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RIGIDITY OF U-GIBBS MEASURES NEAR CONSERVATIVE ANOSOV DIFFEOMORPHISMS ON T 3

We show that within a C 1 -neighbourhood U of the set of volume preserving Anosov diffeomorphisms on the three-torus T 3 which are strongly partially hyperbolic with expanding center, any f ∈ U ∩ Diff 2 (T 3 ) satisfies the dichotomy: either the strong stable and unstable bundles E s , E u of f are jointly integrable, or any fully supported u-Gibbs measure of f is SRB.

).

Our main result is the following:

There exists an open neighbourhood U of A 2 m (T 3 ) within Diff 2 (T 3 ) so that for every f ∈ U, either

(1) E s and E u are jointly integrable, or (2) any fully supported ergodic u-Gibbs measure µ is SRB.

Remark 1.1. The hypothesis that the system is near a volume preserving one is used to have C 1 -stable holonomies. The conclusion of Theorem A also holds

stable holonomies, see Theorem 5.8. Remark 1.2. As we mentioned before, Avila et al. announced that for any C 1+α Anosov diffeomorphism in T 3 the strong unstable foliation is minimal. Since the support of any u-Gibbs measure is saturated by W u -leaves, their result would imply that the case (2) of Theorem A could be improved to every u-Gibbs measure is SRB. We could also apply the result announced by Avila-Crovisier-Wilkinson, that we mentioned, to obtain that open and densely in U every u-Gibbs is SRB, where U is the open set from Theorem A.

, Gogolev, Kolmogorov and Maimon consider the linear Anosov diffeomorphism on T 3 induced by the matrix

, the authors did a numerical study for two explicit families of perturbations of A, one conservative and one dissipative. Their numerical study indicates that for these families of perturbations of A, there is a unique u-Gibbs measure and this measure coincides with the SRB measure. They make the following conjecture.

Conjecture ([19], Conjecture 1.3). For all analytic diffeomorphisms f in a sufficiently small neighbourhood of A there exists a unique u-Gibbs measure.

 the authors also make conjectures about transitivity and minimality of W u . In [42], Hertz-Ures gave a positive answer to their transitivity conjecture.

1.4. Related works and further results. One can think of a u-Gibbs measure as a measure that is "homogeneous" along strong unstable manifolds and an SRB measure as being "homogeneous" along entire unstable manifolds.

.

1. Introduction 1.1. Context. Invariant foliations play a key role in partially and uniformly hyperbolic dynamics. For example, they can be used to obtain ergodicity, topological transitivity and mixing for certain systems. In the path of trying to understand these foliations, one can investigate their topological and ergodic properties. For topological properties, one may ask about minimality, or robust minimality, of the invariant foliations. In this paper we are going to focus on understanding ergodic properties of the invariant foliations for a certain type of dynamical system.

We refer the reader to Section 2 for the definition of the dynamical objects that appear in this introduciton. Let us denote by T 3 def.

= R 3 /Z 3 the three-dimensional torus. We let A 2 (T 3 ) ⊂ Diff 2 (T 3 ) be the set of Anosov diffeomorphisms which are strongly partially hyperbolic with uniformly expanding center, that is, a diffeomorphism f belongs to A 2 (T 3 ) if f is Anosov and admits a splitting

T T 3 = E s ⊕ E c ⊕ E u ,
where E c expands uniformly under the action of Df . A diffeomorphism in A 2 (T 3 ) can be seen as an Anosov and as a partially hyperbolic diffeomorphism.

Date: March 19, 2023. In this context the bundles E s , E u , E u ⊕E c , E s ⊕E c and E c integrate to invariant foliations respectively denoted by W s , W u , W cu , W cs and W c , and called the stable, unstable, center-unstable, center-stable and center foliations (see [4,[START_REF] Potrie | Partial hyperbolicity and foliations in T 3[END_REF]). If we see f as an Anosov diffeomorphism, W cu is a (two dimensional) unstable foliation. If we see it as a partially hyperbolic diffeomorphism, W u is the (one dimensional) strong-unstable foliation.

There are two types of elements of A 2 (T 3 ): the conservative elements, which preserve some volume (that must be ergodic by Hopf's argument) and form a set denoted by A 2 m (T 3 ), and the dissipative ones, which don't. In both cases there exists a unique invariant measure which is the "most compatible" with the volume and that is called the SRB measure (for Sinai-Ruelle-Bowen): measures that are absolutely continuous with respect to the Lebesgue measure along center unstable leaves (see §2. 4.5). In particular, they capture the "statistical" behavior of Lebesgue-almost every point (see [START_REF] Young | What are SRB measures, and which dynamical systems have them?[END_REF]). SRB measures are very important in the theory of smooth dynamics. Palis conjectured that for a typical dynamical system there are finitely many attractors, each attractor supporting a unique SRB measure and these measures capture the behavior of Lebesgue almost every point [START_REF] Palis | A global view on dynamics and a conjecture on the denseness of finitude of attractors[END_REF]. This conjecture remains open.

1.2. Dynamics of (center)-unstable foliation. Let f ∈ A 2 (T 3 ) with a splitting T T 3 = E s ⊕ E c ⊕ E u . The dynamics of the center-unstable foliation W cu is very well understood. It is minimal (i.e., every leaf is dense in T 3 ) and there is a unique SRB measure.

On the other hand, recall that properties of the strong-unstable foliation W u are especially interesting for dissipative dynamics: the study of topological and ergodic properties of attractors or quasi-attractors (which are W u -saturated) is closely related to the problem of understanding properties of these foliations (or laminations). Apart from some finiteness results (see [START_REF] Crovisier | Finiteness of partially hyperbolic attractors with one-dimensional center[END_REF][START_REF] Guelman | Uniqueness of minimal unstable lamination for discretized Anosov flows[END_REF][START_REF] Hammerlindl | Pointwise partial hyperbolicity in three-dimensional nilmanifolds[END_REF]), the dynamical properties of strong-unstable foliation are not well understood even in the uniformly hyperbolic setting.

For instance, it was only recently announced by Avila-Crovisier-Eskin-Potrie-Wilkinson-Zhang that W u is minimal for any C 1+α Anosov diffeomorphism of T 3 . In higher dimensions, Avila-Crovisier-Wilkinson recently announced that C 1openly and C r -densely among the transitive Anosov diffeomorphisms admitting a decomposition E s ⊕ E c ⊕ E u , where E c is one dimensional and uniformly expanding, the strong unstable manifold is minimal.

A type of invariant measure that is associated with W u is the so called u-Gibbs measure. A measure is u-Gibbs if it admits conditional measures along W u leaves that are absolutely continuous with respect to the Lebesgue measure of these leaves. In particular the support of such a measure is W u -saturated. Let us make a few remarks about u-Gibbs and SRB measures in our setting:

(1) SRB measures are absolutely continuous along two dimensional objects (W cu leaves), while u-Gibbs are absolutely continuous along one dimensional objects (W u leaves). (2) SRB measures are u-Gibbs.

(3) In general, we don't know when an u-Gibbs measure is an SRB measure. 1.3. Main result. The goal of this paper is related to item (3) above. We are interested in knowing when the u-Gibbs property implies SRB. In other words, given a measure that is absolutely continuous along W u , when can we "promote" this measure to be absolutely continuous along W cu ? She proved that such measures are homogeneous, i.e., they are the Haar measure of some subgroup. Observe that unipotent flows parameterize unstable manifolds of the geodesic flow on surfaces with constant negative curvature (the horocycle flow). Hence, a consequence of Ratner's measure rigidity result is measure rigidity of the u-Gibbs measures of the geodesic flow on surfaces with constant negative curvature. A key idea in Ratner's approach is the so-called polynomial drift, which allowed her to obtain extra invariance of the measure from invariance along orbits of the unipotent flow.

In [2], Benoist-Quint introduced the idea of exponential drift to prove a measure rigidity result for stationary measures of a Zariski dense random walk on homogeneous spaces.

Outside the homogeneous setting, Eskin-Mirzakhani gave a non trivial modification of the exponential drift strategy, which is called the factorization method, to prove measure rigidity results for the action of SL(2, R) on moduli spaces [START_REF] Eskin | Invariant and stationary measures for the SL(2, R) action on moduli space[END_REF]. Since then, these ideas were pushed to some different settings. In [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF], Brown-Hertz classified the hyperbolic stationary measures of random products of surface diffeomorphisms. Cantat-Dujardin applied Brown-Hertz's result to classify random products of automorphisms of real and complex projective spaces [8].

In the partially hyperbolic setting, the third author adapted Brown-Hertz's result to obtain a rigidity result for u-Gibbs measures for partially hyperbolic skew products with two dimensional center [START_REF] Obata | Open sets of partially hyperbolic skew products having a unique srb measure[END_REF].

In [START_REF] Katz | Measure rigidity of anosov flows via the factorization method[END_REF], Katz adapts the Eskin-Mirzakhani strategy for the smooth setting. He proved that for any C ∞ Anosov diffeomorphism f having a splitting T M = E s ⊕ E c ⊕ E u , where E c is one dimensional and expanding, any u-Gibbs measure that verifies a technical condition called QNI (quantified non-integrability) is SRB. Eskin-Potrie-Zhang, in an ongoing work [START_REF] Eskin | Geometric properties of partially hyperbolic measures and applications to measure rigidity[END_REF], obtained equivalent notions to QNI that are easier to work with. Their result will be used by Avila et al., in another ongoing project, to prove that for any Anosov diffeomorphism in A ∞ (T 3 ) either E s and E u are jointly integrable, or every u-Gibbs measure is SRB. All of these works need the C ∞ regularity (actually these results can be done C r for r ≫ 1). Part of the goal of this paper is to obtain this type of measure rigidity result for u-Gibbs measures, but in lower regularity (in our case C 2 ). 1.5. Ingredients of the proof. The first ingredient concerns the transversality condition. We replace Katz's QNI condition by a zero-one law for angles inspired by Brown-Hertz [START_REF] Brown | Measure rigidity for random dynamics on surfaces with positive entropy[END_REF]Lemma 7.1] (see also [2]). We use the fact that stable holonomies (H s x,y ) x,y are C 1 for any diffeomorphism f ∈ A 2 (T 3 ) close to a conservative one (see Lemma 2.6); thus, for x, y in the same stable manifold, we can define an (unoriented) angle (see Figure 1)

α s (x, y) def.
= ∠(DH s x,y E u (x), E u (y)). Note that conditional measures µ s

x on stable manifolds are not well defined. But full-and zero-measure sets for µ s x are well defined, see §2. 4. We can now state our zero-one law (see Theorem 4.2 for a slightly more general statement).

Theorem B (A zero-one law for angles).

There exists an open neighbourhood U of A 2 m (T 3 ) within Diff 2 (T 3 ) such that for any f ∈ U, and for any ergodic f -invariant measure µ, the following dichotomy holds:

(1) for µ-a.e. x ∈ T 3 and µ s x -a.e. y ∈ W s (x), α s (x, y) = 0; (2) for µ-a.e. x ∈ T 3 and µ s x -a.e. y ∈ W s (x), α s (x, y) > 0. This theorem is stated here in terms of the angle function α s ; yet, it seems possible to generalize it to a broader context (see Remark 4.4).
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Figure 1. Stable holonomies and the angle function.

The other important ingredient in our proof is the existence of normal forms for the dynamics along two-dimensional unstable foliations. The dynamics along unstable manifolds are simplified when they are looked at using normal forms. The theory of non-stationary normal forms has been studied quite extensively since the pioneering work of Guysinsky-Katok [START_REF] Guysinsky | Normal forms and invariant geometric structures for dynamical systems with invariant contracting foliations[END_REF], see for instance [START_REF] Kalinin | Normal forms on contracting foliations: smoothness and homogeneous structure[END_REF][START_REF] Kalinin | Normal forms for non-uniform contractions[END_REF][START_REF] Gogolev | Center foliation rigidity for partially hyperbolic toral diffeomorphisms[END_REF]. Katz uses the result from [START_REF] Kalinin | Normal forms on contracting foliations: smoothness and homogeneous structure[END_REF] where higher regularity is needed depending on the Lyapunov spectrum.

Yet, these results do not apply directly here, due namely to the fact that f is only assumed to be C 2 . Using an ad hoc construction, based on one-dimensional normal forms along the center/unstable directions, we show: Theorem C (Normal forms). Let f ∈ A 2 (T 3 ). Then, there exists a family {Φ x } x∈T 3 of C1 diffeomorphisms Φ x : R 2 → W cu (x) such that (1) 

f • Φ x = Φ f (x) • N x , with N x def. = λ u x 0 0 λ c x , letting λ * x def. = Df (x)| E * ;
(2) Φ x (0) = x and DΦ x (0)(1, 0) = v u (x), DΦ x (0)(0, 1) = v c (x), v u (x), resp.

v c (x) being a unit vector in E u (x), resp. E c (x); (3) Φ x (•) depends continuously with the choice of x in the local C 1 -topology 1 ; (4) Φ x is a foliated chart for W u , i.e., for all s ∈ R, Φ x (R × {s}) = W u (Φ x (0, s)), and Φ x ({0} × R) = W c (x).

Remark 1.3. The normal forms {Φ x } x∈T 3 do not define an affine structure on the foliation W cu ; yet, we will see in Section 6 certain invariance properties of these normal forms under changes of charts.

Note that Katz also uses the C ∞ regularity many other times in his adaptation of Eskin-Mirzakhani's factorization method for Anosov systems. For example, at some moments, he has to approximate stable/unstable manifolds by Taylor polynomials with very high degree. In our setting, Theorems B and C are the two main reasons why we are able to adapt the Eskin-Mirzakhani's strategy in lower regularity.

We stress that, differently from previous works, we implement Yconfigurations and a version of the factorization technique of [START_REF] Eskin | Invariant and stationary measures for the SL(2, R) action on moduli space[END_REF] without using suspensions nor any reparametrization. We make all estimations directly with the diffeomorphism. This is possible because we can obtain uniform estimates for the drift of leaf-wise (quotient) measures along the center as well as synchronization estimates for stopping times (see §8.3), using only basic distortion estimates (see §2.3).
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. Theorem C provides non-stationary C 1 linearisations of the dynamics along center unstable leaves. They send horizontal lines onto unstable manifolds.

1.6. Organization of the paper. This paper is organized as follows: in Section 2 we introduce the basic definitions and results we need. In Section 3 we give an outline of the proof of Theorem A. In Section 4 we establish a zero-one law for transversality between the bundles E s and E u . In Section 5 we reduce the proof of Theorem A to a more technical result, see Theorem 5.8. In Section 6 we construct a non-stationary family of C 1 linearisations of the dynamics restricted to center unstable manifolds and use them to construct a family of measures {ν c

x } x∈T 3 on the real line. We reduce the proof of our main technical result to proving that these measures are Lebesgue almost surely. In Section 7 we perform some more reductions of the proof. In Section 8 we introduce Y -configurations and other objects crucial for our argument. In Section 9 we introduce matched Y -configurations and in Section 10 we complete the proof.
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Partially hyperbolic diffeomorphisms with expanding center

In this section we introduce the class of dynamical systems we work with as well as the main objects, taking the opportunity to fix notations and recall important basic facts.

2.1. Definitions. For any integer r ≥ 1, we let PH r (T 3 ) be the set of all C r (strongly) partially hyperbolic diffeomorphisms of T 3 with one-dimensional stable/center/unstable bundles, i.e., the diffeomorphisms f : T 3 → T 3 for which the tangent bundle admits a continuous splitting into Df -invariant line bundles,

T T 3 = E s f ⊕ E c f ⊕ E u f ,
such that the functions

x → λ * f,x def. = Df (x)| E * , * ∈ {s, c, u},
are continuous and satisfy λ s x < 1 < λ u x and λ s x < λ c x < λ u x , for all x ∈ T 3 . In the following, unless otherwise stated, we will fix a diffeomorphism f and abbreviate

E * f = E * , λ * f,x = λ *
x , for * ∈ {s, c, u} and x ∈ T 3 . We also let

E cs def. = E c ⊕ E s , resp. E cu def.
= E c ⊕ E u be the center-stable, resp. center-unstable subbundle, and set

E su def. = E s ⊕ E u .
2.1.1. Anosov diffeomorphisms with uniformly expanding center. We denote by A r (T 3 ) ⊂ PH r (T 3 ) the subset consisting of partially hyperbolic diffeomorphisms f ∈ PH r (T 3 ) with uniformly expanding center, i.e., such that λ c x > 1, for all x ∈ T 3 ; in particular, any such diffeomorphism f is Anosov, for the hyperbolic splitting E s ⊕ E cu . We also denote by A r m (T 3 ) ⊂ A r (T 3 ) the subset made of conservative Anosov diffeomorphisms (i.e., that preserve some volume).

To simplify the exposition, we assume that the bundles E * are orientable and that f preserves their orientation (this can always be achieved by taking an orientable cover and considering powers of f ) In particular, there are unitary vector fields

T 3 x → v * (x) ∈ E * (x) such that Df (x)v * (x) def. = λ * x v * (f (x)).
2.1.2. Notations for orbits and derivatives. To give a more friendly aspect of some long calculations we shall make, we introduce the following notation. For a point x ∈ T 3 we denote

x n = f n (x) for n ∈ Z. (1) 
Also, for n ∈ Z and for * = s, c, u we denote the derivative of f in restriction to the bundle E * by

λ * x (n) def. = Df n (x)| E * . ( 2 
)
The following cocycle property follows from the chain rule and the fact that the bundles are one-dimensional:

λ * x (n + m) = λ * x (n)λ * f n (x) (m), * ∈ {s, c, u}. (3) 
The following quantities associated to f will be useful for crude estimations

Df def. = max{ Df (x)v : x ∈ T 3 , v ∈ T x T 3 , v = 1} and m(Df ) def. = min{ Df (x)v : x ∈ T 3 , v ∈ T x T 3 , v = 1}.
2.1.3. Adapted metric and hyperbolic estimates. The following quantity will play a key role latter when we introduce stopping times and Y -configurations:

d x def. = λ c x -( ) λ u x -( ) . ( 4 
)
Notice that d x measures the amount of projective hyperbolicity we have for the dominated splitting

E c ⊕ E u .
We fix a Riemannian metric on T 3 and constants χ * j ∈ R, for * ∈ {c, s, u, d} and j = 1, 2 such that the following holds:

(1) χ d 1 < χ d 2 < 0 and e χ d 1 < d x < e χ d 2
, for every x ∈ T 3 and every ∈ Z.

(2) χ s 1 < χ s 2 < 0 and e χ s 1 < λ s x ( ) < e χ s 2 , for every x ∈ T 3 and every ∈ Z.

(3) χ c 1 > χ c 2 > 0 and e χ c 1 > λ c x ( ) > e χ c 2 , for every x ∈ T 3 and every ∈ Z. (4) χ u 1 > χ u 2 > 0 and e χ u 1 > λ u x ( ) > e χ u 2
, for every x ∈ T 3 and every ∈ Z.

2.1.4. Invariant manifolds. Let r ≥ 1, and let f ∈ A r (T 3 ). It is well-known (see [START_REF] Hirsch | Invariant manifolds[END_REF]) that the strong bundles E s and E u are uniquely integrable to f -invariant continuous foliations with C r -leaves W s f = W s and W u f = W u respectively, called the strong stable and strong unstable foliations. Since the splitting E s ⊕ E cu is Anosov, the center-unstable bundle E cu also integrates uniquely to an f -invariant continuous foliation W cu f = W cu , called the center-unstable foliation. For any x ∈ T 3 and * = s, u, cu, we denote by W * (x) the leaf of W * through x; it is an immersed C r manifold.

We now define the concept of joint integrability which appear in the statement of Theorem A Definition 2.1 (Joint integrability). We say that f ∈ A r (T 3 ) is (or that the bundles E s and E u are) jointly integrable if the bundle E s ⊕ E u integrates to a continuous foliation with C 1 leaves.

Let r ≥ 1, and fix a C r Anosov diffeomorphism f ∈ A r (T 3 ). By Corollary 1.3 in [START_REF] Newhouse | On codimension one anosov diffeomorphisms[END_REF] the non-wandering set Ω(f ) of f is equal to Ω(f ) = T 3 , and f is topologically conjugated to a hyperbolic toral automorphism. As a consequence one has that Lemma 2.2. The stable foliation of f is minimal, i.e., each leaf of W s is dense in T 3 .

2.1.5. Dynamical coherence. As remarked before, any diffeomorphism f ∈ A r (T 3 ) can be seen either as a strongly partially hyperbolic diffeomorphism with respect to the splitting E s ⊕ E c ⊕ E u and an Anosov diffeomorphism with respect to the splitting E s ⊕ E cu . By Lemma 2.2 we know that Ω(f ) = T 3 .

In particular, by the results of Potrie [START_REF] Potrie | Partial hyperbolicity and foliations in T 3[END_REF] (see also Brin-Burago-Ivanov [4]) about partially hyperbolic diffeomorphisms of T 3 , we have that f is dynamically coherent; in particular, E cs is also integrable to an f -invariant continuous foliation W cs f = W cs , called the center-stable foliation. Moreover, W s subfoliates W cs , while W u subfoliates W cu , and the collection of all leaves W c (x) = {y ∈ W * (x) | d * (x, y) < σ}. In our Anosov case we can show rather easily that the foliations W c and W u are globally transverse inside each W cu leaf, as the two lemmas below demonstrate.

def. = W cs (x) ∩ W cu (x), x ∈ T 3 , forms a foliation W c f = W c ,

Lemma 2.3. For any

x ∈ T 3 , it holds W cu (x) = ∪ y∈W c (x) W u (y).
Proof. Let z ∈ W cu (x) be arbitrary. We need to show that W c (x) ∩ W u (z) = ∅. Since the bundles E c and E u are integrable and the local leaves have uniform size due to hyperbolicity, since the splitting E c ⊕ E u is dominated and since backwards iteration under f contracts distances uniformly along W cu we must have some n ∈ N such that

W c (f -n (x)) ∩ W u (f -n (z)) = ∅,
with transverse intersection. By forward iteration and using that integral manifolds are invariant by the dynamics we obtain the conclusion of the lemma. Proof. Assume by contradiction the existence of a point y = y in W c (x)∩W u (y). Consider the piece γ u of unstable manifold joining y to y . Since the length of f -n (γ u ) decreases exponentially there exists some n such that the curve f -n (γ u ) is entirely contained in a coordinate chart for which the line field E c is almost vertical. Since this curve joins the points f -n (y) and f -n (y ) which belong to the same local integral curve of E c , this proves that the velocity of f -n (γ u ) is almost vertical somewhere. This contradicts the dominated splitting E c ⊕ E u and completes the proof.

Lemma 2.4. For every y ∈ W c (x), it holds W c (x) ∩ W u (y) = {y}. W c (x) W u (y) • • y y • • f -n (y) f -n (y ) f -n
2.1.6. Holonomies. Let x 1 , x 2 ∈ T 3 be two stably connected points, i.e., such that x 2 ∈ W s (x 1 ). Set r def.

= d s (x 1 , x 2 ). By transversality, for any sufficiently small ε > 0, there is σ 1 > 0 such that for any point y 1 ∈ W cu σ 1 (x 1 ), there exists a unique point

y 2 ∈ W s (x 1 ) ∩ W cu 1 (x 2 ) with d s (y 1 , y 2 ) ∈ (r -ε, r + ε). We denote H s x 1 ,x 2 (y 1 )
def.

