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Abstract: In this paper, we consider functional data with heterogeneity
in time and population. We propose a mixture model with segmentation
of time to represent this heterogeneity while keeping the functional struc-
ture. The maximum likelihood estimator is considered and proved to be
identifiable and consistent. In practice, an EM algorithm is used, combined
with dynamic programming for the maximization step, to approximate the
maximum likelihood estimator. The method is illustrated on a simulated
dataset and used on a real dataset of electricity consumption.
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1. Introduction

Functional Data Analysis (FDA) deals with the theory and the exploration of
data observed over a finite discrete grid and expressed as curves (or mathemat-
ical functions) varying over some continuum such as time. This type of data is
commonly encountered in many fields, including economy (Bugni et al., 2009),
computational biology (Giacofci et al., 2013) or environmental sciences (Bou-
veyron et al., 2021a), to name a few. For an in-depth review of techniques and
applications, we refer the interested readers to recent surveys (Li, Qiu and Xu,
2022; Wang, Chiou and Müller, 2016) and more exhaustive books (Ferraty and
Vieu, 2006; Ramsay and Silverman, 2005; Kokoszka and Reimherr, 2017). In
many of these applications, such as electricity load (Fontana, Tavoni and Van-
tini, 2019; Devijver, Goude and Poggi, 2020; Maturo and Verde, 2023), used for
illustration here, we observe multiple curves corresponding to several individu-
als over a given time interval. As a result, one can expect a high heterogeneity
of the data, both at the level of the studied individuals, that may correspond to
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Fig 1. Motivation example. The top row represents the initial functional data consisting of
100 individuals (curves) observed every half-hour for 50 days. The following rows allow to
visualize 1/ the decomposition of the population into clusters (here 3 clusters - red yellow,
purple), 2/ within each cluster the segmentation obtained on the time dimension, 3/ the
projection on a wavelet basis at several levels r ∈ {1, 2, p = 3}.

different behavior or consumer profiles, but also on the time dimension where
changes in power consumption regimes are likely to occur over one year for in-
stance. To consider a parametric model, homogeneous data is required, both
at population and time levels. In this paper, we propose to split the considered
heterogeneous data into homogeneous clusters of individual curves, each of them
being segmented over time into homogeneous regimes. To this end, we consider
a mixture of segmentation over the projection of the curves onto a wavelet basis,
which retains a temporal aspect that is coherent with the segmentation. Figure 1
serves to illustrate this objective. The top row represents the initial functional
data consisting of 100 individuals (curves) observed over 50 days. The following
rows allow us to visualize on the one hand the decomposition of the population
into clusters (here 3 clusters – red yellow, purple), and on the other hand, within
each cluster the segmentation obtained on the time dimension. Note that, in our
case we allow each cluster to have a different segmentation, leading to a more
flexible model. In this example, we visualize the segmentation on the projection
on a wavelet basis into 3 dimensions.

Model-based clustering approaches for functional data have been extensively
studied in the literature (James and Sugar (2003); Liu and Yang (2009); Bou-
veyron and Jacques (2011); Jacques and Preda (2013, 2014); Devijver (2017)).
For the particular case of heterogeneous data that interests us in this article, one
can broadly differentiate between methods that perform simultaneously cluster-
ing and segmentation (Alon et al. (2003); Hébrail et al. (2010); Samé et al.
(2011); Samé and Govaert (2012); Chamroukhi (2016)) and co-clustering based
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methods (Bouveyron et al. (2017, 2021a,b); Galvani et al. (2021)). We provide
further details on these two families of approaches hereafter and position our
contributions with respect to the existing state of the art.

Clustering and segmentation Samé et al. (2011) proposed to deal with
heterogeneous time series by integrating the notion of change of regimes within
a mixture of hidden logistic process regressions. The model considers two latent
variables, one for the mixture component and one for the segmentation. Model
selection is done through an adapted BIC criterion. However, while attempting
to consider changes of regime, this approach fails to account for the ordering of
observations, a key feature when dealing with functional data. Samé and Govaert
(2012) extended this model for online segmentation of time series. In an effort to
account for these potential changes of regimes, another family of mixture models,
namely the mixture of piecewise regression, has been proposed. Hébrail et al.
(2010) first define this notion of piecewise regression to analyze temporal data,
by proposing a distance-based model that simultaneously performs clustering
on the set of functional observations (through a Kmeans-like algorithm) and
segmentation (in the form of piecewise constant function summarizing) within
each of the obtained cluster. This work was further generalized to a more flexible
probabilistic framework by Chamroukhi (2016), who designed a model based on
a mixture of piecewise regression densities. The piecewise regression is modeled
by a segmentation of polynomial functions, as a generalization of spline basis
where knots have to be fixed. However, this sets a particular form within each
segment.

Model-based co-clustering for FDA Bouveyron et al. (2017) proposed a
co-clustering model to analyze multivariate functional data. They applied this
model to analyze electricity consumption curves and found that due to the na-
ture of the temporal data, the clustering over time points is close to a segmenta-
tion over time. Bouveyron et al. (2021a) extend this method to multivariate time
series (with several time series for each observation and each timepoint), using
a sparse representation over principal components. In Bouveyron et al. (2021b),
authors extend this co-clustering approach using a shape invariant model, al-
lowing for translation in time, and translation and scaling in mean. Galvani
et al. (2021) propose another bi-clustering algorithm for functional data while
considering a potential misalignment through translation. While co-clustering
based approach have proven efficient in this context, the clustering obtained on
the time dimension do not account for the ordering of the observation.

Contributions and organization of the paper Our contribution is three-
fold, we propose (1) a method to study multivariate functional data, decompos-
ing the population into homogeneous clusters and the time into homogeneous
segments, where we ensure coherence on the time order; (2) we then focus on the
theoretical study of the model (identifiability) and the estimation of the param-
eters (consistency), which is completely missing from all aforementioned related
articles; (3) we perform extension simulation experiments to study the behavior
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of our approach. (4) finally, we study a real-world electricity consumption data
set to illustrate the benefits of our method.

The paper is organized as follows. In Section 2 the modeling framework is in-
troduced together with the necessary notations. The identifiability of the model
is obtained. Details about the estimation procedure are provided in Section 3.
The maximum likelihood estimator is proposed, approximated by an EM algo-
rithm. The maximization step is solved by a dynamical programming. The con-
sistency of the estimator is provided. The finite-sample performance of the pro-
posed estimation method is investigated in Section 4. The methodology is finally
used to analyse electricity consumption in Section 5. The paper concludes by
some discussion in Section 6. The code is publicly available at https://github.
com/laclauc/MixtSegmentation. All proofs are given in the Appendix.

2. The model and its identifiability

Notations Random variables are indicated by uppercase letters and observa-
tions by lowercase letters. Then for matrices and vectors we use bold type (such
as A, B) while scalars are denoted without the bold formatting (such as A).
To indicate their dimension, we use notations like A ∈ R

n or B ∈ R
n×d. The

i(,j)-th element of A is written as Ai or Bij . In the following, we suppose one
observes multivariate individual curves X1(t), . . . , Xn(t) on discrete timepoints
t1, . . . , td. First, we introduce the various elements of the modeling framework,
and provide the identifiability of the model. The proof of identifiability can be
found in Appendix A.

2.1. A multivariate functional model with segments in time and
clusters in population

We observe multivariate individual curves (Xih(tj))1≤i≤n,1≤j≤d,1≤h≤H of di-
mension H over d timepoints and within a population of size n. The hetero-
geneous population is studied through a mixture model of K clusters, encoded
indifferently in its binary form, zik = 1 if and only if the curve i belongs to
the cluster k, and its vector form, zi = k if and only if the curve i belongs to
the cluster k, for 1 ≤ k ≤ K and 1 ≤ i ≤ n. Each observation belongs to the
cluster k ∈ {1, . . . ,K} with probability πk ∈ [0, 1]. The heterogeneity in time
is represented through Lk + 1 segments (Ik�)0≤�≤LK

: if zik = 1 and j ∈ Ik�,
encoded by wj� = 1,

Xih(tj) = fk�h(tj) + ηijh (1)

with ηijh corresponds to some random noise, more details being given in Sec-
tion 2.2. Usually in segmentation, we assume that the signal is constant. Here,
we would like to emphasize some coherence in time given by the underlying func-
tion fk�h, but not necessarily through a strong assumption as constant. Then,
we propose to decompose our signal into several time periods that are meaning-
ful in practice (in hours, in days, in weeks depending on the application), and

https://github.com/laclauc/MixtSegmentation
https://github.com/laclauc/MixtSegmentation
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to have the same function fk�h within the considered interval, through the same
segment.

The modeling assumption is equivalent to a main function fk�h for the hth
component, for individuals belonging to the cluster k, and for a timepoint in
the �th segment. This means that within a segment and a cluster, there is a
random variation (seen as a noise) independent and identically distributed over
each component of the multivariate curve.

2.2. Projection onto a functional basis and matrix-variate model

We denote (Y ij) ∈ R
p the coefficient decomposition vectors of the component

j ∈ {1, . . . , d} onto the functional basis, and the individual i ∈ {1, . . . , n}, and
the orthonormal characterization leads to, for the level M ,

(Xi.(tj))1≤j≤d = ΠY ij ;

where Π is a matrix defined by the functional basis of size M . We focus on the
wavelet family, among which one can choose between several wavelets, such as
Haar, Daubechies to cite a few. Selecting an appropriate basis presents inher-
ent challenges, although our paper doesn’t delve extensively into this aspect.
Rather, our emphasis lies in investigating the influence of a complex model on
coefficients to capture a range of variations. Our approach prioritizes a nuanced
understanding over exhaustive testing of various bases. The localized assump-
tion inherent in wavelets aligns seamlessly with the requirement for constancy
in segmentation. The intentional choice of the Haar basis stems from its align-
ment with our research goals, demonstrated effectiveness in experiments, and
its ability to maintain simplicity and interpretability.Wavelets are particularly
well suited for the segmentation, as they are ordered and keep a temporal as-
pect. In Figure 2, the Haar basis employed in the experimental section is de-
picted, alongside reconstructions of coefficients at different levels on a simulated
curve. Every coefficient carries meaningful information, showcasing the capac-
ity of wavelets to broaden the spectrum of available choices. We consider the
wavelet coefficient dataset (Yi)1≤i≤n = (Yi.)1≤i≤n ∈ (Rd×p)n, which defines n
observations whose probability distribution is modeled by the following finite
matrix-variate Gaussian mixture of segmentation model. As mentioned previ-
ously, the heterogeneous population is represented by K clusters. For the cluster
k ∈ {1, . . . ,K}, the heterogeneity in time is described by Lk + 1 segments, de-
fined by Lk break-points Tk0 < Tk1 < · · · < TkLk

< Tk,Lk+1. Then, for an
observation i ∈ {1, . . . , n} in the cluster k ∈ {1, . . . ,K}, for � ∈ {0, . . . , Lk}
such that j ∈ {Tk,� + 1, Tk,� + 2, . . . , Tk,�+1}, we have:

[Yi]j.|(Zik = 1,Wj� = 1) = μk� + εij (2)

with μk� ∈ R
p, εij ∼ Np (0,Σk�) where Σk� is diagonal with the values

(σk�r)1≤r≤p.
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Fig 2. Illustration of the Haar basis. Top left: the Haar wavelet and its scaled version. Bottom
left: the Haar scaling function and its scaled version. Top right: reconstruction of the Haar
coefficients at several levels. We focus in the analysis on the level 3, displayed in green. Bottom
right: the residuals of the decomposition.

