates the different components of this platform includ-
ing a semantic namespace, models for multimedia applica-
tions and test-beds for high level specifications (simulator)
as well as for solution implementations (emulator).

The semantic namespace (language) defines the QoS of
the system from the user and service provider viewpoints.
This semantic namespace will be particularly used to vali-
date the non-functional properties of the solution during the
specification and implementation evaluation phases. The
xQoS platform includes design patterns providing structural
and behavioral models for legacy and new real-time appli-
cations in order to accurately express the requirements to be
satisfied by the communication system. These patterns are
specified in UML and are intended to be used for designing
the solutions. Finally, the platform proposes an Unified Ex-
periment Framework (UEF) integrating two components: a
simulator intended to be used to evaluate the solution speci-
fications and an emulator suited to evaluate the correspond-
ing implementations. Both components are suited to eval-
uate the functional and non-functional properties of the so-
lution. This is achieved using the structural and behavioral
description provided by UML for both, the specification and
the implementation, as well as the QoS properties described
using the xQoS language. These QoS properties are evalu-

ated using different scenarios where the channels connect-
ing the distributed components are modified in order to pro-
vide imperfect communication and study its consequences
in the evaluated solutions.

The rest of this paper focuses on the UEF.

3 The Unified Experiment Framework

Experimentation using simulation and emulation are dif-
ferent means to test both functional and non-functional
properties of developed protocols. Considering the non-
functional properties, the UEF should provide a way to
introduce controlled communication impairments. Possi-
ble impairments are mainly delay, packet losses and packet
modification. Another important issue about the UEF is to
provide a mean to produce transparently a controlled be-
havior in such a way to test and stress the experimental
protocol. This leads to end-to-end QoS channel that could
focus on both two main objectives. The first one is to pro-
duce an Artificial QoS in such a way to evaluate the proto-
col over specific QoS conditions, not imperatively related
to any technology. This processing allows the user to test
and stress its experimental protocol in a reproducible tar-
get QoS conditions, aiming to point out errors or bugs that
could be difficult to produce in a non-controlled environ-
ment. This can be useful for example at transport level to
study the impact of various packet drops in a TCP connec-
tion (e.g., the SYN/ACK, etc.) or at application level what
happened at if a particular block of ”Intra” picture is de-
layed. A second objective is to achieve a realistic QoS in
such a way to reproduce as more accurately as possible, the
behavior of specific network architecture. This type of ex-
periment allows the user to evaluate the protocol over an
existing network or internetwork without using a real test-
bed with all related technologies (e.g. a wireless network, a
satellite network, and xDSL link, or any interconnection of
such technologies).

The UEF is based on the experimentation channel
(EChannel) component offering a target QoS to the System
under Test (SuT). It is defined as a data path providing to
the SuT particular QoS impairments. The EChannel imple-
ments the impairment following the requirements described
into the previous paragraph. A possible representation of
this model is pictured into the following composite struc-
ture diagram implementing a SuT instantiated by a source
and a receiver, using an emulation channel to communicate
between each protocol entity.

The Experiment Channel should provide the final target
behavior in terms of QoS for the experimentation. This re-
sulting system may implement a very simple behavior such
a constant end-to-end delay or a more complicated scenario
such as the behavior of a end-to-end path constituted by a
various underlying network technologies. To allow such

2

SendApp : app::SendApp

SendApp : app::SendApp
popo

AppOutAppOut

pcpc

AppConfAppConf

RecvApp : app::RecvApp

RecvApp : app::RecvApp
app_inapp_in

AppInAppIn

Sender : SuT_Sender

Sender : SuT_Sender

aoao

AppOutAppOut

propro

ProtOutProtOut

SuT_Receiver : SuT_Receiver

SuT_Receiver : SuT_Receiver

aiai

AppInAppIn

propro

ProtInProtIn

Echannel : echannel::EChannel

Echannel : echannel::EChannel
pInpIn

ProtOutProtOut

pOutpOut

ProtInProtIn

Figure 2. UEF components

an arbitrary complexity to be implemented, the EChannel
behavior results from the composition of Experimentation
Nodes (ENodes). An example of EChannel that models a
satellite link is provided in figure 3. Each ENode is an ac-
tive component that offers the necessary ports to achieve the
internal communication (pOut and pIn). The nodes are in-
dividually parameterized using the pConf port. The pSpy
port may be used to give information about the ongoing
processed traffic to an external management module. The
InputTap is a special ENode intends to capture the traffic
coming from the SuT and to prepare it to be processed by
the set of EChannel components (e.g., it adds useful fields
such as capture timestamps, length, etc.). At the end of the
EChannel, the OutputTap get rid of all these working fields,
then providing the necessary transparency to the experiment
traffic.

