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Evidence of a predictive coding hierarchy in 
the human brain listening to speech

Charlotte Caucheteux    1,2 , Alexandre Gramfort1,2 & Jean-Rémi King    1,3 

Considerable progress has recently been made in natural language 
processing: deep learning algorithms are increasingly able to generate, 
summarize, translate and classify texts. Yet, these language models still fail 
to match the language abilities of humans. Predictive coding theory offers 
a tentative explanation to this discrepancy: while language models are 
optimized to predict nearby words, the human brain would continuously 
predict a hierarchy of representations that spans multiple timescales. 
To test this hypothesis, we analysed the functional magnetic resonance 
imaging brain signals of 304 participants listening to short stories. 
First, we confirmed that the activations of modern language models 
linearly map onto the brain responses to speech. Second, we showed that 
enhancing these algorithms with predictions that span multiple timescales 
improves this brain mapping. Finally, we showed that these predictions 
are organized hierarchically: frontoparietal cortices predict higher-level, 
longer-range and more contextual representations than temporal cortices. 
Overall, these results strengthen the role of hierarchical predictive 
coding in language processing and illustrate how the synergy between 
neuroscience and artificial intelligence can unravel the computational 
bases of human cognition.

In less than three years, deep learning has made considerable progress 
in text generation, translation and completion1–4 thanks to algorithms 
trained with a simple objective: predicting words from their nearby 
context. Remarkably, the activations of these models have been shown 
to linearly map onto human brain responses to speech and text5–12. 
Additionally, this mapping primarily depends on the algorithms’ ability 
to predict future words7,8, hence suggesting that this objective suffices 
to make them converge to brain-like computations.

Yet, a gap persists between humans and these algorithms: in spite 
of considerable training data, current language models are challenged 
by long story generation, summarization and coherent dialogue and 
information retrieval13–17; they fail to capture several syntactic con-
structs and semantics properties18–22 and their linguistic understanding 
is superficial19,21–24. For instance, they tend to incorrectly assign the 
verb to the subject in nested phrases like ‘the keys that the man holds 

ARE here’20. Similarly, when text generation is optimized on next-word 
prediction only, deep language models generate bland, incoherent 
sequences or get stuck in repetitive loops13.

Predictive coding theory25–27 offers a potential explanation to 
these shortcomings; while deep language models are mostly tuned to 
predict the very next word, this framework suggests that the human 
brain makes predictions over multiple timescales and levels of repre-
sentations across the cortical hierarchy28,29 (Fig. 1a).

Previous work already evidenced speech predictions in the brain 
by correlating word or phonetic surprisal, that is, the extent to which a 
word or phone is expected, with functional magnetic resonance imag-
ing (fMRI)30–33, electroencephalography34–36, magnetoencephalogra-
phy37 and electrocorticography11,38. However, such surprisal estimates 
derive from models trained to predict the very next word or phoneme 
and reduce down their output to a single number, that is, the probability 
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scores (R = 0.23 in the superior temporal sulcus (Fig. 2a)) represent 60% 
of the maximum explainable signal, as assessed with a noise ceiling 
analysis (Methods). Supplementary Note 2 and Supplementary Fig. 2  
show that, on average, similar brain scores are achieved with other 
state-of-the-art language models and Supplementary Fig. 3 shows 
that auditory regions can be further improved with lower-level speech 
representations. As expected, the brain score of word rate (Supplemen-
tary Fig. 3), noise ceiling (Methods) and GPT-2 (Fig. 2a) all peak in the 
language network44. Overall, these results confirm that deep language 
models linearly map onto brain responses to spoken stories.

Isolating long-range predictions in the brain
Next, we tested whether enhancing the activations of language models 
with long-range predictions leads to higher brain scores (Fig. 1c,d). Spe-
cifically, for each word, we concatenated (1) the model activations of the 
present word (denoted X) and (2) a ‘forecast window’ (denoted ̃X(d)), 
consisting of the embeddings of future words and parameterized by a 
temporal distance d and width of w = 7 words (see Supplementary  
Fig. 4 for the growing window analysis). While the width is the number 
of concatenated words, d corresponds to the distance between the cur-
rent word and the last word of the window. For instance, ̃X(10) is the con-
catenation of words at distances 4, 5 and up to 10 from the current word, 
and ̃X(8) is the concatenation of words at distances 2, 3 and up to 8 from 
the current word. For each distance d, we computed the ‘forecast score’ 
(denoted ℱd) by comparing the brain scores obtained with and without 
the forecast representations (Fig. 2b).