2.3. Identifiability of the model

In this section, we first establish the identifiability of the multivariate model (2).

Theorem 2.1 (Identifiability of (2)). Assume that:

(ID.1) For every k ∈ {1, . . . ,K} and � ∈ {0, . . . , Lk − 1}, there exists at least one
r ∈ {1, . . . , p} such that σk�r �= σk,�+1,r or μk�r �= μk,�+1,r.

(ID.2) We have:
p ≥ max

k∈{1,...,K}
Lk + 1.

(ID.3) If there exists k �= k′ such that Lk = Lk′ then:
• there exists � ∈ {0, . . . , Lk} such that Tk� �= Tk′,�,
• or there exists � ∈ {0, . . . , Lk} and r ∈ {1, . . . , p} such that:

σk�r �= σk′,�,r or μk�r �= μk′,�,r.

(ID.4) For every k ∈ {1, . . . ,K}, πk > 0.

Under these assumptions, the model (2) is identifiable.

The breakpoints models of each cluster are identifiable by the
assumption (ID.1) and (ID.2) (as introduced in Lebarbier (2005); Harchaoui and
Lévy-Leduc (2010); Brault, Chiquet and Lévy-Leduc (2017)). The assumption
(ID.3) allows to differentiate the clusters (see Droesbeke, Saporta and Thomas-
Agnan (2013)).

Mixture models are known to be identifiable up to a label switching: two
partitions can be the same while the cluster labels being reversed (see Stephens
(2000), (Mengersen, Robert and Titterington, 2011, Chapter 10) and Robert,
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Vasseur and Brault (2021)). In this model, a natural order is to choose the
labeling of each cluster such that

k ≤ k′ ⇔ Lk ≤ Lk′ .

This alleviates the problem of label switching; and it can be completely removed
when the (Lk)1≤k≤K are all different.

3. Estimation

In this paper, we assume that K the number of clusters is known, as well as the
number of segment within each cluster (Lk)1≤k≤K .

3.1. Maximum likelihood estimation

Using the model (2), under identifiability, by noting T the set of the break points
and θ = ((μk�r, σk�r)1≤k≤K,0≤�≤LK ,1≤r≤p, (πk)1≤k≤K) the set of parameters, we
obtain the following likelihood:

lik (Y ;K,T ,θ) =
n∏

i=1

K∑
k=1

πk

Lk∏
�=0

Tk,�+1∏
j=Tk�+1

p∏
r=1

[
1√

2πσk�r
e
− 1

2σk�r
(Yijr−μk�r)2

]
.

The mixture model leads to the product over individuals i ∈ {1, . . . , n} and
the sum over the clusters k ∈ {1, . . . ,K} while the segmentation is related
to the product over each segment � ∈ {0, . . . , Lk} and timepoints indexed by
j ∈ {Tk� + 1, . . . , Tk,�+1}, for the cluster k ∈ {1, . . . ,K}. In addition to the
parameters K, T and θ, we search to estimate the partition z.

We denote θ̂ the maximum likelihood estimator.

3.2. EM algorithm

Considering a mixture model, we use the Expectation Maximisation (EM) al-
gorithm (Dempster, Laird and Rubin (1977)) to estimate the parameters. The
principle is, for the step (c), to fix a parameter θ(c) and break points T , and to
maximize the following function:

(θ,T ) 	→ Q
(
θ,T

∣∣∣θ(c),T (c)
)

= Ez
∣∣Y ;θ(c),T (c) [log p (Y ,z;θ,T )]

where p(Y ,z;θ,T ) is the joint distribution of Y and z for fixed parameters θ
and break points T . To do so, we alternate between two steps:

E-step: For i ∈ {1, . . . , n}, k ∈ {1, . . . ,K} compute the values s
(c)
ik defined by:

s
(c)
ik = P

(
zik = 1

∣∣∣Y ;θ(c),T (c)
)

;
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M-step: Maximization with respect to θ and T the function
(θ,T ) 	→ Q

(
θ,T

∣∣∣θ(c),T (c)
)
.

For i ∈ {1, . . . , n}, k ∈ {1, . . . ,K}, the computation of s(c)
ik is explicit using

the following proposition.

Proposition 1 (E-Step). For every i ∈ {1, . . . , n} and k ∈ {1, . . . ,K} we have:

s
(c)
ik =

π
(c)
k

∏L
(c)
k

�=0
∏T

(c)
k,�+1

j=T
(c)
k� +1

∏p
r=1

[
1√

2πσ(c)
k�r

e
− 1

2σ(c)
k�r

(
Yi�r−μ

(c)
k�r

)2]
∑K

k′=1 π
(c)
k′

∏L
(c)
k′

�=0
∏T

(c)
k′,�+1

j=T
(c)
k′�+1

∏p
r=1

[
1√

2πσ(c)
k′�r

e
− 1

2σ(c)
k′�r

(
Yi�r−μ

(c)
k′�r

)2] .

For the maximization, the problem is more difficult due to the unknown
segmentation over time. The next proposition explicit the formulae for the pro-
portions (πk)1≤k≤K .

Proposition 2 (Proportion in the M-Step). For every k ∈ {1, . . . ,K} we have:

π
(c)
k =

s
(c)
+k

n
=

∑n
i=1 s

(c)
ik

n
.

The other parameters (μk�r, σk�r)1≤k≤K,1≤�≤LK ,1≤r≤p are given using the
dynamic programming (see for example Bellman and Kalaba, 1957; Kay, 1993).
We start by observing that

max
(θ,T )

Q
(
θ,T

∣∣∣θ(c),T (c)
)

= − 1
2

K∑
k=1

[
min
Tk.∈T

Lk∑
�=0

Δ(c)
k (Tk�;Tk,�+1)

]

− ndp

2 log (2π) +
K∑

k=1

s
(c)
+k log πk, (3)

where T = {0 = Tk0 < Tk1 < · · · < Tk,Lk+1 = d + 1} with for every k ∈
{1, . . . ,K}, 0 ≤ t1 < t2 ≤ d,

Δ(c)
k (t1; t2)

= min
μ∈Rp,

σ∈(R∗+)p

p∑
r=1

⎡⎣s(c)
+k(t2 − t1) log (σr) + 1

σr

t2∑
j=t1+1

n∑
i=1

s
(c)
ik (Yijr − μr)2

⎤⎦ . (4)

This optimization problem is explicitly solved in the following proposition, for
each cluster independently.

Proposition 3 (Form of Δ(c)
k ). For all k ∈ {1, . . . ,K} and 0 ≤ t1 < t2 ≤ d, we

have:

Δ(c)
k (t1; t2)
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=
p∑

r=1

⎡⎣s(c)
+k(t2 − t1) log (σ̂kt1r) + 1

σ̂kt1r

t2∑
j=t1+1

n∑
i=1

s
(c)
ik (Yijr − μ̂kt1r)

2

⎤⎦
with

Yi,t1:t2,r = 1
t2 − t1

t2∑
j=t1+1

Yijr

μ̂kt1r =
n∑

i=1

s
(c)
ik

s
(c)
+k

Yi,t1:t2,r

σ̂kt1r =
n∑

i=1

s
(c)
ik

s
(c)
+k

.
1

t2 − t1

t2∑
j=t1+1

(
Yijr − Yi,t1:t2,r

)2
.

To optimize the computation time, we suggest to first compute all the means
Y

(c)
i,t1:t2,r for t2 > t1. In particular, in the case of σ depends only on the cluster

k, we improve the complexity.

Proposition 4 (Complexity). The complexity of the EM algorithm with Nalgo
iterations is O

[
pnd2 max (d,KNalgo)

]
.

Proof. The values Yi,t1:t2,r are computed for each i, each r and each pair t1 <
t2: as the computation is a mean, the final complexity is O

(
pnd3). For each

iteration in the algorithm, the complexity of E-step is O (Kpnd) and, thanks
the storage of the Yi,t1:t2,r, the complexity of the computation of each matrix
Δ(c)

k is only O
(
npd2). Finally, the update of the estimation of μ and σ is

O (Knpd). The combination of all these complexities gives the result.

Remark that the two most time-consuming steps are the computation of the
means Yi,t1:t2,r and the computations of Δ(c)

k at each iteration; these two steps
can be easily parallelized. Moreover, the table of averages can be stored for later
use.

3.3. Consistency

In this section, we prove that the model introduced in Equation (2) is consistent.
To simplify notations, we consider univariate functional data or projection of the
observed functions onto a 1-dimensional basis, such that p = 1 in this section,
but the conclusion would be the same. To simplify the notations, we set σk� = 1,
but the results can be extended as well to any variance.

First, we assume that the parameter space is bounded, as introduced in Bickel
et al. (2013); Brault et al. (2020); Mariadassou and Tabouy (2020).

Assumption C.1. There exists M > 0 such that for all k ∈ {1, . . . ,K} and
� ∈ {0, . . . , Lk},

μk� ∈ [−M ;M ].
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We assume that there are enough observations in each segment:

Assumption C.2. There exists τmin > 0 such that for all k ∈ {1, . . . ,K} and
� ∈ {0, . . . , Lk},

Tk,�+1 − Tk� > τmind.

Let Tτmin the set of breakpoints satisfying Assumption (C.2).
We need an assumption about the rate of convergence.

Assumption C.3. We assume that log(n)/d −→
n,d→+∞

0.

We also want to distinguish between clusters. To do so, we introduce the
notion of equivalent clusters and the related symmetry.

