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Abstract
Objective. The aim of this paper is to present a novel method for simultaneous spike waveforms
extraction and sorting from the raw recorded signal. The objective is twofold: on the one hand, to
enhance spike sorting performance by extracting the spike waveforms of each spike and, on the
other hand, to improve the analysis of the multi-scale relationships between spikes and local field
potentials (LFP) by offering an accurate separation of these two components constitutive of the
raw micro recordings. Approach. The method, based on a Bayesian approach, is fully automated
and provides a mean spike shape for each cluster, but also an estimate for each singular spike
waveform, as well as the LFP signal cleaned of spiking activity.Main results. The performance of
the algorithm is evaluated on simulated and real data, for which both the clustering and spike
removal aspects are analyzed. Clustering performance significantly increases when compared to
state-of-the-art methods, taking benefit from the separation of the spikes from the LFP handled by
our model. Our method also performs better in removing the spikes from the LFP when compared
to previously proposed methodologies, especially in the high frequency bands. The method is
finally applied on real data (ClinicalTrials.gov Identifier: NCT02877576) and confirm the results
obtained on benchmark signals. Significance. By separating more efficiently the spikes from the LFP
background, our method allows both a better spike sorting and a more accurate estimate of the
LFP, facilitating further analysis such as spike-LFP relationships.

1. Introduction

Extra-cellular micro-recordings provide unique
opportunity to study the neuronal responses to sens-
orymotor or cognitive process at the level of the
neuronal cell. While the analysis of spikes alone is
a fruitful field of investigation for analyzing the func-
tion of neuronal circuits [6, 35], the joint analysis
of the local field potentials (LFP) provides comple-
mentary information and has recently gained more
interest [8, 14]. In particular, studying the relation-
ships between spikes andLFPoriginating froma given
neuronal population or from distant ones brings key
information about the mechanism of cortical net-
works involved in motor and sensory processing [26,
40], or higher level processes such as memory [24].
The number and nature of the responding neurons
to a given paradigm, and the comprehension of the

relation between the spiking activities and the LFP
are expected to hold precious clues for understand-
ing neural information processing. The objectives
are then twofold: separating the LFP from the spik-
ing activities and automatically classifying the spikes
to identify single unit activities, without human
intervention.

The spikes originating from a given neuron can be
seen on micro-electrodes placed within a distance of
roughly 50–100µm [25]. The temporal shape of the
recorded waveforms depends on the type of neuron
(e.g. inhibitory vs excitatory), on its morphology, as
well as on the position (i.e. its distance as well as
its orientation) of the neuron with respect to the
electrode. It is then possible to distinguish between
the spikes of different neurons recorded by the same
electrode, giving rise to an active field of research
for the development of spike sorting methods [5, 37].
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To separate the spike waveforms from the LFP and
extract the features needed for the classification task,
standard approaches first apply a band-pass filter
(generally in the 300–3000Hz band): the activity
below 300Hz is generally assumed to stand mainly
for the LFP (i.e. the activity of the neural population
surrounding the electrode within a distance range of
up to several millimeters given the spatial extent of
the surrounding correlated synaptic activities [25]),
while the higher frequency bands are considered to
hold the main part of the spiking activities. The time
instant of the spikes are identified by thresholding
the band-passed signal. Discriminant features such
as morphological parameters [23] or wavelet coeffi-
cients [18, 30, 34] are extracted from the detected
spike shapes, considering about 1.5–3ms time win-
dow around the maximum peak of the spike shape.
A clustering method is then applied on these features
to identify the units from which the spikes origin-
ate. Clustering approaches based on mixture mod-
els [17, 23, 38, 42] or superparamagnetic cluster-
ing (SPC) [10, 27, 34] have been considered. Several
recent research efforts have addressed the spike sort-
ing challenge in the context of high dimensional data
(arrays of electrodes) [12, 16, 21, 31, 38, 47], however
we focus in this paper on the mono-channel issue, as
we target the processing of signals recorded using Ad-
Tech Behnke-Fried micro-electrodes setup [15], for
which the distance between the micro-wires cannot
be controlled and can reach up to several millimeters,
thus disqualifying methods based on a multichannel
strategy.

The LFP and the spiking activities overlap in fre-
quency, and some significant features of the spikes
helpful for the classification process may lie in the low
frequency range under 300Hz [50]. Classical stand-
ard (non-causal band-pass) filters are commonly con-
sidered to extract the spike waveforms, but such
approach cannot differentiate well between the com-
ponents of the spikes and those of the LFP signal
respectively [14, 49], and are known to corrupt the
spike shapes [33]. For these reasons it is preferable
to first separate properly the LFP and the spiking
activity before proceeding to the classification of the
spikes. On the other hand, the spike activities are
likely to contaminate the underlying LFP activity of
interest [7]. This can be for example the case in higher
frequency (gamma) band, where broadband event-
related gamma responses over 60Hz, and extend-
ing up to 200Hz [41], have been observed in vari-
ous functional brain systems [29, 45]. Their origins,
and in particular in which proportion the spiking
activity itself generates these activities, is still a sub-
ject of debate [39]. All components due to spikes
then need to be removed appropriately before ana-
lyzing such activities [1, 41, 49]. Alternatives to the
simple low-pass filtering strategy are necessary to sep-
arate the LFP from the spikes, which can be formu-
lated as an underdetermined inverse problem where

two major contributive activities must be demixed
from a single measured signal. To the best of our
knowledge only two efforts can be cited: Zanos
et al [49] have proposed a Bayesian approach to
remove the spike from the LFP after the spike clas-
sification step, based on a colored Gaussian prior
over the distribution of the LFP. The waveform of
the spikes for each unit are reestimated in the pro-
cess, under the assumption that this waveform is fixed
for each event. The second method, called Adaptat-
ive Spike-Artifact Removal (ASR), has been recently
proposed by Bouroujeni et al [3], in which the fre-
quency components of each individual spikes are first
identified before being removed from the wideband
signal.

In this work we address the problem by propos-
ing an iterative Bayesian approach to separate the LFP
from the spiking activities as well as classifying the
spikes simultaneously. As in Zanos et al [49], we use
a prior on the power spectral density of the LFP to
proceed to its separation from the spikes. We rely on
a classical spike detection step in the higher frequency
band (between 300 and 3000Hz) to identify the spike
instant, and we then process the rough unfiltered data
to proceed to the separation and to the classifica-
tion in an iterative manner. A first version of this
method working in the time domain has been pub-
lished in conference [20], in which only the classific-
ation performance of the algorithm were presented.
The method is here developed in the wavelet domain,
providing highly discriminant features of the spike
waveforms originating from distinct units and fur-
ther enhancing the classification results. The wavelet
coefficients are modeled as mixture of Gaussians, and
a maximum a posteriori (MAP) decision strategy is
used for the classification task.

The approach is evaluated based on a realistic set
of single-channel simulated data available online [9],
and we compare the performance with fully auto-
matic state-of-the-art methods that are relevant in
this context of mono-channel recordings, as detailed
in the dedicated result section 3.2.1. We also illustrate
and compare the performance of the method on real
data recorded during frequency tagging or fast peri-
odic visual stimulation (FPVS) [19, 28]. The quality
of the spike decontamination from the LFP at least
reproduce or even exceed the performance reported
in [49], especially in high frequency bands.

2. Methods

2.1. Generative model
In this section we present the general Bayesian form-
alization of the problem. Let suppose that the recor-
ded channel y of length T can be decomposed as the
addition of the LFP x and the spiking signal S, up to ϵ
modelling the additive noise:

y= x+ S+ ϵ. (1)
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Figure 1. Illustration of wavelet vector notations and support restriction operatorΩnw (.) for two detected spikes s1 and s2 with
length Ts in the raw signal y of length T. The wavelet coefficients for these two spikes are stored in the T-length wavelet vector Sw ,
here illustrated for a two level dyadic wavelet decomposition. All blank areas in this vector are zeros, the non-zero values are those
related to the two spikes in each wavelet band (colored areas). The coefficients respective to each spike are gathered in a Ts-length
vector using the operatorΩnw (.).