= y 2 . We thus get a well defined local homeomorphism

H s x 1 ,x 2 : C 1 → C 2 , from a neighbourhood C 1 of x 1 within W cu (x 1 ) to a neighbourhood C 2 of x 2 within W cu (x 2 ), called the (local) stable holonomy map between C 1 and C 2 . Holonomies H u , H cs , H cu along W u , W cs , W cu
are defined in a similar way.

Regularity of extreme bundles and holonomy maps.

It is crucial to our proof that certain holonomy maps are of class C 1 . This is the case when some bunching inequalities are satisfied between the rates of contraction/expansion of the system; they actually hold in a neighbourhood of volume preserving Anosov diffeomorphisms of T 3 , which is the main motivation behind this assumption in our result. Loosely speaking, a partially hyperbolic diffeomorphism is center bunched if the lack of conformality along the center bundle is dominated by the hyperbolicity along the strong unstable/stable bundles.

2.2.1.

Regularity of the unstable bundle. Let f ∈ A 2 (T 3 ). Then, f is a strongly partially hyperbolic diffeomorphism with one-dimensional center bundle. Hence f is automatically center bunched, and then by [START_REF] Pugh | Hölder foliations[END_REF]Theorem B], the unstable bundle E u is C 1 when restricted to any center unstable leaf W cu (x). In particular the vector field v u | W cu is a C 1 vector field over the immersed submanifold W cu (x) and its C 1 norm depends continuously with respect to x ∈ T 3 .

As a corollary we obtain that for any two small and nearby center curves γ 1 , γ 2 ⊂ W cu (x), in the same center unstable leaf, the unstable holonomy map H u : γ 1 → γ 2 is C 1 . This regularity will play a role in our argument in Section 9.4. Moreover, for some estimations in our proof it is important to quantify the Lipschitz constant of these unstable holonomy maps, as in the following result, which is simply a more precise statement of [START_REF] Pugh | Hölder foliations[END_REF]Theorem B] in our case. Lemma 2.5. Let f ∈ A r (T 3 ). There exists ρ 0 > 0, C u > 0 such that for every x, y ∈ T 3 , if x ∈ W u 2 (y) then the unstable holonomy H u x,y between local center manifolds is defined over W c ρ 0 (x) and for every z, z ∈ W c ρ 0 (x) we have

d(H u x,y (z), H u x,y (z )) ≤ C u d(z, z ). 2.2.2.
Regularity of the stable bundle. For the bundle E s a stronger statement can be made when f is close to a volume preserving map. Indeed, fix arbitrarily

f 0 ∈ A 1 m (T 3 ). Lemma 2.6. There exists a neighbourhood U(f 0 ) of f within Diff 2 (T 3 ) such that for any diffeomorphism f ∈ U(f 0 ), it holds f ∈ A 2 (T 3 ), and the stable bundle E s of f is of class C 1 .
Proof. The diffeomorphism f 0 is conservative so its Jacobian is a coboundary (by Livšic's Theorem [START_REF] Livšic | Certain properties of the homology of Y -systems[END_REF] and [START_REF] Bowen | Equilibrium states and the ergodic theory of Anosov diffeomorphisms[END_REF]Theorem 4.14]). Thus, there exists a function φ : T 3 → (0, ∞) bounded away from 0 and ∞ such that for any x ∈ T 3 , we have

λ s f 0 ,x λ c f 0 ,x λ u f 0 ,x = φ • f (x) φ(x) ,
hence the chain rule yields for every n ∈ N,

λ s f 0 ,x (n) = λ s f 0 ,x (n)λ c f 0 ,x (n)λ u f 0 ,x (n) λ c f 0 ,x (n)λ u f 0 ,x (n) = φ • f n (x) φ(x) 1 (λ c f 0 ,x (n)) 2 λ c f 0 ,x (n) λ u f 0 ,x (n) < λ c f 0 ,x (n) λ u f 0 ,x (n) ,
as soon as n is large enough so that

φ • f n (x) φ(x) < (λ c f 0 ,x (n)) 2 .
Such an integer n may be chosen independently of x because φ is uniformly bounded away from 0 and ∞ and E c is uniformly expanding. In particular, if

f ∈ Diff 2 (T 3 ) is sufficiently C 1 -close to f 0 , then f ∈ A 2 (T 3
), and for the same choice of n ∈ N and every

x ∈ T 3 , it holds λ s f,x (n) < λ c f,x (n) λ u f,x (n) .
In other words, the hyperbolic splitting E s ⊕ E cu of f is bunched in the sense of [START_REF] Pugh | Hölder foliations[END_REF] (see also [9, §4.7]). Then, according to the results of [START_REF] Pugh | Hölder foliations[END_REF] (see also [START_REF] Crovisier | Introduction to Partially Hyperbolic Dynamics[END_REF]Theorem 4.21]), the stable bundle E s f is C 1 , as well as the stable holonomy maps.

Remark 2.7. As noted in the above proof, the assumption that f is C 1 -close to a conservative diffeomorphism ensures that the following bunching condition is automatically satisfied (hence that stable holonomies H s are C 1 , by [START_REF] Pugh | Hölder foliations[END_REF]):

λ s f,x (n) < λ c f,x (n) λ u f,x (n) , ∀ x ∈ T 3 . ( 5 
)
In other words, [START_REF] Brown | Entropy, Lyapunov exponents, and rigidity of group actions, volume 33 of Ensaios Matemáticos[END_REF] means that the lack of conformality of Df along E cu is dominated by the contraction along E s . In particular, the conclusion of Theorem A holds true for any Anosov diffeomorphism f ∈ A 2 (T 3 ) satisfying (5).

2.2.3.

Hölder regularity of cs-holonomies. Despite of the above regularity results, a substantial source of technical difficulties for our strategy comes from the absence of smoothness for center stable holonomies. The quest for overcoming this is the main reason behind our matching argument for Y -configurations, in Sections 9 and 10.3.2. In our setting, the best that can be said about center stable holonomies comes from Theorem A in [START_REF] Pugh | Hölder foliations[END_REF], which we quote below in a convenient way for our purposes.

Lemma 2.8. Let f ∈ A r (T 3 ). Then, there exist ρ 0 > 0 (which we can assume is the same from Lemma 2.5), C cs > 0, θ cs > 0 such that for every x, y ∈ T 3 if x ∈ W cs ρ 0 (y) then the center-stable holonomy H cs x,y is defined on the whole of W u 2 (x) and for every z, z ∈ W u 2 (x) we have d(H cs x,y (z), H cs x,y (z )) ≤ C cs d(z, z ) θ cs . 2.3. Basic distortion estimates. The goal of this subsection is to collect some classical distortion estimates and fix once and for all some constants which are going to be very important all along our constructions. Lemma 2.9 (Basic distortion lemma). Let ϕ : T 3 → R be a Hölder continuous function. Then, there exists a constant

C = C(ϕ) > 0 such that (a) If y ∈ W s 1 (x) and n > 0 or (b) if f (y) ∈ W cu 1 (f (x)) for every = 0, . . . , n -1, then n-1 =0 ϕ(f (x)) -ϕ(f (y)) ≤ C.
We omit the proof as it is quite classical. Applying the lemma to the functions ϕ = log Df (.)| E * , * = c, u we obtain a constant C 0 = C 0 (f ) ≥ 1 such that if y ∈ W s 1 (x) and n > 0 or if f (y) ∈ W cu 1 (f (x)) for every = 0, . . . , n, then

C -1 0 ≤ Df n (x)| E * Df n (y)| E * ≤ C 0 . (6) 
Moreover, up to enlarging C 0 , we also have that if y ∈ W cu 1 (x) then

C -1 0 ≤ Df -n (x)| E * Df -n (y)| E * ≤ C 0 . ( 7 
)
for every n ∈ N. Another important application is obtained by considering the function

ψ(x) = log Df (x)| E c Df (x)| E u .
We can assume that the constant C 0 also satisfies the following Corollary 2.10. Given ∈ N recall from (4) that

d x = Df (f -(x))| E c Df (f -(x))| E u . If y ∈ W s 1 (x), then, C -1 0 ≤ d x d y ≤ C 0 .
2.3.1. Distortion for quadrilaterals. One of the key dynamical configuration for our strategy are the quadrilaterals. A quadrilateral is a quadruple (x, x u , y, y u ) ∈ (T 3 ) 4 such that x u ∈ W u 1 (x), y ∈ W s 1 (x), and y u ∈ W u 1 (y) ∩ W cs (x u ). For such a quadrilateral, we define the point z u def.

= H s x,y (x u ), so that z u ∈ W s (x u )∩W c (y u ). From our previous distortion results, we can take a larger constant C 0 = C 0 (f ) in order to have the following.

• x u W s 1 (x) • x W u 1 (x) z u • W u 1 (y) • y • y u Figure 4. A quadrilateral.
Corollary 2.11. Now, assume that y ∈ W s 1 (x) and that x u ∈ W u 1 (x) and

y u ∈ W u 1 (y) are such that y u = H cs x,y (x u ). Let z u = H s (x u ). If n ∈ N satisfies d(f n (z u ), f n (y u )) ≤ 1 then C -1 0 ≤ Df (x u )| E c Df (y u )| E c ≤ C 0 ,
for every = 0, . . . , n.

Proof. The result follows from [START_REF] Brown | Measure rigidity for random dynamics on surfaces with positive entropy[END_REF] since

Df (x u )| E c Df (y u )| E c = Df (x u )| E c Df (z u )| E c × Df (z u )| E c Df (y u )| E c .
2.4. Subordinate partitions, disintegrations, SRB and u-Gibbs measures. We move now to the ergodic theory of Anosov diffeomorphisms of T 3 with expanding center. Before giving the main definitions, we give some preliminaries on measurable partitions, disintegration and invariant measures.

2.4.1. Measurable partitions. Let µ be a probability measure of some standard Borel set X. Let ξ 1 , ξ 2 be two partitions (mod 0) of X into measurable subsets. Say that ξ 1 is finer than (or refines) ξ 2 , and denote ξ 2 ≺ ξ 1 , if for m-a.e. x ∈ X we have ξ 1 (x) ⊂ ξ 2 (x) mod 0. The join of ξ 1 and ξ 2 is the partition defined as

ξ 1 ∨ ξ 2 = {ξ 1 (x) ∩ ξ 2 (y) : x, y ∈ X}.
A partition ξ of X is measurable whenever there exists a sequence (ξ n ) n∈N of finite partitions of X by Borel subsets such that

ξ = ∞ n=0 ξ n .
Rokhlin proved the following fundamental result in [START_REF] Rokhlin | On the fundamental ideas of measure theory[END_REF]. The measure µ can be disintegrated in atoms of any measurable partition ξ. It means that there exists a family of probability measures {µ ξ x } x , called a family of conditional measures of µ relative to ξ defined for µ-a.e. x ∈ X and satisfying for µ-a.e. x ∈ X:

(1) µ ξ x is a probability measure on X satisfying µ ξ x (ξ(x)) = 1; (2) if y ∈ ξ(x) then µ ξ y = µ ξ x . And moreover for every Borel subset A ⊂ X,

(3) x → µ ξ x (A) is measurable; (4) µ(A) = µ ξ x (A) dµ(x).
Moreover such a family is unique modulo a null set of µ.

Disintegration of invariant measures.

Assume now that µ is invariant by some invertible measurable transformation f : X → X. Let ξ be a measurable partition and, for n ∈ Z, let ξ n def.

= f n ξ. Let {µ x } x def.

= {µ ξ

x } x and {µ n,x } x def.

= {µ ξn

x } x be families of conditional measures of µ relative to ξ and ξ n respectively. The following lemma will be useful for our purposes. Lemma 2.12. For every n ∈ N and µ-almost every x ∈ X, we have

µ n,x = f n * µ f -n (x) .
Proof. Let ϕ ∈ L 1 (X, µ). We first disintegrate µ along ξ and use twice the f -invariance:

ϕ(x) dµ(x) = ϕ • f n (x) dµ(x) = ξ(x) ϕ • f n (y) dµ x (y) dµ(x) = ξ(f -n (x)) ϕ • f n (y) dµ f -n (x) (y) dµ(x) = ξn(x) ϕ(y) d f n * µ f -n (x) (y) dµ(x).
We deduce that {f n * µ f -n (x) } x is a system of conditional measures of µ with respect to ξ n . The lemma follows by uniqueness µ-a.e. of conditional measures.

2.4.3.

Partitions subordinate to expanded and contracted foliations. Let M be a closed manifold, f : M → M be a diffeomorphism of M , and µ be an ergodic measure invariant by f . Assume that W + is a foliation invariant by f . Assume furthermore that it is uniformly expanded, that is Df -1 | T W + ≤ λ for some constant and 0 < λ < 1.

Say a measurable partition ξ is subordinate to W + if the following properties hold for µ-a.e. x ∈ M :

(1) ξ(x) is a subset of W + (x) of diameter less than 1;

(2) ξ(x) contains an open (in the internal topology) neighbourhood of x in W + (x); (3) ξ ≺ f -1 ξ (we say that ξ is increasing); (4) ∞ n=0 f -n ξ is the partition into points. The existence of subordinate partitions was proven in [START_REF] Ledrappier | A proof of the estimation from below in Pesin's entropy formula[END_REF] in a more general context (see also [START_REF] Yang | Entropy along expanding foliations[END_REF] and [START_REF] Brown | Entropy, Lyapunov exponents, and rigidity of group actions, volume 33 of Ensaios Matemáticos[END_REF]Appendix D]). Remark 2.13. Assume that W ⊂ W + is a subfoliation f -invariant with expansion constant 0 < λ ≤ λ and that ξ is subordinate to W + . Then it follows from the proofs given in [START_REF] Brown | Entropy, Lyapunov exponents, and rigidity of group actions, volume 33 of Ensaios Matemáticos[END_REF][START_REF] Ledrappier | A proof of the estimation from below in Pesin's entropy formula[END_REF][START_REF] Yang | Entropy along expanding foliations[END_REF] 

that the partition ξ = ξ ∨ W is subordinate to W .
Similarly, assume W -is invariant and uniformly contracted by f . This means that Df | T W -< λ for some 0 < λ < 1. We say that ξ is subordinate to W -if the following properties hold for µ-a.e. x ∈ M :

(1) ξ(x) is subset of W -(x) of diameter less than 1;

(2) ξ(x) contains an open neighbourhood of x in W -(x);

(3) ξ ≺ f ξ (we say that ξ is decreasing); (4) ∞ n=0 f n ξ is the partition into points. Remark 2.14. If W + (resp. W -) has dimension 1 then atoms of the subordinate partition constructed in [START_REF] Brown | Entropy, Lyapunov exponents, and rigidity of group actions, volume 33 of Ensaios Matemáticos[END_REF][START_REF] Ledrappier | A proof of the estimation from below in Pesin's entropy formula[END_REF][START_REF] Yang | Entropy along expanding foliations[END_REF] = f -n ξ is also a subordinate partition to W + . Since ξ -n (x) contains an open neighbourhood of x for µ-a.e. x ∈ M , an atom of ξ contains at most countably many atoms of ξ -n . In the terminology of [START_REF] Einsiedler | Diagonal actions on locally homogeneous spaces[END_REF]Definition 5.15], we say that ξ and ξ -n are countably equivalent.

From [START_REF] Einsiedler | Diagonal actions on locally homogeneous spaces[END_REF], Proposition 5.17 we obtain the following superposition property.

Lemma 2.15 (Superposition property). For µ a.e. x ∈ M it holds that

µ x (ξ -n (x)) > 0.
Moreover, if µ -n,x is the disintegration of µ with respect to the partition ξ -n ,

µ -n,x = µ x | ξ -n (x) µ x (ξ -n (x))
.

By the definition of a subordinate partition, for µ-a.e. 2.4.5. SRB and u-Gibbs measures. We return now to our partially hyperbolic setting where f ∈ A 2 (T 3 ). Let ξ cu be a measurable partition of T 3 subordinate to the center unstable foliation W cu . Let µ be an ergodic invariant measure for f . We say that µ is an SRB measure if its disintegration {µ cu x } x∈T 3 with respect to the partition ξ cu satisfies that µ cu

x is absolutely continuous with respect to the inner Lebesgue measure Leb cu x of W cu (x) for µ a.e. x ∈ T 3 . Consider now ξ u a measurable partition subordinate to the unstable foliation W u and let {µ u

x } x∈T 3 denote the disintegration. We say that µ is a u-Gibbs measure provided that µ u

x is absolutely continuous with respect to the inner Lebesgue (length) measure Leb u x of W u (x) for µ a.e. x ∈ T 3 . Remark 2.18. For simplicity of the exposition in many situations, where no confusion may arise, given a set A ⊂ W * (x), we shall denote |A| def.

= Leb *

x (A) for * ∈ {s, c, u}.

An easy, but fundamental at a technical level, consequence of the u-Gibbs property is the following.

Lemma 2.19. There exists β > 1 depending only on the diffeomorphism f such that for µ-almost every

x ∈ T 3 , 1 β Leb u x [ξ u (x))] < dµ u x dLeb u x < β Leb u x [ξ u (x)] inside ξ u (x).
Proof. This follows from the fact that µ u

x is a probability measure that has a uniformly log-Hölder continuous density with respect to Leb u x .

Heuristics of the proof

This section can be used to get an overview of the proof of Theorem A and also as a guide to read our paper.

From now on let f ∈ A 2 (T 3 ) be a diffeomorphism that is close to a conservative one. In this case, stable holonomies H s x,y are C 1 , and we can define angles α s (x, y)

for two points x, y in the same stable manifold (see Figure 1). The vanishing of the angle α s can be seen as a kind of infinitesimal joint integrability. Let µ be an ergodic u-Gibbs measure for f .

Starting point: a zero-one law. We first use Theorem B, which yields the following dichotomy.

Case 1: α s (x, y) = 0, for µ-a.e. every pair (x, y) in the same stable manifold; Case 2: α s (x, y) > 0, for µ-a.e. every pair (x, y) in the same stable manifold. The proof of this theorem will be given in Section 4 and relies on a martingale argument. In words, we either have positive angles almost everywhere along the stable manifold of almost every point, or we have zero angles almost everywhere along the stable manifold of almost every point. The rest of the proof is divided into two parts:

• [Case 1 + supp(µ) = T 3 ] =⇒ joint integrability; • Case 2 =⇒ µ is SRB.
Part 1: joint integrability. Given a point x ∈ T 3 we define the Bad set as andµ s x is the conditional measure of x along a stable manifold (see §5.1 for more details). The Bad set is the set of points such that there is an "infinitesimal" joint integrability with almost every other point in its stable manifold.

B µ def. = {x ∈ T 3 : µ s x {α s x > 0} = 0}, where α s x def. = [y ∈ W s (x) → α s (x, y)],
The first part of the proof goes as follows (see Proposition 5.3):

• if there is no joint integrability, then for any x ∈ T 3 , the set {α s x > 0} is open and dense within the stable manifold W s (x) (see Lemma 5.6); • if, furthermore, the Bad set B µ has measure 1, the continuity of the angles implies that whenever α s (x 0 , y 0 ) > 0, there exists a small foliated chart V around y 0 for W s of measure 0 (see Lemma 5.7); • hence, combining the two previous points, if there is no joint integrability and B µ has full measure, then the support of µ must have empty interior. The last point is the only place in the paper where the support condition on µ is used.

Part 2: transversality implies SRB. Most of this paper is dedicated to proving that if µ is a u-Gibbs measure such that µ(B µ ) = 0 then µ is SRB (Theorem 5.8).

To check that a u-Gibbs measure µ is SRB, one can consider the disintegration of this measure along center-unstable manifolds {µ cu x } and then quotient it by the strong unstable manifolds {μ c

x }. These are called the transverse measures. Then µ is SRB if and only if the transverse measures are equivalent to Lebesgue. In this approach, it is really convenient to consider certain parameterizations of center-unstable manifolds that simplify the dynamics, the so-called normal forms (see Section 6). These coordinates allow us to identify the quotient measures {μ c

x } with measures {ν c x } in R. To conclude that the measures {μ c x } are equivalent to Lebesgue, we will show that the measures {ν c

x } are proportional to the Lebesgue measure on R, where we say that two locally finite Borel measures ν, η are proportional, and we indicate it by ν ∝ η, if ν = cη for some c > 0.

To do so, it is enough to prove that for µ-a.e. x ∈ T 3 , νc x is invariant by translation. Actually, thanks to an argument due originally to Katok-Spatzier [START_REF] Katok | Invariant measures for higher-rank hyperbolic abelian actions[END_REF] and Kalinin-Katok [START_REF] Kalinin | Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori[END_REF] (see also [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]Lemma 7.1]), which is a beautiful mixture of ergodic and Lie theoretic arguments, it is enough to prove something weaker:

for a set G of points x ∈ T 3 with positive measure, there exist affine maps ψ with uniformly bounded derivatives and arbitrarily small translational parts such that νc

x ∝ ψ * νc x . This is Lemma 7.1 (largely inspired by [START_REF] Brown | Measure rigidity for random dynamics on surfaces with positive entropy[END_REF]Lemma 7.1]). The construction of these affine maps is where our key arguments are located. Our strategy is to use the Y -configurations introduced by Eskin-Mirzakhani [START_REF] Eskin | Invariant and stationary measures for the SL(2, R) action on moduli space[END_REF] (see also Eskin-Lindenstrauss [START_REF] Eskin | Random walks on locally homogeneous spaces[END_REF]). Below we outline this proof, splitting the explanation in two parts, for the sake of clarity. First, we describe Y -configurations. Then we explain how to use them in order to get invariance by affine maps in the way we described in last paragraph.

Y -configurations. See Figure 5. Fixing ∈ N we find points x and y that are typical for µ such that:

(1)

y ∈ W s loc (x) and d(x, y) ≈ Df | E s ; (2) if x -= f -(x) and y -= f -(y), then d(x -, y -) ≈ 1 and the angle α s (x -, y -) is more than some constant 1 C ; (3) as a consequence of (1) and (2), α s (x, y) ≥ 1 C Df (x -)| E c Df l (x -)| E u .
Normal forms help a lot here. This computation is performed inside the proof of Lemma 8.2. We can then find points x u ∈ W u loc (x) and y u ∈ W u loc (y) such that:

• there exists a point z u with {z u } = W s loc (x u ) ∩ W c loc (y u ); • d(z u , y u ) ≈ Df (x -)| E c Df (x -)| E u .
So far we obtained points x u and y u with some estimate of the displacement in the center direction that we get when projecting x u to W u loc (y) by center stable holonomy. Next, fixing ε > 0, we define the stopping time

τ ( ) = τ (x, x u , ε, ) def. = inf n ∈ N : Df (x -) E c Df (x -)| E u Df n (x u )| E c ≥ ε
and consider the points f τ ( ) (x u ) and f τ ( ) (y u ). The choice of the stopping time

τ ( ) is such that d(f τ ( ) (x u ), f τ ( ) (y u )) ≈ ε, (8) 
see §8.3.2. Essentially, these points are related to the translational part of size ε of the affine maps that we desire to construct. To control the derivative of the affine maps and to actually obtain an "invariance" of the measures νc x , as we mentioned before, we also define another stopping time

t( ) = t(x, x u , ε, ) def. = inf n ∈ N : Df n (x)| E c Df τ ( ) (x u )| E c ≥ 1 .
In particular, this condition implies that

Df t( ) (x)| E c ≈ Df τ ( ) (x u )| E c ) , ( 9 
) see §8.1.
How to use Y -configurations to get invariance by affine maps. By construction of measures {ν c p } p∈T 3 we understand how they change under three basic moves. (1) Applying the dynamics. For µ-a.e. p ∈ T 3 , νc

f n (p) ∝ Λ * νc p , for every n ∈ N, where Λ(s) = Df n (p)| E c s is a linear map of R (see Lemma 6.17). (2) Moving along unstable manifolds. For q ∈ W u (p) then νc q ∝ L * νc p where L(s) = βs, where C -1 u ≤ β ≤ C u , where C u = C u (d u (p, q)) > 1 is bounded from above with d u (p, q) (see Lemma 6.19). W s loc (x -) W u loc (x -) H s x -,y - (W u loc (x -)) z u - W u loc (y -) y u - f f t( ) f τ ( ) f τ ( ) f f t( ) x - α s (x -, y -) y - x u ε f τ ( ) (x u ) f τ ( ) (z u ) f τ ( ) (y u ) x u - y x f t( ) (x) f t( ) (y) z u y u Figure 5. The points x, x u , x -, f τ (l) (x u
) and f t( ) (x) are called a Y -configuration (similarly the points involving y's).