Definition 3.1 (Equivalent clusters). Two partitions z� and z with K clusters
are equivalent, denoted z� ∼ z, if there exists a permutation σ ∈ S({1, . . . ,K})
such that for all i ∈ {1, . . . , n} and k ∈ {1, . . . ,K}, ziσ(k) = z�ik.

By similarity, we denote θ′,T ′ ∼ θ,T if there exists a permutation that leads
to the same parameters.

We can thus define a distance between two partitions.

Definition 3.2 (Distance for partitions). We define the distance d0,∼ between
two partitions z,z� with K clusters by

d0,∼(z�,z) = min
σ∈S({1,...,K})

K∑
k=1

n∑
i=1

z�ikziσ(k). (5)

For a partition z� and a radius r > 0, and Z is the set of all potential
partitions, let B (z�; r) the ball

B (z�; r) = {z ∈ Z |d0,∼(z,z�) ≤ rn} .

For the consistency of the estimator, we need to distinguish between close
clusters, assuming something stronger than Assumption (ID.3).

Assumption ID.3.s. If there exists k �= k′ such that Lk = Lk′ then we as-
sume that there exists at least τmind coordinates j such that the distribution of
Yij |z�ik = 1 is different from the distribution of Yij |z�ik′ = 1.

This is needed when the models within each segment are the same, and only
the segments are different.

We also need an assumption stronger than (ID.4) about the number of curves
in each cluster:

Assumption ID.4.s. There exists a constant c > 0 such that for every k ∈
{1, . . . ,K}, πk > c.

Variances are supposed to be equal whatever the cluster, the segment and
the dimension, and to have the value σkjr = 1. Extension to any variance is
straightforward but derivations of formula are more technical.
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Theorem 3.3. Let Y be a matrix of a n×T observations of the model (2) with
true parameter θ�,T � where the number of clusters K and the number of seg-
ments (Lk)1≤k≤,K are known. We assume (ID.1), (ID.3.s), (ID.4.s), (C.1), (C.2)
and (C.3). Then, for every parameter θ ∈ Θ and T ∈ Tτmin ,

p(Y ;θ,T )
p(Y ;θ�,T �) = max

(θ′,T ′)∼(θ,T )

p
(
Y ,z�;θ′,T ′)

p (Y ,z�;θ�,T �) [1 + oP (1)] + oP (1)

where oP are uniform over Θ and Tτmin , and (θ′,T ′) ∼ (θ,T ) means for any
parameter up to the label switching.

Sketch of proof. We will prove that the complete likelihood with a bad
clustering becomes small asymptotically with respect to the complete likelihood
associated to the true partition. To do so, we decompose the probability with
respect to potential partitions.

p(Y ;θ,T ) =
∑
z∈Z

p(Y ,z;θ,T )

=
∑
z∼z�

p(Y ,z;θ,T ) +
∑

z∈B(z�;c)
z�z�

p(Y ,z;θ,T ) +
∑

z/∈B(z�;c)

p(Y ,z;θ,T ).

Each term is controlled by the following propositions, that are proved in Ap-
pendix B.

Proposition 5 (Equivalent partitions). Under Assumptions (ID.1) and (ID.3),
we have for all θ ∈ Θ and T ∈ Tτmin :

∑
z∼z�

p(Y ,z;θ,T )
p (Y ,z�;θ�,T �) = max

(θ′,T ′)∼(θ,T )

p
(
Y ,z�;θ′,T ′)

p (Y ,z�;θ�,T �) [1 + oP (1)]

where oP is uniform on Θ.

Proposition 6 (Partitions close to the true one). Under Assumptions (ID.3.s),
(ID.4.s), (C.1), (C.2) and (C.3), we have that for all c̃ < c/4:

sup
(θ,T )∈Θ×Tτmin

∑
z∈B(z�;c̃)

z�z�

p (Y ,z;θ,T ) = oP [p (Y ,z�;θ�,T �)] .

Proposition 7 (Partitions far from the true one). Under Assumptions (C.1)
and (ID.4.s), asymptotically in n and d, if there exists a sequence of radius Rnd

converging to 0 such that Rnd > max
(√

logK/d, 4Diam(Θ)K2
√
ndδ(θ�) ,

4 log
( 1
c

)
dδ(θ�)

)
, then

for all θ ∈ Θ and all T ∈ Tτmin :

sup
(θ,T )∈Θ×Tτmin

∑
z/∈B(z�;Rnd)

p(Y ,z;θ,T ) = p(Y ,z�;θ�,T �)oP (1) (6)

with probability 1 − exp
(
−ε2

ndnd
)

where εnd = min
(

δ(θ�)Rnd

16 , 1/
√

2
)
.
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Then, we get that

p(Y ;θ,T ) =
∑
z∼z�

p(Y ,z;θ,T ) + p(Y |z�;θ�,T �)oP (1)

which gives the result.

Corollary 1. Let Y be a matrix of a n× T observations of the model (2) with
true parameter θ�,T � where the number of clusters K and the number of seg-
ments (Lk)1≤k≤K are known. We assume (ID.1), (ID.3.s), (ID.4.s), (C.1), (C.2)
and (C.3). Then, (

θ̂, T̂
)

P→
n,d→+∞

(θ�,T �) .

From Theorem 3.3, we have that the likelihood focuses on the true partition
of the data, hence the maximum likelihood estimator is asymptotically close to
the complete maximum likelihood, given the true partitions. In this particular
case, since the partitions are known, our problem boils down to a standard
segmentation problem.

4. Simulation study

We first provide a toy example to motivate the combination of clustering and
segmentation. Then, we do an empirical evaluation of our model on univariate
generated data. We also compare our approach with clustering and segmentation
performed independently.

4.1. On the importance of temporal coherence

Hereafter, we provide a toy example to emphasize why our method is needed
when considering clustering of functional data. For n = 60 observations, T = 16
and d = 30, we consider two regimes, the neutral one, seen as a Gaussian noise
N (0, 0.1), and the active one, generated from the Gaussian N (2, 1). We consider
K = 3 clusters, which are not ordered, but also L = 3 segments, which coincide
for all the clusters. Every point is neutral, except the first cluster for the first
segment, the second cluster for the second segment, and the third cluster for
the third segment. Such scenario can easily occur in reality if we consider for
instance electrical consumption by different entities that are active at different
time of the day (morning, afternoon and night). Even though the clustering
problem at hand is simple, existing clustering method for functional data (e.g.
funLBM (Bouveyron et al., 2017)) will struggle in such cases. Indeed, up to
the permutation of the column, there is only one row cluster (and vice-versa).
However, we want to avoid allowing the permutation of the columns, as we will
loose the semantic behind the timepoints, that are ordered.
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Table 1

Mean (std) ARI for the toy example for our method and its latent block model counterpart
(implemented in funLBM).

model / evaluation clustering segmentation
our model 1 (0.00) 0.82 (0.05)
funLBM 0.48 (0.20) 0.46 (0.16)

Fig 3. Illustration of the different settings for K = 3 with (α = 0.1 (left column), 0.2 (middle
column) and 1 (right column). The number of breakpoints is L1 = 1, L2 = 2, L3 = 3.

To showcase this issue, we ran funLBM with K = 2 clusters and L = 3
segments (clusters in columns in their case). For K = 3, the model was system-
atically obtaining an empty cluster1.

We report the results in Table 1. As there are no constraints for the segmen-
tation in funLBM, we compute the ARI. Unsurprisingly, our method performs
very well and strongly outperforms funLBM. We observe this behavior for two
reasons (1) funLBM encounters an identifiability problem for the case of K = 3;
(2) by allowing the model to shuffle the time dimension, the model focuses more
on separating the neutral vs. active regimes independently from the time at
which these regimes occur. For this reason, we argue that our modelisation is
best suited when dealing with functional data (or any ordered dependent data)
with heteorgeneity in the population through clusters and segments in time.

1the implementation provided by the authors does neither handle model selection, nor the
empty cluster problem.
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4.2. Experimental protocol

Data generation process We simulate data based on the following genera-
tive process. For a given number of multivariate observations n ∈ {100, 1000}
with H = 32 and a number of days d ∈ {50, 100}, we start by generating a mix-
ture model with K = 3 clusters with equal proportions (πk = 1

3 for k ∈ {1, 2, 3}).
For each k ∈ {1, . . . ,K}, we take:

fk�(tj) = (−1)k.α. cos
(

2πtj
1 + �

)
,

where α guides the amplitude of the generated curves, � ∈ {0, . . . , Lk} is the
index of the current segment, and j ∈ {1, . . . , T} is the index of the timepoint. As
a result α plays a dual role: the smaller α is, the harder it is to both differentiate
between the clusters and to detect the break-points. In the sequel, we consider
different settings by varying the values of α ∈ {0.1, 0.2, 1}. Finally, we fix the
variance σk� = 1 for all cluster k ∈ {1, . . . , 3} and segment � ∈ {1, . . . , Lk}.
Figure 3 illustrates all settings for K = 3 and fixed n and d.

Projection onto a wavelet basis The discretization of each component
of the p-dimensionial curve is projected onto a wavelet basis2, that represents
localized features of functions in a sparse way (Mallat (1999)). In our paper,
the Discrete Wavelet Transform (DWT) is performed using a computationally
fast pyramid algorithm (Mallat (1989); Misiti et al. (2004)). We use both scaling
functions to construct approximations of the function of interest, and the wavelet
functions serve to provide the details not captured by successive approximations.

Evaluation Metrics In order to evaluate the quality of our output, we con-
sider different metrics of evaluation. For the clustering part, we compute the
Adjusted Rand Index (ARI) (Hubert and Arabie (1985)) and the Normalized
Classification Error (NCE) (Robert, Vasseur and Brault (2021)).

The ARI is a measure of agreement between two partitions defined by

ARI(z∗, ẑ) =

∑
k,k′

(
nkk′

2
)
−

[∑
k

(
nk

2
)∑

k′
(
n̂k′
2
)
/
(
n
2
)]

1
2

[∑
k

(
nk

2
)

+
∑

k′
(
n̂k′
2
)]

−
[∑

k

(
nk

2
)∑

k′
(
n̂k′
2
)]

/
(
n
2
) ,

where nk denotes the number of observations contained in the k-th cluster de-
scribed by z�, n̂′

k is the number of observations in the estimated k-th cluster
described by ẑ and nkk′ denotes the number of observations that are in the
intersection between ground-truth cluster k and the estimated cluster k′. The
ARI lies between 0 and 1, with 1 indicating a perfect agreement between the
two partitions and 0 that the two partitions are random.

The NCE is defined by

NCE(z�, ẑ) = 1 − d0,∼(z�, ẑ)
n/K

,

2Note that any functional basis might be used to project the observed functions.
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Table 2

Mean (std) ARI for different settings: (n, d) in row and α in columns.