The Experiment Node is designed into two main parts
to differentiate the actual impairments to achieve and the
controlling process: the experiment processor is really im-
pairing the packets while the experiment model is deciding
how the packet must be processed. The former component
provides the various impairments actions defined in the top
of the section (i.e., delaying, dropping, packet modifying).
The experiment model has access to various informations
(i.e., length of packet, capture time, internal packet fields,
external ports, etc.) and provides an abstract representation
aiming at specifying actions to be taken on packets. An ex-
periment channel processing can be defined either statically
or can evolve dynamically during the experiment. Classi-
cally, a statechart is used to achieve this specification.

Two main types of models are defined, namely passive
and active models. Passive models act on packet events ac-
cording only to external packet properties such as time it
reach the experiment node or its length. Example of clas-
sical passive models implemented are e.g., delay or band-
width. Active models can react on a larger set of stim-
uli. Those stimuli can be time driven or packet driven sce-
nario, model based on value of the data contained into the
processed packets, or even any other external signals such
as measurement traces realized on real or simulated net-
works. An example of such function could be the loss of a
specific packet according to a particular history of the past
processed packets (e.g., a finite state machine associated to

the processed flow). The loss signal could also be a par-
ticular packet multiplexed into the experiment flow (e.g.,
to ensure synchronization between the required impairment
and the processed packets) or using an external port. The
various schema provided by UML2 are particularly adapted
to the specification of such models. All these models (both
active and passive) can be composed together to obtain a
more complex behavior. ENodes are proposed as an exten-
sible library that intends to provide various types of exper-
imentation processing. The end-user can then compose the
channel depending on experiment objectives.

The UEF provides two tools: a simulator intended to be
used to evaluate the SuT Design solution and an emulator
suited to evaluate the real performance of the SuT imple-
mentation. The Telelogic UML tool[9] has been selected to
provide the specification and simulation functionalities in
the xQoS platform. As it is demonstrated in the following
section, the UEF has been also implemented in order to test
real implementation in a same way than they can be tested
at design phase with the Telelogic tool.

4 Use-case: a GEO QoS Satellite link

4.1 The QSat Access Network

The context of this use-case is a QoS GEO satellite link.
This link is interesting to experiment due to the particular
QoS services it offers and the difficulty to access to a real
satellite system offering such service guarantees. The tar-
geted satellite link uses widely spread DVB technologies
namely: DVB-S standard on the Forward link (from the
Hub Station toward the Satellite Terminal) and DVB-RCS
standard on the Return link (from the Satellite Terminal to-
ward the Hub Station) [2]. Due to the high cost of satellite
resources, experimentations involving this particular access
network1 will be done on an emulated satellite link. In or-
der to develop this emulation platform, the characteristics
of the satellite link are firstly presented.

The main issue in the satellite communication context,
and more particularly on the satellite return links, is to make
an efficient use of the transmission resources. Recent tech-
niques based on dynamic bandwidth assignment, enable a
high efficiency of the return link usage. Emerging proto-
cols, such as DAMA (Demand Allocation Multiple Access)
as the MAC access scheme combines efficiency (a high uti-
lization of the return link resources) and QoS Guarantees.
This access scheme is targeted for the satellite access net-
work experimentation instance presented in the case-study.

The DVB-RCS system[2] is based on the following prin-
ciple: A Return Channel Satellite Terminal (RCST) com-

1The satellite access network is the only technology which will be em-
ulated into the EuQoS project. All other access networks are implemented
using real technologies.

3

municates with the Network Control Center (NCC) in order
to request capacity allocations. The resources allocation
plan (i.e. the Terminal Burst Time Plan (TBTP)) is then
sending to RCSTs using MPEG-2 Transmission Stream
(MPEG-2 TS) cells containing IP packets. All user termi-
nal transmissions are controlled by the NCC. Before send-
ing data, a terminal must join the network by communicat-
ing (logon) with the NCC describing its configuration. The
satellite terminal can then use the reserved slot in the su-
perframe to send data in its buffers. Dynamic resource con-
trol consists in assignment of resources slots to terminals
which are conditioned by the availability of resources (ca-
pacity). The assignment is done by the MAC Scheduler (in
the NCC) which implements a DAMA protocol.