(3) Moving along center manifolds. For q ∈ W c (p) then νc q ∝ Ψ * νc p where Ψ(s) = as + b, with

C -1 c ≤ a ≤ C c for some constant C c = C c (d c (p, q)) > 1 bounded from above with d c (p, q),
and with b ≈ d c (p, q) (see Lemma 6.16). Now we look at the points on the top part of Figure 5 and deduce two facts.

(a) νc

f τ ( ) (x u ) ∝ (Λ 1 ) * νc f t( ) (x) for some linear map Λ 1 : R → R with derivative bounded independently of . (b) νc f τ ( ) (y u ) ∝ (Λ 2 ) * νc f t( ) (y)
for some linear map Λ 2 : R → R with derivative bounded independently of .

There is a subtelty here: stopping times τ ( ) and t( ) depend on x, x u and not on y, y u . This is treated by our synchronization estimates (Lemma 8.4). Now note that as

→ ∞, τ ( ), t( ) → ∞ so d(f τ ( ) (x u ), f τ ( ) (z u )) → 0 and d(f t( ) (x), f t( ) (y)) → 0.
If we knew that the family of measures νc z were continuous with z then we could hope to compare νc f τ ( ) (x u ) with νc f τ ( ) (y u ) and take accumulation points to construct the desired set G.

But the objects we are working with are only measurable, so we must first fix a large Lusin set for which the map z → νc z is continuous (among other dynamical objects that appear in the proof). We want to do the constructions of all of the points mentioned above, in a way that all of them belong to this Lusin set. For this, it is essential to obtain quasi-isometric estimates for the functions τ (•) and t(•) (see Lemma 8.1; see also Lemma 10.5 where the quasi-isometric estimates for stopping times are used in a crucial way).

By continuity, we have that νc

f t( ) (x) ≈ νc f t( ) (y) and νc f τ ( ) (x u ) ≈ νc f τ ( ) (z u ) . We conclude from this that νc f τ ( ) (x u ) is almost proportional to νc f τ ( ) (y u )
, up to some linear map with controlled derivative.

After considering a subsequence k we obtain points p and q (obtained as the limit of f τ ( k ) (x u ) and f τ ( k ) (y u ))) with the properties that:

• q ∈ W c loc (p); • d(p, q) ≈ ε;

• p and q belong to the Lusin set;

• νc q ∝ Λ * νc p , Λ being linear with uniformly bounded derivative (see §9.4). Finally we explained that νc p ∝ Ψ * νc q for an affine map Ψ with uniformly bounded derivative and a translational part of order ε: we find νc p ∝ (Ψ Λ) * νc p : Ψ Λ is the desired affine map (with bounded slope and translational part ≈ ε).

A technical difficulty. There is one delicate point in the above argument. Since the center stable foliation is not absolutely continuous, in general, we cannot choose the points x u and y u at the same time in the Lusin set and such that y u ∈ W cs loc (x u ). To overcome this difficulty, we introduce the notion of matched Y -configurations in Section 9 (the picture changes just a little bit from the one described above) and use it to prove our theorem (see Section 10).

Let us also emphasize that the control we obtain on the distance between the points z u and y u is possible because H s is C 1 , so essentially we can control this distance by looking at the angle between DH s x,y E u (x) and E u (y). This allows us to explicitly define the stopping time τ in our construction. In Katz's proof this is not possible since the holonomies are only Hölder, so the stopping time that he uses is much more complicated to define, since it uses some operator that is built by using the so called factorization method from Eskin-Mirzakhani.

A zero-one law for angles

The goal of this section is to prove Theorem B. In a slightly more general context, i.e., for some f ∈ PH 2 (T 3 ) with C 1 stable holonomies (for instance, if f is close to some f 0 ∈ A 2 m (T 3 ), as we saw in Lemma 2.6), we introduce the angle function α s , which measures the "twist" of unstable manifolds along stable manifolds.

Definition 4.1 (The angle function

). Let x ∈ T 3 and y ∈ W s (x). The angle function is the assignment (x, y) → α s (x, y) def. = ∠(DH s x,y (x)E u (x), E u (y)
). In this context, we have the following zero-one law, whose proof is inspired by the work of Brown-Hertz [6, Lemma 7.1].

Theorem 4.2 (A zero-one law for angles).

Let f ∈ PH 2 (T 3 ) be a C 2 partially hyperbolic diffeomorphism with a splitting T T 3 = E s ⊕E c ⊕E u , and whose stable holonomies H s along the strong stable foliation W s are C 1 . Fix an ergodic finvariant measure µ. Let ξ s be a measurable partition subordinate to W s and {µ s

x } x be a system of conditional measures relative to ξ s . Then the following dichotomy holds:

(1) either for µ-almost every x ∈ T 3 ,

µ s x {y ∈ ξ s (x) : α s (x, y) = 0} = 1;
(2) or for µ-almost every x ∈ T 3 , µ s x {y ∈ ξ s (x) : α s (x, y) = 0} = 0. The second alternative will allow us to build "twisted" quadrilaterals (such as the one depicted in Figure 4) with points x, y in some good Lusin set while for x u and y u we will find points of the Lusin set arbitrarily close to them, so that the twisted quadrilateral will be part of a matched Y -configurations associated to x and y.

4.1. Conditional expectation, σ-algebras and martingales. The proof of Theorem 4.2 requires some preliminaires about martingales. If ξ is a measurable partition of a measurable space X then we let F ξ denote the σ-algebra generated by unions of atoms of ξ. Let {µ x } x be a system of conditional measures of µ with respect to ξ. We define the conditional expectation of ϕ ∈ L 1 (X, µ) as the following L 1 -function

E µ [ϕ | F ξ ] : x → ξ(x) ϕ dµ ξ x .
Note that if (ξ n ) n is an increasing sequence of partitions (in the sense that

ξ n ≺ ξ n+1 ) then we have F ξn ⊂ F ξ n+1 .
The following result is a consequence of the increasing martingale theorem (for which we refer to [13, Theorem 5.5, p.126]). Theorem 4.3 (Increasing martingale theorem). Let (ξ n ) n∈N be an increasing sequence of measurable partitions of X such that ∞ n=0 ξ n is the partition into points. Then, for every ϕ ∈ L 1 (X, µ) and µ-almost every x ∈ X, we have

lim n→∞ E µ ϕ F ξn (x) = ϕ(x).

Proof of the zero-one law.

We are now ready to prove Theorem 4.2. We fix ξ s , a measurable partition subordinate to W s . For n ∈ N, set ξ s n def.

= f n ξ s . Systems of conditional measures relative to ξ s and ξ s n are denoted respectively by {µ s

x } x and {µ s n,x } x . For µ-almost every x ∈ T 3 and every n ∈ N, set

• P ξ s (x) def. = {y ∈ ξ s (x) : α s (x, y) = 0}, • P ξ s n (x) def.
= {y ∈ ξ s n (x) : α s (x, y) = 0}. By definition of ξ s n and invariance of the unstable bundle and of the stable foliation, we have the following commutation relation for µ-almost every x ∈ T 3 :

f n P ξ s f -n (x) = P ξ s n (x). ( 10 
) Let A def. = {x ∈ T 3 : µ s x [P ξ s (x)] > 0}
. This is a Borel set. We must prove the following dichotomy:

(1) either µ(A) = 1, and for µ-almost every

x ∈ T 3 , µ s x [P ξ s (x)] = 1; (2) or µ(A) = 0.
So let us suppose µ(A) > 0 and prove (1). With that goal in mind, we claim that A is an f -invariant set (mod 0). Indeed, take a µ generic point x ∈ A.

Notice that P ξ s 1 (x) ⊂ P ξ s (x), since ξ s 1 (x) ⊂ ξ s (x). Also, recall from Lemma 2.12 that µ s 1,f (x) = f * µ s x .
Combining this with [START_REF] Crovisier | Finiteness of partially hyperbolic attractors with one-dimensional center[END_REF] one obtains that

µ s 1,f (x) (P ξ s 1 (f (x))) = µ s x (f -1 (P ξ s 1 (f (x)))) = µ s x (P ξ s (x)) > 0.
Thus, from the superposition property (Lemma 2.15 and Remark 2.17) one gets

µ s f (x) (P ξ s (f (x))) ≥ µ s f (x) (P ξ s 1 (f (x))) = µ s 1,f (x) (P ξ s 1 (f (x)))µ s f (x) (ξ s 1 (f (x))) > 0,
which implies that f (x) ∈ A, proving our claim.

From the ergodicity of µ, we have µ(A) = 1. We define functions in L 1 (T 3 , µ) by

• φ : x → µ s x [P ξ s (x)]; • φ n : x → µ s n,x [P ξ s n (x)] = µ s n,x [P ξ s (x)],
for each n ∈ N. For µ-almost every x ∈ T 3 and every n ∈ N we consider

• F s x = F s ξ s (x) = {∅, ξ s (x)}, the trivial σ-algebra over ξ s (x); • F s n,x = F s n,ξ s (x)
, the σ-algebra generated by unions of atoms

ξ s n (y), y ∈ ξ s (x) (note that F s n,x ⊂ F s n+1,x ); • F s ∞,x = F s ∞,ξ s (x) , the smallest σ-algebra containing ∞ n=0 F s n,x . This is the Borel σ-algebra of ξ s (x).
For µ-almost every x ∈ T 3 and n ∈ N, we define the function ψ n,x ∈ L 1 (ξ s (x), µ s x ) by the following formula, for µ s x -almost every y ∈ ξ s (x):

ψ n,x (y) = E µ s x 1 P ξ s (x) F s n,x (y) = µ s n,y P ξ s (x) .
Note that ψ n,x (y) = φ n (y) for all n and µ s x -almost every y ∈ P ξ s (x) (note that in that case P ξ s (x) = P ξ s (y)).

On the one hand, for µ-almost every x ∈ T 3 , by the increasing martingale theorem (we apply Theorem 4.3 to the probability space (ξ s (x), µ s x )), ψ n,x converges to 1 P ξ s (x) µ s x -almost surely as n → +∞. In particular,

for µ s x -a.e. y ∈ P ξ s (x), ψ n,x (y) = φ n (y) → 1 as n → +∞. (11) 
Let us define the set

S def. = {x ∈ T 3 : φ n (x) → 1 as n → +∞}.
For each n ∈ N, φ n is measurable, hence S is a Borel set. Assume that µ[S] = 0.

Since µ[S] = µ s x [S]dµ(x), we would then have µ s x [S] = 0, for µ-a.e. x ∈ T 3 . But [START_REF] Didier | Stability of accessibility[END_REF] implies that for µ-a.e. x ∈ A, µ s x [S] ≥ µ s x [S ∩ P ξ s (x)] = µ s x [P ξ s (x)] > 0, and by our assumption that µ[A] > 0, we reach a contradiction. Therefore,

µ[S] = µ{x ∈ T 3 : φ n (x) → 1 as n → +∞} > 0.
On the other hand, we deduce from [START_REF] Crovisier | Finiteness of partially hyperbolic attractors with one-dimensional center[END_REF] and from Lemma 2.12 that

φ n (x) = µ s n,x [P ξ s n (x)] = f n * µ s f -n (x) [f n P(f -n (x))] = φ(f -n (x)).
The latter proves that φ•f -k converges to 1 µ-almost surely on S as k → +∞. Therefore, by considering Cesàro averages

1 n n-1 k=0 φ•f -k (x) for a µ-generic point x ∈ S,
and by Birkhoff's theorem, we conclude that T 3 φ dµ = 1. As φ takes values in [0, 1], we must have φ(x) = 1, for µ-almost every x ∈ T 3 . Remark 4.4. It is clear that α s (x, y) = 0 is an equivalence relation on stable leaves, so Theorem 4.2 can be generalized as follows. Let f be as in Theorem 4.2. Let R be a measurable equivalence relation on stable leaves (i.e., such that xRy ⇒ y ∈ W s (x)) such that xRy ⇒ f n (x)Rf n (y), for any n ∈ N. Fix a measurable partition ξ s subordinate to W s , a system {µ s x } x of conditional measures relative to ξ s , and for x ∈ T 3 , let P ξ s (x) be its R-equivalence class. Then the following dichotomy holds:

(1) either for µ-almost every x ∈ M , µ s

x [P ξ s (x)] = 1; (2) or for µ-almost every x ∈ M , µ s

x [P ξ s (x)] = 0.

Joint integrability and the Bad set

We start in this section the formal proof of Theorem A. So we let f ∈ A 2 (T 3 ) be an Anosov diffeomorphism, strongly partially hyperbolic with expanding center and C 1 stable bundle. Recall from Lemma 2.6 that this is always satisfied when f is close to a conservative map f 0 . Let µ denote an ergodic u-Gibbs measure, with full support.

We are going to reduce the proof to a more technical version in which appears the set of points x for which one sees almost no twist of the bundle E u , by the application of the holonomy map along the stable leaf W s (x). Our main technical result says that if the measure of this Bad set is zero then µ is SRB.

5.1. The Bad set. For any x ∈ T 3 , we denote

P(x) def. = y ∈ W s (x) : α s (x, y) = 0 , N (x) def. = y ∈ W s (x) : α s (x, y) > 0 .
Observe that this set was already introduced in restriction to a subordinate partition ξ s in our proof of the zero or one law (Theorem 4.2).

Remark 5.1. Since the unstable bundle E u is invariant under Df , and holonomy maps are equivariant with the dynamics, i.e.,

f • H s x,y = H s f (x),f (y) • f, ( 12 
)
we have

∀ x, y, α s (x, y) = 0 ⇐⇒ ∀ n ∈ Z, α s (f n (x), f n (y)) = 0. (13) 
For any x ∈ T 3 , the function α s (x, •) on W s (x) is continuous, hence the sets P(x) and N (x) are respectively closed and open. Moreover, by Remark 5.1, it holds

f n (P(x)) = P f n (x) , f n (N (x)) = N (f n (x)), ∀ n ∈ Z. ( 14 
)
Definition 5.2 (Bad set). Take ξ s a measurable partition subordinate to the stable foliation W s , and let {µ s x } x∈T 3 be a system of conditional measures relative to ξ s . The Bad set B = B µ is defined as

B def.
= x ∈ T 3 : µ s x (N (x)) = 0 . 5.1.1. Properties of the Bad set. The Bad set does not depend on the subordinate partition. Indeed, if η s is another subordinate partition, then their join ζ = ξ s ∨η s is a measurable partition which is countably equivalent to both ξ s and η s (see §2.4.4). So, the superposition property (Lemma 2.15) implies

µ ζ x = µ s x | ζ(x) µ s x (ζ(x)) = µ η s x | ζ(x) µ η s x (ζ(x))
, with both denominators being non zero almost everywhere, which yields µ η s x (N (x)) = 0 if and only if µ s x (N (x)) = 0. Moreover, B is an invariant set. Indeed, consider µ s 1,x the disintegration of µ with respect to the partition ξ s 1 = f (ξ s ). It follows from Lemma 2.12 that, if

x ∈ B then µ s 1,f (x) (N (f (x))) = µ s x (f -1 (N (f (x)))) = µ s x (N (x)) = 0.
Finally in this case, by the superposition property (Lemma 2.15), we have

µ s f (x) (N (f (x))) = µ s f (x) (ξ s 1 (f (x)))µ s 1,f (x) (N (f (x))) = 0, proving that f (x) ∈ B.
The same reasoning also allows us to deduce the reverse implication, establishing our claim.

Thus, by the ergodicity of µ, µ(B) = 0 or 1.

Joint integrability.

When the Bad set has positive measure, by ergodicity we have that for almost every x, we see almost no twist of E u along W s (x). This can be read as an infinitesimal form of joint integrability between E s and E u . In this paragraph we shall improve this to actual joint integrability.

Proposition 5.3. Let f : T 3 → T 3 be a C 2 Anosov diffeomorphism, strongly partially hyperbolic with expanding center and C 1 stable holonomies. Let µ be a fully supported ergodic f -invariant measure. Then, µ(B µ ) > 0 implies that E s and E u are jointly integrable.

It is worth to point out that the proof of this proposition is the only place in our argument towards Theorem A where the full support assumption of the u-Gibbs measure is used. Moreover, in Proposition 5.3 the ergodic invariant measure µ does not need to be u-Gibbs.

Local joint integrability.

In the proof of Proposition 5.3 we shall apply a criterion for joint integrability that comes from [START_REF] Didier | Stability of accessibility[END_REF]. See also [40, §2.3]. Definition 5.4. Given x ∈ T 3 we say that the bundles E s and E u are jointly integrable at x if there exists δ, ε > 0 such that for each z ∈ W s δ (x) and

y ∈ W u δ (x) it holds W u ε (z) ∩ W s (y) = ∅.
The result below follows directly from [11, Lemma 5] (see also [START_REF] Hertz | Partially hyperbolic dynamics[END_REF]Lemma 2.3.7]). Lemma 5.5. Let f ∈ A 1 (T 3 ). Assume that E s and E u are jointly integrable at each x ∈ T 3 , with uniform constants δ, ε. Then, f is jointly integrable (in the sense of Definition 2.1). Proposition 5.3. This Proposition follows directly from Lemma 5.6 and Lemma 5.7 below.

Proof of

On the topological level, we have:

Lemma 5.6. The following dichotomy holds:

• either E s and E u are jointly integrable;

• or for any x ∈ T 3 , the set N (x) is open and dense in W s (x).

Proof. Let us assume that there exists x 0 ∈ T 3 such that P(x 0 ) contains a non-trivial open interval, i.e., that for some x ∈ W s (x 0 ), and ε > 0, it holds W s ε (x) ⊂ P(x 0 ). Since P(x) = P(x 0 ), we also have P(x) ⊃ W s ε (x), hence by ( 14), for any integer n ≥ 1,

P f -n (x) ⊃ f -n W s ε (x) . ( 15 
)
By compactness, we can take a subsequence (f -n k (x)) k≥0 such that f -n k (x) → y as k → +∞, for some point y ∈ T 3 . Since the restriction of f -1 to stable leaves is uniformly expanding, we deduce from (15) that

P(y) = W s (y). ( 16 
)
Let us now show that the same holds for any point, i.e., that P(z) = W s (z), for any z ∈ T 3 . Fix z ∈ T 3 and z ∈ W s (z). By minimality of the stable foliation, the leaf W s (y) is dense in T 3 , hence there exists a sequence (y n ) n≥0 ∈ (W s (y)) N such that lim n→+∞ y n = z. For each integer n ≥ 0, we let

y n def. = H s z,z (y n ) ∈ W cu (z )∩W s (y n ).
In particular, we also have lim n→+∞ y n = H s z,z (lim n y n ) = z . By continuity of the angle function α s , we deduce that

α s (z, z ) = lim n→+∞ α s (y n , y n ) = 0,
i.e., z ∈ P(z). Since z ∈ W s (z) was chosen arbitrarily within W s (z), we deduce that W s (z) = P(z), for all z ∈ T 3 . Now, fix arbitrarily x ∈ T 3 . Let 0 < δ < ε be chosen so that the stable holonomy map H s x,z : W cu δ (x) → W cu ε (z) is well defined for every z ∈ W s δ (x). Notice that for any y ∈ W u δ (x), for any z ∈ W s δ (x), if we set

y def. = H s x,z (y) ∈ W s ε (y), we have ∠ DH s x,z E u (y), E u (y ) = α s (y, y ) = 0. In particular, H s v,v W u δ (v) is a C 1 curve
that is everywhere tangent to E u and at it is tangent to E u (y ). By the unique integrability of the E u bundle, we conclude that

H s x,z W u loc (x) ⊂ W u (y )
. Hence, we obtain that for any x ∈ T 3 , any z ∈ W s δ (x) and y ∈ W u δ (x) we have

W u ε (z) ∩ W s ε (y) = ∅.
This proves that f fulfils the assumption of Lemma 5.5. Therefore, f is jointly integrable.

The lemma below concludes the proof of Proposition 5.3.

W u loc (x0) H s x 0 ,y 0 (W u loc (x0)) W u loc (y0) x 0 π(y) y W s (x0) U W s (π(y)) = W s (y) T V y0 W cu loc (y 0 ) y 0 α s (x 0 , y 0 ) Figure 6.
Case where E s ⊕ E u is not integrable and ν(B ν ) = 1.

Lemma 5.7. Assume that E s and E u are not jointly integrable. Then, for any ergodic f -invariant Borel probability measure ν on T 3 , we have the dichotomy:

• either ν(B ν ) = 0;
• or supp(ν) has empty interior.

Proof. Fix ν as in the statement of the lemma, and let x 0 ∈ T 3 . Assume that ν(B) = 0, with B = B ν ; by the ergodicity of ν, we thus have ν(B) = 1. As we assume that E s and E u are not jointly integrable, by Lemma 5.6, the set N (x 0 ) is open and dense in W s (x 0 ). Fix y 0 ∈ N (x 0 ), i.e., such that α s (x 0 , y 0 ) = 0. By the continuity of the angle function α s , there exist:

• a foliated chart U for W s containing x 0 , y 0 ; stable plaques of U are de- noted by {U(x)} x ; • a transversal T for W s at x 0 ; • a neighbourhood V y 0 ⊂ U of y 0 ; • a projection π : V y 0 y → π(y) ∈ T along stable plaques of U; such that ∀ y ∈ V y 0 , α s (π(y), y) > 0.
See Figure 6. Let {ν s x } x∈T be a system of conditional measures relative to the plaques of U, and ν def. = π * ν. For x ∈ T , let V(x)

def.