ARI ↑
(n, d) | α 0.1 0.2 1

(100,50) 0.13 (0.15) 0.61 (0.15) 1 (0)
(100,100) 0.32 (0.19) 0.76 (0.16) 1 (0)
(1000,50) 0.33 (0.13) 0.76 (0.1) 1 (0)
(1000,100) 0.55 (0.099) 0.93 (0.046) 1 (0)

where the distance d0,∼ between two partitions z,z� is given by Eq. (5). The
NCE lies in [0, 1], with 0 indicating a perfect estimation of z�.

Regarding the quality of the segmentation part, we compute the Hausdorff
distance (Brault et al. (2018a)), defined by

dHaus(T∗; T̂) = max
k∈{1,2,3}

max
1≤�≤Lk

{
|T ∗

k� − T̂k�|
d

}
.

Note that dHaus ∈ [0, 1], where 0 indicates a perfect matching between the
ground-truth and the estimated break-points.

Finally, we propose to evaluate the quality of the parameter estimation with
respect to the real values, by taking the difference between the ground-truth
parameters (obtained by using the projection of fk�, without additional noise)
and the estimated ones.

4.3. Results

ARI results are summarized in Table 2 (NCE results are consistent and presented
in the Appendix). We observe that our method behaves as expected. As α
increases (i.e. the task becomes easier), ARI and NCE increase and decrease,
respectively. We obtain a perfect clustering when α = 1. In addition, we recover
the results of Theorem 3.3: one can see that as the number of observations
(d) and the number of individuals (n) increases, the classification gets better
(contrary to the one-dimensional mixture model where the proportion of errors
tends toward a limit value even if the number of individuals keeps increasing).

The same trend can be observed for the segmentation results presented in
Figure 4. We observe that the quality of the segmentation part (and hence the
breakpoints localization) is correlated with the clustering performance afore-
mentioned.

Finally, Figure 5 shows the performance of our approach on the estimation
of the model parameters. First, we recover the consistency results stated in
corollary 1. We also observe that the parameters from cluster one are better
estimated than the ones from cluster three. This comes as no surprise as the
number of breakpoints is less for cluster one, resulting in more observations to
perform the estimation of the parameters.
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Fig 4. Boxplots of the Hausdorff distance for various combinations (n, d). Color represents
the complexity.

Fig 5. Boxplots of the difference μ̂k� and μ�
k� following the number of curves (rows), obser-

vations (columns), difficulties (x-axis of each graphic) and cluster (colors).

Next, we present comparative results between MixSeg and two simple base-
lines: a model that only performs clustering and a model that focuses on the
segmentation.
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Table 3

ARI for different settings: (n, d) in row and α in columns with mean and standard deviation.

ARI ↑
Setting Model 0.1 0.2 1

(100,50) MixSeg 0.13 (0.15) 0.61 (0.15) 1 (0)
SimpleMix 0.05 (0.07) 0.22 (0.17) 0.98 (0.09)

(100,100) MixSeg 0.32 (0.19) 0.76 (0.16) 1 (0)
SimpleMix 0.13 (0.11) 0.39 (0.17) 0.99 (0.08)

(1000,50) MixSeg 0.33 (0.13) 0.76 (0.10) 1 (0)
SimpleMix 0.08 (0.07) 0.29 (0.14) 1 (9e-04)

(1000,100) MixSeg 0.55 (0.10) 0.93 (0.05) 1 (0)
SimpleMix 0.17 (0.12) 0.41 (0.14) 1 (0)

4.4. Comparison with independent counterparts

Simple mixture model
First, we run a simple mixture model following N (μk,r, σ

2
r) with at least 10

random initializations (and maximum 100 if some clusters are empty). ARI is
reported in Table 3. Our approach is referred to as MixSeg while the mixture
model alone is referred to as SimpleMix. We note that on the most simple, i.e.,
configuration α = 1, both approaches perform similarly. However, for the two
other cases, α = 0.2 and 0.1, MixSeg significantly outperforms the simple mix-
ture model, with ARI and NCE (see Appendix) that are 2 to 3 times better.
Simple change point detection

For this part, let us assume that the number of change points to be detected
is 5. This number corresponds to the total change points across all clusters.
Looking at Figure 3, the first cluster has a single change point, while the second
has two, and the last has three, one of which is common with the first cluster.
For α and n, d we consider the same scenario as previously. Hausdorff distances
are presented in Figure 6, where the simple change point detection approach is
referred to as SimpleSeg. We can see that the performance on the change point
detection part for our approach is strongly correlated with the clustering per-
formance (see Table 3). In particular, for n, d and α relatively small, we observe
that SimpleSeg achieves better results than our approach. For this scenario,
the clustering results add noise to the change point detection part. However, as
n, d increases or when α = 1, the clustering results are better and enable our
approach to achieve better or comparable results on change point detection.

4.5. Computational time

In order to evaluate the time complexity of MixSeg, we follow the experimen-
tal protocol described a the beginning of this section and increase n and d by
50 at each step. For each configuration (n, d, α), we simulate 20 matrices and
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Fig 6. Boxplots of the Hausdorff distance varying the number of curves, the number of ob-
servations and difficulties (colors).

for each matrix, we run our method 5 times. Running times are recorded with
the microbenchmark package (version 1.4.10; see Mersmann (2021)) and simu-
lation plans are launched on a cluster3. Results are presented in Figure 7 and
consistent with Proposition 4.

5. Real data analysis

We propose to apply our model to analyze electricity consumption using the
Enedis Open Data Set4. We focus on the year 2020 (52 weeks), corresponding
to the outburst of the COVID-19 pandemic. We built 984 observations by cross-
referencing information on the type of contract subscribed to, the customer
profile and the region of France. Out of these 984 observations, we removed
those with missing values to obtain a final population of 889 individuals. The
curves are observed in kW every 30 minutes. We have chosen to analyze the
curves by considering the week as a time unit of interest, hence we project those
curves onto the Haar basis with p = 42 (d = 52 weeks).

Remark We first ran our approach on such data. The result of the model
selection (see next paragraph) resulted in 2 clusters. After having analyzed these
results, we found that the model isolated all profiles associated with public
lighting contracts, which are not subject to a notion of energy consumption
behavior in the sense that interests us. For this reason, we chose to discard
these observations in the following, which give us a final population of 791
observations.

5.1. Model selection

When dealing with real data, we have no access to the true number of clusters
or the number of breakpoints. We therefore propose to adapt a model selection

3Cluster Luke44 – 28 cores, 128Go RAM, GPU 2xK40m, 2xIntel Xeon E5-2680 2.40
GHz more information https://scalde.gricad-pages.univ-grenoble-alpes.fr/web/pages/
presentation.html

4available at https://data.enedis.fr/pages/accueil/?id=init

https://scalde.gricad-pages.univ-grenoble-alpes.fr/web/pages/presentation.html
https://scalde.gricad-pages.univ-grenoble-alpes.fr/web/pages/presentation.html
https://data.enedis.fr/pages/accueil/?id=init
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Fig 7. Computational time (in minutes) of n fixed and d varying (top line) and for d fixed
and varying n (bottom line). We present results for α = 0.1 and α = 1.

strategy proposed in Zhang and Siegmund (2007) relying on the Bayesian infor-
mation criterion (BIC) (Schwarz (1978)). We obtain the following criterion for
our model:

BIC(K,L) = max
θ,T

lik (Y ;K,T ,θ) − K − 1
2 log(n)︸ ︷︷ ︸

for π

−1
2

K∑
k=1

[
3p(Lk + 1) log(ndp) +

Lk∑
�=0

log
(
T̂k,�+1 − T̂k�

d
np

)]
︸ ︷︷ ︸

for μ and T

−K

2 log(ndp)︸ ︷︷ ︸
for σ

.

The general form of the penalty in this criterion allow us to account for the
specificities of all parameters.

Since an exhaustive exploration of the number of clusters and breakpoints is
not possible, we adapt the bikm1 strategy proposed by Robert (2021). Given a
reference configuration (the current state of the model), we proceed as follows:

• Backward Search: we remove a cluster (K possible options). For each
of these options, we make 10 random initializations as well as a random
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Fig 8. Illustration of the real data, for an individual: curves (top), vectorial notation (middle)
and matrix projection (bottom).

distribution of the observations of the deleted cluster in the remaining
ones.

• Forward Search: we add a cluster with 1 breakpoint and make 10 random
initializations.

• Number of breakpoints: we proceed with the same principles (back-
ward and forward searches) for the number of breakpoints (with K fixed).

In the end, we obtain K = 3 clusters and the number of breakpoints within
each cluster is given by L1 = 1, L2 = 2 and L3 = 6. Figure 9 shows the dis-
tribution of our observations within clusters and the locations of the different
breakpoints. We observe that cluster 3 only contains one observation and hence
overfits on the number of breakpoints. Based on the information at our dis-
posal (type of contract, profile, and geographic area), we have not been able to
draw interesting conclusions for this particular observation5. Aside from that
particular point, the obtained clusters are essentially shaped to distinguish the
profiles built by Enedis (see Table 4). We believe that choosing a less penalizing
BIC criterion could reveal less discriminating effects than the profile, such as a
regional effect for instance.

5We are currently investigating this point with the help of Enedis
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Fig 9. Distribution of the observations across clusters (horizontal dashed lines) and localiza-
tion of the breakpoints within each cluster (vertical dashed lines). Vertical dot points areas
correspond to the start and end weeks of the lockdown periods.

Table 4

Contingency table between clusters and Enedis profiles.
ENT/PRO RES1, 3 or 4 Other RES

C
lu

st
er 1 341 36 182

2 0 0 231
3 0 0 1

5.2. Results discussion

Let us begin by recalling the two periods of lockdown observed in France in 2020:
the first one lasted from March 17th until May 11th, while the second one started
on October 30th and ended on December 15th. For cluster 1, which is mainly
composed of enterprises and professionals, we observe a unique breakpoint that
matches with the beginning of the first lockdown. We note that for this cluster
no other breakpoints are observed. We can make two assumptions regarding this
point: (1) it indicates that the regime change operated by these consumers did
not return to normal 6 after the beginning of the crisis; (2) the return to this so-
called normal regime did not occur at the same moment for all individuals. For
the second cluster, corresponding mainly to the Residential profiles, we observe
two breakpoints, each appearing during the lockdown period (mid April and
end of November). Once again, two hypothesis are in order: (1) a delayed effect
of each lockdown or (2) the impact of outdoor temperatures, particularly high
in France between mid-April and the end of November. Finally, for the last
cluster, the fact that it only contains one observation does not allow us to
draw significant conclusions. We can only note that most of the breakpoints
matches breakpoints from both cluster 1 and 2. Additional results are provided
in Figures 11, 12 and 13 in the Supplementary.