Our results show that ℱ is maximal for a distance of d = 8 words 
and peaks in the areas typically associated with language processing 
(Fig. 2b–d). For comparison, there are 2.54 words per second on average 
in the stimuli. Thus, 8 words correspond to 3.15 s of audio (the time of 
two successive fMRI scans). These forecast scores are bilaterally dis-
tributed in the brain, except for the inferior-frontal and supramarginal 
gyri (P < 0.001 in the pars opercularis and supramarginal, using a 
two-sided pairwise Wilcoxon rank-sum test between the left and right 
hemispheres, after correcting for multiple comparisons (Methods)).

of the next token. Consequently, the nature of the predicted representa-
tions and their temporal scope are largely unknown.

In this study, we address these issues by analysing the brain signals 
of 304 individuals listening to short stories while their brain activity is 
recorded with fMRI39. After confirming that deep language algorithms 
linearly map onto brain activity6,8,40, we show that enhancing these 
models with long-range and multi-level predictions improves such 
brain mapping. Critically, and in line with predictive coding theory, 
our results reveal a hierarchical organization of language predictions 
in the cortex, in which the highest areas predict the most distant and 
highest-level representations.

Results
Deep language models map onto brain activity
First, we quantified the similarity between deep language models and 
the brain, when these two systems are inputted with the same stories. 
For this, we used the Narratives dataset39 and analysed the fMRI of 
304 individuals listening to short stories (27 stories ranging from 7 to 
56 min; 4.6 h of unique stimulus in total, 26 min on average per par-
ticipant, from 7 to 99 min). We then fitted, for each voxel and each 
individual independently, a linear ridge regression to predict the fMRI 
signals from the activations of several deep language models. Finally, 
we computed the corresponding ‘brain scores’ using held-out data, 
that is, the voxel-wise correlation between the fMRI signals and the 
predictions of the ridge regression input with the activations of a given 
language model (Fig. 1b). For clarity, we first focused on the activations 
of the eighth layer of Generative Pre-trained Transformer 2 (GPT-2), a 
12-layer causal deep neural network provided by HuggingFace2 because 
it best predicts brain activity7,8.

In line with previous studies5,7,40,41, the activations of GPT-2 accu-
rately map onto a distributed and bilateral set of brain areas. Brain 
scores peaked in the auditory cortex and in the anterior temporal and 
superior temporal areas (Fig. 2a, Supplementary Fig. 1, Supplementary 
Note 1 and Supplementary Tables 1–3). The effect sizes of these brain 
scores are in line with previous work7,42,43: for instance, the highest brain 
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Fig. 1 | Experimental approach. a, Deep language algorithms are typically 
trained to predict words from their close contexts. Unlike these algorithms,  
the brain makes, according to predictive coding theory, (1) long-range and (2) 
hierarchical predictions. b, To test this hypothesis, we first extracted the fMRI 
signals of 304 individuals each listening to ≈26 min of short stories (Y) as well as 
the activations of a deep language algorithm (X) input with the same stories. We 
then quantified the similarity between X and Y with a ‘brain score’: a Pearson 
correlation ℛ after an optimal linear projection W (Methods). c, To test whether 
adding representations of future words (or predicted words; Supplementary  
Fig. 4) improves this correlation, we concatenated (⊕) the network’s activations 
(X, depicted here as a black rectangle) to the activations of a ‘forecast window’  

( ̃X, depicted here as a coloured rectangle). We used PCA to reduce the 
dimensionality of the forecast window down to the dimensionality of X.  
Finally, ℱ quantifies the gain of brain score obtained by enhancing the 
activations of the language algorithm to this forecast window. We repeated this 
analysis with variably distant windows (d, Methods). d, Top, a flat forecast score 
across distances indicates that forecast representations do not make the 
algorithm more similar to the brain. Bottom, by contrast, a forecast score 
peaking at d > 1 would indicate that the model lacks brain-like forecast. The peak 
of ℱd indicates how far off in the future the algorithm would need to forecast 
representations to be most similar to the brain.
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Supplementary analyses confirm that (1) each future word from 
word zero to ten significantly contributes to the forecast effect, (2) fore-
cast representations are best captured with a window size of around 
8 words, (3) random forecast representations do not improve brain 
scores and (4) using the words generated by GPT-2 instead of the true 
future words achieves lower but similar results (Supplementary Notes 
3–5 and Supplementary Figs. 4–6).

Together, these results reveal long-range forecast representations 
in the brain representing a 23% (±9% across individuals) improvement 
in brain scores (Fig. 2a,b).

The time range of predictions varies along the brain hierarchy
Both anatomical and functional studies have shown that the cortex 
is organized as a hierarchy28,45: for example, low-level acoustics, pho-
nemes and semantics are primarily encoded in Heschl’s gyrus, the 
superior temporal gyrus and the associative cortices of the frontal, 
temporal and parietal lobes, respectively42,46–49.

Do the different levels of this cortical hierarchy predict the 
same time window? To address this issue, we estimated the peak of  
the forecast score of each voxel and denoted d* the correspond-
ing distance. The results show that the prefrontal area forecast,  
on average, is further off in the future than temporal areas (Fig. 2e).  