= U(x) ∩ V y 0 ; by our choice of U, V(x) ⊂ N (x). Since ν(B) = 1, for ν-a.e. x ∈ T , it holds ν s x (N (x)) = 0, hence ν s x (V(x)) = 0. We conclude that

ν(V y 0 ) = T ν s x (V(x)) dν(x) = 0.
In other words, any point y ∈ N (x 0 ) has an open neighbourhood V y y such that T 3 \ V y has full measure; therefore,

supp(ν) ⊂ T 3 \ y∈N (x 0 ) V y .
As N (x 0 ) is open and dense in W s (x 0 ), and

W s (x 0 ) is dense in T 3 , the set y∈N (x 0 )
V y is open and dense in T 3 , and thus, supp(ν) has empty interior. 5.3. Main technical theorem. We shall now show that our main result, Theorem A, can be reduced to a more technical statement involving the Bad set. Theorem 5.8. Let f : T 3 → T 3 be a C 2 Anosov diffeomorphism, strongly partially hyperbolic with expanding center and C 1 stable holonomies. Let µ be an ergodic u-Gibbs measure. If µ(B µ ) = 0 then µ is an SRB measure. Theorem 5.8. Recall that by Lemma 2.6 for every f 0 ∈ A 2 m (T 3 ) there exists a small neighbourhood U(f 0 ) in Diff 2 (T 3 ) so that every f ∈ U(f 0 ) is an Anosov diffeomorphism, strongly partially hyperbolic with expanding center and C 1 stable holonomies. Let

Proof of Theorem A assuming

U def. = ∪ f 0 ∈A 2 m (T 3 ) U(f 0 ). Take f ∈ U.
Then f fulfils the assumptions of Theorem 5.8. Assume that E s and E u are not jointly integrable and let µ be a fully supported ergodic u-Gibbs measure. Then, Lemma 5.7 implies that µ(B µ ) = 0. By Theorem 5.8 it follows that µ is SRB, concluding.

It is important to remark that in this main technical result we do not assume that our u-Gibbs measure is fully supported. The result says that the existence of positive angles α s (x, y) for almost every y ∈ W s (x) and almost every x ∈ T 3 suffices to convert µ into an SRB measure.

From now on, we let f denote a map satisfying the assumptions of Theorem 5.8 and µ is an ergodic u-Gibbs measure whose Bad set B = B µ satisfies µ(B) = 0. Our goal is to show that µ is SRB.

Normal forms and leaf-wise measures

In this section we shall construct a key object in our proof: the leaf-wise quotient measures. This is an assignment T 3

x → νc x ∈ M(R) of a locally finite Borel measure on the real line to each point in T 3 . We shall prove that if νc

x is µ-almost everywhere equivalent to the Lebesgue measure on R then µ is SRB. The construction and the special properties of these measures rely on our ability of parametrizing center unstable manifolds W cu so that f | W cu becomes linear in these coordinates. Thus, the first part of this section is the construction of normal forms and the proof of Theorem C.

Normal forms. Let

f : T 3 → T 3 be a C 2 Anosov diffeomorphism with a decomposition T T 3 = E s ⊕ E c ⊕ E u , where E c is uniformly expanded.
Let us recall some of our notation which will be largely used throughout this section.

• Given a point x ∈ T 3 we will write λ * x := Df (x)| E * , for * = c, u.

• Given i ∈ Z we write x i = f i (x).

6.1.1. One dimensional normal forms. Recall that for * = c, u we have one dimensional uniformly expanding foliations W * . In this setting we have coordinate systems linearising the dynamics of f along these foliations which define affine structures. To state precisely this result from [START_REF] Kalinin | Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori[END_REF], we first recall that there are unitary vector fields

T 3 x → v * (x) ∈ E * (x) such that Df (x)v * (x) = λ * x v * (x 1 ), where Df (x)| E u = λ u x . Notice that since f is C 2 , the bundle E u is C 1 inside W cu and since v u (x) > 0 the map x → λ u x ∈ R is C 1 in restriction to center unstable manifolds. Moreover, for a fixed R > 0 the C 1 norm sup{ D(λ u | W cu (x) )(y) : y ∈ W cu R (x), x ∈ M } is bounded by some uniform constant C = C(R, f ) > 0.
These results follows from [START_REF] Pugh | Hölder foliations[END_REF]. We also let e 1 be the unitary tangent vector field of the real line R.

Proposition 6.1 (Kalinin-Katok -see [START_REF] Kalinin | Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori[END_REF], Section 3.1). There exists a family

{Φ * x } x∈T 3 of C 1 diffeomorphisms Φ * x : R → W * (x) satisfying (1) f • Φ * x (s) = Φ * x 1 (λ * x s), for all s ∈ R; (2) Φ * x (0) = x; (3) DΦ * x (0)e 1 = v * (x); (4) If y ∈ W * (x) then (Φ * y ) -1 • Φ * x : s → a x s + b x , for some real numbers a x , b x .
Let us give some details about the construction of the family {Φ u x } x∈T 3 , which are going to be useful for us in the sequel. Given y ∈ W u (x) one defines

ρ x (y) def. = +∞ =0 Df -1 (f -(y))| E u Df -1 (f -(x))| E u .
The basic distortion result (Lemma 2.9) implies that ρ x : W u (x) → (0, +∞) is a continuous map (for further details we refer to [START_REF] Kalinin | Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori[END_REF]). One then defines

H u x (y) def. = y x ρ x (ŷ)dŷ,
which gives a C 1 diffeomorphism from W u (x) to the real line. Affine coordinates along W u (x) are then obtained by Φ u x = (H u x ) -1 . Since E c is also uniformly expanding the construction of {Φ c

x } x∈T 3 is identical, with the obvious changes.

6.1.2. Statement of the main result. Our goal is to prove a two-dimensional version of the above result given linearising coordinates along W cu . We restate here Theorem C.

Theorem 6.2.

There exists a family of C 1 diffeomorphisms Φ x : R 2 → W cu (x), depending continuously on x such that:

(1) f • Φ x (t, s) = Φ f (x) (λ u x t, λ c x s), for all (s, t) ∈ R 2 ; (2) Φ x (0, 0) = x;
(3) DΦ x (0, 0)e 1 = v u (x) and DΦ x (0, 0)e 2 = v c (x); (4) Φ x (•, •) depends continuously with the choice of x in the C 1 -topology; [START_REF] Brown | Entropy, Lyapunov exponents, and rigidity of group actions, volume 33 of Ensaios Matemáticos[END_REF] 

for all s ∈ R, Φ x (R × {s}) = W u (Φ x (0, s)), and Φ x ({0} × R) = W c (x)
(see Figure 2).

A foliated chart.

A natural way of obtaining a parametrization (t, s) of W cu (x) is to consider the arc-length parameter t along the curve W u (Φ c x (s)). As we shall see, it is not hard to prove that this indeed gives a C 1 identification with nice properties (for instance horizontal lines are mapped onto unstable manifolds). The difficulty for proving Theorem 6.2 is that in these coordinates the map f does not acts linearly. For this reason in the forthcoming paragraphs we will perform suitable reparametrizations.

More formally, let φ : R × W cu (x) → W cu (x) denote the flow of the vector field x → v u (x). Notice that v u | W cu (x) is C 1 , with its C 1 norm depending continuously on x on compact subsets of W cu (x). With this flow at hand we define a map Γ x : R 2 → W cu (x) by

Γ x (t, s) def. = φ t (Φ c x (s)), ∀ (t, s) ∈ R 2 . Lemma 6.3. For each x ∈ T 3 , the map Γ x is a C 1 diffeomorphism whose C 1 norm depends continuously with x.
Proof. Let us show that this defines a C 1 diffeomorphism. Indeed, Γ x is injective and surjective due to Lemmas 2.4 and 2.3 respectively. Therefore it suffices to prove that Γ x is C 1 with invertible derivative at each point.

Choosing an arbitrary coordinate system locally in W cu (x) we can think of Γ x as a map from R 2 to R 2 . Now, observe that the Jacobian matrix of the map (t, s) → φ t (Φ c x (s)) is the 2×2 matrix whose columns are the vectors

v u (φ t (Φ c x (s))) and Dφ t (Φ c x (s)) d ds Φ c x (s). Since φ t is a C 1 flow and Φ c x is a C 1 curve this proves that Γ x has continuous derivative. Moreover, since v u (Φ c
x (s)) and d ds Φ c x (s) are transverse, the same can be said of

v u (φ t (Φ c x (s))) = Dφ t (v u (Φ c x (s))) and Dφ t (Φ c x (s)) d ds Φ c
x (s). Thus the Jacobian matrix of Γ x is invertible, proving the assertion. The continuous dependence of the C 1 norm follows from that of v u and Φ c . 6.1.4. Preliminary construction. We shall start the construction of the map Φ by a slight modification of the construction of the foliated chart Γ x . Instead of using the arc-length parameter along unstable manifolds we shall use normal forms. This choice will allow us to perform the required reparametrization for linearising the action of f | W cu (x) . Lemma 6.4. The map Ψ x : R 2 → W cu (x) given by Ψ x (t, s)

def. = Φ u Φ c x (s) (t) is a C 1 diffeomorphism, with C 1 norm depending continuously from x.
Proof. Notice that Ψ x is bijective because we can define directly an inverse map. Indeed, given y ∈ W cu (x) we consider the point y c ∈ W c (x), whose existence is ensured by Lemmas 2.3 and 2.4, such that

{y c } = W u (y) ∩ W c (x). Define then a map Ξ x : W cu (x) → R 2 by Ξ x (y) def.
= (H u y c (y), H c x (y c )). From the definitions we have

Ψ x • Ξ x (y) = Φ u Φ c x (H c x (y c )) (H u y c (y)) = Φ u y c (H u y c (y)) = y.
In a similar way one sees that Ξ x • Ψ x (t, s) = (t, s). It suffices then to check that Ξ x is C 1 with invertible derivative at each point.

To prove that Ξ x is a C 1 diffeomorphism then it suffices to establish that Ξ x • Γ x : R 2 → R 2 is a C 1 diffeomorphism. To compute the derivative of this map fix a point y = Γ x (t, s) ∈ W cu (x). Then, since Γ x is a foliated chart, we have y c = Γ x (0, s). Thus,

Ξ x • Γ x (t, s) = (H u Γx(0,s) (Γ x (t, s)), H c x (Γ x (0, s))). Note that (t, s) → H c x (Γ x (0, s)) = s is a C 1 function. Moreover, as H u Γx(0,s) (Γ x (t, s)) = Γx(t,s) Γx(0,s) ρ Γx(0,s) (Γ x (r, s))dr,
Leibniz rule will imply that Ξ x • Γ x is a C 1 map as long as we prove that (t, s) → ρ Γx(0,s) (Γ x (t, s)) ∈ (0, +∞) is C 1 . To verify this assertion, recall that

ρ Γx(0,s) (Γ x (t, s)) = +∞ =0 Df -1 (f -(Γ x (t, s)))| E u Df -1 (f -(Γ x (0, s)))| E u .
Consider the auxiliary function g(t, s) = log ρ Γx(0,s) (Γ x (t, s)). Then we can write

g(t, s) = +∞ =0 log λ u f --1 (Γx(0,s)) -log λ u f --1 (Γx(t,s)) .
First notice that as λ u (.) :

W cu → R is C 1 and since d(f -(Γ x (0, s)), f -(Γ x (t, s)
)) → 0 exponentially fast (with uniform rate, depending only on f ), we deduce that g is the uniform limit on compact sets of the sequence of partial sums. Consider the function g (t, s) = log λ u f --1 (Γx(t,s)) . By the chain rule,

Dg (t, s) = Dλ u f --1 (Γx(t,s)) Df --1 (Γ x (t, s))DΓ x (t, s) λ u f --1 (Γx(t,s))
.

Therefore, for (t, s) ∈ B R (0) there is a uniform constant

C = C(R, f ) > 0 so that Dg (t, s) ≤ C Df --1 (Γ x (t, s))| E cu .
The right hand side above has a uniform bound decreasing exponentially as increases for Df -(x)| E cu ≤ e -χ c 2 , for every x ∈ T 3 , with χ c 2 > 0 (recall our notations from §2.1.3). Thus,

Dg (t, s) ≤ Ce -χ c 2 .
An analogous estimate holds for the function g (t, s) = log λ u Γx(0,s) . This proves that the derivative of the truncated series defining g also converges uniformly on compact sets. By elementary calculus (see for instance Proposition 1.41 of [1]) this proves that g is C 1 , and therefore we conclude that (t, s) → ρ Γx(0,s) (Γ x (t, s)) ∈ (0, +∞) is C 1 , as desired. To complete the proof of the lemma, observe that the derivative of Ξ x • Γ x is an upper triangular matrix with non-zero entries in the diagonal. By the inverse function theorem, as Ξ x • Γ x is bijective, this proves that this map is in fact a C 1 diffeomorphism. This ends the proof of the lemma.

A reparametrization function.

Here again, the diffeomorphism Ψ x constructed in Lemma 6.4 does not satisfy all the requirements we need. Indeed, to obtain condition (1) from Theorem 6.2 it is necessary to perform a suitable reparametrization. The design of such a map is the content of next lemma. Lemma 6.5. For each x ∈ T 3 , there exists a C 1 function β x : R → R + such that

Df (Φ c x (s)) • β x (s)v u (Φ c x (s)) = λ u x β x 1 (λ c x s)v u Φ c x 1 (λ c x s) . ( 17 
)
Proof. Let us fix a point x ∈ T 3 . Consider the sequence of functions R s →

ψ x -(s) ∈ W c (x -) where ψ x -(s) def. = Φ c x -(λ c x -• • • λ c x -1 ) -1 s .
For coherence of notation also make the convention that ψ x 0 (s) = Φ c x (s). Using this sequence we define f n : R → R,

f n (s) def. = n =1 log λ u ψ x -(s) -log λ u x -.
Notice that y → λ u y is uniformly bounded from above and from below, and the lower bound is larger than 1. Thus

| log λ u ψ x -(s) -log λ u x -| ≤ |λ u ψ x -(s) -λ u x -|. Now, as y → λ c
y is also uniformly bounded with a lower bound larger than 1, since the family {Φ c

x } is continuous in the C 1 topology and Φ c

x -(0) = x -it follows that d(ψ x -(s), x -) → 0 exponentially fast with uniform constants. Moreover, as y → λ u y is uniformly C 1 inside W cu there exists some constant C > 0 such that

|λ u ψ x -(s) -λ u x -| ≤ Cd(ψ x -(s), x -)
. This proves that f n converges uniformly to a continuous function f . We define β x (s) def.

= e f (s) . Observe that we can write

β x (s) = ∞ =1 λ u ψ x -(s) λ u x - . We claim that λ u Φ c x (s) β x (s) = λ u x β x 1 (λ c x s
). This formula immediately gives us [START_REF] Gan | Rigidity of center Lyapunov exponents and su-integrability[END_REF]. To prove the claim we first remark that

ψ x 1 -(λ c x s) = Φ c x -+1 (λ c x -+1 • • • λ c x -1 λ c x ) -1 λ c x s = ψ x -+1 ( 
s). We deduce that

β x 1 (λ c x s) = ∞ =1 λ u ψ x 1 -(λ c x s) λ u x -+1 = ∞ =1 λ u ψ x -+1 (s) λ u x -+1 = λ u Φ c x (s) λ u x β x (s),
proving our claim.

To finish the lemma it remains to show that β x is a C 1 function, depending continuously (with respect to the local C 1 topology) on x. With that goal in mind we compute

d ds ψ x -(s) = (λ c x -• • • λ c x -1 ) -1 DΦ c x -(λ c x -• • • λ c x -1 ) -1 s e 1 .
Applying thus the chain rule we obtain

d ds λ u ψ x -(s) = D(λ u ψ x -(s) ) d ds ψ x -(s) = (λ c x -• • • λ c x -1 ) -1 D(λ u ψ x -(s) )DΦ c x -(λ c x -• • • λ c x -1 ) -1 s e 1 ,
where D(λ u y ) denotes the derivative of the function y → λ u y at y. As (λ c x -• • • λ c x -1 ) -1 → 0 exponentially fast with uniform constants, the left hand side above also vanishes exponentially fast because λ u y is C 1 and x → max |s|≤1 DΦ c

x (s) is uniformly bounded. As a consequence the sequence

f n (s) = n =1 d ds λ u ψ x -(s) λ u ψ x - (s)
is uniformly bounded by a convergent geometric series, for λ u y is lower bounded by a constant larger than 1. Since f n → f uniformly on compact sets, by elementary calculus (see for instance [1] Proposition 1.41) this proves that f is C 1 with f = lim n→+∞ f n . Moreover, the uniform estimates obtained show that the C 1 norm of f changes continuously with x. This completes the proof of the lemma.

6.1.6. Defining the normal form. With Lemmas 6.4 and 6.5 at hand we are in position to define our two dimensional parametrization of center-unstable manifolds W cu (x). For each x ∈ T 3 we consider

Φ x : R 2 → W cu (x), (t, s) → Ψ x (β x (s)t, s).
Notice that, by Lemma 6.5,

s → β x (s) is a C 1 positive function. It follows that (t, s) → (β x (s)t, s) is a C 1 diffeomorphism of R 2 . Therefore, applying Lemma 6.4 we obtain that Φ x is a C 1 diffeomorphism. We denote H x def. = Φ -1
x . Proof of Theorem 6.2. Properties ( 2)-( 4) are automatic from the construction of Φ x . To prove (1) we apply Proposition 6.1 and obtain

f (Φ x (t, s)) = f Φ u Φ c x (s) (β x (s)t) = Φ u f •Φ c x (s) λ u Φ c x (s) β x (s)t . Now, equality (17) implies that β x (s)λ u Φ c x (s) v u (f • Φ c x (x)) = λ u x β x 1 (λ c x s)v u Φ c x 1 (λ c x s) . Proposition 6.1 applied with Φ c x shows that f • Φ c x (s) = Φ c x 1 (λ c x s), where x 1 = f (x). Combining we get β x (s)λ Φ c x (s) = λ u x β x 1 (λ c x s). One deduces then f (Φ x (t, s)) = Φ u Φ c x 1 (λ c x s) (λ u x β x 1 (λ c x s)t) . The very definition of Φ x says that Φ u Φ c x 1 (λ c x s) (λ u x β x 1 (λ c x s)t) = Φ x 1 (λ u x t, λ c s t), concluding.
Remark 6.6. It follows readily from our construction that the inverse map H x : W cu (x) → R 2 sends each unstable manifold W u (y), for y ∈ W c (x) onto the horizontal line s = H c (y).

Leaf-wise quotient measures. Using the families of parametrizations {Φ x }, {Φ c

x } x∈T 3 we shall construct a family {ν c x } x∈T 3 of locally finite Borel measures on R such that νc

x is µ a.e. equivalent to Lebesgue measure if, and only if, µ is SRB. This construction will shift our attention to prove that the measures νc

x are invariant by translations on the real line. 6.2.1. Construction of the measures. By the results of §2.4.3, we can take ξ cu 0 an increasing measurable partition subordinate to the uniformly expanded foliation W cu . Pushing forward by the dynamics produces a sequence ξ cu n def.

= f n (ξ cu 0 ) of measurable partitions subordinate to W cu . Moreover, for each n ∈ N, it holds ξ cu n+1 ≺ ξ cu n . Let {µ cu n,x } x∈T 3 be the disintegration of µ with respect to the partition ξ cu n . As in Lemma 2.15, the following superposition property holds for µ-a.e. x ∈ T 3 :

if m > n, then µ cu n,x (A) = µ cu m,x (A) µ cu m,x (ξ cu n (x)) , ( 18 
)
for every measurable set A ⊂ ξ cu n (x). Besides, as µ is f -invariant, the distintegrations {µ cu n,x } n∈N, x∈T 3 satisfy: Lemma 6.7. For every n ∈ N and for µ-almost every x ∈ T 3 , we have

µ cu n+1,f (x) = f * µ cu n,x .
Proof. The proof is similar to that of Lemma 2.12.

For every n ∈ N and for µ-almost every x ∈ T 3 , we let ν cu n,x be the probability measure on H x (ξ cu n (x)) ⊂ R 2 defined as ν cu n,x def.

= (H x ) * µ cu n,x . Recall that for each s ∈ R, Φ x (0, s) = Φ c x (s) ∈ W c (x). Moreover, due to item (1) of Theorem 6.2 for each x ∈ T 3 , it holds

N x • H x | W cu (x) = H f (x) • f | W cu (x) , where N x : (t, s) → (λ u x t, λ c x s). ( 19 
)
As a consequence of ( 19) and Lemma 6.7, we have: Lemma 6.8. For every n ∈ N and for µ-almost every x ∈ T 3 , it holds

ν cu n+1,f (x) = (N x ) * ν cu n,x
. By taking intersections with the center foliation W c , resp. unstable foliation W u , we can refine each partition ξ cu n , n ∈ N. More precisely, for = c, u, we consider a partition ξ cu n ≺ ξ n = {ξ n (y)} y∈T 3 , with ξ n (y)

def.

= W (y) ∩ ξ cu n (y), ∀ y ∈ T 3 . As a consequence of Remark 2.13, we obtain: Lemma 6.9. For = c, u, the family of sets ξ n is a measurable partition subordinate to W . Moreover, the sequence (ξ n ) n∈N is increasing.

Let us denote by νc

n,x the measure on I c n,x ⊂ R, where I c n,x = H c x (ξ c n (x)), which is defined as We then define a measure νc n,x on R such that for each Borel set B ⊂ R,

νc n,x (B) def. = νc n,x (B) νc n,x ([-1, 1]) = ν cu n,x (R × B) ν cu n,x (R × [-1, 1]) . Notice that νc n,x (B) = µ cu n,x (uΦ c x (B)) µ cu n,x (uΦ c x ([-1, 1]))
, where for A ⊂ W c (x), we let uA def.

= ∪ a∈A W u (a) the saturation of A by unstable leaves. Lemma 6.10. For µ-almost every x ∈ T 3 and for every compact set F ⊂ R, there exists n 0 = n 0 (x, F ) ∈ N such that if m > n ≥ n 0 , then νc m,x (F ) = νc n,x (F ). Proof. First notice that for each pair m > n, there exists a µ-full measure set of points x ∈ T 3 for which µ cu m,x (ξ cu n,x (x)) > 0. This follows from the superposition property [START_REF] Gogolev | Center foliation rigidity for partially hyperbolic toral diffeomorphisms[END_REF]. Taking the countable intersection of all these sets, and applying (18) once more and deduce that for every compact set F ⊂ R, and m, n large enough,

νc n,x (F ) = µ cu n,x (uΦ c x (F )) µ cu n,x (uΦ c x ([-1, 1])) = µ cu m,x (uΦ c x (F )) µ cu m,x (ξ cu n,x (x)) × µ cu m,x (ξ cu n,x (x)) µ cu m,x (uΦ c x ([-1, 1]))
= νc m,x (F ). Definition 6.11 (Leaf-wise quotient measure). For µ-a.e. x ∈ T 3 , let νc x be the unique locally finite Borel measure defined in R so that, for each compact set F ⊂ R, one has νc x (F ) def.

= νc n 0 (x,F ),x (F ). By Lemma 6.10 the right hand side above is well defined. Remark 6.12 (Choice of normalization). Notice that, by construction, we have that νc

x ([-1, 1]) = 1. Remark 6.13. By construction, for µ-a.e. x ∈ T 3 , νc

x charges any open neighbourhood of 0.

Relation with the SRB property. We shall now prove that if νc

x is Lebesgue a.e. then µ is an SRB measure.

We let {µ u n,y } y∈T 3 be the disintegration of µ relative to ξ u n . By a standard argument using a.e. uniqueness of the disintegration, it follows that for µ-a.e. x ∈ T 

= H c

x (ξ c n (x)) ⊂ R. Lemma 6.14. For µ-a.e. x ∈ T 3 and ν cu n,x -a.e. (t, s) ∈ H x (ξ cu n (x)), the density of ν u n,s at t with respect to Leb [-1,1] is equal to some constant ρ u n,s independent of t.