6here normal refers to prior to the crisis
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6. Conclusion

In this paper, we define a novel model to analyze multivariate functional data
by performing clustering and segmentation simultaneously. We derive an EM al-
gorithm where the maximization step is carried out by dynamic programming.
From a theoretical point of view, we establish the identifiability and the consis-
tency of the proposed model. We apply this model on synthetic data to control
the behavior and validate our theoretical statements. We also demonstrate the
usefulness of our model on real electricity consumption data by focusing on the
year 2020 corresponding to the outbreak of the COVID pandemic.

This work can be further extended in different directions. On the estimation
part, three developments can be considered. To speed up the parameter estima-
tion, we could adapt the pruned dynamic programming algorithm proposed by
Rigaill (2015) and recently improved by Maidstone et al. (2017), who proposed
to prune the set of candidate change-points rather than looking at all possible
cases. In order to circumvent this speed problem, a second alternative could be
to replace the current maximization step with a group-lasso procedure for the
parameter estimation. For instance Brault, Chiquet and Lévy-Leduc (2017) pro-
posed to transform the problem into an equivalent estimate of a linear regression
whose parameter of interest would be sparse and thus to use the LASSO (Least
Absolute Shrinkage and Selection Operator) procedures. The main challenge of
these methods being the regularization parameter of the LASSO method and
the multiplication of the number of estimated breakpoints. Moreover, in relation
to the real observed data, a non parametric extension based on rank statistics
(see Brault et al. (2018b)) can be studied. Finally, regarding the model selec-
tion criterion proposed in the experimental part, a theoretical study of the latter
would allow us to define the most appropriate form for the penalty. Indeed, the
first results appear to indicate that the proposed version is too penalizing, not
allowing to highlight fine-grained information.

Appendix A: Identifiability

To prove Theorem 2.1, we need the following lemma:

Lemma A.1 (Identifiability for the breakpoints model). We define a L-
breakpoints model of p-dimensional spherical Gaussian of length d with the pa-
rameters 0 = T0 < T1 < · · · < TL < TL+1 = d, μ ∈ M(L+1)×p (R) and
σ ∈ (R+

� )L+1 with the following likelihood for every x ∈ R
d×p:

p(x;T ,μ,σ) =
L∏

�=0

T�+1∏
j=T�+1

p∏
r=1

f (xjr;μlr, σ�r)

where f is the density of an univariate Gaussian distribution. We assume that:

(ID.a) For every � ∈ {0, . . . , L}, there exists r ∈ {1, . . . , p} such that:

σ�r �= σ�+1,r or μ�r �= μ�+1,r.
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(ID.b) We have d ≥ L + 1.

Under the assumptions (ID.a) and (ID.b), the model is identifiable.

Proof. Let two parameters (L,T ,μ,σ) and
(
L′,T ′,μ′,σ′) satisfying the as-

sumptions (ID.a) and (ID.b), and X and X ′ the random matrices depending
of each parameter. We assume that X and X ′ have the same distribution. To
prove that the parameters are equal, we use the characteristic function defined
for every ξ ∈ R

d×p by:
ΦX (ξ) = E

[
e〈iξ,X〉

]
where 〈·, ·〉 is the scalar product and i is the imaginary number, satisfying i2 =
−1. In our case, we have, for every ξ ∈ R

d×p:

ΦX (ξ) = E

[
e〈iξ,X〉

]
=

d∏
j=1

E

[
e
〈
iξj ,Xj

〉]

=
L∏

�=0

T�+1∏
j=T�+1

p∏
r=1

E

[
e〈iξjr,Xjr〉

]
=

L∏
�=0

T�+1∏
j=T�+1

p∏
r=1

(
eiξjrμ�r−

σ2
�rξ2jr

2

)

= exp

⎡⎣ L∑
�=0

T�+1∑
j=T�+1

p∑
r=1

(
iξjrμ�r −

σ2
�rξ

2
jr

2

)⎤⎦
= exp

⎡⎣i L∑
�=0

p∑
r=1

μ�r

T�+1∑
j=T�+1

ξjr −
L∑

�=0

p∑
r=1

σ2
�r

2

T�+1∑
j=T�+1

ξ2
jr

⎤⎦ .

Let w be the vector of {0, . . . , L}d with wj = � if and only if the T� + 1 ≤ j ≤
T�+1. Then,

ΦX (ξ) = exp

⎡⎣i d∑
j=1

p∑
r=1

ξjrμwjr −
1
2

d∑
j=1

p∑
r=1

ξ2
jrσ

2
wjr

⎤⎦ .

The distribution of X and X ′ are equal if and only if the characteristic functions
are equal: for all ξ ∈ R

d×p, we have

ΦX (ξ) = ΦX′ (ξ)

⇔ i

d∑
j=1

p∑
r=1

ξjrμwjr −
1
2

d∑
j=1

p∑
r=1

ξ2
jrσ

2
wj ,r =

i

d∑
j=1

p∑
r=1

ξjrμ
′
w′

jr
− 1

2

d∑
j=1

p∑
r=1

ξ2
jrσ

′
w′

j ,r
2

⇔ i

d∑
j=1

p∑
r=1

ξjr

(
μwjr − μ′

w′
jr

)
− 1

2

d∑
j=1

p∑
r=1

ξ2
jr

(
σ2
wjr − σ′2

w′
jr

)
= 0.
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A polynomial is null if and only all coefficients are null:

for every j ∈ {1, . . . , d},
{

for every r ∈ {1, . . . , p}, μwjr = μ′
w′

jr

and σ2
wjr = σ′2

w′
j
.

By the assumption (ID.b), we know that there is at least one observation by
segment (by definition of T and T ′) then, by definition also, w1 = 0 = w′

1 which
implies that

for every r ∈ {1, . . . , p}, μ0,r = μ′
0,r and σ2

0,r = σ′2
0,r.

Then, if we assume that T1 �= T ′
1 (for example, T ′

1 > T1), we observe that
wT1+1 = 0 and w′

T1+1 = 1 but we know that:

for every r ∈ {1, . . . , p}, μwT1+1,r = μ′
w′

T1+1,r
and σ2

wT1+1
= σ′2

w′
T1+1

⇔ for every r ∈ {1, . . . , p}, μ0,r = μ′
1r and σ2

0,r = σ′2
1r

⇔ for every r ∈ {1, . . . , p}, μ′
0,r = μ′

1r and σ′2
0,r = σ′2

1r

by the previous results. This affirmation contradicts the assumption (ID.b),
therefore T1 = T ′

1. We then continue with wT1+1 = 1 = w′
T1+1 and by an

identical reasoning, we show that

for every r ∈ {1, . . . , p}, μ1r = μ′
1r and σ2

1r = σ′2
1r

and so on until the segment [TminL,L′ + 1;TminL,L′+1]. If L = L′, the proof
is finished since we prove that all the parameters are identical. If L �= L′, for
example L > L′, we observe that wTL′+1+1 = L + 1 (since by the previous
reasoning TL = T ′

L and TL′ < TL′+1 < d) and w′
TL′+1+1 = L′ = L then, by the

same reasoning, this implies:

for every r ∈ {1, . . . , p}, μwT
L′+1+1,r = μ′

w′
T
L′+1+1,r

and σ2
wT

L′+1+1,r = σ′2
w′

T
L′+1+1,r

⇔ for every r ∈ {1, . . . , p}, μL′+1,r = μ′
L′,r and σ2

L′+1,r = σ′2
L′,r

⇔ for every r ∈ {1, . . . , p}, μL′+1,r = μL′,r and σ2
L′+1,r = σ2

L′,r

which again contradicts the assumption (ID.b). Then, L = L′ and, the param-
eters being identical, the model is identifiable.

To prove Theorem 2.1, we start by observing that the assumptions (ID.1)
and (ID.3) imply the assumptions (ID.a) and (ID.b) of Lemma A.1 and, with
the assumptions (ID.2), we have that the distribution of each cluster is unique.
As the image of the distribution functions by any isomorphism defined on the
vector subspace generated by the set of distribution functions is a free family
in the arrival space, then model is identifiable (see Droesbeke, Saporta and
Thomas-Agnan (2013)).
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Appendix B: Consistency

B.1. Notations and first results

Let z� be the true partition, and z any partition.
We denote RK (z�,z) the matrix of size K about contingency of intersection

of the two clusterings: for all (k, k′) ∈ {1 . . . ,K}2,

RK (z�,z)k,k′ =
n∑

i=1
z�ikzi,k′ . (7)

Particularly, remark that marginals give the contingency table:

∀k ∈ {1, . . . ,K},RK (z�,z)k,+ = z�+,k (8)
∀k′ ∈ {1, . . . ,K},RK (z�,z)+,k′ = z�k′,+. (9)

Also, if the two partitions are equal up to label switching, then RK (z�,z) is
diagonal up to a permutation of rows and columns.

Similarly, we denote N

(
k,k′)

(Lk+1)×(Lk′+1) (T �,T ) the same matrix for the seg-
ments: for all (k, k′) ∈ {1 . . . ,K}2, for all (�, �′) ∈ {1 . . . , Lk} × {1 . . . , Lk′},

N

(
k,k′)

(Lk+1)×(Lk′+1) (T �,T )�,�′ =
∣∣∣D�k

�

⋂
Dk′

�′

∣∣∣ (10)

where

Dk′

�′ = {j ∈ {1, . . . , d} |Tk′�′ + 1 ≤ j ≤ Tk′,�′+1 } ,

D�k
′

�′ =
{
j ∈ {1, . . . , d}

∣∣T �
k′�′ + 1 ≤ j ≤ T �

k′,�′+1
}
.

Remark that
Lk1∑
�1=1

N
(k1,k)
(Lk1+1)×(Lk+1) (T �,T )�1,� =

∣∣∣D�k
�

∣∣∣ . (11)

For every (θ,T ,z), we denote

Fn (θ,T ,z) = log p(Y |z;θ,T )
p(Y |z�;θ�,T �) ,

and its expectation

gn (θ,T ,z) = EY |z�;θ�,T � [Fn (θ,T ,z)] .