The spiking signal S can be written as a sum of N
spike waveforms with a time support Ts of few mil-
liseconds (typically 1–3ms), or alternatively as a sum
of N=

∑K
k=1Nk waveforms originating from K dif-

ferent units (neurons):

S=
N∑

n=1

sn =
K∑

k=1

Nk∑
n=1

skn. (2)

The problem can be indifferently considered in
the wavelet domain:

yw = xw + Sw + ϵw (3)

with yw,xw,Sw, ϵw vectors of concatenated wavelet
coefficients with length T, considering any L level
dyadic wavelet decomposition of y,x,S and ϵ respect-
ively. Sw contains the wavelet coefficients snw related
to the decompositions of the N spike waveforms sn,
such that snw are vectors with size Ts. We introduce
the operator Ωnw(.) restricting any wavelet vector of
length T to the Ts-length wavelet support of the nth
spike, such as Ωnw(Sw) = snw (see figure 1).

The waveforms skn (and thus the wavelet coeffi-
cients sknw) originating from a given neuron (class)
are not imposed to be equal, variations are expected
accounting for the uncertainties inherent to such bio-
logical process (e.g. exhaustion effect) and measure-
ments setup (movement of the tissues as well as drift
of the electrodes [5, 27]). We model these uncertain-
ties by use of a Gaussian model over the distribution
of the wavelet coefficients sknw for each class. Let intro-
duce the hidden variable Z, taking its values in the set
{λ1, . . . ,λK}, λk being the class of spike waveforms
originating from the kth neuron. The waveforms snw
then follow a Gaussian mixture model (GMM):

p(snw) =
K∑

k=1

πkp(snw |zn = λk)

p(snw |zn = λk) =N (snw |skw,Σk
w)

with πk = p(z= λk) the priors on Z, and {skw,Σk
w} the

mean and covariance of the wavelet distributions for
the class λk.

Such as in [49], x follows a Gaussian distribution
N (0,γΣx), with γ a scaling parameter. This can be
transposed in the wavelet domain, where xw follows a
Gaussian distributionN (0,γΣxw).

3 Finally, the noise
ϵ (or equivalently ϵw in the wavelet domain) follows a
i.i.d Gaussian distribution with zero mean and vari-
ance σ2

ϵ . The method will adjust between γ (account-
ing for the power of the LFP) and σ2

ϵ (accounting for
the noise power). The likelihood of the observations
yw finally writes:

p(yw|xw,Sw) =
1

(2π)T/2σT
ϵ

exp

(
− 1
2σ2

ϵ

∥yw − xw − Sw∥22
)
(4)

and the log-likelihood L of the full model is
given by:

L= log p(yw,xw,Sw,Z)

= log p(yw|xw,Sw)+ log p(xw)+ log p(Sw|Z)
+ log p(Z). (5)

The generative model is given on figure 2.
The optimization of the model parameters
Θ= {γ,{skw,Σk

w}Kk=1,σ
2
ϵ} is carried out through a

variational Bayesian (VB) procedure detailed in the
next section.

3 Let W be the wavelet decomposition matrix, then Σxw =
WTΣxW.

3
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Figure 2. Bayesian graphical model corresponding to the generative model described in section 2.1. In blue circles are the latent
variables of the model for which posterior estimates are provided, in green circles the parameters of the model optimized based
on a variational Bayesian procedure described section 2.2, in white circle the covariance matrix of the LFP wavelet decomposition
(up to the scaling parameter γ) estimated at initialization and kept fixed during the optimization. In grey circle is the vector of
observation yw .

2.2. Optimization
A VB approach is used to optimize the model
(maximization of the marginal log-likelihood
of equation (5)). The VB approach con-
sists in introducing the probability density
q(xw,Sw,Z) = q(xw)

∏N
n=1 q(snw)q(zn), which is

optimized to approximate the true posterior dens-
ity p(xw,Sw,Z|yw). The first step of the optimization,
which can be assimilated to the E-step of the clas-
sical expectation-maximization (EM) algorithm, is
the updates of each of the (2N+ 1) q(.) factors con-
stitutive of this approximate posterior probability: a
given factor q(.) is updated as the expectation of the
full model log-likelihood L with respect to the 2N
remaining q(.) factors [2]. The densities q(xw) and
q(snw) are identified as multivariate Gaussian distri-
butions, with means x̂w and ŝnw and covariance Σ̂xw

and Σ̂nw respectively:

x̂w = γΣxw(γΣxw +σ2
ϵIT)

−1(yw − Ŝw) (6)

Σ̂xw = σ2
ϵγΣxw(γΣxw +σ2

ϵIT)
−1 (7)

ŝnw = Σ̂nw

(
1

σ2
ϵ

Ωnw(yw − x̂w)+
K∑

k=1

π̂nkΣ
k−1

w skw

)
(8)

Σ̂−1
nw =

1

σ2
ϵ

ITs +
K∑

k=1

π̂nkΣ
k−1

w (9)

with Ŝw a vector containing the N posterior mean
for the wavelet coefficients of the spikes ŝwn at their
respective position in the wavelet decomposition of y,
such that Ωnw(Ŝw) = ŝnw . Hence Ωnw(yw − x̂w) are the
wavelet coefficients of the raw signal yminus those of
the estimated (posteriormean) LFP signal x̂ restricted

to the wavelet support of the nth spike. π̂nk = q(zn =
λk) are the (approximate) posteriors for each label zn.

Defining the quadratic form ∥s∥2Σ = sTΣ−1s, the
factors q(zn) are given by:

π̂nk ∝ πk|Σk−1

w |exp
(
−1
2
∥̂snw − skw∥2Σk

w
− 1

2
Tr[Σ̂nwΣ

k−1

w ]

)
(10)

up to a normalization constant summing these
probabilities to 1. At convergence, a MAP decision
strategy based on these probabilities is used to decide
for the cluster label of each spike waveforms.

As done in [10, 34], leaning on the benefit of
(appropriate) dimensionality reduction for clustering
as well as on the property of wavelet decompositions
to concentrate the energy of the signal over few coeffi-
cients, this clustering part can also be carried out con-
sidering a selection of wavelet coefficients assumed to
facilitate the discrimination between the clusters.

TheM-step provides an update of themodel para-
meters Θ= {γ,{skw,Σk

w}Kk=1,σ
2
ϵ}, by deriving with

respect to each parameter the posterior expectation
of the full model log-likelihood:

γ =
1

T

(
∥x̂w∥2Σxw

+Tr[Σ̂xwΣ
−1
xw ]
)

(11)

σ2
ϵ =

1

T
∥yw − x̂w −

N∑
n=1

ŝwn∥22 +Tr[Σ̂xw ] +
N∑

n=1

Tr[Σ̂nw ]

(12)

skw =

∑N
n=1 π̂nk ŝnw∑N
n=1 π̂nk

(13)

Σk
w =

∑N
n=1 π̂nk

(
∥̂snw − skw∥22 +Σ̂nw

)
∑N

n=1 π̂nk

. (14)

4
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Details for these E-step and M-step update for-
mulas are provided in the appendix A.