The SLA defined at logon between the Terminal and
the Hub, specifies guarantees on different classes of access
named capacity assignment to the Return Link of the satel-
lite, such as Constant Rate Assignment (CRA), Rate Based
Dynamic Capacity (RBDC), Volume Based Dynamic Ca-
pacity (VBDC) which can be guaranteed or not and Free
Capacity Assignment (FCA). We will particularly focus on
delay associated to CRA and Guaranteed-VBDC. The CRA
is statically programmed in the hub and requires no dynamic
signalling from the ST. This capacity is guaranteed. If the
connection set-up is admitted, the terminal will benefit of
its requested bandwidth for the duration of the connection,
so that the traffic is not subject to any scheduling/queuing
delay. The CRA is a rate capacity fully provided for the du-
ration of the connection without any DAMA request, there-
fore, the associated network delay is the geostationary de-
lay, ≈300ms. The VBDC requires explicit requests from
the ST to get a capacity. A ST must signal its request in
terms of total number of slots required to empty its local
queue. These requests can be supplemented by new re-
quests any time more traffic is queued. The scheduler ac-
cumulates all requests from each terminal. The total capac-
ity of the queued requests is decreased as soon as slots are
granted. Practically, the terminal must do a capacity request
to the NCC based on the volume of data to transmit in its
buffers. Then the NCC allocates some time slots. In VBDC,
the delay will depends on three parameters: latency to send
a capacity request, minimum latency scheduling to receive
the TBTP (congestion dependent) and geostationary RTT. A
typical delay will then vary between 1400ms and 2100ms or
even more in case of severe congestion.

4.2 The QSat Experiment Channel

We implement a channel reproducing the delay associ-
ated to the satellite link. The Forward link is proposed as
a simple EC integrating a constant delay (e.g., 300ms) and
throughput shaper ENodes. The limitation on the through-
put depends on the contract used on the Return Link.

VBDC active class EChannel {2/2}VBDC active class EChannel {2/2}

pInpIn

ProtOutProtOut

pOutpOut

ProtInProtIn

InputTap : InputTap

InputTap : InputTappInpIn pOutpOut

OutputTap : OutputTap

OutputTap : OutputTap

pInpIn

pOutpOut

EN1 : enode::EN_NCCRequest

EN1 : enode::EN_NCCRequest

EN2 : enode::EN_RequestPropag

EN2 : enode::EN_RequestPropag

EN3 : enode::EN_LinkThroughput

EN3 : enode::EN_LinkThroughput

pInpIn

pOutpOut
pSpypSpy

pInpIn

pOutpOut

pInpIn

pOutpOut pConfpConf

EN_PropDelay : enode::EN_PropDelay

EN_PropDelay : enode::EN_PropDelay

pInpIn

pOutpOut

AEN : enode::EN_ActiveBwCtrl

AEN : enode::EN_ActiveBwCtrl

pConfpConf

pSpypSpy

l1

l1

Figure 3. The VBDC experiment channel

The QSat-EC presented in Figure 3 implements the re-
turn link. A Decision-making ENode has to dynamically
compute the bandwidth limitation, delay and packet loss
rate values to apply to the set of ENodes which actually
impairs the flows, according to the actual QoS Contract as
well as information concerning the ongoing network traffic.
The decision-making ENode will then initially sets initial
impairments and modifies dynamically these values in real-
time, in order to produce the delay associated to the QoS
signalling process. Then, the signalling protocol is not re-
ally implemented, but only its resulting effects on the traffic
are taken into account. The figure 3, an Echannel imple-
menting a VBDC traffic class is implemented using four
passive and one active Enodes nodes.

Then packets cross the channel, each of constituting En-
odes producing a particular aspect of the VBDC delay link
behavior. The first ENode models the time interval between
two VBDC requests from the Satellite Terminal toward the
NCC. It is implemented as a circular delay periodically de-
creasing between 500 and 0ms. The second ENode cor-
responds to the delay for the request to reach the NCC,
to be processed and to come back to the ST. The value is
≈700ms, 2∗ ≈300ms for satellite link, and at least 100 ms
is required to process the requests but this time can also
increase. The third ENode implements the rate at which
the Satellite Terminal is actually sending data on the link.
This variable throughput depends on realtime traffic mea-
surements achieved by the Active ENode (AEN). The AEN
spies the traffic packets and dynamically compute the ac-
tual input rate. The computed rate will be applied taking
into account the QoS signalization latency. Then, the traf-
fic will be delayed, and if the traffic is too important for
the satellite link capacity, losses will be encountered due to
buffer overflow. Finally, the fourth ENode corresponds to a
fixed delay of 300 ms for the propagation delay.