In the following, we study the Kullback-Leibler divergence between two Gaus-
sian distributions with variance 1. As the distributions only depend on the re-
spective means, we denote KL (μ, μ′) this divergence. Remark that

KL(μ, μ′) = 1
2(μ− μ′)2. (12)
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Proposition 8 (Distribution of Fn (θ,T ,z)). For all θ, T ∈ Tτmin and z, we
get

Fn (θ,T ,z) ∼ N (gn (θ,T ,z) , gn (θ,T ,z)) .

with

gn (θ,T ,z)

= −
K∑

k=1

K∑
k′=1

Lk∑
�=1

Lk′∑
�′=1

KL (μ�
k�, μk′�′)RK (z�,z)k,k′ N

(
k,k′)

(Lk+1)×(Lk′+1) (T �,T )�,�′ .

The proof stands in Section B.5.
We are also particularly interested in the maximum of gn

Λ̃n(z,T ) = max
θ∈Θ

gn (θ,T ,z)

Proposition 9. For all z,T ,

Λ̃n(z,T )

= −1
2

K∑
k=1

Lk∑
�=1

1∣∣∣D�k
�

∣∣∣ z�
+,k

K∑
k1=1

Lk1∑
�1=1

RK (z�,z)k1,k
N

(k1,k)
(Lk1+1)×(Lk+1) (T �,T )�1,�

×
K∑

k2=1

Lk2∑
�2=1

RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,� KL

(
μ�
k1,�1 , μ

�
k2,�2

)
The proof stands in Section B.5.
Then, we need a measure of the minimal difference between two different

parameters, computed through the Kullback-Leibler divergence.

Definition B.1 (Minimal Kullback-Leibler divergence). Let δ(θ�) be the min-
imal nonzero Kullback-Leibler divergence:

δ(θ�) = min
k1,�1,k2,�2

μ�
k1,�1

�=μ�
k2,�2

KL
(
μ�
k1,�1 , μ

�
k2,�2

)
> 0.

B.2. Proof of Proposition 5: equivalent partitions

Let σ ∈ S({1, . . . ,K}) be a permutation. We say that (π,μ,T ) has a symmetry
for σ if we have, for all k ∈ {1, . . . ,K}:

πσ(k) = πk, ∀� ∈ {1, . . . , Lk}, μσ(k),� = μk� and Tσ(k),� = Tk�.

We denote Sym(θ,T ) the set of permutations such that (θ,T ) has a symmetry.
Remark that under Assumption (ID.3), we have

#Sym (θ,T ) = 1,
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which makes the next computations easier than in Brault et al. (2020), where
we directly get, in our particular case, {σ ∈ Sz,z�} = {(θ′,T ′) ∼ (θ,T )}.

Let σ be a permutation such that for all i ∈ {1, . . . , n} and k ∈ {1, . . . ,K},
we have

ziσ(k) = z�ik,

Sz,z� the set of all possible permutations and we denote z(σ) :=
(
ziσ(k)

)
ik

. We
have:

p(Y ,z;θ,T ) = p
(
Y ,z�(σ);θ,T

)
= p

(
Y ,z�;θ(σ),T (σ)

)
.

If σ ∈ Sym(θ), it leads to p(Y ,z;θ,T ) = p (Y ,z�;θ,T ). By summing, we get∑
z∼z�

p(Y ,z;θ,T ) =
∑

σ∈Sz,z�

p
(
Y ,z�(σ);θ,T

)
=

∑
σ∈Sz,z�

p
(
Y ,z�;θ(σ),T (σ)

)
=

∑
(θ′,T ′)∼(θ,T )

p
(
Y ,z�;θ′,T ′) .

However, the function θ 	→ p (Y ,z�;θ,T ) is unimodal and maximal for the
maximum of the complete likelihood. As the estimator is consistent as soon as
we have the true partition, under Assumption (ID.1), we have p (Y ,z�;θ,T ) =
OP [p (Y ,z�;θ�,T �)] when θ is in a neighborhood of θ� and p (Y ,z�;θ,T ) =
oP [p (Y ,z�;θ�,T �)] elsewhere. If θ is close to θ�, the set of equivalent θ′ but
not symmetric are far and we get:

p
(
Y ,z�;θ′,T ′) = oP [p (Y ,z�;θ�,T �)] .

Then, ∑
(θ′,T ′)∼(θ,T )

p
(
Y ,z�;θ′,T ′)

p (Y ,z�;θ�,T �) = max
(θ′,T ′)∼(θ,T )

p
(
Y ,z�;θ′,T ′)

p (Y ,z�;θ�,T �) [1 + oP (1)] .

B.3. Proof of Proposition 6: partitions that are close

Lemma B.2. Assume Ass. (ID.4.s) with parameter c > 0. Let the event

Ω1(c) =
{
z� ∈ Z

∣∣∀k ∈ {1, . . . ,K}, z�+,k ≥ nc/2
}
,

where Z is the set of all possible partitions. Then,

Pθ�

(
Ω1(c)

)
≤ Ke−

nc2
2 .

Proof. First, remark that for all k ∈ {1, . . . ,K}, Z�
+,k ∼ B(π�

k) with π�
k > c

according to Assumption (ID.4.s). Then, using Hoeffding inequality,

Pθ�

(
Ω1(c)

)
= Pθ�

(
K⋃

k=1
{Z�

+,k < nc/2}
)

≤
K∑

k=1
Pθ�

(
Z�

+,k < nc/2
)
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≤
K∑

k=1
Pθ�

(
Z�

+,k < nπ�
k/2

)
≤

K∑
k=1

Pθ�

(
Z�

+,k − nπ�
k < −nπ�

k/2
)

≤
K∑

k=1

exp
[
− 2 (−nπ�

k/2)2∑n
i=1(1 − 0)2

]
≤

K∑
k=1

exp
[
−2n2π�

k
2

4n

]

≤
K∑

k=1

exp
[
−nπ�

k
2

2

]
≤

K∑
k=1

exp
[
−nc2

2

]
≤ K exp

[
−nc2

2

]
.

In the next lemma, we split the balls into slices.

Lemma B.3 (Upper bounding of Fn (θ,T ,z)). Under Assumptions (ID.3.s),
(C.1) and (C.2), for all r ≥ 1/n, for all θ ∈ Θ and z ∈ Z such that
d0,∼(z,z�) = rn, we have:

Fn (θ,T ,z) ≤ −dτminδ (θ�)
2 rn [1 + oP (1)] . (13)

Proof. First, we remark that for all θ, T ∈ Tτmin and z, we have:

Fn (θ,T ,z) ≤ Fn (θ,T ,z) − gn (θ,T ,z) + Λ̃n (z)

≤ Fn (θ,T ,z) − gn (θ,T ,z) − dτminδ(θ�)
2 d0,∼(z,z�)

≤ Fn (θ,T ,z) − gn (θ,T ,z) − dτminδ(θ�)
2 rn.

By Lemma 8, Fn (θ,T ,z) − gn (θ,T ,z) is a centered Gaussian. We also know
that

(μk� − μk′�′)2 ≤ (DiamΘ)2

Lk∑
�=1

Lk′∑
�′=1

N

(
k,k′)

(Lk+1)×(Lk′+1) (T �,T )�,�′ ≤ d

K∑
k=1

K∑
k′=1

RK (z�,z)k,k′ ≤ n,

then using Lemma B.6, we get for all t > 0:

P (Fn (θ,T ,z) − gn (θ,T ,z) ≥ t) ≤ exp
{
− t2

2Diam(Θ)2nd

}
,

then for all partition such that d0,∼(z,z�) = rn, we have:

P

(
Fn (θ,T ,z) − gn (θ,T ,z) ≥ dd0,∼(z,z�)τminδ (θ�)

2

)
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≤ exp
{
−

d2τ2
mind0,∼(z,z�)2δ(θ�)2

22

2Diam(Θ)2nd

}

≤ exp
{
−δ (θ�)2 dτmind0,∼(z,z�)r

8Diam(Θ)2

}
−→

n,d→+∞
0,

where d0,∼ depends on n. Then,

Fn (θ,T ,z) ≤ oP

[
dτmind0,∼(z,z�)δ (θ�)

2

]
− dτminδ (θ�)

2 rn

≤ −dτminδ (θ�)
2 rn [1 + oP (1)]

Lemma B.4 (Having different partitions). For all c > 0, considering the event
Ω1(c), we have for all c̃ ≤ c/4 and z ∈ B (z�, c̃):

p (z;θ,T )
p (z�;θ�,T �) ≤ OP (1) eMc/4‖z−z�‖0 . (14)

Proof. Considering Ω1(c): for all k ∈ {1, . . . ,K}, we have z�+,k ≥ nc/2. As
z ∈ B (z�, c̃) with c̃ ≤ c/4 then for all k ∈ {1, . . . ,K}, we have z+,k ≥ nc/4.

For a partition z, let π̂ (z) be the maximum of π 	→ p (z;π): for all k ∈
{1, . . . ,K},

π̂ (z)k = z+,k

n
.

Then, we have

p (z;θ,T )
p (z�;θ�,T �) = p (z;π)

p (z�;π�) ≤ p (z; π̂ (z))
p (z�; π̂ (z�)) × p (z; π̂ (z�))

p (z�;π�) ,

by definition of π̂ (z). Using Brault et al. (2020)[Lemma D.2] we get:

log
[

p (z; π̂ (z))
p (z�; π̂ (z�))

]
= log p (z; π̂ (z)) − log p (z�; π̂ (z�))

=
n∑

i=1

K∑
k=1

zik log π̂ (z)k −
n∑

i=1

K∑
k=1

z�ik log π̂ (z�)k

= n

K∑
k=1

[π̂ (z)k log π̂ (z)k − π̂ (z�)k log π̂ (z�)k] .

Let H(π) =
∑K

k=1 πk log πk. This function is differentiable and we can use the
mean value theorem to the function x 	→ −x log x with derivative x 	→ log x+1.
Then, for all k ∈ {1, . . . ,K}, there exists κk ∈]π�

k;πk[ such that

πk log πk − π�
k log π�

k

πk − π�
k

= − log κk − 1
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⇒
∣∣∣∣πk log πk − π�

k log π�
k

πk − π�
k

∣∣∣∣ = |− log κk − 1| .

However, as π and π� are regular enough, we know that κk ∈]c/4; 1− c/4[ then
there exists a constant Mc/4 such that∣∣∣∣πk log πk − π�

k log π�
k

πk − π�
k

∣∣∣∣ ≤ Mc/4

2 .

By summing, we get

|H(π) −H(π�)| =

∣∣∣∣∣
K∑

k=1
πk log πk −

K∑
k=1

π�
k log π�

k

∣∣∣∣∣
≤

K∑
k=1

Mc/4

2 |πk − π�
k| ≤

Mc/4

2 ‖π − π�‖1 .