2.3. Initialization
2.3.1. Filtering and spike detection
Following [27, 34, 37], the detection of the spikes is
carried out by thresholding the high frequency part
of the signal in the range 300–3000Hz (four-poles
Butterworth band-pass filter). The threshold is com-
puted as amultiple of the background noise standard-
deviation σn within this frequency band. The estim-
ation of this parameter must be as robust as possible
to artifact and detect the relevant spiking activity, and
the following robust estimation is used [13, 34]:

σn =median

(
|x− x̄|
0.6745

)
(15)

with x̄ the mean of the signal x. Every event in the
band-passed signal with absolute amplitudes over a
threshold set as amultiple (usually from 4 to 5) of this
robust σn estimate are considered as spiking events
(events with positive and negative peaks are con-
sidered together in the procedure). Note that we do
not consider overlapping spikes in this work: within
a window of 2ms only the highest peak (in absolute
value) is considered.

2.3.2. LFP covariance matrix
The prior over the wavelet coefficients of the LFP xw
is a Gaussian distribution with zero mean and covari-
ance γΣxw . The matrix Σxw might be estimated dir-
ectly from the wavelet decomposition of the raw sig-
nal y, however this T×T matrix is very large as T can
quickly reach several millions up to billions given the
high frequency sampling of micro-recording data. Its
estimation as well as the computation of the update
equations (6) and (7) in which product of this matrix
is involved becomes infeasible in practice. In [49], a
circulant approximation is proposed for Σx, the cov-
ariancematrix of the LFP x in the time domain, based
on a weak stationarity hypothesis on the LFP signal
x.4 This approximation does not hold for Σxw , which
consists in a block matrix of inner wavelet band cov-
ariance matrix on its diagonal and inter-band covari-
ancematrices elsewhere.We then propose to carry out
the computation of these equations (6) and (7) in the
time domain as follows:

x̂= γΣx(γΣx +σ2
ϵIT)

−1WT−1(yw − Ŝw) (16)

Σ̂x = σ2
ϵγΣx(γΣx +σ2

ϵIT)
−1 (17)

with WT−1(yw − Ŝw) the inverse wavelet transform
(temporal reconstruction) of the raw signal wavelet

4 this approximation introduces side effects in the estimation of the
signal for the few first and last samples, which can be cutted out and
ignored in the end.

coefficients yw free of the (posterior mean of the)
spikes wavelet coefficients. The LFP posterior mean
x̂ is then decomposed back in the wavelet domain, as
needed in equation (8).

To sum up, the spike sorting part of the algorithm
is carried out in the wavelet domain, while the LFP
estimation is done in the time domain (note that
equations (11) and (12) can be invariably handled in
both time and wavelet domain). This gives the mod-
ified generative Bayesian graphical model of figure 3
which is used in practice.

Σx is built by circulation of the power spectral
density (PSD) g of the LFP x on its lines. g is estim-
ated at the initialization of the algorithm and kept
fixed, while the scaling factor γ is estimated at each
iteration by the algorithm (see equation (11)) and
balance the respective contributions of the LFP and
the background noise to the observed signal y. We
recall in the appendix B how the circulant property
of Σx along with the Fast Fourier Transform (FFT)
algorithm allow fast computations of such huge mat-
rix product.

The PSD of the LFP is estimated from the raw
signal y, which necessarily implies bias due to the
presence of noise and spiking activities superimposed
with the LFP in y. Zanos et al [49] propose to fit the
exponential function−exp(1+ log(x)) to the PSD of
the raw signal y in the range 1–150Hz and to extra-
polate the value of the PSD in the higher frequency
range.We adopt this approach in this paper. Alternat-
ivemethods such as autoregressivemodels could have
been considered such as in [20], but it did not reveal
to significantly change the final results.

2.3.3. Number of clusters
The number of classes (spike clusters)K is also a para-
meter to be estimated in such unsupervised classifica-
tion algorithm. The proposed approach based on VB
optimization has to be informed with the number of
classes to be estimated, we then propose a statistical
procedure to overcome this problem and fully auto-
matize themethod: a range of values forK is explored
around a putative number of class Kinit given by any
standard clustering algorithm. For each K value in
this range, a Bayesian information criterion (BIC) [2]
is computed by considering the marginal joint log-
likelihood of (̂swn ,Z):

BICVB(K) =
N∑

n=1

log

(
K∑

k=1

p(̂swn |zn = λk)πk

)
− 0.5

∗ (K ∗ L− 1) ∗ log(N ∗Ts) (18)

with L= K(1+Ts +Ts(Ts − 1)/2)− 1 the number
of continuously valued real numbers required to spe-
cify the K cluster parameters {πk, skw,Σ

k
w}k∈[1..K]. The

classification result for K yielding the maximum BIC
value is chosen as the final solution, thus also provid-
ing an estimate of the number of classes.

5
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Figure 3. Bayesian graphical model corresponding to the effectively used generative model: in practice only the spike posterior
estimation and the spike sorting is done in the wavelet domain, the LFP estimation is done in the time domain, as described
in 2.3.2.

3. Results

3.1. Spectral content of LFP and spike waveforms
Before addressing the evaluation of the proposed
method, we briefly analyze the spectral content of
a typical spike waveform, which is the basis for the
justification of our approach and for the motivation
of spike removal in general [48, 49]. Spikes are fast
and transient activities with duration of about 2–
3ms,with high positive or negative peakswhose amp-
litudes and shapes in the signal depend on the pos-
ition of the recording site with respect to the spik-
ing neuron. It is widely accepted that the main spec-
tral features of the spikes lie in high frequency band,
roughly over 300Hz, while the LFP part of the sig-
nal is below this value, as illustrated in figure 4, left
column. Spectrum overlap can still however be seen
between these components (figure 4, bottom left).

When low-pass filtering both the spike and the
LFP below 150Hz, the residual power of the spike is
indeedmuch lower than the residual power of the LFP
(middle column), but not negligible. Keeping inmind
that the coherent activity between the LFP and the
spike (coherent synaptic activity synchronized with
the spikes, usually estimated by spike trigger aver-
aging) is also of much lower amplitude compared to
the LFP, such analysis are likely to be severely corrup-
ted by spike residuals. This suggests that a simple low-
pass filtering might not be sufficient to separate the
LFP from the spikes, thus biasing ulterior relationship
analysis.

Common spike sorting methods estimate the
spikewaveforms to be classified by cutting out a band-
pass filtered version of the raw signal over each spike
time support. On figure 4 band-pass filtered versions
of the LFP epochs and of the spike waveform are
given, where the residual amplitude of the LFP with
respect to this of the spike is still noticeable. One can

also notice the effect of the filtering on the shape of
the spike, especially on both sides of the central peak,
where the shape ismodified and side bumps are intro-
duced. Both the addition of LFP high frequency com-
ponents residuals and the filtering effect can mislead
the classification,motivating amethodology based on
an estimation of the actual spike shapes.

3.2. Simulated data
First, in section 3.2.1 the spike-sorting performances
are tested on the synthetic data set of Camuñas-Mesa
andQuiroga [9], which has been recently used by sev-
eral authors for evaluating their spike sorting meth-
ods [11, 27, 32].

We then evaluate in section 3.2.2 the ability of the
method to accurately remove the spikes from the LFP,
based on surrogate signals.

3.2.1. Spike sorting
We evaluate the spike sorting performance of our
algorithm on the data set from Camuñas-Mesa and
Quiroga [9], which provide realistic simulation of
micro recordings containing single units (close neur-
ons) as well as multi units originating from more
distant neurons. In these simulations, the presence
of 2 up to 20 units are simulated to challenge
the algorithms. For each number of unit 5 signals
of 10min length each (24Khz sampling rate) are
available (https://www135.lamp.le.ac.uk/hgr3/). This
provides a common ground-truth for comparison.
This data base has been considered in several recent
studies for evaluating spike sorting approaches [11,
27, 32]. The method is evaluated using the same cri-
teria used in these references: a cluster is counted as a
hit if it contains more than 50% of a given simulated
single unit, and if at least 50% of the spikes originat-
ing from this unit are classified in this cluster. Based
on this criterion, if a cluster does not match any unit

6
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Figure 4. Spike waveform spectral characteristics. (top left) Representative extracellularly recorded spike waveform superimposed
with several spike-free LFP epochs (grey curves). The spike is about 4 times the robust standard deviation of the high-pass filtered
LFP. (bottom left) Power spectrum of this waveform superimposed with the power spectrum of the LFP (grey), (top middle)
low-pass filtered versions of the spike waveform and of the LFP epochs (4th order Butterworth with 150Hz cut-off frequency),
(bottom middle) power spectrum of these low-pass filtered versions. (top right) High-pass filtered versions of the spike waveform
and of the LFP epochs (4th order Butterworth with 300Hz cut-off frequency), (bottom right) power spectrum of these high-pass
filtered versions. Red lines in the spectral representations materialize the 300Hz frequency value.

and is not formed of at least 50% ofmulti-unit spikes,
it is counted as a false positive.