Proof. Since µ is u-Gibbs, for µ-a.e. x ∈ T 3 , and µ cu n,x -a.e. y ∈ ξ cu n (x), the measure µ u n,y is absolutely continuous, and up to a constant, its density is given by

ρ y : ξ u n (y) z → +∞ j=0 Df -1 (f -j (z))| E u Df -1 (f -j (y))| E u .

Let (t, s)

def.

= H x (y), so that ν u n,s = (H x ) * µ u n,y . Restricted to {s} × R, Φ x = H -1

x is given by the map Φ u Φ c

x (s) (β x (s)t), for some β x (s) ∈ R. Thus, up to a constant depending only on s, the density of ν u n,s = (H x ) * µ u n,y is given by ρs : 

t → ρ y (Φ u Φ c x (s) (t))DΦ u Φ c x (s) (t). But DΦ u Φ c x (s) (t) = (DH u y ) -1 (Φ u Φ c x (s) (t)) = ρ y (Φ u Φ c x (s) (t)) -1 ,
(x). Since ν cu n,x = (H x ) * µ cu n,x , for the C 1 diffeomorphism H x : W cu (x) → R 2
, it amounts to showing that for µ-a.e. x ∈ T 3 and for n ∈ N large, ν cu n,x is absolutely continuous with respect to the normalized Lebesgue measure on H x (ξ cu n (x)). For µ-a.e. x ∈ T 3 , and for n ∈ N large, by Rokhlin disintegration, for every measurable set A ⊂ H x (ξ cu n (x)), we have

ν cu n,x (A) = π(A) ν u n,s (ξ u n (y) ∩ A) dν c n,x (s),
where π(A) ⊂ {0} × R R is the projection of A on {0} × R along horizontal leaves. By our assumption on νc x , the measure νc n,x is absolutely continuous with respect to the normalized Lebesgue measure on H c x (ξ c n (x)), thus, by Lemma 6.14, and by Fubini, dν u n,s (t)dν c n,x (s) = n,x (s)dLeb n,x (s, t), for some n,x (s) > 0, where Leb n,x is the normalized Lebesgue measure on H x (ξ cu n (x)), so that

ν cu n,x (A) = π(A) ξ u n (y) 1 A (s, t) n,x (s) dLeb n,x (s, t),
which concludes.

Basic moves for leaf-wise measures. The measures νc

x behave nicely when we move the base point. More precisely, as we shall see below sometimes they change by a linear map (when we move along strong unstable manifolds or when we push forward by the dynamics) and sometimes they change by an affine map (when we move along a center manifold). These simple properties end up being crucial to the arguments we are going to apply.

Before the following statement we introduce the following notation. Given two locally finite Borel measures ν, η on R we say that they are proportional, and we denote η ∝ ν if there exists c > 0 such that for every Borel set A ⊂ R it holds η(A) = cν(A).

First basic move: moving along center manifolds.

In the next lemma we show that for points on the same center leaf there exists an affine map making the corresponding leaf-wise quotient measure proportional to each other: see Figure 7. It is important to remark that the derivative of this affine map is given the value of normal form coordinates along the center manifold. Lemma 6.16. For µ-a.e. x ∈ T 3 , and y = Φ x (s) ∈ W c (x) with |s| small, it holds νc y ∝ (ψ x,y ) * νc x , for some affine map ψ x,y : R → R, s → c x,y + α c x (y) • s, for some c x,y ∈ R, and

α c x (y) def. = y x lim n→+∞ Df -n (q)| E c Df -n (x)| E c dq.
Proof. For µ-a.e. x ∈ T 3 , y = Φ x (s) ∈ ξ c 0 (x) with |s| small, for each Borel set B ⊂ R, and n ∈ N large, we have

νc n,y (B) = µ cu n,y (H -1 y (R × B)) = µ cu n,y (R × (H c y ) -1 (B)) = µ cu n,x (R × (H c x ) -1 (H c x • (H c y ) -1 (B))) = µ cu n,x (H x ) -1 (R × (H c x • (H c y ) -1 (B))) = νc n,x (H c y • (H c x ) -1 ) -1 (B) = (ψ x,y ) * νc n,x (B),
where ψ x,y def.

= H c y • (H c x ) -1 : R → R. Moreover, as x, y are in the same central leaf, ψ x,y is an affine map s → c x,y + α c x (y) • s, with c x,y ∈ R and

α c x (y) def. = y x lim n→+∞ Df -n (q)| E c Df -n (x)| E c dq.
6.3.2. Second basic move: applying the dynamics. When we push x to f (x) the changing on the measures is linear and the slope of the linear is given by the derivative at x along the center direction. Indeed, in the following, for = c, u, we denote by Λ x the linear map Λ x : t → λ x t (recall that λ x def.

= Df (x)| E ). Lemma 6.17. For µ-a.e. x ∈ T 3 , we have

νc f (x) ∝ (Λ c x ) * νc x . Proof. Fix n ∈ N large, and let B ⊂ I c n+1,f (x)
. By definition, we have

νc n+1,f (x) (B) = νc n+1,f (x) (B) νc n+1,f (x) ([-1, 1]) = ν cu n+1,f (x) (R × B) ν cu n+1,f (x) (R × [-1, 1])
, and by Lemma 6.8, it holds

ν cu n+1,f (x) (R × B) = ν cu n,x (N -1 x (R × B)) = ν cu n,x (R × (Λ c x ) -1 (B)) = νc n,x ((Λ c x ) -1 (B)), where (Λ c x ) -1 (B) ⊂ I c n,x . Similarly, ν cu n+1,f (x) (R×[-1, 1]) = νc n,x ((Λ c x ) -1 ([-1, 1])). We deduce that νc f (x) (B) = νc n,x ((Λ c x ) -1 (B)) νc n,x ((Λ c x ) -1 ([-1, 1])) = (Λ c x ) * νc x (B) (Λ c x ) * νc x ([-1, 1]) . 6.3.3.
Third basic move: moving along unstable manifolds. For points on the same strong unstable leaf the changing is also linear, but the slope is given by the derivative of the unstable holonomy map. To establish this result we first need an auxiliary lemma describing how normal form coordinates changes for points on the same strong unstable leaf. Lemma 6.18. Let x ∈ W u (x). For each point p = Φ c x (s) ∈ W c (x), we let p def.

= H u

x,x (p) ∈ W c (x ), and we let s = s (s) ∈ R be such that p = Φ c x (s ).

Then s = H c x • (H c x ) -1 (s) = Jac(H u x,x )(x) • s. Proof. For each p = Φ c x (s) ∈ W c (x), we have s = p x lim n→+∞ Df -n (q)| E c Df -n (x)| E c dq. Φ x Φ f (x) x W c (x) f (x) f W c (f (x)) νc x νc f (x)
Figure 8. Applying the dynamics to the base point changes the leaf-wise measure by a linear map given by the differential of f along E c up to renormalization.

Similarly, s = s (s) satisfies

s = p x lim n→+∞ Df -n (q )| E c Df -n (x )| E c dq = H u x,x (p) H u x,x (x) lim n→+∞ Df -n (q )| E c Df -n (x )| E c dq ,
and hence, letting q = H u x,x (q) for q ∈ W c (x), we obtain

s = p x lim n→+∞ Df -n (H u x,x (q))| E c Df -n (H u x,x (x))| E c Jac(H u x,x )(q)dq = Jac(H u x,x )(x) p x lim n→+∞ Df -n (H u x,x (q))| E c • Jac(H u x,x )(q) Df -n (H u x,x (x))| E c • Jac(H u x,x )(x) dq = Jac(H u x,x )(x) p x lim n→+∞ D(f -n • H u x,x (q))| E c D(f -n • H u x,x (x))| E c dq = Jac(H u x,x )(x) p x lim n→+∞ D(H u f -n (x),f -n (x ) • f -n (q))| E c D(H u f -n (x),f -n (x ) • f -n (x))| E c dq = Jac(H u x,x )(x) p x lim n→+∞ Jac H u f -n (x),f -n (x ) (f -n (q)) • Df -n (q)| E c Jac H u f -n (x),f -n (x ) (f -n (x)) • Df -n (x)| E c dq = Jac(H u x,x )(x)
• s, where we have used that, since f -n | W cu contracts distance uniformly, the holonomy map H u f -n (x),f -n (x ) converges uniformly to the identity and therefore

lim n→+∞ Jac H u f -n (x),f -n (x ) (f -n (q)) • Df -n (q)| E c Jac H u f -n (x),f -n (x ) (f -n (x)) • Df -n (x)| E c = lim n→+∞ Df -n (q)| E c Df -n (x)| E c dq.
This completes the proof.

We are now in position to describe how leaf-wise measures change for points on the same strong unstable leaf.

Φ x Φ x νc x νc x x x W u (x)
Figure 9. Moving the base point within an unstable leaf changes the leaf-wise measure by a linear map given by unstable holonomy up to renormalization. Lemma 6.19. For µ-a.e. x ∈ T 3 , and x ∈ W u (x), it holds

νc x ∝ (L x,x ) * νc x , for the linear map L x,x : s → Jac(H u x,x )(x) • s. Proof.
For µ-a.e. x ∈ T 3 , and x ∈ W u (x), we have x ∈ ξ u n (x) for n ∈ N sufficiently large, hence, for each Borel set B ⊂ R, it holds

νc n,x (B) = µ cu n,x (H -1 x (R × B)) = µ cu n,x (R × (H c x ) -1 (B)) = µ cu n,x (R × (H c x ) -1 (H c x • (H c x ) -1 (B))) = µ cu n,x (H x ) -1 (R × (H c x • (H c x ) -1 (B))) = νc n,x (H c x • (H c x ) -1 ) -1 (B) = (L x,x ) * νc n,x (B)
, where L x,x : R → R is the linear map s → Jac(H u x,x )(x) • s (recall Lemma 6.18), which concludes.

Invariance by affine maps

Once we have constructed the leaf-wise quotient measures {ν c

x } x∈T 3 , Lemma 6.15 tells us that the proof of Theorem 5.8 reduces to show that νc x is absolutely continuous with respect to Lebesgue. As in [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF] this can be achieved by proving that νc

x is, for many points x, invariant by affine maps with controlled slope and small translational part. More precisely, the lemma below is the analogue of [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]Lemma 7.1] in our context.

Lemma 7.1.

There exist constants M 0 > 0 and δ 0 ∈ (0, 1) such that for every ε > 0 sufficiently small one can find a compact set G(ε) ⊂ T 3 so that µ(G(ε)) ≥ δ 0 and for every p ∈ G(ε) there exists an affine map ψ : R → R satisfying (1)

1 M 0 < |ψ (0)| < M 0 ; (2) ε M 0 < |ψ(0)| < εM 0 ; (3) ψ * νc p ∝ νc p . Furthermore, writing G 0 def. = {p ∈ T 3 : p ∈ G( 1 N ) for infinitely many N ∈ N}, we have µ(G 0 ) ≥ δ 0 .
Exactly as in [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF], the lemma above implies Theorem 5.8. The proof is a direct adaptation of [START_REF] Kalinin | Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori[END_REF]Lemma 3.10] and [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF]Lemma 7.3]; for the convenience of the reader, we provide this beautiful argument below and we refer to [START_REF] Brown | Measure rigidity for random dynamics on surfaces and related skew products[END_REF][START_REF] Kalinin | Measure rigidity beyond uniform hyperbolicity: invariant measures for Cartan actions on tori[END_REF] for other applications of the same argument.

Proof of Theorem 5.8 assuming Lemma 7.1. Let Aff(R) denote the group of invertible affine maps of R, and for p ∈ T 3 , let A(p) ⊂ Aff(R) be the subgroup of affine maps ψ : R → R such that ψ * νc p ∝ ν c p . We claim that A(p) is a closed subgroup of Aff(R). Let ψ n ∈ A(p) converge to ψ ∈ Aff(R). Since each element of Aff(R) is a homeomorphism of the real line and since the convergence in Aff(R) implies converge in the compact-open topology we have, for each continuous function with compact support φ : R → R that

φ • ψ n dν c p → φ • ψ dν c p .
This implies that (ψ n ) * νc p → ψ * νc p . On the other hand, for each n we have

(ψ n ) * νc p = c n νc p , ( 20 
)
for some constant c n , which can therefore be obtained by

c n = νc p (ψ -1 n (K)) νc p (K)
, for any measurable set K ⊂ R with finite positive measure with respect to both νc p and (ψ n ) * νc p . Now, as all the measures are locally finite we can require further that such compact set K is also a continuity set (of finite measure) for ψ * νc p . In particular, since (ψ n ) * νc p (K) → ψ * νc p (K), we deduce that c n converges to some positive real number c. We deduce from [START_REF] Guelman | Uniqueness of minimal unstable lamination for discretized Anosov flows[END_REF] and uniqueness of limits that ψ * νc p = cν c p . This proves that ψ ∈ A(p) and establishes our claim. This implies in particular that A(p) is a Lie group. By Lemma 7.1, for every p ∈ G 0 , A(p) contains a sequence (ψ j ) j∈N of elements ψ j : t → λ j t + v j , with v j = 0, lim j→+∞ v j = 0, and lim j→+∞ λ j = λ, for some λ = 0. In particular, A(p) contains the homothety h λ : t → λt, and (h -1 λ • ψ j ) j∈N converges to the identity within A(p). Therefore, A(p) is not discrete and must be of dimension 1 or 2. This implies that the identity component A 0 (p) ⊂ A(p) contains a one-parameter subgroup of Aff(R): such a group consists of translations, or is conjugate to homothety.

We now claim that the groups A 0 (p) are isomorphic for a.e p ∈ T 3 . Indeed, recall the linear map Λ c p : R → R given by Λ c p (t) = λ c p t, where λ c p = Df (p)| E c . Then, it follows from Lemma 6.16 that ψ ∈ A 0 (p) if, and only if,

Λ c p •ψ •(Λ c p ) -1 ∈ A 0 (f (p)), proving our claim.
Since isomorphisms classes of closed subgroups of Aff(R) form a separable space and since µ(G 0 ) > 0, the claim then follows from by ergodicity. In particular, for µ-a.e. p ∈ T 3 , A 0 (p) contains a one-parameter subgroup of Aff(R).

Assume by contradiction that A 0 (p) were conjugate to homothety for a positive measure set of p ∈ T 3 . Then, by ergodicity, for µ-a.e. p ∈ T 3 , the action of A 0 (p) on R would have a unique fixed point t(p) ∈ R. Since A 0 (p) contains affine maps with arbitrarily small (and non-zero) translational part, we have t(p) = 0 for a set of positive measure.

Besides that, as we observed above

A 0 (f n (p)) = {Λ c p,n • ψ • (Λ c p,n ) -1 : ψ ∈ A 0 (p)}, where Λ c p,n (t) = λ c p (n)t (recall (2)
). As a consequence we deduce

|t(f n (p))| = λ c p (n) • |t(p)|. ( 21 
)
Consider a positive measure compact subset K of G 0 where the measurable function p → t(p) is continuous and bounded. By Poincaré recurrence for some p ∈ K we have p n k = f n k (p) ∈ K for infinitely many iterates n k ∈ N. By compactness, we can assume p n k → q ∈ K. However, ( 21) is incompatible with the boundedness of t| K . We have thus reached a contradiction. Therefore, A 0 (p) contains the group of translations, for µ-a.e. p ∈ T 3 . For t ∈ R, p ∈ T 3 , we let g = g t : s → s + t and c(p, t) def.

= νc

p ([-t -1, -t + 1]), so that

dg * νc p dν c p = c(p, t). ( 22 
)
Let us see some properties of the function (p, t) → c(p, t). Firstly, for µ-a.e. p ∈ T 3 , A 0 (p) contains all translations. This implies that νc p has no atom, which implies that c(p, •) is continuous. We claim that

c(p, t) = c(p n , λ c p (n)t), ( 23 
)
where

p n = f n (p). To prove the claim, consider ψ = Λ c p,n • g • (Λ c p,n ) -1 and observe that ψ(s) = s + λ c p (n)t. From the definition it follows that c(p n , λ c p (n)) = νc pn (ψ -1 ([-1, 1])) = νc pn (ψ -1 ([-1, 1])) νc pn ([-1, 1])
.

In the last equality we have used our normalization choice νc pn ([-1, 1]) = 1 for leaf-wise quotient measures. Applying now Lemma 6.16 we deduce

νc pn (ψ -1 ([-1, 1])) νc pn ([-1, 1]) = νc p ((λ c p (n)) -1 × ψ -1 ([-1, 1])) νc p ((λ c p (n)) -1 × [-1, 1]) = νc p (g -1 (λ c p (n)) -1 × ([-1, 1]))) νc p ((λ c p (n)) -1 × [-1, 1]) = g * νc p (λ c p (n)) -1 × ([-1, 1])) νc p ((λ c p (n)) -1 × [-1, 1]) = c(p, t), ( 24 
)
where on the second equality we applied the definition of ψ and in the last equality we have used the fact that the measures g * νc p and νc p are proportional by a factor precisely equal to c(p, t). This establishes [START_REF] Hirsch | Invariant manifolds[END_REF].

We now give the final argument for completing the proof. For each ε > 0, let r > 0 be chosen such that the set

B r,ε def. = p ∈ T 3 : |c(q, t) -1| < ε, ∀ |t| < r satisfies µ(B r,ε ) > 0.
By ergodicity, µ-a.e. point p ∈ T 3 visits B r,ε infinitely many times both in future and past; but [START_REF] Hirsch | Invariant manifolds[END_REF] implies that |c(p, t) -1| < ε for all s ∈ R and µ-a.e. p ∈ T 3 . Letting ε → 0, we conclude that c(p, t) = 1 for all t ∈ R and µ-a.e. p ∈ T 3 , hence, by [START_REF] Hammerlindl | Pointwise partial hyperbolicity in three-dimensional nilmanifolds[END_REF], νc p is invariant under the group of translations, for µ-a.e. p ∈ T 3 , hence it is Lebesgue measure.

Drift along the center. Recall that the normal forms {Φ c

x : R → W c (x)} x∈T 3 give us parametrizations of the center manifolds whose change of coordinates are affine maps. Using these changes of coordinates one can build the maps ψ : R → R promised in Lemma 7.1. Indeed, we claim that it suffices to prove the result below.

Proposition 7.2.

There exist constants M > 0 and δ 0 ∈ (0, 1) such that for every ε > 0 sufficiently small one can find a compact set G = G(ε) ⊂ T 3 so that µ(G) ≥ δ 0 and for every p ∈ G there exists a point q ∈ W c 1 (p), so that

M -1 ε ≤ |H c p (q)| ≤ M ε and νc q ∝ B * νc p , ( 25 
)
for some linear map B : R → R of the form s → β • s so that M -1 < |β| < M .

7.1.1. Proof of Lemma 7.1 assuming Proposition 7.2. We only need to show that the set G of Proposition 7.2 satisfies the claims in Lemma 7.1 for a suitably chosen constant M (which will be perhaps a bit larger than the one already given by the proposition). To see this, take q ∈ W c 1 (p) for some p ∈ T 3 and let us, for the sake of this proof, denote by ξ = ψ p,q = H c p • Φ c q : R → R the affine change of normal form coordinates along the center direction. Because normal forms depends continuously with respect to the base point, we may enlarge M if necessary so that |ξ (0)| ∈ (M -1 , M ). Now, take G the set given by Proposition 7.2 and let p ∈ G. We shall construct the affine map ψ : R → R claimed by the lemma. For this take q ∈ W c 1 (p) given by Proposition 7.2 and notice that, at one hand, Lemma 6.16 gives us that νc q ∝ ξ * νc p . On the other hand, Proposition 7.2 says that for some linear map B : R → R with derivative β bounded in between M -1 and M we have νc q ∝ B * νc p . These two properties give us that νc p ∝ ψ * νc p , where ψ = B -1 ξ is an affine map. The bounds we have on β and on |ξ (0)| give

|ψ (0)| ∈ (M -2 , M 2 ).
Moreover, by Proposition 7.2

|ψ(0)| = |B -1 ξ(0)| = |B -1 H c p (q)| ∈ (M -2 ε, M 2 ε
). This shows that ψ satisfies all the requirements in Lemma 7.1 with M 0 = M 2 , thus completing the proof. 7.1.2. The Lusin set. We proceed now to the proof of Proposition 7.2, where our key arguments are located. The arguments we are going to employ in this part are mostly inspired by Eskin-Lindenstrauss' paper [START_REF] Eskin | Random walks on locally homogeneous spaces[END_REF]. Let us briefly give some vague intuition to motivate the next statements. Recall from Lemma 6.17 that the measures νc

x change by a linear map when we move the base point from x to f n (x), and the slope of this linear map is Df n (x)| E c . Thus, we are going to use some special dynamical configurations to find points almost on the same center leaf which drift apart by a center distance proportional to ε and so that their corresponding leaf-wise quotient measures are almost proportional to each other, modulo some linear map whose slope we can control using the dynamics. To find the correct set (where the almost is replaced by equality) we take limits. For this we need to consider points belonging to compact sets restricted to which x → νc

x is continuous. We apply Lusin's theorem to find a compact set L with very large measure so that (1) L x → νc x ∈ M(R) is continuous in the weak topology (recall that this topology is metrizable).

(2) For σ = s, c, u, cu given ξ σ , a measurable partition subordinate to W σ , there exists r 0 > 0 so that for every x ∈ L, W σ r 0 (x) ⊂ ξ σ (x). (3) For every x ∈ L, ξ u (x) is an interval whose size r u (x) vary continuously with x ∈ L (see Remark 2.14).

The continuity of the function L x → νc x together with Remark 6.13 imply the following.

Corollary 7.3. For each M > 1 there exists c = c(M ) > 0 such that if B : R → R is a linear map with derivative in [M -1 , M ] then νc x (B -1 [-1, 1]) ∈ [c -1 , c] for each x ∈ L.
Proof. Assume by contradiction that a lower bound does not hold. Denote J 0 = [-M -1 , M -1 ]. Then, for each n there must exist x n ⊂ L such that νc xn (J 0 ) ≤ 1/n. We can assume, by compactness of L, that x n → x ∈ L. Since y ∈ L → νc y is continuous, we have that νc

x (J 0 ) ≤ lim inf n→∞ νc xn (J 0 ) = 0, which violates Remark 6.13. By a similar reasoning, considering J 1 = [-M, M ] and assuming that the upper bound does not hold we would obtain a point x ∈ L for which νc x (J 1 ) = ∞, which is also impossible by local finiteness. We will require µ(L) > 1 -δ 0 . The constant δ 0 is the constant appearing in Lemma 7.1 and Proposition 7.2. Further assumption will be given on δ and δ 0 in Section 10, and more precisely in §10.3.6. Given M, ε > 0 set

G(ε, M ) def. =        p ∈ T 3 : ∃q ∈ W c 1 (p), ∃B(s) = β • s linear map such that νc q ∝ B * νc p M -1 ε ≤ |H c p (q)| ≤ M ε M -1 ≤ |β| ≤ M        . ( 26 
)
Notice that G(ε, M ) is nothing but the set of points p ∈ T 3 for which the conclusion of Proposition 7.2 holds with constants ε, M .

Given this choice of parameters, Proposition 7.2 follows from the statement below.

Proposition 7.4.