Finally, we have∣∣∣∣log
[

p (z; π̂ (z))
p (z�; π̂ (z�))

]∣∣∣∣
= n |H(π̂ (z)) −H(π̂ (z�))| ≤

nMc/4

2 ‖π̂ (z) − π̂ (z�)‖1

≤
nMc/4

2

K∑
k=1

∣∣∣∣z+,k

n
−

z�+,k

n

∣∣∣∣
≤

Mc/4

2

n∑
i=1

K∑
k=1

|zik − z�ik| ≤
Mc/4

2

n∑
i=1

K∑
k=1

1{zik =z�
ik}

≤ Mc/4 ‖z − z�‖0 .

Indeed, if i does not belong to the true partition, there are two nonzero terms.
On the other side, by the law of large numbers, we know that π̂ (z�) =

OP (π�) and as π� is regular, we have:

p (z; π̂ (z�))
p (z�;π�) = OP (1) . (15)

Proof of Proposition 6. Considering c̃ < c/4, θ ∈ Θ and T ∈ Tτmin , considering
the event Ω1(c):∑

z∈B(z�;c̃)
z�z�

p (Y ,z;θ,T )

=
∑

z∈B(z�;c̃)
z�z�

p (Y |z;θ,T ) p (z;θ,T ) p (Y |z�;θ�,T �)
p (Y |z�;θ�,T �)
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=
∑

z∈B(z�;c̃)
z�z�

p (Y ,z�;θ�,T �)
p (z�;θ�,T �) p (z;θ,T ) p (Y |z;θ,T )

p (Y |z�;θ�,T �)

= p (Y ,z�;θ�,T �)
∑

z∈B(z�;c̃)
z�z�

p (z;θ,T )
p (z�;θ�,T �)e

Fn(θ,T ,z)

= p (Y ,z�;θ�,T �)
∑

z∈B(z�;c̃)
z�z�

OP (1) eMc/4‖z−z�‖0e−
dτminδ

(
θ�)

2 ‖z−z�‖0[1+oP (1)]

using Eqs. (13) and (14). Then,∑
z∈B(z�;c̃)

z�z�

p (Y ,z;θ,T )

≤ p (Y ,z�;θ�,T �)OP (1)
[c̃n]∑
R=1

(
n

R

)
KReMc/4R− dτminδ

(
θ�)

2 R[1+oP (1)]

because there are at most
(
n
R

)
KR possible partitions at distance R, and then∑

z∈B(z�;c̃)
z�z�

p (Y ,z;θ,T )

≤ p (Y ,z�;θ�,T �)OP (1)
[c̃n]∑
R=1

(
n

R

)(
elogK+Mc/4−

dτminδ
(
θ�)

2 [1+oP (1)]
)R

≤ p (Y ,z�;θ�,T �)OP (1)
(
1 + elogK+Mc/4−

dτminδ
(
θ�)

2 [1+oP (1)]
)n

≤ p (Y ,z�;θ�,T �)OP (1) exp
{
n log

[
1 + elogK+Mc/4−

dτminδ
(
θ�)

2 [1+oP (1)]
]}

≤ p (Y ,z�;θ�,T �)OP (1) exp
{
nelogK+Mc/4−

dτminδ
(
θ�)

2 [1+oP (1)][1 + o (1)]
}

≤ p (Y ,z�;θ�,T �)OP (1)

× exp
{
e
−d

{
log(n)

d +
log K+Mc/4

d − δ
(
θ�)
2 [1+oP (1)]

}
[1 + o (1)]

}
≤ p (Y ,z�;θ�,T �) oP (1) using Assumption (C.3).

As this is true for all θ ∈ Θ and all T ∈ Tτmin , this is also true for the maximum.

B.4. Proof of Proposition 7: partitions that are far

Proposition 10 (Separability). Assume (ID.3.s) and (C.2). There exists R > 0
and a constant B(R) such that

max
T

Λ̃n(z,T ) ≤ −dτminδ(θ�)maxk Lk

2 d0,∼(z,z�) for z ∈ B (z�;R) ;
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max
T

Λ̃n(z,T ) ≤ −B(R)dn for z /∈ B (z�;R) .

Proof. If z /∈ B (z�;R), because the two partitions z and z� are far from each
other (at least a radius R > 0), there exists a constant B(R) such that the
second inequality holds.

Else, let assume that z ∈ B (z�;R). From Assumptions (ID.3.s) and (C.2),
for all k �= k′, there exists at least τmind columns such that the Kullback-Leibler
divergence is strictly positive, then

Lk2∑
�2=1

N
(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,� KL

(
μ�
k1,�1 , μ

�
k2,�2

)
≥ dτminδ(θ�).

Then, according to Proposition 9, we get

Λ̃n(z,T )

≤ −dτminδ(θ�)
2

K∑
k=1

Lk∑
�=1

1∣∣∣D�k
�

∣∣∣z�
+,k

K∑
k1=1

RK (z�,z)k1,k

×
Lk1∑
�1=1

N
(k1,k)
(Lk1+1)×(Lk+1) (T �,T )�1,�

×
[

K∑
k2=1

RK (z�,z)k2,k
−RK (z�,z)k1,k

]

≤ −dτminδ(θ�)
2

K∑
k=1

Lk∑
�=1

1
z�

+,k

K∑
k1=1

RK (z�,z)k1,k

×
[

K∑
k2=1

RK (z�,z)k2,k
−RK (z�,z)k1,k

]
,

using Eq. (11) in the last inequality. Then, using Eq. (9), and the fact that
RK (z�,z)k1,k

≤ z�
+,k,

Λ̃n(z,T )

≤ −dτminδ(θ�)maxk Lk

2

K∑
k=1

1
z�

+,k

K∑
k1=1

RK (z�,z)k1,k

×
[

K∑
k2=1

RK (z�,z)k2,k
−RK (z�,z)k1,k

]

≤ −dτminδ(θ�)maxk Lk

2

[
n−

K∑
k=1

K∑
k1=1

RK (z�,z)2k1,k

z�
+,k

]

≤ −dτminδ(θ�)maxk Lk

2

[
n−

K∑
k=1

K∑
k1=1

RK (z�,z)k1,k

]
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≤ −dτminδ(θ�)maxk Lk

2 d0,∼(z,z�).

Lemma B.5 (Large deviation). Under assumption (C.1), and for all εnd <
1/

√
2, we get:

P

(
sup
θ,T ,z

[
Fn (θ,T ,z) − Λ̃n(z,T )

]
≥ Diam(Θ)

√
ndK2 + 4εndDiam(Θ)nd

)
≤Kn exp

(
−ε2

ndnd
)
.

Proof. By definition of Fn (θ,T ,z) and gn (θ,T ,z):

Fn (θ,T ,z) − Λ̃n(z,T ) ≤ Fn (θ,T ,z) − gn (θ,T ,z)

≤ −
n∑

i=1

K∑
k=1

K∑
k′=1

z�ikzi,k′

Lk∑
�=1

Lk′∑
�′=1

×
∑

j∈D�k
�

⋂
Dk′

�′

(
Yij − EY |z�;θ�,T � [Yij ]

)
(μ�

k� − μk′�′)

≤ sup
Γ∈RK×K

‖Γ‖∞≤Diam(Θ)

K∑
k=1

K∑
k′=1

Lk∑
�=1

Lk′∑
�′=1

Γk,k′

n∑
i=1

z�ikzi,k′
∑

j∈D�k
�

⋂
Dk′

�′

(μ�
k� − Yij)

≤ sup
Γ∈RK×K

‖Γ‖∞≤Diam(Θ)

K∑
k=1

K∑
k′=1

Γk,k′

n∑
i=1

z�ikzi,k′

Lk∑
�=1

∑
j∈D�k

�

(μ�
k� − Yij) .

Let

Wk,k′ =
n∑

i=1
z�ikzi,k′

Lk∑
�=1

∑
j∈D�k

�

(μ�
k� − Yij) ∼ N

(
0, dRK (z�,z)k′,k

)
.

Then, using Brault et al. (2020)[Proposition C.4], for Γ ∈ R
K×K such that

‖Γ‖∞ ≤ Diam(Θ),

Eθ�

[
K∑

k=1

K∑
k′=1

Γk,k′Wk,k′

]
≤ Diam(Θ)

√
ndK2.

Then, for all nonnegative sequence (εnd)(n,d)∈(N�)2 satisfying
4εndDiam(Θ)nd ≤ 8Diam(Θ)2nd

2
√

2Diam(Θ) = 2
√

2Diam(Θ)nd, using Lemma B.6:

P

(
K∑

k=1

K∑
k′=1

Γk,k′Wk,k′ − Eθ�

[
K∑

k=1

K∑
k′=1

Γk,k′Wk,k′

]
≥ 4εndDiam(Θ)nd

)
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≤ exp
[
− (4εndDiam(Θ)nd)2

16Diam(Θ)2nd

]
≤ exp

(
−ε2

ndnd
)
.

Then,

P

(
Fn (θ,T ,z) − Λ̃n(z,T ) ≥ Diam(Θ)

√
ndK2 + 4εndDiam(Θ)nd

)
≤ exp

(
−ε2

ndnd
)
.

This inequality holds for all (θ,T ) and z, then we get:

P

(
sup
θ,T ,z

[
Fn (θ,T ,z) − Λ̃n(z,T )

]
≥

Diam(Θ)
√
ndK2 + 4εndDiam(Θ)nd

)
≤

∑
z∈Z

P

(
sup
θ,T

[
Fn (θ,T ,z) − Λ̃n(z,T )

]
≥

Diam(Θ)
√
ndK2 + 4εndDiam(Θ)nd

)
≤

∑
z∈Z

exp
(
−ε2

ndnd
)
≤ Kn exp

(
−ε2

ndnd
)
.

Let R > 0. Then, according to Proposition 10,

Λ̃n(z,T ) ≤ −B(C)nd if z /∈ B (z�;R)

Λ̃n(z,T ) ≤ −dτminδ(θ�)
2 d0,∼(z,z�)

≤ −dτminδ(θ�)
2 nRnd if z ∈ B (z�;R) \B (z�;Rnd) .