We compare our algorithm, which we will refer
to as VBDS in the following (variational Bayesian
despiking and sorting method), with four recent
algorithms of the literature: Klusta [38], Com-
binato [27], Waveclus in its automatic version [10]
and Mountainsort4 [12]. We run the four selected
methods through Spikeinterface [4], a freely available
platform including several recent spike sorters as well
as various tools for spike sorting evaluation and com-
parison. All of these four methods consider the classi-
fication of the spikewaveforms extracted from the sig-
nal after band-pass filtering. For this simulated data
set, a fourth-order filter in the band [300–3000]Hz
has been considered [10]. Klusta is based on a GMM
of features obtained through PCA of the high-passed
and re-aligned spike waveforms, and use a ‘Masked
EM’ strategy for the optimization/classification task.
After several tests of themethod on the simulated data
set, we found out that the parameters used in [10]
were indeed the most appropriate, i.e. 10 principal
components, with a spike support from −24ms to
40ms around the maximum instant of the spikes.
Both Combinato [27] and the new implementation
of Waveclus [10] are based on SPC, a methodology
which suffers from the high number of parameters to
be tuned in its original version [34]. Combinato [27]
as well as the new version of Waveclus [10] proposes
semi automatic (for the former) to fully automatic
(for the latter) spike sorting algorithm, and convin-
cing sorting performance have been reported by the

authors when applied on this particular data set of
Camunas et al. For Combinato, we have retained the
default set of parameters as described in the ori-
ginal paper [27], except for the maximum number of
clusters at one temperature that we set to 7, the min-
imumnumber of spikes in a cluster set to 50, themin-
imum cluster size for iterative clustering set to 1000,
and the number of clustering iterations set to 2. The
new version of WaveClus (simply referred as Wave-
Clus in the following) being automatic, no parameter
had to be fixed before launching the algorithm (apart
of the detection threshold, see below). Finally, we
also consider the Mountainsort algorithm of Chung
et al [12], an efficient and fully automatic spike sorter
which is originally dedicated to perform spike sorting
in the context of densemicroelectrode recordings, but
which can also be applied on single channel record-
ing. The method is based on a clustering approach
called ISO-SPLIT, which identifies unimodal distri-
butions in the feature space, defined either by features
extracted from the spikes identified on a single chan-
nel or on several neighboring channels. Themethod is
fully automatic and parameter settings is not needed
apart of the detection threshold. We have used the
latest version of the algorithm (Mountainsort4).

Note that we have also considered other recent
spike sorting methods, such as Kilosort [38], SpyK-
ING CIRCUS [47] and YASS [21]. Kilosort [38] is
dedicated to multichannel recordings setup and is
then not eligible in this context of single channel
recordings. SpyKING CIRCUS [47] has also been
developed to handle multichannel data, and while it
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can be applied on single channel recordings the res-
ults were not convincing in comparison to the other
tested methods. The same remark can be made for
YASS [21] forwhich a dedicated training step is neces-
sary for this method to be used at its full potential.

For VBDS, a range of K values is explored as
described in section 2.3.3. A standard GMM with
EM optimization (GMM-EM [2]) used to set the
Kinit value (with BIC criterion), as well as for the
initialization of the set of clustering parameters
{πk, skw,Σ

k
w}k∈[1..K] for each explored value of K. We

have explored K values ranging from Kinit to 1.5 Kinit,
with 10 initialization for each value of K to avoid
being trapped in local minima. A seven level dyadic
decomposition is used (approximation level ranging
up to 97.5Hz). The 10 coefficients with the highest
variance have been selected in the detail levels for
the clustering part5. Mother wavelets from popu-
lar wavelet families such as Haar, Daubechies, Sym-
lets or Coiflets have been tested, and Sym6 from the
Symlet family was finally chosen has it proves to
provide higher discriminative power between spike
classes when applied on the used simulated data-
base, although the results were not significantly dif-
ferent when using other wavelets. The selection of the
adequate mother wavelet may be left to the exper-
imenters with respect to the dataset to be treated.
We also include the results of a previous version of
the algorithm in which the spike shapes were dir-
ectly clustered from their time samples [20], demon-
strating the benefit of working in the wavelet domain
providing enhanced discrimination power.

For all the algorithms, the spike detection
is carried out using a robust thresholding (see
equation (15)) in the band [300–3000]Hz. The
threshold factor has been set to 4.5 because it was
found to give the best compromise between detection
of the true spike events and false detections: on aver-
age 78.3%+−6.8 of the total number of spikes are
detected (MU spikes included), and 97.2%+−1.7 of
the SU unit spikes are detected, while the number of
false positives (spikes that are neither generated by
the SU nor the MU) ranges from 1.2% to 3.4% of the
total number of detected spikes (ranging from 5 to
123 in number over all 95 simulations).

On figure 5 is given the spike sorting performance,
in the same manner than done in [10]. Figure 5(a)
clearly show that the proposed method is signific-
antly more accurate than the other tested algorithms
in retrieving the clusters for most of the number of
units, and in particular when this number is high.
When it comes to false positives outcomes, our pro-
posed algorithm (figure 5(b)) is also very performant
and produce significantly less spurious clusters. The
performance positively compared with the previous

5 Equations (10) and (18) are then computed by considering
restrictions of the wavelet vectors and covariances to these selec-
ted coefficients.

version of the method in the time domain, both for
hits and false positive rates. Note that despite our
efforts, we did not manage to reproduce the same
level of performance in term of hits for Combinato
when compared to these reported in [10], illustrat-
ing that the method is highly sensitive to its paramet-
rization. However we report a lower number of false
positives. Besides, the performance found for Klusta,
WaveClus are very similar, whereas Mountainsort4
demonstrates better performance as the number of
units to estimate increases, while still keeping the
number of false positives limited. To give a closer look
to these results, we follow the methodology proposed
in [10] by grouping the data in two sets: those with
2–10 units on one side (‘low’ number of units) and
those with 11–20 units (‘high’ number of units). This
synthesis confirms the superiority of our method,
especially when the number of cluster to be retrieved
is high.

These high performance might be tempered by
the computational cost and time necessary to run
VBDS. Let remind that this method provides both
the sorting of the spikes as well as a cleaned (free of
spikes) version of the LFP, which partly explains its
higher computational burden. About five to ten iter-
ations are necessary for the algorithm to converge,
each iteration involving a filtering of the full LFP sig-
nal (see appendix B). If the use of FFT indeed reduces
the computational cost, it requires nevertheless sev-
eral seconds to be performed on a signal containing
24000× 600= 14400000 samples. In addition, as the
number of clustersK is not known, the algorithm had
to be launched several times (with the final solution
being chosen as this maximizing the BIC criterion as
defined in equation (18)). On a recent standard com-
puter (Linux OS, Ubuntu 18.04.5 LTS, 32Go of RAM,
intel Core-i7 8x2.90Ghz, no GPU), it took 3min 30
on average to process for simulated recordings with 2
units, and up to 20min for the signals containing 20
units, figures to be compared with this of the other
tested algorithms which roughly range between 1 to
2min as experimented on the same computer, simil-
arly as reported in [10].