There exists M > 0 such that for ε > 0 small enough and every compact set K 00 with µ(K 00 ) > 1 -2δ 0 ,

K 00 ∩ L ∩ G(ε, M ) = ∅.
Proof that Proposition 7.4 =⇒ Proposition 7.2. Let M > 0 be the constant given in the statement above. Assume by contradiction that Proposition 7.2 does not hold with the constants M and δ 0 . Then, for some small ε > 0 we must have µ(G(ε, M )) < δ 0 . By regularity of µ there exists an open neighbourhood U of G(ε, M ) such that µ(U ) < δ 0 . Let K 00 = T 3 \ U . This set is compact and satisfies µ(K 00 ) ≥ 1 -δ 0 > 1 -2δ 0 . Proposition 7.4 then implies that K 00 ∩ G(ε, M ) = ∅, which is absurd.

In order to start the proof of Proposition 7.4, fix ε > 0 (independently of δ: notice that while δ is fixed we need to take ε → 0). More assumptions on ε will be given later on. This is the expected size of the drift we want to see along the center direction. Given a compact set K 00 whose measure is larger than 1 -2δ 0 , notice that the compact set

K 0 def. = K 00 ∩ L. has measure µ(K 0 ) > 1 -3δ 0 = 1 -δ. We shall prove that K 0 ∩ G(ε, M ) = ∅.
This will occupy the rest of the paper.

Stopping times, Y -configurations, quadrilaterals and synchronization

The goal of this section is to introduce the key dynamical ingredients involved in the proof of Proposition 7.4, which is the main part of our implementation of an exponential drift argument. We also use this section to derive some estimates relating these ingredients. 8.1. Stopping times. We introduce below the stopping time functions. They are devised to measure the appropriate time length of the top part of Figure 5 so that we get the precise drift we want along the center direction. 8.1.1. Definition of stopping times. Recall our concise notations for derivatives

λ x (n) = Df n (x)| E = c, s, u,
and

d x = λ c x -( ) λ u x -( ) introduced in (2) of §2.1.
2 and (4) of §2.1.3, respectively, where x n = f n (x) is our concise notation for orbit points introduced in (1) of §2.1.2. Given x ∈ T 3 , x u ∈ W u (x), ε > 0, and ∈ N, we define

τ ( ) = τ (x, x u , ε, ) def. = inf n ∈ N : d x × λ c x u (n) ≥ ε . We also define t( ) = t(x, x u , ε, ) def. = inf n ∈ N : λ c x (n) λ c x u (τ ( )) ≥ 1 .
These functions are called the stopping times.

8.1.2. Quasi-isometric estimates. In the following, we fix ε > 0. Recall that for x ∈ T 3 , x u ∈ W u (x), we abbreviate τ ( ) = τ (x, x u , ε, ) and t( ) = t(x, x u , ε, ).

Lemma 8.1 (Quasi-isometric estimates).

There exists

Θ = Θ(f ) > 1 and A = A(f ) > 0 so that given , m ∈ N, x ∈ T 3 and x u ∈ W u (x) the following holds (1) Θ -1 m -A < τ ( + m) -τ ( ) < Θm + A and (2) Θ -1 m -A < t( + m) -t( ) < Θm + A.
Proof. In this proof we shall make use of the constants of hyperbolicity of f introduced in §2.1.3. With these constants at hand, we can now develop the argument for the quasi-isometric estimates. For this, fix arbitrarily x ∈ T 3 and x u ∈ W u (x). Given some ε > 0, let us consider τ ( ) = τ (x, x u , ε, ) and t( ) = t(x, x u , ε, ). From the definition of τ , we have that

d x λ c x u (τ ( )) ≥ ε and d x λ c x u (τ ( ) -1) < ε, for each ∈ N. Thus, ε ≤ d x λ c x u (τ ( )) < e χ c 1 ε, for each ∈ N. (27) 
Fix , m ∈ N. On the one hand, by the cocycle property (3) we have that

d +m x = d x d m
x and therefore we can use [START_REF] Katok | Invariant measures for higher-rank hyperbolic abelian actions[END_REF] to obtain

εe mχ d 1 < d +m x λ c x u (τ ( )) < εe χ c 1 +mχ d 2 .
On the other hand, we can use the cocycle property once more to write

λ c f τ ( ) (x u ) (τ ( + m) -τ ( )) = λ c x u (τ ( +m)) λ c
x u (τ ( )) and thus obtaining

e χ c 2 (τ ( +m)-τ ( )) < λ c x u (τ ( + m)) λ c x u (τ ( )) < e χ c 1 (τ ( +m)-τ ( )) .
Therefore, since d +m

x λ c x u (τ ( + m)) = d +m x λ c x u (τ ( )) λ c x u (τ ( +m)) λ c x u (τ ( ))
we can combine the two above inequalities and obtain

εe mχ d 1 +χ c 2 (τ ( +m)-τ ( )) < d +m x λ c x u (τ ( + m)) < εe χ c 1 +mχ d 2 +χ c 1 (τ ( +m)-τ ( )) .
Putting + m instead of in [START_REF] Katok | Invariant measures for higher-rank hyperbolic abelian actions[END_REF] and combining with this we get the inequalities

εe χ c 1 +mχ d 2 +χ c 1 (τ ( +m)-τ ( )) > ε and εe -χ c 1 +mχ d 1 +χ c 2 (τ ( +m)-τ ( )) < ε.
Dividing by ε and taking logarithms we deduce that

m -χ d 2 χ c 1 -1 < τ (m + ) -τ ( ) < m -χ d 1 χ c 2 + χ c 1 χ c 2 . ( 28 
)
Let us deal with the function → t( ). From its very definition we have an inequality analogous to ( 27):

1 ≤ λ c x (t( )) λ c x u (τ ( )) < e χ c 1 , for every x ∈ T 3 , ∈ N. (29) 
To simplify the remainder of the exposition, we shall denote τ ,m def.

= τ ( + m)τ ( ) and t ,m = t( + m) -t( ). Notice that

e χ c 2 t ,m -χ c 1 τ ,m < λ c f t( ) (x) (t( + m) -t( )) λ c f τ ( ) (x u ) (τ ( + m) -τ ( )) < e χ c 1 t ,m -χ c 2 τ ,m .
Combining this with (29), we can use the decomposition

λ c x (t( + m)) λ c x u (τ ( + m)) = λ c x (t( )) λ c f t( ) (x) (t( + m) -t( )) λ c x u (τ ( )) λ c f τ ( ) (x u ) (τ ( + m) -τ ( )) and conclude that e χ c 2 t ,m -χ c 1 τ ,m < λ c x (t( + m)) λ c x u (τ ( + m)) < e χ c 1 t ,m -χ c 2 τ ,m +χ c 1 .
Now, using [START_REF] Ledrappier | A proof of the estimation from below in Pesin's entropy formula[END_REF] with + m instead of , the above inequality implies that

e χ c 2 t ,m -χ c 1 τ ,m < e χ c 1 and 1 < e χ c 1 t ,m -χ c 2 τ ,m +χ c 1 ,
and thus

e χ c 2 t ,m -χ c 1 τ ,m -χ c 1 < 1 < e χ c 1 t ,m -χ c 2 τ ,m +χ c 1 .

Taking logarithms leads us to

χ c 2 χ c 1 τ ,m -1 < t ,m < χ c 1 χ c 2 τ ,m + χ c 1 χ c 2 ,
which combined with (28) ends the proof.

8.2. Y -configurations. We introduce below a dynamical ingredient inspired by [START_REF] Eskin | Random walks on locally homogeneous spaces[END_REF][START_REF] Eskin | Invariant and stationary measures for the SL(2, R) action on moduli space[END_REF]. They allow us to "decompose" Figure 5 in the "x-side" and in the "y-side". Notice that each side has a kind of Y -shape. The idea from [START_REF] Eskin | Random walks on locally homogeneous spaces[END_REF] for getting the points inside the Lusin set is to try to prove the existence of a large amount of these Y -shaped dynamical configurations and then try to find some of them which are linked through stable manifolds, as it appears in Figure 5. These measure theoretical arguments will be developed in Section 10. Here, in this section, we introduce these configurations and establish synchronization and (center) drift estimates for them.

8.2.1. Definition. Given ε > 0 and ∈ N, a Y -configuration Y = Y (x, x u , ) is a quintuple of points (x, x u , x -, x u τ , x t )
, that depends on parameters x, x u ∈ T 3 and (the dependence on ε is implicit throughout the text), and such that (1)

x u ∈ W u (x); (2) x -= f -(x); (3) x u τ = f τ (x u ), where τ = τ (x, x u , ε, ); (4) x t = f t (x u ), where t = t(x, x u , ε, ).
where τ (x, x u , ε, ) and t(x, x u , ε, ) are the stopping times defined above.

We call the length of the Y -configuration. Moreover, given a set Λ ⊂ T 3 , we say that a Y -configuration (x,

x u , x -, x u τ , x t ) is Λ-good if x, x u , x u τ , x t ∈ Λ. Time 0 - τ ( ) t( ) W u (x) τ ( ) = τ (x, x u , ε, ) t( ) = t(x, x u , ε, ) x u x - x f t( ) (x) f τ ( ) (x u ) Figure 10. A Y -configuration.
In [START_REF] Eskin | Random walks on locally homogeneous spaces[END_REF], the authors defined a notion of pairs of coupled Y -configurations. For technical reasons we shall replace this notion by that of pairs of matched Y -configurations that will appear in the next section. 8.3. Quadrilaterals and synchronization. Another important aspect of Figure 5 is located at its middle, where we have a kind of a quadrilateral, twisted along the unstable direction. This, indeed, is the third dynamical ingredient in our implementation of an exponential drift argument. It will allow us to use the angle condition and to define the aforementioned notion of matching of Y -configurations.

Definition.

A quadrilateral is a quadruple (x, x u , y, y u ) ∈ (T 3 ) 4 such that (1) y ∈ W s (x);

(2) x u ∈ W u (x) belongs to the domain of a center-holonomy map H cs x,y ; (3) y u = H cs x,y ∈ W u (y) ∩ W cs (x u ). For such a quadrilateral, we define the point z u def.

= H s x,y (x u ), so that z u ∈ W s (x u ) ∩ W c (y u ). Moreover, given C > 1, ∈ N, we say that (x, x u , y, y u ) is a (C, )-quadrilateral if, besides, (4)

C -1 < d(x -, y -) < C, (5) C -1 < α s (x -, y -) < C and (6) C -1 < d(x, x u ) < C, where, as before, x -= f -(x), y -= f -(y). W s loc (x -) W u loc (x -) H s x -,y - (W u loc (x -)) z u - W u loc (y -) y u - γ u f α s (x -, y -) f x - y - x u x u - y x z u y u
Figure 11. A quadrilateral and its pre-image by f . 8.3.2. Drift estimates. In Figure 5 we claim that the displacement along the center at the left top of the configuration is proportional to the parameter ε. We shall now make this assertion precise in terms of normal form coordinates. We first introduce a useful notation that will be used throughout the text, and in particular in the next proof. Notation. Given a set of real parameters c 1 , . . . , c n and two quantities a and b (that may or may not depend on other variables) we denote a c 1 ,...,cn b if there exists a real valued function ρ C,T ) > 1 such that for every ∈ N large enough, every (C, )-quadrilateral (x, x u , y, y u ), and every τ ≥ 0 such that |τ -τ (y,

= ρ(c 1 , . . . , c n ) ≥ 1 such that ρ -1 a ≤ b ≤ ρa. Lemma 8.2. Fix ε > 0. Given C > 1 and T > 0, there exists a constant κ = κ(
y u , ε, )| ≤ T we have ε κ < H c f τ (z u ) (f τ (y u )) < κε. ( 30 
)
Proof. Let γ u = [x, x u ] ⊂ W u (x) be the segment of strong unstable manifold connecting the points x and x u . See Figure 11. Then,

f -• H s x,y (γ u ) is a C 1 curve joining y -and z u -. 2 Since, f -• H s x,y (γ u ) = H s x -,y -• f -(γ u ) the assumption C -1 < α s (x -, y -) < C implies that the vector tangent to the curve f -• H s
x,y (γ u ) at y -and the strong unstable direction E u (y -) are transverse with an angle between C -1 and C. Recall that H y -: W cu (y -) → R2 sends W u (y -) onto the horizontal axis (see Theorem 6.2). As the length of

f -• H s
x,y (γ u ) is exponentially small with and the bundle E u is continuous, a standard compactness argument then ensures that for some constant c 1 = c 1 (C) > 0 and for large enough, the curve

H y -• f -• H s x,y (γ u ) on R 2 is contained in the cone C 1 = (v 1 , v 2 ) ∈ R 2 : c -1 1 |v 1 | ≤ |v 2 | ≤ c 1 |v 1 | . Now, observe that H y • H s x,y (γ u ) = H y • f • Φ y -• H y -• f -• H s x,y (γ u ) and that H y • f • Φ y -is the linear map (t, s) ∈ R 2 → (λ u y -( )t, λ c y -( )s
). These two observations put together imply that the curve

H y • H s x,y (γ u ) is contained in the cone C 2 = (v 1 , v 2 ) ∈ R 2 : c -1 1 λ c y -( ) λ u y -( ) |v 1 | ≤ |v 2 | ≤ c 1 λ c y -( ) λ u y -( )
|v 1 | .
Now let γ c denote the piece of center manifold connecting z u to y u . Then H y • γ c connects the point H y (z u ), whose distance to the origin only depends on constant C and is bounded from above and below, to the point H y (y u ), which lies on the horizontal axis. Since H y (z u ) ∈ C 2 , we deduce that (see Figure 12)

length(H y • γ c ) C λ c y -( ) λ u y -( )
.

Hy -(y -) Hy -(y u -) Hy -(z u -)
Hy(y) Hy(y u )

Hy(z u ) H y • f • Φ y - Figure 12.
On normal form coordinates the dynamics on W cu acts as a diagonal matrix, with stronger expansion on the horizontal.

Since C -1 < d u (x, x u ) < C and we have C 1 holonomies, we also have that C -1 < d(z u , y) < C (upon enlarging the constant C if necessary in order to take into account the action of holonomy maps). Recall that normal forms change continuously in the C 1 topology, so another compactness argument ensures that the

C 1 norm of H z u • Φ y | W cu 2C (y) is bounded by some constant depending on C. Thus length(H z u • γ c ) C λ c y -( ) λ u y -( ) .
On the other hand, by the construction of normal forms,

H z u • γ c ⊂ R 2 is a vertical segment with length |H c z u (y u )|. This proves that |H c z u (y u )| C λ c y -( ) λ u y -( ) .
As we did before it is possible to bound uniformly from above the C 1 -norms of all H c * in restriction to center segments of uniform radius so (upon enlarging if necessary) we also have

d c (y u , z u ) C λ c y -( ) λ u y -( )
, and

H c y u (z u ) C λ c y -( ) λ u y -( ) .
Since the dynamics on normal forms acts linearly, this implies

H c f τ ( ) (y u ) (f τ ( ) (z u )) C λ c y -( ) λ u y -( ) × λ c y u (τ ( ))
where τ ( ) = τ (y, y u , ε, ) is the stopping time. By definition this implies that

H c f τ ( ) (y u ) (f τ ( ) (z u )) C ε. ( 31 
)
Since |τ -τ ( )| ≤ T we obtain

H c f τ (y u ) (f τ (z u )) C,T ε.

Corollary 8.3.

There exists a constant κ = κ(C, T ) such that for every τ satisfying |τ -τ (y,

y u , ε, )| ≤ T it holds d c (f τ (y u ), f τ (z u )) ≤ κε.
Proof. This follows from the proof of Lemma 8.2 and the fact that normal forms {H c x } x∈T 3 are C 1 maps with continuously varying C 1 norm on compact sets.

Synchronization estimates.

The last set of estimates we need concerns the oscillation of the stopping times from one side to the other when we have a (C, )-quadrilateral.

Lemma 8.4 (Synchronization for quadrilaterals). For any C > 1, there exists a constant T 0 > 0 depending only on f, C such that for any ∈ N, and any (C, )-quadrilateral (x, x u , y, y u ), it holds

|τ (y, y u , ε, ) -τ (x, x u , ε, )| < T 0 , |t(y, y u , ε, ) -t(x, x u , ε, )| < T 0 . Proof. Recall the constants χ c 2 , χ c 1 > 0 introduced in §2.1.3. They satisfy e kχ c 2 ≤ λ c
x (k) ≤ e kχ c 1 for every k ∈ N and every x ∈ T 3 where λ c x (k) = Df k (x)| E c is our concise notation for derivatives from (2). For the sake of simplicity, denote τ ( ) = τ (x, x u , ε, ) and τ ( ) = τ (y, y u , , ε). Assume that τ ( ) ≥ τ ( ). By definition

d y λ c y u (τ ( )) ≥ ε. (32) Let us write for k ∈ N d x λ c x u (τ ( ) + k) d y λ c y u (τ ( )) = d x d y × λ c x u (τ ( )) λ c y u (τ ( )) × λ c x u τ ( ) (k). ( 33 
)
We now bound from below each factor appearing in [START_REF] Palis | A global view on dynamics and a conjecture on the denseness of finitude of attractors[END_REF]. We treat the third factor by observing that λ c

x u τ ( ) (k) ≥ e kχ c
2 . To treat the first factor, we use that y ∈ W s 1 (x) so the distortion control given by Corollary 2.11 gives

d y d x ≥ C -1 0 .
Finally, in order to treat the second factor, we notice that Corollary 8.3 provides that d c (f j (z u ), f j (y u )) ≤ Cε, for some constant C = C(f ) > 0 and for every j = 0, . . . , τ ( ). With no loss of generality we can assume that Cε < 1. Applying the distortion control of Corollary 2.11 we obtain λ c

x u (τ ( )) λ c y u (τ ( )) ≥ C -1 0 . These lower bounds together with (33) provide the following estimate

d x λ c x u (τ ( ) + k) ≥ e kχ c 2 C 2 0 ε ≥ ε as soon as we choose k = k(f ) such that e kχ c 2 ≥ C 2 0 . ( 34 
)
Hence by definition of the stopping time, we obtain τ ( )

+ k ≥ τ ( ) so τ ( ) - τ ( ) ≤ k. A symmetric argument shows that τ ( ) -τ ( ) ≤ k if τ ( ) ≥ τ ( ).
We consider now the stopping time t. As above, we denote t( ) = t(x, x u , ε, ) and t ( ) = t (y, y u , ε, ). By definition

λ c y (t ( ) λ c y u (τ ( )) ≥ 1. ( 35 
)
Let us write for k ∈ N:

λ c x (t ( ) + k ) λ c x u (τ ( )) λ c y u (τ ( )) λ c y (t ( ) = λ c y u (τ ( )) λ c x u (τ ( )) × λ c x (t ( ) λ c y (t ( ) × λ c x t ( ) (k ) × 1 λ c x u τ ( ) (τ ( ) -τ ( ))
.

We now bound from below each factor of the product above. We have already seen how to treat the first factor

λ c x u (τ ( )) λ c y u (τ ( )) ≥ C -1 0 .
To treat the second factor, we use that y ∈ W s 1 (x) and apply Corollary 2.11 to get λ c x (t ( )) λ c y (t ( )) ≥ C -1 0 . We treat the third factor by observing that λ c x t ( ) (k ) ≥ e k χ c 2 . Note that |τ ( ) -τ ( )| ≤ k so the last bound follows from

1 λ c x u τ ( ) (τ ( )-τ ( )) ≥ e -kχ c 1 .
Finally we find

λ c x (t ( ) + k ) λ c x u (τ ( )) ≥ e k χ c 2 C 2 0 e kχ c 1 λ c y (t ( ) λ c y u (τ ( )) ≥ 1, (36) 
as soon as we choose k = k (f ) such that

e k χ c 2 ≥ C 2 0 e kχ c 1 . ( 37 
)
Hence by definition we must have t( ) ≤ t ( ) + k so t( ) -t ( ) ≤ k . Here again a symmetric argument yields t ( ) -t( ) ≤ k . Hence

T 0 = max(k, k ), (38) 
is the desired constant. This ends the proof.

Matching of Y -configurations

In this section we develop a concept devised specifically to address the technical difficulty to implement the exponential drift idea we want to employ, a difficulty which was described at the end of Section 3. Namely, due to lack of absolute continuity of center stable holonomies we cannot ensure that the points x u and y u of Figure 5 belong both to the Lusin set. What we can actually prove is that small perturbations of these two points can indeed be put inside the Lusin set. This will lead us to the notion of matched configurations. 9.1. Matching of dynamical balls. We start the formal definition of matching in our scenario by introducing intervals along the unstable manifold which measure the amount of perturbation of the points x u and y u which are allowed, without breaking the estimates we performed for quadrilaterals in the previous section. 9.1.1. Unstable dynamical balls. Although the notion of dynamical balls is quite standard in ergodic theory, we use this name in this paper for a more specific object, adapted to our needs. Definition 9.1. Let ε > 0, ∈ N, x ∈ T 3 and x u ∈ W u (x). Let τ ( ) = τ (x, x u , ε, ). The (ε, )-unstable dynamical ball at x u is defined as

J(x u ) = J(x u , ε, ) def. = f -τ ( ) W u 1 (f τ ( ) (x u )) .
Remark 9.2. By definition, for every a ∈ J(x u ) and j ∈ {0, . . . , τ (x, x u , ε, )}

d u (f j (x u ), f j (a)) < 1.
9.1.2. Synchronization inside a dynamical ball. Before we define the notion of matching of Y -configuration it is useful to study the oscillation of stopping times inside an unstable dynamical ball. Let T 0 > 0 be the constant obtained in Lemma 8.4.

Lemma 9.3. For every a ∈ J(x u ) it holds |τ (x, a, ε,

) -τ (x, x u , ε, )| < T 0 and |t(x, a, ε, ) -t(x, x u , ε, )| < T 0 .
Proof. The proof is almost identical to that of Lemma 8.4. In particular k and k are defined by ( 34) and [START_REF] Ratner | Strict measure rigidity for unipotent subgroups of solvable groups[END_REF]. Let us denote τ a (l)

def.

= τ (x, a, ε, ). Suppose first that τ a ( ) ≥ τ ( ).

d x λ c a (τ ( ) + k) d x λ c x u (τ ( )) = λ c a (τ ( )) λ c x u (τ ( )) × λ c a τ ( ) (k). ( 39 
)
We have λ c a τ ( ) (k) ≥ e kχ 3 . Finally we have by definition f τ ( ) (a) ∈ W u 1 (f τ ( ) (x u )) so by the distortion control [START_REF] Brown | Measure rigidity for random dynamics on surfaces with positive entropy[END_REF] we have λ c a (τ ( )) λ c

x u (τ ( )) ≥ C -1 0 and, by choice of k,

d x λ c a (τ ( ) + k) ≥ e kχ 3 C 0 d x λ c x u (τ ( )) ≥ ε. Hence τ a ( ) -τ ( ) ≤ k. A symmetric argument yields τ ( ) -τ a ( ) ≤ k.
We consider now the stopping time t. As above, we denote t a ( ) def.

= τ (x, a, ε, ) and t( ) = t(x, a, ε, ). Let us first suppose t a ( ) ≥ t( ). We have

λ c x (t( ) + k ) λ c a (τ a ( )) λ c x u (τ ( )) λ c x (t( )) = λ c x u (τ ( )) λ c a (τ ( )) × λ c x t ( ) (k ) × 1 λ c x u τ ( ) (τ ( ) -τ ( ))
.