4

2
x10

Pure VDBC
VDBC+CRA

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

x10
3

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

EChannel Round Trip Time

Packet Number

R
T
T

(
m
s
)

Figure 4. Delay of the QSAT EC

4.3 Implementation and first measures

The implementation of the EChannel can be achieved
either in the UML2 environment, providing simulation ca-
pabilities with tool such as Telelogic Tau and in an emu-
lation framework, providing testing capabilities with real
code software. The following results has been obtained
from the emulation framework implemented into a simple
PC under FreeBSD system (more details on the implemen-
tation is available in see [4]).

In the studied case, the sender is situated at ST side and
generates a constant bit rate of 128kbps measured at the IP
layer. The stream is going through the return link (DVB-
RCS) and a response is sent for each packets through the
Forward link (DVB-S) to measure the RTT delay. The For-
ward link is supposed to not introduce any congestion. Two
scenarios are foreseen, one with a pure guaranteed VBDC
and a mix of CRA with guaranteed VBDC. For both sce-
narios the packets RTT delay is measured. The VBDC case
implements a SLA with a guaranty minV BD = 512kbps.
The bit rate of the input traffic is supposed to be less than
the minV BDC. A global request for all the traffic buffered
is done every 530 ms. This implies the bursty behavior of
VBDC that sending at the higher rate as possible the traffic
received in this 530 ms interval. This leads to a delay vary-
ing a lot depending on when the data actually arrived in the
buffer and when the next request is sent. When the capac-
ity is granted, all the traffic in the queue is sent at the rate
of 512kbps. The RTT delay of packets is thus periodically
decreasing as seen in the Figure 4, because the incoming
traffic arriving just before a capacity request is sent is wait-
ing less in the buffer than the one arriving just after a request
has been sent.

The Mixed CRA and VBDC case implements a SLA of
64Kbps for the CRA and minV BDC = 64Kbps. The bit
rate sent is still 128kbps, and now corresponds to twice as
much as the available CRA bandwidth. Consequently, dur-

ing the period corresponding to the transfer, processing and
granting of VBDC requests, the packets are buffered in the
bandwidth queue. The buffer size increases, implying an in-
crease of the delay (see the dashed line on Figure 4). At the
moment, first VBDC requests went through, the bandwidth
is set application rate, thus the bit rate entering the buffer
is equal to the outgoing traffic. Consequently, the buffer is
neither emptying nor increasing in size but get stabilized as
well as the delay perceived by packets. Some fluctuations
still persist due to the bursty behavior of VBDC requests.

5 Concluding Remarks

In this paper, we introduced an UEF allowing to build
experiment in both simulation with UML2 models and em-
ulation with real protocol implementation. It is based on
the concept of experiment channel that allows the descrip-
tion of arbitrary complex impairment behavior over the data
packets conveyed between the evaluated protocol entities.
The use of the UEF is provided through the description of
a case-study for a satellite system to be integrated into a
heterogeneous QoS network.

References

[1] M. Carson and D. Santay. NISTNet : A Linux-Based Net-
work Emulation Tool. ACM Computer Communication Re-
view, 2003.

[2] ETSI/DVB. Interactive channel for satellite distribution sys-
tems, 2001.

[3] E. Exposito, R. Malaney, X. Wei, and D. Nghia. Using the
xqos platform for designing and developing the qos-seeker
system. In INDIN’05, 3rd International IEEE Conference
on Industrial Informatics, Perth, Australia, 2005.

[4] M. Gineste, H. Thalmensy, L. Dairaine, P. Sénac, and
M. Diaz. Active Emulation of a DVB-RCS Satellite Link
in an End-to-end QoS-oriented Heterogeneous Network. In
23th AIAA International Communication Satellite Systems
(ICSSC), page 12, Rome, Italy, 2005.

[5] I. Jacobson, G. Booch, and J. Rumbaugh. The Unified Soft-
ware Development Process. Addison-Wesley, 1998.

[6] OMG. Object management group, 2005.
[7] L. Osterweil. Strategic directions in software quality.

ACM Computing Surveys (CSUR), 28(4):738–750, Decem-
ber 1996 1996.

[8] L. Rizzo. Dummynet: a simple approach to the evaluation of
network protocols. ACM Computer Communication Review,
27(1):31–41, 1997.

[9] Telelogic. Tau uml2 tool, 2005.
[10] M. Zec and M. Mikuc. Operating system support for inte-

grated network emulation in imunes. In First Workshop on
Operating System and Architectural Support for the on de-
mand IT InfraStructure, Boston, USA, 2004.

[11] P. Zheng and L. M. Ni. Empower: A network emulator for
wireline and wireless networks. In IEEE Infocom, San Fran-
cisco, 2003.

5