3.2.2. Spikes/LFP separation
The data set of Camuñas-Mesa and Quiroga [9]
roughly simulate the background LFP as white Gaus-
sian noise and does not hold the frequency property
of a realistic LFP. In order to test the spike removal (or
despiking) aspect of the algorithm, we simulate a data
set of 200 signal examples as follows: we considered
real signals recorded at the epilepsy unit of the CHRU
(protocol REUNIE), from which we selected 15min
length of 10 000Hz sampled signal with no spiking
events, and we randomly extracted 200 1min length
epochs from this signal. For each epoch, a spike shape
is randomly chosen from the data set of Camunas et al
and 500 events with this shape are distributed on the
signal, hence one single unit can be detected within
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Figure 5. Performance of the proposed algorithm with the simulated dataset of Camuñas-Mesa and Quiroga [9]. (a) Number of
hits as a function of the number of simulated neurons, for the six tested algorithms (Combinato, Klusta, Waveclus,
Mountainsort4, and the newly proposed VBDS along with its temporal version). Mean performance and standard error of the
mean (SEM) across the five simulations for each number of simulated neurons is shown. See text for parametrization of the
algorithms. (b) Same as in (a) but for false positives. (c) Mean and SEM of misses for each algorithm, by dividing the data set in
‘small’ number of neurons (2–10) and ‘high’ number of neurons (11–20). (d) Same as (c) but with false positives. The proposed
algorithm was significantly better than all other implementations, both in term of hits and false positives.

each 1min simulated epoch. The amplitude of the
spikes are set so that it reaches 6 times the median
absolute deviation (MAD) of the LFP epoch. The
spike shapes provided by the Camunas data set are
sampled with a 96 000Hz frequency rate, the shapes
are decimated to a 10 000Hz sample rate, andwe con-
sider different sub-sampling shifts during the decima-
tion, leading to variabilities in the spike shapes super-
imposed with the LFP signal. A minimal interval of
10ms is ensured between two successive spikes, so
that no overlapping spiking events are considered. At
each spike instant, we finally add an identical Gabor
waveform at each spike location to simulate the pres-
ence of a coherent LFP activity synchronized with the
spiking activity. The Gabor waveform is about 60ms
long, its spectral content lies within the frequency
range [0− 150]Hz, and its maximum amplitude is set
to the tenth of the MAD of the real extracted LFP
epoch.

Our method VBDS, as well as the Bayesian spike
removal method of Zanos et al (called BSR in the
following) and the Automatic Spike Removal (ASR)
method of Boroujeni et al [3] have been applied
on this synthetic data set. Figure 6(a) illustrates the

despiking result for an epoch of 250ms involving 4
spiking events to be removed. The resulting traces
estimated by the three methods (shifted in amplitude
for better visualization) shows that the spikes are
indeed successfully removed by all three methods,
with no noticeable difference between our method
and this of Zanos et al for this rather large visu-
alization scale. The ASR method however seem to
flatten the amplitude of the signal around the spik-
ing events, in particular around the two last spike
instant. This impression is confirmed when comput-
ing the spike-triggered average of the signal (mean of
the resulting signals within 20ms windows around
each removed spiking events), as can be seen on
figure 6(b), where the ASR approach fails to estim-
ate the ground-truth signal. VBDS as well as BSR
are much closer from the original signal. A residual
artifact remains nevertheless visible when consider-
ing the results for the latter, due to the assumption
of fixed spike waveforms made by this method: the
same mean waveforms is finally removed from the
signal for each event. These residuals are also visible
on the figure 6(c) where we have zoomed on small
epochs of about 5ms around 15 removed spiking
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Figure 6. (a) Example of despiked versions of 250ms of a simulated signal by the 3 tested methods (ASR, BSR and VBDS). The
traces are shifted for visualization purpose. The presence of 4 spike events are materialized by red dots on top of the traces.
(b) Spike-triggered average of the signal for one of the 200 simulated examples. ASR fails in retrieving the underlying Gabor-like
simulated synchronized activity, spike contamination is still visible in the BSR approach, while no visible clues of any spike
presence are remaining in the proposed VBDS approach. (c) Despiked versions of the signal (BSR and VBDS) superimposed with
ground-truth on 15 epochs randomly chosen within the same simulation signal used in (a) and (b). (d)–(f) Wide-band
normalized error of the wavelet STA (NEW-STA) values for ASR, BSR and VBDS respectively.

events selected randomly, andwhere residual artifacts
leaved by the BSR approach are systematically visible,
while our method provides smoother versions of the
signal very close to the ground-truth. The probabil-
istic approach used in our method allows to deal with
variations in the spike waveforms from an event to
another. We remind that these variations are exclus-
ively due to sampling effect in this simulation con-
text, but in real data they might also arises from other
instrumental or biological effects in real recordings
[5]. Our method provides an individual posterior
estimate for each spike and leaves no residual in the
wide-band signal.

Figures 6(d)–(i) bring quantitative results under
the form of normalized wavelet spike-triggered aver-
age (W-STA). W-STA, as defined in [49], aver-
ages the wavelet coefficients power of spike-triggered
epochs of the signal. We introduce here a normal-
ized error version of W-STA as NEW-STA by taking
the difference between the wavelet STA of the des-
piked signal and this of the original spike-free sig-
nal (i.e. the real LFP epoch with additive Gabor-like
synchronized activity, free of spike), divided by the
wavelet STA of this original spike-free signal. The
averages of these values over the 200 simulated sig-
nals are given on figures (d)–(f) for the three tested
despiking algorithms (wide-band frequency range up
to 5000Hz). The ASR method fails in eliminating

high frequency components of the spikes with posit-
ive averaged normalized difference well above 1 (sub-
figure (d), colorbar values clipped between 1 and−1),
and in preserving the lower frequency components of
the LFP with averaged normalized wavelet STA values
going down to −0.94 around the instant of the spike
within the frequency band [50–100]Hz. In the case of
the Bayesian despiking method of Zanos et al, spike
high frequency residuals are also visible over 500Hz
with averaged normalized error wavelet STA values
going up to 1.2 at the time instant of the spikes, but
the method leaves unchanged the power of the signal
outside the time support of the spikes as well as in the
lower frequency band. The proposed VBDS approach
is very efficient in eliminating the high power com-
ponents of the spikes in the high frequency band, the
NEW-STA remains below 0.13 in average, and also
preserves the low frequencies where themain features
of the LFP are lying.

On figure 7 is given a focus on the NEW-STA val-
ues over epoch of 3ms around the spiking times, the
values being divided in 6 frequency bins. High relative
error NEW-STA values are found for the BSRmethod
in the higher frequency band over 1000Hz as some
spiking artefacts are left in the signal, while our VBDS
approach produces very low relative error values. In
the [300–1000]Hz frequency band where most of
the energy of the spikes is lying (see figure 4), both
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Figure 7. Boxplots of NEW-STA values on segments of 3ms centered around the spiking events over all 200 simulations. The
values are divided in six frequency bins. Outliers are not shown for lisibility.

methods are producing relative errors with medians
close to 0 and similar interquartile distance, how-
ever BSR tends to leave some spike energy in the sig-
nal while VBDS tends to eliminate more compon-
ents, with however quartile absolute values below
0.1. This remark holds in lower frequency bands
where BSR and VBDS are both producing low rel-
ative error values which become negligible ranging
between 0%–1% in absolute values.

These results confirm that most of the spike fea-
tures are indeed kept by our spike/LFP separation
method, which is a consistent result with regard to
the spiking classification performance described in
the previous section. In the following, we compare the
performance of the methods in the light of real micro
recording data.