The first factor is ≥ C -1 0 . The second one is ≥ e k χ 3 . The third one is ≥ e -kχ 4 . Hence by our choice of k ,

λ c x (t( ) + k ) λ c a (τ a ( )) ≥ e k χ 3 C 0 e kχ 4 λ c x u (τ ( )) λ c x (t( )) ≥ 1.
This proves that t a ( ) -t( ) ≤ k . Again, a symmetric argument gives t a ( )t( ) ≤ k if t( ) ≥ t a ( ). This ends the proof of the lemma because recall that T 0 = max(k, k ). 9.1.3. Matching of dynamical balls and distortion control. We first define the notion of matched unstable dynamical balls and study their geometric properties. Definition 9.4 (Matched unstable dynamical balls). When (x, x u , y, y u ) is a (C, )-quadrilateral, then we say that J(x u ) = J(x u , ε, ) and J(y u ) = J(y u , ε, ) are (C, )-matched.

We will need the following distortion control for matched unstable dynamical balls.

Proposition 9.5. For ε small enough, there exists κ 3 = κ 3 (f, ε) such that if is sufficiently large, for every (C, )-matched dynamical balls J(x u ) and J(y u ), and every a ∈ J(x u ), b ∈ J(y u ), we have

κ -1 3 ≤ λ * b (j) λ * a (j) ≤ κ 3 ,
for every integer 0 ≤ j ≤ max(τ (x, x u , ε, ), τ (y, y u , ε, )) and * = c, u.

Proof. Let us assume that τ ( ) ≤ τ ( ), where τ ( ) = τ (x, x u , ε, ) and τ ( ) = τ (y, y u , ε, ). Let us first notice that by Lemma 8.4, we have τ ≤ τ + T 0 . Let j ≤ τ ( ) so in particular

|f j (J(x u ))|, |f j (J(y u ))| < 1.
Let z u = H s x,y (x u ) so d(x u , z u ) < 1, for large enough, and, by Corollary 8.3,

d(f j (y u ), f j (z u )) ≤ d(f τ (y u ), f τ (z u )) C,T 0 ε < 1. Let φ * def.
= log Df | E * and c * , θ * be the Hölder constant and exponent of φ * , for * = c, u. We have

log λ * b (j) λ * a (j) ≤ j-1 i=0 |φ * (f i (a)) -φ * (f i (b))|.
Hence,

|φ * (f i (a)) -φ * (f i (b))| ≤ |φ * (f i (a)) -φ * (f i (x u ))| + |φ * (f i (x u )) -φ * (f i (z u ))| + |φ * (f i (z u )) -φ * (f i (y u ))| + |φ * (f i (y u )) -φ * (f i (b))|, Note that for i < j, d(f i (a), f i (x u )), d(f i (b), f i (y u )) ≤ e χ u 1 (i-j) . On the other hand, we have d(f i (x u ), f i (z u )) ≤ e iχ s 2 . Finally d(f i (z u ), f i (y u )) ≤ e χ c 1 (i-j) . It follows that |φ * (f i (a)) -φ * (f i (b))| ≤ c * 2e θ * χ u 1 (i-j) + e iθ * χ s 2 + e θ * χ c 1 (i-j) .
By summing over i we deduced that log λ * b (j) λ * a (j) is uniformly bounded from above by a constant depending only on f and ρ. Of course we can now bound these quotients for j up to τ ( ) by using that

d -T 0 0 λ * b (j) λ * a (j) ≤ λ * b (j + T 0 ) λ * a (j + T 0 ) ≤ d T 0 0 λ * b (j) λ * a (j)
, where d 0 = Df /m(Df ) (recall §2.1.2).

Corollary 9.6. There exists κ 4 = κ 4 (f, ε) such that if is sufficiently large, for every (C, ) matched dynamical balls J(x u ) and J(y u ),

κ -1 4 ≤ |f j (J(y u ))| |f j (J(x u ))| ≤ κ 4 ,
for every integer 0 ≤ j ≤ max(τ (x, x u , ε, ), τ (y, y u , ε, )).

Proof. As before we denote τ ( ) = τ (x, x u , ε, ) and τ ( ) = τ (y, y u , ε, ). Suppose τ ( ) ≤ τ ( ) ≤ τ ( ) + T 0 (where T 0 is defined by Lemma 8.4. In particular m(Df ) T 0 ≤ |f τ ( ) (J(y u ))| ≤ 1 and |f τ ( ) (J(x u ))| = 1, for every j ≤ τ ( ). For j ∈ {0, . . . , τ ( )}, we notice that

|f j (J(x u ))| |f j (J(y u ))| = f τ ( ) (J(x u )) λ u q (k)dq f τ ( ) (J(y u )) λ u q (k)dq
,

where k = j -τ ( ) ≤ 0. By the bounded distortion along the strong unstable manifolds ( 6) we find

C -2 0 λ u f τ ( ) (x u ) (k) λ u f τ ( ) (y u ) (k) |f τ ( ) (J(x u ))| |f τ ( ) (J(y u ))| ≤ |f j (J(x u ))| |f j (J(y u ))| ≤ C 2 0 λ u f τ ( ) (x u ) (k) λ u f τ ( ) (y u ) (k) |f τ ( ) (J(x u ))| |f τ ( ) (J(y u ))| .
Notice that

λ u f τ ( ) (x u ) (k) = λ u x u (-k) λ u x u (τ ( ))
, and a similar equation holds with y u instead of x u . Therefore, we can apply Proposition 9.5 to obtain

C -2 0 κ -2 3 ≤ |f j (J(x u ))| |f j (J(y u ))| ≤ C 2 0 Df T 0 (κ 3 ) 2 .
We conclude the proof of the lemma by noting that 

m(Df ) 2T 0 |f j (J(x u ))| |f j (J(y u ))| ≤ |f j+T 0 (J(x u ))| |f j+T 0 (J(y u ))| ≤ Df 2T 0 |f j (J(x u ))| |f j (J(y u ))| .
W u 1 (y) W u 1 (x) J(y u ) • b J(x u ) s • x u • z u • y u • a s • x • y W c (y u )
Figure 13. For matched Y -configurations we can only put inside the Lusin set "small perturbations" a and b of the endpoints x y and y u (respectively) of the quadrilateral. Lemma 9.9. Let K 0 ⊂ L be a compact set of measure µ(K 0 ) > 1 -δ. There exist constants C = C(δ) and T = T (δ) and an infinite subset D ⊂ N such that for every ∈ D there exists a pair (X, Y ) of (K 0 , C, T )-matched Y -configurations of length .

The end of the section is devoted to proving that Lemma 9.9 implies Proposition 7.4. The proof of Lemma 9.9 will be the object of Section 10. 9.3. Asymptotic control of leaf-wise measures for matched configurations. The goal of this paragraph is to study how leaf-wise quotient measures change along a pair of matched Y -configurations, and what happens when we have sequences of longer and longer pairs. To simplify the exposition, we shall break this explanation in two parts. First we deal with a single Y -configuration, and then we treat the full situation. 9.3.1. Control along a Y -configuration. The lemma below is essentially an easy corollary of Lemmas 6.17 and 6.19. Lemma 9.10. For x ∈ T 3 , x u ∈ W u c (x), for some c > 0, ε > 0, and ∈ N as above, it holds

νc f τ ( ) (x u ) ∝ (A x,x u , ) * νc f t( ) (x) , for the linear map A x,x u , : s → a x,x u , • s, with a x,x u , def. = Jac(H u x,x u ) λ c x (t( )) λ c x u (τ ( ))
.

Moreover, |a x,x u , | ∈ (a -1 0 , a 0 ) for some constant a 0 = a 0 (c) > 1 depending only on the upper bound c > 0 on the distance along W u between x and x u ; in particular, the linear map A x,x u , is uniformly bounded away from 0 and ∞, independently of .

Proof. Applying Lemma 6.17 and Lemma 6.19 we successively obtain:

νc f τ ( ) (x u ) ∝ (Λ c τ ( ),x u ) * νc x u ∝ (L x,x u • Λ c τ ( ),x u ) * νc x ∝ (L x,x u • Λ c τ ( ),x u • (Λ c t( ),x ) -1 ) * νc f t( ) (x) ,
Then, denoting I = [-1, 1] we have that, by our choice of normalization (see Remark 6.12) νc f τn (an) (I) = 1 and therefore

C n = 1 νc f tn (xn) (B -1 n (I)) ∈ [c -1 , c],
for f tn (x n ) ∈ L for each n. A similar argument treats the constants Cn . Therefore up to enlarging M , we can assume that

C n , Cn ∈ [M -1 , M ].
The condition of matching implies that y n ∈ W s (x n ) for every n and that d(x n , y n ) is uniformly bounded. Now recall that f tn (x n ), f tn (y n ) belong to the Lusin set L where quotient measures {ν c z } z vary continuously. We deduce

d(ν c f tn (xn) , νc f tn (yn) ) → 0, as n → +∞, (42) 
for some distance d on the space of Borel measures. With Lemma 9.11 at hand we are now in position to reduce the proof of Theorem 5.8 to the proof of Lemma 9.9. 9.4. Proof that Lemma 9.9 =⇒ Proposition 7.4. Let K 00 be a compact set with µ(K 00 ) > 1-2δ 0 . We apply Lemma 9.9 to the compact set K 0 = K 00 ∩L which has measure µ(K 0 ) > 1-3δ 0 = 1-δ. So let C = C(δ) > 0, T 0 = T 0 (δ) > 0, K 0 = K 00 ∩ L, and D be the objects given by Lemma 9.9.

As the set D is infinite, there exists a sequence n → +∞ of integers belonging to D. For each such integer, let X n = (x n , x u n , n ) and Y n = (y n , y u n , n ) be the pair of (K 0 , C, T )-matched Y -configurations given by Lemma 9.9. We let a n , b n , τ n , t n be the points and times corresponding to the pair (X n , Y n ) (see Definition 9.7). By definition, we have f τn (a n ), f τn (b n ) ∈ K 0 . We also consider the sequences f τn (x u n ), f τn (y u n ). Upon extracting subsequences if necessary, we may assume that these four sequences converge respectively to points a ∞ , b ∞ , p and q. Observe that a ∞ , b ∞ ∈ K 0 , but we do not know if the same holds for p and q. However, we have good estimates for the distance between these points (see Figure 14). Indeed, by Lemma 9.11 there exists γ = γ(C, T ) > 1 and

M = M (C, T ) such that ε γ ≤ |H c p (q)| ≤ γε, ( 43 
) and νc a∞ ∝ B * νc b∞ . ( 44 
)
where B(s) = β • s, satisfies 1 M < |β| < M . We shall prove that these conditions ensure that b ∞ ∈ G(ε, M ), for some constant M to be defined later. This will show Proposition 7.4. Notice that by construction the four points a ∞ , b ∞ , p and q belong to the same center unstable leaf. Let us consider the local strong

W u 1 (x) W u 1 (y) • b J(y u ) J(x u ) s • x u • z u • y u • a s • x • y s • a τ • y u τ • b τ • z u τ • x u τ f τ f τ (J(x u )) f τ (J(y u )) f t f t s • • x t y t ε W cu (z u τ )
Figure 14. For each n we have a picture like this one (we have suppressed the dependence on n for simplicity). The top-left part will converge to Figure 15.

unstable manifolds W u 3 (p) and W u 3 (q). Notice that, also by construction we have

a ∞ ∈ W u 1 (p) and b ∞ ∈ W u 1 (q). An application of Corollary 8.3 yields d c (p, q) ≤ κε. ( 45 
)
Hence we can choose ε small enough so that the intersection point â = W u (q) ∩ W c (a ∞ ) given by Lemmas 2.3 and 2.4 satisfies d u (â, q) < 2. Similarly we can choose b = W u (p) ∩ W c (b ∞ ) so that d u ( b, p) < 2 (see Figure 15). Denote by γ c a∞,â the segment of center manifold joining the points a ∞ and â and similarly consider the segments of center manifolds γ c p,q and γ c b∞, b. By [START_REF] Young | What are SRB measures, and which dynamical systems have them?[END_REF] we have that length(γ c p,q ) = length(Φ c p [0, H c p (q)]) C,γ ε. Note that d u (a ∞ , p) < 2, d u (b ∞ , q) < 2 and d c (p, q) ≤ κε < ρ 0 , where ρ 0 is the constant of Lemma 2.5 (provided ε is choosen small enough). Hence Lemma 2.5 implies that the unstable holonomy maps H u p,a∞ and H u q,b∞ are bilipschitz with constants which depends only on f . Since γ c a∞,â = H u p,a∞ (γ c p,q ) and similarly γ c This section is devoted to the proof of Lemma 9.9. Recall that we reduced our main Theorem to that Lemma. Let us recall what we want to do. We assume that µ(B) = 0, where B = B µ is the Bad set introduced in Definition 5.2. In particular, it follows from the zero-one law (Theorem 4.2) that for µ-a.e. x ∈ T 3 ,

W cu (q) W u 3 (p) W u 3 (q) γ c a∞,â • a ∞ • â γ c b∞, b • b • b ∞ γ c p,q,â ε • p • q < 2 < 2
µ s x {y ∈ ξ s (x) : α s (x, y) = 0} = 0. ( 47 
)
where we recall that α s (x, y) = ∠(DH s x,y (x)E u (x), E u (y)) when y ∈ W s (x). Given a large compact set K 0 we want to find arbitrarily long pairs of matched Y -configurations which are K 0 -good (meaning that their points belong to K 0 ). 10.1. Angle condition and absolute continuity. We start this section by showing how to use the condition µ(B) = 0 to obtain abundance of pairs of points y ∈ W s 1 (x) so that α s (x, y) is uniformly bounded from below. Before carrying on the proof recall that for * = s, u, c, cu, we have fixed measurable partitions ξ * subordinate to W * as well as disintegrations {µ *

x } x relative to ξ * . We fixed a Lusin set L of measure µ(L) > 1 -δ (further assumptions on δ will be given later on) as given in §7.1.2. In particular there exists r 0 > 0 such that for every x ∈ L, W * r 0 (x) ⊂ ξ * (x).

(48) 10.1.1. A Markov type inequality. Our first ingredient will be a simple inequality à la Markov that will be used several times throughout the section.

Lemma 10.1. Let (X, B, µ) be a probability space, and η ∈ (0, 1). Let ψ : X → [0, 1] be a measurable function with ψdµ > 1 -η. Let B def.

= {x ∈ X : ψ(x) > 1 - √ η}. Then, µ(B) > 1 - √ η.
Proof. We have

1 -η < B ψdµ + X\B ψdµ ≤ µ(B) + (1 - √ η)(1 -µ(B)) = 1 - √ η(1 -µ(B)), which gives µ(B) > 1 - √ η.
10.1.2. Bounding from below the angle function. We fix a measurable partition ξ s subordinate to W s and a disintegration {µ s x } x of µ relative to ξ s . Below we use the condition µ(B) = 0: by (47) it means that for µ-a.e. x ∈ T 3 and µ s x -a.e. y ∈ ξ s (x), α s (x, y) > 0.

Until the end of the section we fix r 0 > 0 such that (48) holds for all x ∈ L. We consider a constant η = η(δ) > 0 which goes to 0 with δ. This will be explicitly given later on. Now, given α ≥ 0, we define for µ-a.e. x ∈ T 3 :

A α (x) def. = {y ∈ ξ s (x) : α s (x, y) > α}, A α,η def. = {x ∈ T 3 : µ s x [A α (x)] > 1 -η}. Using that µ(B) = 0 we find µ s x [A 0 (x)] = 1, for µ-almost every x ∈ T 3 . This implies that µ[A 0,η ] = 1. Then, there exists α = α(η) > 0 such that the set B 2 def. = A α,η has measure µ(B 2 ) > 1 -η. Let us define the set B def. = B ∩ B 1 ∩ B 2 , so µ(B ) > 1 -2η - √ η > 1 -2 √ η (provided η < 1/4, so 2η < √ η). Then for any x ∈ B , • µ s x (B ∩ ξ s (x)) > 1 - √ η; • µ s x {y ∈ ξ s (x) : α s (x, y) > α} > 1 -η; Set c = c(η) def.
= min (α(η), r 0 η) ∈ 0, r 0 η . Then, for every x ∈ B , we have

µ s x {y ∈ B ∩ ξ s (x) : α s (x, y) > c} ≥ 1 - √ η -η > 1 -2 √ η > 0.
So we conclude that for every x ∈ B , then there exists y ∈ ξ s (x) such that α s (x, y) > c. This concludes the proof of the lemma.

Recurrence estimates: building long and good Y -configurations.

In this subsection we fix a measurable set K ⊂ T 3 of measure µ(K) > 1 -δ for some small δ > 0. The main result of this paragraph is Proposition 10.6, that builds K-good Y -configurations of length for every integer inside a subset of N of positive density. We start by establishing some preliminary results from ergodic theory. 10.2.1. An elementary quantitative recurrence estimate. For the sake of clarity in the presentation, we introduce the following notion. Definition 10.3. Given γ > 0, n > 0 and B a measurable set, we say that a point

x ∈ T 3 is (γ, n)-recurrent to B if L > n implies that # ∈ [0, L] : f (x) ∈ B > (1 -γ)L.
The following holds for any ergodic system (f, B, µ). Lemma 10.4. For every measurable set B with µ(B) > 1 -γ there exist T = T (γ) and a subset B

• ⊂ B with µ(B • ) > 1 -γ so that any x ∈ B • is (γ, T )- recurrent to B.
Proof. Let B be a measurable set with µ(B) > 1 -γ. We consider the sequence (ϕ n ) n∈N of L 1 functions given by ϕ n (x)

def. = 1 n n-1 k=0 1 B (f k (x))
. By Birkhoff's Theorem, the sequence (ϕ n ) n∈N converges almost surely to the constant function µ(B). Moreover, by Egorov's Theorem, there exists a measurable subset B • ⊂ B of measure µ(B • ) > 1-γ such that the sequence (ϕ n | B • ) n∈N converges uniformly to µ(B). Then, there exists T > 0 such that for any x ∈ B • and n > T , ϕ n (x) > 1 -γ. Such an x is (γ, T )-recurrent to B by definition. 10.2.2. Stopping times and return times to K for pairs (x, x u ). Recall that we fixed a measurable set K ⊂ T 3 with measure µ(K) > 1-δ. Applying Lemma 10.4 to K yields a integer T 1 = T 1 (δ) and a measurable subset K • ⊂ K with measure µ(K • ) > 1 -δ consisting of (δ, T 1 )-recurrent points to K. Up to enlarging T 1 we can assume T 1 > 4T 0 (49) where T 0 is the constant given by the synchronization estimates of Lemmas 8.4 and 9.3.

Given a pair ω = (x, x u ), with x u ∈ ξ u (x) we set

E(ω) def. = { ∈ N : f τ ( ) (x u ) ∈ K and f t( ) (x) ∈ K}. ( 50 
)
The objects T 1 and K • appearing in the next statement are the ones constructed in the previous paragraph.

Lemma 10.5. There exists a constant a > 0 which only depends on the quasi isometric estimates so that for every

L > T 1 , x ∈ K • and x u ∈ ξ u (x) ∩ K • and ω = (x, x u ), # (E(ω) ∩ [0, L]) > (1 -aδ)L.
Proof. Recall that the stopping times satisfy t( ) ≥ 0 as well as the quasiisometric estimate

Θ -1 | -m| -A < |t( ) -t(m)| < Θ| -m| + A,
for some constants Θ > 1 and A > 0 depending only on f . In particular for every L > 0 we have t(L) ∈ [0, L ] where L = ΘL + A. By hypothesis, x ∈ K • so whenever L > T 1 (and thus L > T 1 ), we have

#{k ∈ [0, L ] : f k (x) / ∈ K} ≤ δL .
On the other hand, the quasi-isometric estimate also implies that an integer of [0, L ] has at most 2AΘ preimages by t so we have

#{ ∈ [0, L] : f t( ) (x) / ∈ K} ≤ 2AΘ#{k ∈ [0, L ] : f k (x) / ∈ K} ≤ 2AΘδ(ΘL + A).
This proves that for every L > T 1 , the set E t (x)

def.

= { ∈ N : f t( ) (x) ∈ K} has density > 1 -a 1 δ inside [0, L] for some constant a 1 > 0 depending only on A and Θ. Now, since x u also belongs to K • , the same property also holds for the set E τ (x u ) def.

= { ∈ N : f τ ( ) (x u ) ∈ K}: it has density > 1 -a 2 δ inside [0, L] for a 2 > 0 depending only on the quasi-isometry constants of τ .

Finally we can estimate from below the density of

E(ω) = E(x, x u ) = E τ (x u )∩ E t (x) inside [0, L] using the following inequality #(E(ω) ∩ [0, L]) ≥ #(E τ (x u ) ∩ [0, L]) -#( c E (x) ∩ [0, L]) > (1 -(a 1 + a 2 )δ)L.
This ends the proof of the lemma. 10.2.3. Space of pairs (x, x u ). It will be useful to consider a measurable structure on the space of pairs Ω def.

= {ω = (x, x u ) : x ∈ T 3 and x u ∈ ξ u (x)}.

Note that Ω is contained inside the continuous submanifold of T 3 × T 3 defined as Y = {(x, x u ) : x ∈ T 3 and x u ∈ W u ρ (x)} (ρ being a uniform upper bound of the diamaters of atoms of ξ u ). The topology on Y induced by the product topology of T 3 × T 3 provides it with a Borel σ-algebra. Its restriction to Ω is denoted by A. Let π : Ω → T 3 be the projection on the first coordinate. So we have B ∈ A if and only if its projection π(B) is a measurable subset of T 3 , and B ∩ ({x} × ξ u (x)) is a measurable subset of {x} × ξ u (x). Hence we can define a measure ν on Ω by 

ν(B) def. = π(B) µ u x [B ∩ ({x} × ξ u (x))] dµ(x).

Construction of many long and good

Y -configurations. Assume ∈ E(ω) for ω = (x, x u ) with x, x u ∈ K • . Then (x, x u , x -, f τ ( ) (x u ), f t( ) (x)) is a K- good Y -
ω = (x, x u ) ∈ K • × K • with ∈ E(ω) is ν-large.
More precisely, let us fix a continuous function η : [0, 1] → [0, ∞) vanishing at 0 and write abusively η = η(δ). An explicit construction will be given in the proof of the next proposition. We will assume that δ is small enough so that η < 1. For ∈ N and x ∈ K • let us define

Q u (x) def. = K • ∩ ξ u (x), (51) 
and Q u (x, )

def.

= {x u ∈ ξ u (x) : x u ∈ K • , and ∈ E(x, x u )} ⊂ Q u (x).

(52)

This yields a set of K-good Y -configurations with length . Next we define K( )

def. = {x ∈ K • : µ u x [Q u (x, )] > 1 -η}. ( 53 
)
We want to construct a large set of integers with µ[K( )] is large enough. This is provided by the following statement, inspired by Eskin-Lindestrauss' paper [START_REF] Eskin | Random walks on locally homogeneous spaces[END_REF] and which is essentially a Fubini-like argument. Proof. We apply Lemma 10.2 to A = f -(K( )) which has measure µ(K( )) > 1 -η. Then we can define K ( ) = f (A ) where A is the set provided by that lemma. It is clear that this set satisfies the desired properties (recall that ξ s is decreasing). Hence we may suppose that is large enough so that for every z ∈ I u (x), then J(z) ⊂ ξ u (x) and J(H cs x,y (z)) ⊂ ξ u (y). Let x 1 , . . . , x k ∈ I u (x) ⊂ ξ u (x) and J 1 , . . . , J k ⊂ W u (x) be the dynamical balls defined as J i def.