Using Lemma B.5, with εnd = min
(

δ(θ�)τminRnd

16 , 1/
√

2
)
, we get with proba-

bility 1 −Kn exp
(
−ε2

ndnd
)
,

Fn (θ,T ,z) − Λ̃n(z,T ) + Λ̃n(z,T )

≤ Fn (θ,T ,z) − Λ̃n(z,T ) − dτminδ(θ�)
2 nRnd

≤ Diam(Θ)
√
ndK2 + 4εndDiam(Θ)nd− dτminδ(θ�)

2 nRnd

≤ Diam(Θ)
√
ndK2 + 4δ(θ

�)τminRnd

16 Diam(Θ)nd− dτminδ(θ�)
2 nRnd

≤ Diam(Θ)
√
ndK2 + dτminδ(θ�)

4 nRnd −
dτminδ(θ�)

2 nRnd

≤ Diam(Θ)
√
ndK2 − dτminδ(θ�)

4 nRnd
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≤ −dnRnd
δ(θ�)τmin

4

[
1 − 4Diam(Θ)K2

√
ndRndτminδ(θ�)

]
≤ −dnRnd

τminδ(θ�)
4

for n and d large enough.
We also know that

p(z�;θ�,T �) ≤ e− log
∏n

i=1
∏K

k=1 π
z�ik
k ≤ e−

∑n
i=1

∑K
k=1 z�

ik log πk

≤ e−
∑n

i=1
∑K

k=1 z�
ik log c by Assumption (C.1),

≤ e−
∑n

i=1 log c ≤ en log 1
c .

Then, it leads to∑
z/∈B(z�;Rnd)

p(Y ,z;θ,T ) =
∑

z/∈B(z�;Rnd)

p(Y |z;θ,T )p(z;θ,T )

= p(Y |z�;θ�,T �)
∑

z/∈B(z�;Rnd)

p(z;θ,T ) p(Y |z;θ,T )
p(Y |z�;θ�,T �)

= p(Y |z�;θ�,T �)
∑

z/∈B(z�;Rnd)

p(z;θ,T )eFn(θ,T ,z)

≤ p(Y ,z�;θ�,T �)e−n
[
dRnd

δ(θ�)τmin
4 −log 1

c

]
.

Then, with probability 1 −Kn exp
(
−ε2

ndnd
)
, under Assumption (C.1), we get:∑

z/∈B(z�;Rnd)

p(Y ,z;θ,T ) = p(Y ,z�;θ�,T �)oP (1)

for all θ ∈ Θ and T ∈ Tτmin .

B.5. Tools and details

Lemma B.6 (Chernoff’s lemma). Let Z ∼ N
(
0, σ2). Then, for all t > 0:

P (Z ≥ t) ≤ e−
t2

2σ2 .

Proof of Proposition 8. By definition,

Fn (θ,T ,z) = −
n∑

i=1

K∑
k=1

K∑
k′=1

z�ikzi,k′

Lk∑
�=1

Lk′∑
�′=1

∑
j∈D�k

�

⋂
Dk′

�′

log
[
ϕ (Yij ;μ�

k�)
ϕ (Yij ;μk′�′)

]
.

The computation gives:

log
[
ϕ (Yij ;μ�

k�)
ϕ (Yij ;μk′�′)

]
= log

1√
2π e

− 1
2 (Yij−μ�

k�)
2

1√
2π e

− 1
2 (Yij−μk′�′ )2
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= −1
2 (Yij − μ�

k�)
2 + 1

2 (Yij − μk′�′)2

= Yij (μ�
k� − μk′�′) −

1
2

(
μ�
k�

2 − μ2
k′�′

)
(16)

which leads to

Fn (θ,T ,z) = −
n∑

i=1

K∑
k=1

K∑
k′=1

z�ikzi,k′

Lk∑
�=1

Lk′∑
�′=1

∑
j∈D�k

�

⋂
Dk′

�′

Yij (μ�
k� − μk′�′)

−1
2

K∑
k=1

K∑
k′=1

Lk∑
�=1

Lk′∑
�′=1

RK (z�,z)k,k′ N

(
k,k′)

(Lk+1)×(Lk′+1) (T �,T )�,�′
(
μ�
k�

2 − μ2
k′�′

)
.

We recognize the linear combination of independent Gaussian variable, then the
distribution of Fn (θ,T ,z) is also Gaussian. The computation of the expectation
and the variance are straightforward.

Proof of Proposition 9. The function θ 	→ gn (θ,T ,z) is maximal for

μ̂k′�′ =
∑K

k=1
∑Lk

�=1 RK (z�,z)k,k′ N

(
k,k′)

(Lk+1)×(Lk′+1) (T �,T )�,�′ μ�
k�∑K

k=1
∑Lk

�=1 RK (z�,z)k,k′ N
(k,k′)
(Lk+1)×(Lk′+1) (T �,T )�,�′

.

Indeed, the Kullback-Leibler divergence is equal to

KL (μ, μ′) = 1
2 (μ− μ′)2 ,

and the maximum is get by differentiating in each value. Then,

μ�
k1,�1 − μ̂k�

= μ�
k1,�1 −

∑K
k2=1

∑Lk2
�2=1 RK (z�,z)k2,k

N
(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,� μ

�
k2,�2∑K

k2=1
∑Lk2

�2=1 RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�

=

∑K
k2=1

∑Lk2
�2=1 RK (z�,z)k2,k

N
(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�

(
μ�
k1,�1

− μ�
k2,�2

)
∑K

k2=1
∑Lk2

�2=1 RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�

.

However, if ones want to take the square of the previous formulae, we get(
μ�
k1,�1−μ�

k2,�2

) (
μ�
k1,�1−μ�

k′
2,�

′
2

)
=μ�

k1,�1
2−μ�

k1,�1μ
�
k2,�2−μ�

k′
2,�

′
2

(
μ�
k1,�1−μ�

k2,�2

)
,

then it leads to

(μ�
k1,�1 − μ̂k�)2

=

∑K
k2=1

∑Lk2
�2=1

∑K
k′
2=1

∑Lk′
2

�′2=1 RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�

(
∑K

k2=1
∑Lk2

�2=1 RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�)

2
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×RK (z�,z)k′
2,k

N

(
k′
2,k

)
(Lk′

2
+1)×(Lk+1) (T �,T )�′2,�

(
μ�
k1,�1

2 − μ�
k1,�1μ

�
k2,�2

)
−

∑K
k2=1

∑Lk2
�2=1

∑K
k′
2=1

∑Lk′
2

�′2=1 RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�

(
∑K

k2=1
∑Lk2

�2=1 RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�)

2

×RK (z�,z)k′
2,k

N

(
k′
2,k

)
(Lk′

2
+1)×(Lk+1) (T �,T )�′2,� μ

�
k′
2,�

′
2

(
μ�
k1,�1 − μ�

k2,�2

)
=

∑K
k2=1

∑Lk2
�2=1 RK (z�,z)k2,k

N
(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�

(
μ�
k1,�1

2−μ�
k1,�1

μ�
k2,�2

)
∑K

k2=1
∑Lk2

�2=1 RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�

−
∑K

k2=1
∑Lk2

�2=1
∑K

k′
2=1

∑Lk′
2

�′2=1 RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�

(
∑K

k2=1
∑Lk2

�2=1 RK (z�,z)k2,k
N

(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�)

2

×RK (z�,z)k′
2,k

N

(
k′
2,k

)
(Lk′

2
+1)×(Lk+1) (T �,T )�′2,� μ

�
k′
2,�

′
2

(
μ�
k1,�1 − μ�

k2,�2

)
.

When considering Λ̃n(z,T ), we are summing with respect to k1, �1 as well, and
the second term becomes 0. Then, using the explicit form of Fn given in the
proof of Proposition 8, it leads to

Λ̃n(z,T )

= −1
2

K∑
k=1

Lk∑
�=1

∑K
k1=1

∑Lk1
�1=1

∑K
k2=1

∑Lk2
�2=1 RK (z�,z)k1,k

RK (z�,z)k2,k∑K
k2=1

∑Lk2
�2=1 RK (z�,z)k2,k

N
(k2,k)
(Lk2+1)×(Lk+1) (T �,T )�2,�

×N
(k1,k)
(Lk1+1)×(Lk+1) (T �,T )�1,� N

(k2,k)
(Lk2+1)×(Lk+1)

(T �,T )�2,�
1
2
(
μ�
k1,�1 − μ�

k2,�2

)2
.

Then, using 8, 11 and 12, we finally get the desired formulae.
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Supplementary Material

Additional results on the simulation

In this part, additional results for Section 4 are presented. Hereafter, we present
additional results for the simulation part. Table 5 presents the NCE obtained
with both MixSeg and the simple mixture model. Figure 10 presents the com-
putation time recorded for MixSeg when n, d and α vary.

https://gricad.univ-grenoble-alpes.fr
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Table 5

NCE MixSeg vs Simple mixture model

NCE ↓
Setting Model 0.1 0.2 1

(100,50) MixSeg 0.76(0.16) 0.34(0.18) 0 (0)
Simple 0.84 (0.1) 0.67 (0.18) 0.02 (0.09)

(100,100) MixSeg 0.60(0.17) 0.19(0.17) 0 (0)
Simple 0.75 (0.12) 0.51 (0.18) 0.01 (0.07)

(1000,50) MixSeg 0.56(0.15) 0.17(0.12) 0 (0)
Simple 0.82 (0.11) 0.62 (0.14) 0.00015 (0.00045)

(1000,100) MixSeg 0.36(0.14) 0.04(0.03) 0 (0)
Simple 0.72 (0.14) 0.51 (0.16) 0 (0)

Fig 10. Computation time for varying n and d
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Additional figures for Enedis data analysis

In this part, three additional figures (11, 12 and 13) for Section 5 are presented.

Fig 11. Evolution of the coefficients grouped per day (rows) and time slots (columns) for the
cluster 1. For each graphic, the evolution week per week of each curve is represented in color,
the vertical black line corresponds to the estimated break-point, the horizontal black dashed
line at the mean, and the horizontal black dotted lines to the confident intervals. The vertical
blue dashed lines correspond at the beginning and the end of both lock-down.
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Fig 12. Evolution of the coefficients grouped per day (rows) and time slots (columns) for the
cluster 2. For each graphic, the evolution week per week of each curve is represented in color,
the vertical black lines correspond at the estimated break-points, the horizontal black dashed
line at the mean, and the horizontal black dotted lines at the confident intervals. The vertical
blue dashed lines correspond at the beginning and the end of both lock-down.
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Fig 13. Evolution of the coefficients grouped per day (rows) and time slots (columns) for the
cluster 3. For each graphic, the evolution week per week of each curve is represented in color,
the vertical black lines correspond at the estimated break-points, the horizontal black dashed
line at the mean, and the horizontal black dotted lines at the confident intervals. The vertical
blue dashed lines correspond at the beginning and the end to both lock-down.
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