3.3. Real data
We now illustrate the sorting and separation per-
formance on a set of real data recorded at the CHU
of Nancy during FPVS protocol. We consider eight
Ad-TechBehnke-Friedmicro-electrodes implanted in
the left fusiform gyrus of a 23 year old drug-resistant
epileptic patient (left mesial temporal lobe epi-
lepsy) during presurgical evaluation. The patient gave
written informed consent and the study (REUNIE,
trial N◦ 2015-A01951-48, ClinicalTrials.gov identi-
fier NCT02877576) was approved by the local ethical
committee (CPP Est III, N◦16.02.01). The protocol
consists in presenting object images on a screen at the
base frequency of 6Hz, with one oddball every five
images being aHuman face [44]. The patient followed
two consecutive sessions of length 70 s with resting
state interval of 2min between them. Each session
has been cut out so that the first time instant corres-
ponds to the first face trigger of the session, and lasts
up to 1/1.2= 833ms (i.e. one oddball interval) after
the last face trigger of the session. The two sessions
are concatenated and fed to the spike sorting and des-
piking algorithms. We first provide spike sorting res-
ults for each of the four evaluated spike sorters, and

we then illustrate the despiking performance of the
method by considering the depollution of one chan-
nel with respect to a 1.2Hz responding spike cluster.

3.3.1. Spike sorting
FPVS leads to periodic activity in brain structures
sensitive to the specific visual stimulation [19, 44].
Frequency analysis of the response of individual neur-
ons as identified by spike sorting algorithm should
exhibit high peaks at the frequency of the stimulus
as well as these of its harmonics. The frequency ana-
lysis of the discrete spiking events is carried out as
follows: the spike train of the considered cluster is
convolved with a 20ms-length square window, yield-
ing an estimate of the firing rate, on which the Four-
ier transform is performed. Two stimulus are super-
imposed in this protocol, the base stimulation at 6Hz
and the oddball at 1.2Hz. Responding clusters at
1.2Hz have been identified by most of the meth-
ods on six of the eight channels, while our investig-
ation did not allow to identify neurons responding at
6Hz (the implanted region—fusiform gyrus—being
known for its specificity for face selectivity [44]). We
provide in detail the sorting results for two channels
(denoted Channel#1 and Channel#2 in the follow-
ing), on which several responding clusters have been
identified.

To determine whether a cluster responds or not,
we use the methodology as described in [36]: the
FFT of the estimated firing rate (convolved raster) is
epoched around 1.2Hz as well as around each of its
harmonics 2.4, 3.6 and 4.8Hz (0.3Hz width epoch-
ing, 40 frequency bins). These frequency epochs are
summed together by considering the combinations
between them yielding the highest central peak. A
z-score with respect to the background spectrum is
computed. If the central peak has a p-value below
0.01, then this is considered as a significant cluster.

We compare our method with Klusta, WaveClus,
Combinato as well as Mountainsort4, as done in
section 3.2.1 using the spikeinterface toolbox [4]. The
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Figure 8. Illustration of the clustering results on channel#1 of real FPVS data for each of the tested sorters. Top: superposed
waveforms into each identified clusters (1ms before and after the maximum negative amplitude of the waveform. Middle: FFT
transforms of the convoluted raster of each cluster, values at oddball frequency 1.2Hz and harmonics up to 6Hz are marked with
red dots. Bottom: mean of chunked FFT around each prominent peak at 1.2Hz and harmonics up to 6Hz. Star: p-value⩽ 1e− 3,
robust z-score (see text for explanations).

detection thresholds for each sorter has been set to
4.5 times the mad of the band-pass filtered signal, the
set of spiking events to be sorted by the four methods
are nearly the same up to the specific detection para-
metrization and event rejection strategies embedded
in each method. For each of them, we start by set-
ting the parameters recommended by the authors,
and we tune them over the six channels in order to
get meaningful results overall, i.e. no obvious over or
under-clustering, and visually homogeneous clusters.
In particular for Klusta, 9 principal components were
used, with a spike support from −30ms to 30ms
around the maximum peak of the spiking events. For
Combinato, we use the default set of parameters as
described in [27], except for the maximum number
of clusters at one temperature parameter that we set
to 7, and the minimum cluster size for iterative clus-
tering set to 1000.

VBDS has been applied in the same way as on
the simulated data, based onGMM-EM initialization.
The selection of 8 wavelet coefficients (using mother

wavelet Sym6) was found to be more relevant for
these data (instead of 10 on simulated data).

Note that in this context of real recordings, it
is preferable to consider mechanism to reject arti-
fact events that might pollute the classification pro-
cess. In this work, we first discard the events with
too high amplitudes (in absolute values), this second
high (outlier) threshold being set to about five times
the value of the robust detection threshold as defined
in equation (15). Another rejection procedure is
applied during GMM-EM initialization, as Gaussian
cluster parameters are initialized based on the wave-
let decomposition of the spike waveforms extracted
from the band-passed raw signal. Based on this Gaus-
sian characterization of the cluster, it is then possible
to reject detected events that are too far from their
cluster centroid, similarly as proposed in recent stud-
ies [22, 43]. A multivariate Hotteling statistical test
has been applied, with p-value set to 0.01. The same
procedure is also applied after final convergence of the
algorithm.
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Figure 9. Left: mean of the spike shapes for the three clusters estimated by our method, Middle: mean of the spike shapes for the
same clusters computed on the waveforms extracted after band-pass filtering of the raw signal. One can see that the mean spike
shapes are smoothen and side bumps are introduced, making it more difficult to distinguish the clusters. Right: mean of the two
spike shapes estimated by WaveClus. The cluster#1 of WaveClus (in blue) includes almost all the events of the cluster#3
estimated by VBDS (in yellow: 1410 events, i.e. 91%), while the clusters#1 and#2 of the later are splitted over both clusters of
WaveClus.

Inter-spike interval histograms were inspected for
each cluster to check for refractory time interval viol-
ations. The significance of the difference between
clusters within each sorter outcomes have been con-
firmed by multivariate Hotteling statistical test (p-
value<0.01). Overall, the results produce by the sort-
ers are consistent one from the other. Our method
as well as Combinato tend to identify more clusters
(15 and 16 respectively over the 6 considered chan-
nels), while WaveClus produced the lower number
of class (11). This is consistent with the ability of
our clustering method to identify more true posit-
ive clusters as demonstrated on the simulated data
set of section 3.2.1. In the following, we qualitat-
ively analyze the clustering results for the channels
#1 and#2.

3.3.1.1. Channel#1
WaveClus, Klusta as well as Combinato agreed upon
two responding clusters, while VBDS finds three
responding clusters and Mountainsort4 renders a
unique cluster. A careful examination of the extrac-
ted spike shapes with high-pass filtering show that
these shapes are corrupted, as can be seen on figure 9.
We emphasized on this issue in section 3.1, the
applied band-pass (non-causal) filtering introduces
side bumps on the detected spike shapes and canmask
out the discriminant characteristics of the real spikes,
resulting in different clustering results between VBDS
and the three other sorters (illustrated for WaveClus
in figure 9, but similar for the two other sorters).

3.3.1.2. Channel#2
is highly responding and yields three to five clusters
depending on the sorters, all of them responding to
the stimulation protocol (see figure 10). In particu-
lar, our method identifies a responding cluster with
76 events, not identified by the four other methods.
This is here again very likely due to the effect of the
filtering diminishing the amplitude of the spikes for
this cluster, added to the fact that clusters with few
events are more difficult to identify. On figure 11

it can be seen that this cluster is easily identifiable
when the spikes are extracted from the raw signal by
our method, while it is less obvious (but still visible)
when considering the band-pass filtered version of the
spikes.