= J(x i , ε, ) ⊂ ξ u (x). We may assume that the following properties are satisfied (1) for every i ≥ 1 d(x i , x) > c;

(2) I u (x) ⊂ k i=1 J i ; (3) for every z ∈ I u (x), #{i : z ∈ J i } ≤ 2. Set y i def.

= H cs x,y (x i ) ∈ ξ u (x), and J i def.

= J(y i , ε, ) ⊂ ξ u (x). The dynamical balls J i and J i are matched. In particular Corollary 9.6 implies that κ -1

4 |J i | ≤ |J i | ≤ κ 4 |J i |.
Set τ i def.

= τ (x, x i , ε, ), and τ i def.

= τ (y, y i , ε, ), so |τ i -τ i | < T 0 for all i. Lemma 10.9 (Control of overlap). There exists m = m(f ) ∈ N such that for every z ∈ ξ u (y)

#{i : z ∈ J i } ≤ m.

Proof. Let J i 1 , . . . , J im be the dynamical balls in W u (y) that contain z. Note that for every j, |τ i j -τ z | ≤ T 0 < T 1 (see Lemma 9.3). Let We claim that the oscillations inside the set {τ i 1 , . . . , τ im , τ i 1 , . . . , τ im } are less than T 1 . Indeed, by Lemma 8.4, for every j we have that |τ i j -τ i j | < T 0 . Also, by Lemma 9.3 we have |τ i j -τ (y, z, ε, )| < T 0 and thus |τ i j -τ i k | < 2T 0 and |τ i j -τ i k | < 4T 0 . We conclude that for every α ∈ {τ i 1 , . . . , τ im , τ i 1 , . . . , τ im } it holds |α -τ * | < 4T 0 , (56) which proves our claim due to our choice of T 1 in (49)

On the one hand f τ * (z) belongs to the intersection of intervals f τ * (J i ), which have length ≤ 2, so |f τ * (J )| ≤ 4.

With this claim established we can bound from below the length |f τ * (J)|. In fact, because at most two intervals J i can overlap at the same time, we can estimate

f τ * (J) = m j=1 f τ * (J i j ) ≥ 1 2 m i=1 |f τ * (J i j )|.
Now, by definition of the unstable dynamical ball we have |f τ i j (J i j )| = 2 and by (56) |τ * -τ i j | < T 1 for every j = 1, . . . , m. Therefore,

|f τ * (J i j )| ≥ 2 Df -T 1 .
Combining the last two inequalities one deduces that

|f τ * (J)| ≥ m Df -T 1 .
This implies in particular that there exist two points of f τ * (J) that are distant of at least m 2 Df -T 1 . Since such a point is at distance ≤ 1 of some f τ * (x i ) we deduce that there exists j, l such that

d(f τ * (x i j ), f τ * (x i l )) ≥ m 2 Df -T 1 -2.
On the one hand d(f τ * (y i j ), f τ * (y i l ) ≤ 2 (this follows from the definition of τ * and the fact that f τ * (z) ∈ W u 1 (f τ * (y i j )) ∩ W u 1 (f τ * (y i l ))). On the other hand if is large enough and ε small enough we may ask d(f τ * (y i j ), f τ * (x i j )) ≤ ρ 0 (where ρ 0 is the constant of Lemma 2.8). Hence the Hölder regularity of center-stable holonomies provided by Lemma 2.8 yields m 2 Df -T 1 -2 ≤ d(f τ * (x i j ), f τ * (x i l )) ≤ C cs d(f τ * (y i j ), f τ * (y i l )) θ cs ≤ C cs 2 θ cs .

We obtain m ≤ (C cs 2 1+θ cs + 4) Df -T 1 . This upper bound only depends on f , which concludes the proof. 10.3.4. Proof of Proposition 10.8. We are now ready to give a proof of Proposition 10.8 which is a modification of that of [START_REF] Eskin | Invariant and stationary measures for the SL(2, R) action on moduli space[END_REF]Lemma 12.8].

For * = x or y we let

I * def.
= {i ∈ {1, . . . , k} : J i ∩ Q u ( * , ) = ∅} , and J * def. = {1, . . . , k} \ I * .

Let Q def.
= {z ∈ Q u (x, ) : ∀ i, (z ∈ J i ⇒ i ∈ I y )}. It suffices to show that Q ∩ I u (x) = ∅.

Note that (Q u (x, ) ∩ I u (x)) \ Q ⊂ as soon as η < 1 β . Now let a ∈ Q. There exists i such that d(x, x i ) > c, a ∈ J(x i , ε, ) and J(y i , ε, ) ∩ Q u (y, ) = ∅ where y i = H cs x,y (x i ): the proof of the proposition is over. 10.3.5. The synchronization. We are now ready to finish the proof of Lemma 9.9. Let ∈ D such that ≥ L 0 . Let x ∈ K ( ) and y ∈ K( ) ∩ ξ s (x) be given by Lemma 10.7. Let x u ∈ ξ u (x) and y u ∈ ξ u (y) be given by Proposition 10.8: there exist a ∈ J(x u , ε, ) ∩ Q u (x, ) and b ∈ J(x u , ε, ) ∩ Q u (y, ). Lemma 10.10. There exists T > 0 independent of and τ, t > 0 such that (1) |τ -τ (x, x u , ε, )| ≤ T and |t -t(x, x u , ε, )| ≤ T ;

(2) f τ (a), f t (x), f τ (b), f t (y) ∈ K 0 .

It follows from Lemma 10.10 that for ∈ D larger than L 0 , the Yconfigurations X = X(x, x u , ) and Y = Y (y, y u , ) are (K 0 , C, T )-matched. This proves Lemma 9.9. where T 0 = T 0 (δ).

Proposition 10.8 implies that f τ ( ) (a), f t( ) (x), f τ ( ) (b), f t ( ) (y) ∈ K, which means that these points are (δ, T )-recurrent inside the compact set K 0 . Now we might have τ ( ) = τ ( ) or t( ) = t ( ). Assume for example that t( ) < t ( ). Let T = T (δ) > max(T, T 0 ) such that where a only depends on f (it is defined in Lemma 10.5). We defined in Proposition 10.6 a function η(δ) (of the order of δ 1/4 ) that depends only on a and required that

T 0 T < δ
η < min 1 4 , 1 β , 1 β ,
where β is the constant of Lemma 2.19 and β appears in §10.3.4.

Remarks on Gogolev-Kolmogorov-Maimon's perturbations

In [START_REF] Gogolev | A numerical study of Gibbs u-measures for partially hyperbolic diffeomorphisms on T 3[END_REF] the authors consider two families of perturbations of the the linear Anosov diffeomorphism f 0 : T 3 → T 3 induced by the matrix

A =   2 1 0 1 2 1 0 1 1   .
The dissipative family is given We apply Gan-Shi's criterion for joint integrability obtained in [START_REF] Gan | Rigidity of center Lyapunov exponents and su-integrability[END_REF] in order to prove that these two families of perturbations are accessible and hence Theorem A applied to both of them gives the following theorem. Proof. In our context, Gan-Shi's criterion for accessibility is the following. A C 1+α difeomorphism f C 1 -close to f 0 is not accessible if and only if its central Lyapunov exponents at every perdiodic points coincide with those of f 0 .

In order to prove the accessibility of f D,ε and f C,ε it is enough to prove that the central Lyapunov exponent at the fixed point differ from the one of A (which is approximately 1.55). This can be done as follows. The characteristic polynomial of the differential at the fixed point for the dissipative family is

P D,ε (X) = 2 -X + ε 1 0 1 2 -X 1 0 1 1 -X = -X 3 + (5 + ε)X 2 -(6 + 3ε)X + 1 + ε.
The coefficients of P D,ε (X) vary smoothly with ε and when ε = 0, this polynomial has three disctinct roots. So by the implicit function theorem, for small |ε|, P D,ε has three distinct roots λ 1 (ε) < λ 2 (ε) < λ 3 (ε) that depend smoothly on ε and satisfy the relations

       λ 1 λ 2 λ 3 = 1 + ε λ 1 + λ 2 + λ 3 = 5 + ε λ 1 λ 2 + λ 1 λ 3 + λ 2 λ 3 = 6 + 3ε .
We must have λ 2 (0) = 0, which yields the accessibility of f D,ε . Indeed, if λ 2 (0) = 0, then derivating the relations above gives (the functions below are evaluated at 0)

       λ 2 (λ 1 λ 3 + λ 1 λ 3 ) = 1 λ 1 + λ 3 = 1 λ 2 (λ 1 + λ 3 ) + λ 1 λ 3 + λ 1 λ 3 = 3 .
Combining the above one finds λ 2 + 1/λ 2 = 3, which contradicts λ 2 1.55 (so λ 2 + 1/λ 2 2.20).

The same computation works for the conservative family. Indeed, the characteristic polynomial of the differential at the fixed point for this family is

P C,ε (X) = 2 -X + ε 1 0 1 + ε 2 -X 1 0 1 1 -X = -X 3 + (5 + ε)X 2 -(6 + 2ε)X + 1.
So the relations between roots and coefficients give

       λ 1 λ 2 λ 3 = 1 λ 1 + λ 2 + λ 3 = 5 + ε λ 1 λ 2 + λ 1 λ 3 + λ 2 λ 3 = 6 + 2ε
.

The same argument as before provides λ 2 (0) = 0 (the calculations are left to the reader), which yields the accessibility of f C,ε .
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Figure 3 .

 3 Figure 3. Proof of Lemma 2.4: iterating the picture of the left we arrive at a small scale where the picture violates the uniformly positive angle between E c and E u .

  n,x (R × B), for each Borel set B ⊂ I c n,x . For µ-a.e. x ∈ T 3 , νc n,x charges any open neighbourhood of 0; this follows from Corollary 2.16.
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 7 Figure 7. Moving the base point within a central leaf changes the leaf-wise measure by an affine map up to renormalization.

7. 1 . 3 .

 13 The main proposition. Let us fix two numbers δ and δ 0 such that 0 < δ 0 < 1 10 , and δ = 3δ 0 .

9. 2 .Definition 9 . 7 (

 297 Matching of Y -configurations. We now define the notion of matched Y -configurations and show that our drift argument (Proposition 7.4) boils down to constructing arbitrarily long pairs of matched Y -configurations. 9.2.1. Matching. We first give the principal definition. Matched Y -configurations). Let Λ ⊂ T 3 , C > 0, ∈ N. Let X = X(x, x u , ) and Y = Y (y, y u , ) be two Y configurations of length . We say that X and Y are (Λ, C, T )-matched if there exist a, b ∈ T 3 , and τ, t ∈ N such that

Figure 15 .

 15 Figure 15. How to get invariance by an affine map using the exponential drift: we can move the leaf-wise measures from b ∞ to a ∞ with a linear map, and from a ∞ to b with a linear map and from b back to b ∞ with an affine map.

10 .

 10 b∞, b = H u p,a∞ (γ c p,q ) we deduce that length(γ c a∞,â ) C,γ ε and length(γ c b∞, b) C,γ ε Therefore, as ε is small we deduce that b ∈ W c 1 (b ∞ ). Using the uniform bound for the C 1 norm of the normal forms in segments of bounded length we have that H c b∞ ( b) C,γ ε. (46) We apply Lemma 6.19 to get a linear map L : R → R whose derivative satisfies L (0) ∈ [C -1 , C], for a constant C = C(f ) such that νb ∝ L * νa∞ . Therefore, νb ∝ (LB) * νb∞ and the linear map L • B has a derivative bounded by [C -1 M -1 , CM ]. This together with (46) implies that b ∞ ∈ G(ε, M ) for some constant M = M (γ, C, M ), concluding the proof of Proposition 7.4. Construction of matched Y -configurations: end of the proof

Lemma 10 . 2 .

 102 Let B ⊂ L of measure µ(B) > 1 -η. Then there exists a measurable set B ⊂ B as well as a number c = c(η) such that 0 < c ≤ r 0 η and such that the following properties hold: (1) µ(B ) > 1 -2 √ η; and for µ-a.e. x ∈ B there exists y ∈ B ∩ ξ s (x) such that (2) α s (x, y) > c. Proof. Let us consider the set B 1 def. = {x ∈ T 3 : µ s x [B ∩ ξ s (x)] > 1 -√ η}. It follows from Lemma 10.1 that µ(B 1 ) > 1 -√ η.

and Proposition 10 . 6 . 3 . 1 .Lemma 10 . 7 .

 10631107 In particular, by definition, D has density > 1 -η in [0, L] for L large enough and for every ∈ D, µ[K( )] > 1 -η (where η = η(δ) < 1). 10.Constructing the tails. Recall that for x, y ∈ T 3 and ∈ N we let x - and y -denote f -(x) and f -(y) respectively. For every ∈ D, there exists K ( )⊂ K( ) such that µ[K ( )] > 1 -2√ η and for every x ∈ K ( ), there exists y ∈ K( ) ∩ ξ s (x) such that α s (x -, y -) > c(η).

10. 3 . 2 .Proposition 10 . 8 (

 32108 Constructing the quadrilaterals: the matching argument. For x ∈ K ( ), so ξ u (x) is an interval of size r(x), we setI u (x) def. = {z ∈ ξ u (x) : d u (x, z) > c(η), and d u (z, ∂ξ u (x)) > c(η)} . (55)Note that by definition of c(η),|I u (x)| > (1 -4η)|ξ u (x)|. Note furthermore that if y ∈ L is close enough from x then H cs x,y (I u (x)) ⊂ ξ u (y)(we use here that r(y) = |ξ u (y)| is uniformly continuous in L and that center-stable holonomy maps converge uniformly to the identity as x tends to y).Since µ u x is absolutely continuous continuous with respect to the inner Lebesgue length |.| of W u (x), with a uniform bound β on the densities (recall Lemma 2.[START_REF] Gogolev | A numerical study of Gibbs u-measures for partially hyperbolic diffeomorphisms on T 3[END_REF]) it follows that|Q u (x, )| |ξ u (x)| > 1 -βη, Matching argument).There exists L 0 ∈ N such that for every ≥ L 0 and x ∈ K ( ), if y ∈ K( ) ∩ ξ s (x) is given by Lemma 10.7 then there exist x u ∈ ξ u (x) and y u ∈ ξ u (y) such that the following properties hold(1) d W u (x, x u ) > c(η); (2) y u = H cs x,y (x u ); (3) J(x u , ε, ) ∩ Q u (x, ) = ∅ and J(y u , ε, ) ∩ Q u (y, ) = ∅.The next paragraphs are devoted to the proof of this proposition. 10.3.3. Good matching. Let x, y ∈ T 3 be points verifying Lemma 10.7. Note that the lengths of dynamical balls |J(z)| = |J(z, ε, )| tend uniformly to 0 as → ∞.

J

  i j , and τ * def. = min j=1,...m {τ i j , τ i j }.

i∈I x ∩J y Q

 y u (x, ) ∩ J i so (supposing that is large enough so that |ξ u (y)| ≤ 2|ξ u (x)|) |(Q u (x, ) ∩ I u (x)) \ Q| ≤ i∈I x ∩J y |Q u (x, ) ∩ J i | ≤ i∈I x ∩J y |J i | ≤ κ 4 i∈J y |J i | ≤ κ 4 m i∈J y J i ≤ κ 4 m| c (Q u (y, ))| ≤ κ 4 mβη|ξ u (y)| ≤ 2κ 4 mβη|ξ u (x)|.Hence there exists β = β (f ) such that|Q ∩ I u (x)| ≥ |Q u (x, ) ∩ I u (x)| -|(Q u (x, ) ∩ I u (x)) \ Q| ≥ (1 -β η)|ξ u (x)| > 0,

  Proof. Set τ ( ) = τ (x, a, ε, ), t( ) = t(x, a, ε, ), τ ( ) = τ (y, b, ε, ), t ( ) = t(y, b, ε, ). By construction (x, x u , y, y u ) is a (C, )-quadrilateral and a ∈ J(x u ), b ∈ J(y u ).Combining the results of Lemmas 8.4 and 9.3 we obtain|τ ( ) -τ (x, x u , ε, )| < T 0 , |t( ) -t(x, x u , ε, )| < T 0 as well as |τ ( ) -τ (x, x u , ε, )| < 2T 0 , |t ( ) -t(x, x u , ε, )| < 2T 0 ,and consequently |τ ( ) -τ ( )| < 3T 0 , |t ( ) -t( )| < 3T 0 ,

  , ε, )| < T + 2T 0 so T = T + 2T 0 is the desired constant. The same argument can be reproduced to treat a and b and find the number τ . 10.3.6. Postliminary: choice of δ 0 and δ. Let us list the requirements we made on the constant δ 0 and δ = 3δ 0 . We needed to require



  mod(1).The Jacobian at the fixed point of f D,ε is given by Jacf so f D,ε is dissipative: it does not preserve any volume.The conservative family is given by f

Theorem 11 . 1 .

 111 If |ε| > 0 is small enough f D,ε or f C,ε are accessible. Hence any fully supported ergodic u-Gibbs measure for f D,ε or f C,ε is SRB (this is Lebesgue in the conservative case).

  called the center foliation, which integrates E c , and subfoliates both W cs and W cu . For

* ∈ {u, c, s, cu, cs}, let d * be the leaf-wise distance, and for x ∈ T 3 , σ > 0, set W * σ (x)

def.

  are intervals.2.4.4. Superposition property of subordinate partitions. Let M, f, W + be as in the above paragraph 2.4.3. Let ξ be a subordinate partition to W + . Then, for every n ≥ 0, ξ -n

	def.

Corollary 2.16. For

  x ∈ M , {ξ -n (x)} n≥0 contains a basis of open neighbourhoods of x. µ-a.e. x ∈ M , µ x charges every open neighbourhood of x.

Remark 2.17. If

  W -is contracting, and ξ is subordinate to W -, then the analogous statements to Lemma 2.15 and Corollary 2.16 hold for W -, replacing ξ -n with ξ n , for n ≥ 0.

  is absolutely continuous with respect to the Lebesgue measure Leb|[-1,1] , then µ is SRB.Proof. Recall that µ is SRB if and only if, for µ-a.e. x ∈ T 3 and for n ∈ N, µ cu

	n,x
	is absolutely continuous with respect to the normalized Lebesgue measure on
	ξ cu n

hence ρs is constant. Lemma 6.15. If for µ-a.e. x ∈ T 3 , the probability measure νc x | [-1,1]

  Moreover, upon further extraction we can assume that C n , Cn converge to positive numbers C, C ∈ [M -1 , M ] and that the linear maps B n , Bn converge to linear maps whose derivative also lies inside [M -1 , M ]. It follows that νc b∞ , for some linear map B whose derivative lies inside [M -2 , M 2 ]. This completes the proof.

	d(ν c f

τn (an) , C n Cn ( B-1 n B n ) * νc f τn (bn) ) → 0, as n → +∞. Thus, νc a∞ ∝ B *

  , in such a way that [t( ), t ( )] has density < δ inside [t( ), t ( ) + T ]. Since T > T , this implies that

k ∈ [t ( ), t ( ) + T ] :

f k (x) ∈ K 0 has density > 1 -4δ in [t ( ), t ( ) + T ]. On the other hand the set k ∈ [t ( ), t ( ) + T ] : f k (y) ∈ K 0 has density > 1 -δ inside [t ( ), t ( ) + T ]

. Therefore these two sets must intersect (as soon as δ < 1/5) so there exists t ∈ [t ( ), t ( ) + T ] such that

f t (x), f t (y) ∈ K 0 . This integer t satisfies |t -t(x, x u , ε, )| ≤ |t -t ( )| + |t ( ) -t(x, x u

Uniform convergence of the function and its first derivative on compact sets.

Recall our notation convention for orbit points: pn = f n (p) for n ∈ Z.

where we have the notation Λ c n,x to denote the linear map s → λ c x (n)s. As a consequence, A x,x u , def.

= Λ

x u (τ ( ))

× s.

By the fact that d u (x, x u ) < c, and by the definition of t( ), |A x,x u , (0)| is uniformly bounded, depending only on c and f , but not on , which concludes the proof. 9.3.2. Control for matched configurations. We now deal with the full picture of sequences of pairs of good and matched configurations. For the next result, we refer to §7.1.2 for the definition of the Lusin set L, to §8.3 and to §9.2 for that of quadrilaterals and (C, )-matched Y -configurations respectively. The result of this subsection is the core of the proof that Lemma 9.9 implies Proposition 7.4. Until the end of this section, the notation x n will NOT stand for f n (x) but for the usual notation of sequences. Lemma 9.11. Let ε > 0 ( n ) be an increasing sequence of integers. Suppose there exist constants T, C > 0 (independent of ε), and two sequences

a n , b n be the objects given by the condition of matching and consider the sequences

Assume all these sequences converge to points a ∞ , b ∞ , p and q respectively. Then q ∈ W c (p) and there exists

where B(s) = β • s, is a linear map that satisfies 1 M < |β| < M . Proof. Note first that τ n and t n tend to infinity: indeed, this is a consequence of the matching condition and of the fact that n → ∞ so the stopping times also tend to infinity (by Lemma 8.1). Now suppose the sequences

, as n → +∞. Thus [START_REF] Hertz | Partially hyperbolic dynamics[END_REF] follows directly from Lemma 8.2 and Remark 9.8. Let us show [START_REF] Hertz | Accessibility and stable ergodicity for partially hyperbolic diffeomorphisms with 1D-center bundle[END_REF].

For this we use the matching condition: for all n, the points Proposition 10.6 (see Claim 6.4 in Eskin-Lindenstrauss [START_REF] Eskin | Random walks on locally homogeneous spaces[END_REF]). Set

Then for every L > T 1 we have

Proof. We start the proof by considering the set

so that after applying Lemma 10.1 with ψ :

for some δ = δ (δ) > 0 tending to zero with δ. Now let L > T 1 and consider the space (I L , m), for the set

= [0, L] ∩ N endowed with the counting measure that we denote by m. Let F ⊂ Ω × I L be the set of pairs (ω, ) such that ∈ E(ω). It follows from Lemma 10.5 that for

for some δ = δ (δ) that tends to zero with δ.

On the other hand set B(

It follows from Lemma 10.1 that the set of integers D L def.

= { ∈ I

hence, another application of Lemma 10.1 yields µ{x ∈ K

√ δ is the function we were looking for. Now since by definition {x ∈ K

where D is the set defined in (54). We deduce that #(D ∩ [0, L]) > (1 -η)L as claimed. 10.3. Construction of matched Y -configurations. We are now ready to finish the proof of Lemma 9.9, and thus that of our main Theorem. We will build arbitrarily long pairs of good and matched Y -configurations.

Let K 0 be a compact set included inside the Lusin set L defined in §7.1.2 of measure µ(K 0 ) > 1 -δ.

We consider the measurable set K = (K 0 ) • , so points of K are (δ, T )-recurrent in K 0 for some T = T (δ), and µ(K) > 1 -δ.

We apply the results of §10.2.1 to K. They yield a set D ⊂ N as defined in (53)