A careful inspection of the mean spike shapes for
cluster#2 produced by VBDS reveals the presence of
a slight but visible positive wave on the left side of
the central peak, while cluster #1 remains flat, with
a lower amplitude of its negative peak on average.
Similarly as for channel #1, the spike shapes as pro-
duced byWaveClus (see figure 11, right column, sim-
ilar observations for Klusta and Combinato) are cor-
rupted by filtering (introduction of side bumps) and
are diminished in amplitude, making the differenti-
ation of these two clusters more challenging.

Besides, these results based on four different sort-
ers confirm the difficulties to find consistent results
from a sorter to another, as pointed out and illus-
trated in [4]. Validation and comparison on real data
remain a difficult task, however we provide evidences
indicating that our method provides more confid-
ent outcomes by extracting more accurately the spike
shapes from the data.

3.3.2. Spike removal
We now analyze the despiking performance on the
channel #1 of the same data set, and we use
the clustering results of our algorithm to construct
the spike trains necessary for applying the Zanos
et al BSR method. The results are illustrated on
figure 12 on a 250ms epoch of this signal, containing
10 clear spiking activities detected by thresholding.
This example confirms that the ASR approach highly
impact the content of the (low frequency) LFP signal,
as can be seen on sub-figures (a) and (d). On the des-
piked versions of a 250ms epoch of the signal (sub-
figure (a)), BSR clearly leaves some residuals for some
spikes (particularly visible by zooming over the last 2
spikes within this epoch), while VBDS do not leaves
any apparent artifact. On sub-figure (b), we give the
temporal STA by considering the spike times of the
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Figure 10. Illustration of the clustering results on channel#2 of real FPVS data for each of the tested sorters. See caption of
figure 8 for explanations.

cluster #1 as estimated by our algorithm. The STA
has been computed based on the 429 events of this
cluster, resulting in a quasi-linear estimation by the
BSR algorithm, while our algorithm provides a much
less stereotyped version which is more likely to rep-
resent the real underlying activity.

The wavelet STA has been computed on the raw
signal on subfigure (c), with power values limited to
1000 (clipped colorbar). Prominent power in high
frequency bands at the instant of the maximum peak
of the spikes is visible. On subfigures (d)–(f) are given

the wavelet STA computed on the despiked versions
of the signal using ASR, BSR and VBDS respectively.
The range of the colorbar (power values) for these
figures are kept to the ones of the raw wavelet-STA
of figure (c), in order to appreciate the relative differ-
ence between the spike removal results and the raw
version. The ASR method tends to suppress all activ-
ities including these in the low frequency band related
to the LFP. The BSR approach (sub-figure (e)) leaves
high frequency components related to the spikes over
500Hz, while our method suppress efficiently all
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Figure 11. Top: superimposed waveforms for each cluster identified on channel#2, bottom: mean spike shape for each cluster.
Left: waveforms as extracted from the LFP and clustered by our method, in particular the cluster#1 with 78 events is clearly
visible and easily distinguishable from the other events. Middle: spike waveforms extracted by band-pass filtering of the signal and
represented as clustered by VBDS. Right: spike waveforms as estimated and clustered by WaveClus. Cluster#1, which include all
the events of the VBDS Cluster#1, also includes spikes of lower amplitude. Clusters#2 and#3 of VBDS are redistributed
within clusters#2 and#3 of WaveClus, while cluster#3 of WaveClus include all events classified in the cluster#4 of VBDS.

Figure 12. (a) Illustration of the despiking results on a segment of a real signal recorded during FPVS: raw signal (blue),
Automatic Spike removal (ASR, black), BSR (red), and VBDS (green). Traces are shifted to appreciate the difference between the
methods. Example of despiked versions of 250ms of a simulated signal by the three tested methods (ASR, BSR and VBDS). The
traces are shifted for visualization purpose. The presence of 10 spike events are materialized by orange dots on top of the traces.
(b) Spike-triggered average of the raw signal over 200 spiking events randomly selected among the 1566 ones, super-imposed with
the STA versions produced by ASR (black), BSR (red) and VBDS (red). (c) W-STA of the raw signal, where the power of the
spiking events is clearly visible around above 100Hz and particularly in the band [300–5000]Hz. (d)–(f) W-STA of the despiked
version of the signal as produced by ASR (d), BSR (e) and VBDS (f).
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patterns of the spiking activities. In lower frequency
band under 300Hz both approaches produce very
similar W-STAmaps, and seems to preserve the com-
ponents of the LFP. Below 150Hz, both methods pre-
serve the components of the signal, with relative dif-
ference values (difference of W-STA divided by the
W-STA of the raw signal) ranging from−0.23 to 0.04
for BSR and−0.21 to 0.03 for VBDS.

4. Discussion

We present in this paper a novel method for separat-
ing the LFP signal from the spikes and simultaneously
sorting the spikes in mono-channel micro-electrode
recordings. We demonstrate that the method outper-
formed recent methods of the literature on single
channel spike sorting, using a freely available sim-
ulated data-base. We also provide evidence that the
method accurately removes the spike shapes from
the LFP on home made simulated data, and outper-
form previous work [49], especially in high frequency
band over 200Hz. These results give evidence that
both aspects of the algorithm (despiking and sorting)
benefit one from each other: accurate extraction of
the spike waveforms from the LFP channels enhance
the classification accuracy, while the spike decontam-
ination is more accurate when the waveforms are
properly removed by considering individual posterior
estimates of each individual waveform.

The main flaw that may limit the use of the
algorithm is related to its computational cost, many
trials being necessary to avoid local minima in the
optimization process. Running time can be relatively
high when compared to other sorters of the literat-
ure, in particular if the number of units in the signal
is high and/or if large range of class numbers are to be
explored. This algorithm brings however the advant-
age to offer a despiked version of the LFP as an out-
put, together with the spike clustering. Offline studies
of brain responses to a particular protocol (e.g. aud-
itory or visual evoked potential) or condition (sleep,
epileptic state) might find interest in this methodo-
logy which allows analysis ofmulti-scale relationships
analysis unbiased by the presence of prominent spike
residuals that are left on the LFP after standard low-
pass filtering.

Some important aspects and current issues in the
field of spike sorting are not here directly addressed.
The first one is related to the drift of the spike
shapes [5, 27], in particular during long-term record-
ing, mainly due to relative movement between elec-
trodes and the recorded tissues, or exhaustion of
the recorded neuron. Our approach being probabil-
istic (GMM of the spike wavelet coefficients), it can
handle such uncertainties on the spike waveforms if
not excessive, but it cannot deal with continuous drift
over time. As an alternative, and based on the hypo-
thesis that the waveforms are rather stable through
time windows with fewminutes length, the signal can

be divided into shorter epochs [27]. In this case, the
cluster parameters obtained on a given time window
can be used to initialize the algorithm in the next time
window, however leaving the algorithm to re-estimate
the possible evolution of the spike statistics.

The second aspect is related to the overlapping of
spikes. Very few works are currently addressing spe-
cifically this problem in their model (e.g. see [46]),
most of the methods are based on post-processing
of the spiking events that do not match any clusters
(based e.g. on multivariate statistical tests). A tem-
plate matching strategy can be applied to identify
overlapping events belonging to two (or higher num-
ber of) units, such as done in Spiking Circus [47] or
Tridesclous [16] for example.

The scaling of the method to high dimensional
data is also an important aspect to be considered, as
the recording technologies are now providing hun-
dreds of recording sites within limited tissue volume.
While this is beyond the scope of the present work,
we acknowledge from a data analysis point of view
that such recordings provide a wider vision of a given
phenomenon, and should enhanced significantly the
quality of the sorting results.
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Appendix A. Variational Bayesian updates

A.1. Latent variable posteriors—E-step
We detail here the approximate posterior estimation
(or factor) q(.) of the latent variablesX = {xw,Sw,Z}.
The factor q(χi) for a given latent variable χi is
evaluated as the expectation of the full model log-
likelihoodLwith respect to all the other independent
factors χj̸=i. Let remind the expression of L:

L= log p(yw|xw,Sw)+ log p(xw)+ log p(Sw|Z)
+ log p(Z).

As Gaussian priors have been chosen for each of
the latent variables, each approximate posterior q(.)
will also be a Gaussian distribution. Let remind the
terms appearing in this quantity:
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A.1.1. q(xw)
By successively preserving only the terms in xw:

log q(xw) = ⟨L⟩Sw,Z
log q(xw)∝ ⟨log p(yw|xw,Sw)⟩Sw + log p(xw)

∝− 1
2σ2

ϵ

∥yw − xw − Ŝw∥22 −
1
2γ

xTwΣ
−1
xw xw

∝−1
2
xTw

(
1
γ
Σ−1

xw +
1
σ2
ϵ

IT

)
xw +

1
σ2
ϵ

xTw(yw − Ŝw).

By completion of the square over the variable xw,
we identify the posterior mean and variance for xw:

x̂w =
1

σ2
ϵ

Σ̂xw(yw − Ŝw) (19)

Σ̂xw=

(
1

γ
Σ−1

xw +
1

σ2
ϵ

IT

)−1

= σ2
ϵγΣxw(γΣxw +σ2

ϵIT)
−1.

(20)

A.1.2. q(Sw) =
∏N

n=1 q(snw)
The posterior over each variables snw can be con-
sidered separately, as overlapping spikes are ignored
at this stage of the algorithm. Similarly as for xw, we
get:

log q(snw) = ⟨L⟩xw,zn
log q(snw)∝ ⟨log p(yw|xw,Sw)⟩xw + ⟨log p(snw |zn)⟩zn

∝− 1

2σ2
ϵ

∥Ωnw(yw − x̂w − Sw)∥22

− 1

2

K∑
k=1

π̂nk(snw − skw)
TΣk−1

w (snw − skw)

∝−1

2
sTnw

(
K∑

k=1

πkΣ
k−1

w +
1

σ2
ϵ

ITs

)
snw

+ sTnw

(
1

σ2
ϵ

Ωnw(yw − x̂w)+
K∑

k=1

π̂nkΣ
k−1

w skw

)

with Ωnw(Sw) = snw . Again by completion of the
square, we identify the posterior mean and variance
for snw :

ŝnw = Σ̂nw

(
1

σ2
ϵ

Ωnw(yw − x̂w)+
K∑

k=1

π̂nkΣ
k−1

w skw

)
(21)

Σ̂nw =

(
K∑

k=1

π̂nkΣ
k−1

w +
1

σ2
ϵ

ITs

)−1

. (22)

A.1.3. q(Z) =
∏N

n=1 q(zn)

log q(zn) = ⟨L⟩xw,snw .

For a given label λk we get:

logπ̂nk ∝ ⟨log p(snw |zn = λk)⟩snw + logπk

which gives under exponential form:

π̂nk ∝ πk|Σk−1

w |exp

(
− 1

2
∥̂snw − skw∥2Σk

w

− 1

2
Tr[Σ̂nwΣ

k−1

w ]

)
(23)

∝ πkN (̂snw |skw,Σk
w)exp

(
−1

2
Tr[Σ̂nwΣ

k−1

w ]

)
(24)

under the constraint
∑K

k=1 π̂nk = 1 for each n.

A.2. Parameters—M-step
Re-estimation of the parametersΘ= {γ,{skw,Σk

w}Kk=1,
σ2
ϵ} are estimated by setting the derivative of the

expectation of the complete-data log likelihood L
with respect to each of these parameters to 0.

A.2.1. γ

∂⟨L⟩xw,Sw,Z
∂γ

=
∂⟨log p(xw)⟩xw

∂γ

=− T

2γ
+

1

2γ2

(
∥x̂w∥2Σ−1

xw
+Tr[Σ̂xwΣ

−1
xw ]
)

by setting this derivative to 0:

γ =
1

T

(
∥x̂w∥2Σ−1

xw
+Tr[Σ̂xwΣ

−1
xw ]
)
. (25)

A.2.2. {skw,Σk
w}Kk=1

∂⟨L⟩xw,Sw,Z
∂skw

=
∂⟨log p(Sw|Z)⟩Sw,Z

∂skw

=
N∑

n=1

∂⟨log p(snw |zn)⟩snw ,zn
∂skw

=−
N∑

n=1

π̂nks
kT

w Σk−1

w +
N∑

n=1

π̂nk ŝ
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1
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)
. (27)
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Setting equations (26) and (27) to 0 gives the re-
estimates formula for the K means and variances of
the spike classes:

skw =

∑N
n=1 π̂nk ŝnw∑N
n=1 π̂nk

(28)

Σk
w =

∑N
n=1 π̂nk

(
∥̂snw − skw∥22 +Σ̂nw

)
∑N

n=1 π̂nk

. (29)

A.2.3. σ2
ϵw

∂⟨L⟩xw,Sw,Z
∂σ−2

ϵw

=
∂⟨log p(yw|xw,Sw)⟩xw,Sw

∂σ−2
ϵw

=
T

2
σ2
ϵw −

1

2
∥yw − x̂w − Ŝw∥22

− 1

2
Tr[Σ̂xw ]−

1

2

N∑
n=1

Tr[Σ̂nw ]. (30)

Setting this equation to 0 gives the re-estimates
formula for the noise variance:

σ2
ϵw =

1

T

(
∥yw − x̂w − Ŝw∥22 +Tr[Σ̂xw ] +

N∑
n=1

Tr[Σ̂nw ]

)
.

(31)

Appendix B. Computational issues and
circulant matrix properties

Σxw cannot be reasonably assumed circulant as it is
the case for Σx in the time domain, the computation
of the posterior covariance matrix of xw (requiring
inversion of large matrix) cannot be efficiently com-
puted with fast Fourier transform such as in [49]. The
main interest in working with wavelet are for the clus-
tering part, as such representation provide more rel-
evant representation of the data for clustering pur-
poses. The part of the algorithm dealing with the
estimation of the LFP x and of its prior and posterior
parameters can be equivalently carried out in the
temporal domain. We benefit from readily available
algorithm for fast computations of wavelet decom-
position and inversion. Back in the temporal domain,
circulant properties of Σx can be exploited to obtain
efficient computation performance [49].

A N ×N circulant matrix M is constructed by
rotating a vector c= [c0, c1, . . . , cN−1] cyclically on its
successive rows:M= circ(c). It can be easily demon-
strated that the eigenvectors of M are the N roots
of unity, which form the basis for discrete Fourier
transform (DFT), and that the eigenvalues of M are
the DFT coefficient of the circulant vector c. Applic-
ation for covariance matrices follows, as in this case
the DFT of c corresponds to the PSD g of the sig-
nal x: fft(c) = g. Hence, given an estimate of g, the
product of Σx with any T-length vector y can be

approximated using efficient algorithmic implement-
ation of the DFT (namely the FFT) as Σxy≈ c ∗
y= ifft(g⊗ fft(y)), with ∗ the convolution product,
⊗ the Hadamard (element-wise) product and fft(.)
and ifft(.) respectively the fast Fourier transform and
the inverse fast Fourier transform. Equations (11)
and (12) can then be efficiently computed by using
this approximation, as well as the followings which
can be easily derived in the same manner:

(γΣx +σ2
ϵIT)

−1y≈ ifft(fft(y)⊘ (γg+σ2
ϵ1T)))

(32)

Tr(γΣx +σ2
ϵIT)

−1 ≈
T∑

f=1

1/(γg( f)+σ2
ϵ) (33)

Tr(Σ−1
x (γΣx +σ2

ϵIT))≈ σ2
ϵγ

T∑
f=1

1/(γg( f)+σ2
ϵ)

(34)

with 1T a T-length ones vector, and ⊘ the element-
wise division.
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