For instance, d* in the inferior temporal gyrus (IFG) is higher than 
in the anterior superior temporal sulcus (aSTS) (Δd* = 0.9 ± 0.2, 
P < 0.001; Fig. 2f,g).

The variation of optimal forecast distance along the 
temporo-parietal-frontal axis is largely symmetric across the two 
hemispheres (Supplementary Fig. 1).

Predictions are increasingly contextual along the hierarchy
What is the nature of these predictive representations? To address 
this issue, we assessed whether the forecast score relates to (1) low or 
high as well as (2) syntactic or semantic representations. To this aim, 
we computed the forecast scores as in Fig. 1c but varied the layer used 
from GPT-2. Then, we identified k* for each voxel, that is, the depth 
that maximizes the forecast scores (Methods). We considered that 
the deep layers of language algorithms encode higher-level and more 
contextualized representations than their first layers50,51.

Our results showed that the optimal forecast depth varies along 
the expected cortical hierarchy (Fig. 3a). Specifically, associative cor-
tices are best modelled with deeper forecasts (k* > 6) than low-level 
language areas (for example, k* < 6 in Heschl’s gyri/sulci, aSTS; Fig. 3a,b). 
The difference between regions, while small on average, was highly 
significant across individuals (for example, between the angular and 
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Fig. 2 | Isolating language predictions and their temporal scope in the human 
brain. a, The ‘brain score’ (ℛ; Fig. 1b and Methods), obtained with GPT-2, for each 
individual and each voxel, here averaged across individuals (n = 304). Only the 
voxels with significant brain scores are colour-coded. b, Average (across voxels) 
brain scores obtained with GPT-2 with (grey) or without (blue) forecast 
representations. The average brain score peaks at d* = 8 (grey star). c, For each 
voxel, the average (across individuals) ‘forecast score’ ℱd, that is, the gain in brain 
score when concatenating the activations of GPT-2 with a forecast window ̃X(8) is 
shown. Only the voxels with significant forecast scores are colour-coded.  
d, Average (across voxels) forecast scores for different distance d. e, Distance that 
maximizes ℱd, computed for each individual and each voxel and denoted d*.  
This ‘forecast distance’ reveals the regions associated with short- and long-range 
forecasts. Regions in red and blue are associated with long-range and short-range 

forecasts, respectively. We only display the voxels with a significant average peak 
(ℱd∗ − ℱ0,d∗ = 8; Methods). f, Forecast score within two regions of interest.  
For each region, we report the average forecast scores of individuals with a 
representative peak (individuals whose peak belongs to the 45–55 percentiles of 
all peaks, n = 30 individuals). g, Forecast distance of seven regions of interest, 
computed for each voxel of each individual and then averaged within the selected 
brain regions. For all panels, we report the average effect across individuals 
(n = 304), with the 95% CIs across individuals (b,d,f). P values were assessed with a 
two-sided Wilcoxon signed-rank test across individuals. In a,c,e, P values were 
corrected for multiple comparisons across voxels using the FDR and brain maps 
are thresholded at P < 0.01. The boxplot in g summarizes the distribution of the 
effect obtained on ten distinct and random subdivisions of the dataset.
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Heschl’s gyri: Δk* = 2.5 ± 0.3, P < 0.001) and observed in both the left 
and right hemispheres (Fig. 3b).

Together, these results suggest that the long-range predictions 
of frontoparietal cortices are more contextualized and of higher level 
than the short-term predictions of low-level brain regions.

Syntactic and semantic predictions show different time 
ranges
To factorize forecast representations into syntactic and semantic 
components, we applied a method introduced in Caucheteux et al.40 
and proceeded as follows: for each word and its preceding context, 
we generated ten possible futures, which matches the syntax of the 
true future words. We chose k = 10 possible futures following40. For 
each of these possible futures, we extracted the corresponding GPT-2 
activations and averaged them across the ten possible futures (Fig. 4a  
and Methods). This method allowed us to decompose the activations 
of a given language model X into syntactic (the average vector, denoted 
Xsyn) and semantic components (the residuals, Xsem = X − Xsyn) (Methods). 
Once the syntactic and semantic forecast windows were built, we com-
puted the corresponding forecast scores (Methods).

The results show that semantic forecasts are long range (d* = 8) and 
involve a distributed network peaking in the frontal and parietal lobes. 
By contrast, syntactic forecasts (Fig. 4b) are relatively short range (d* = 5) 
and localized in the superior temporal and left frontal areas (Fig. 4c,d). 
Note that the syntactic model without a forecast window (which has a 
lower dimensionality) performs better than the syntactic model with a 
distant forecast window. Such diminished scores can occur when there 
is no added information in the extra dimension of the regression because 
of the infamous curse of dimensionality52. This suggests that a long-range 
syntactic forecast is not detectable in the present dataset.

Overall, these results reveal multiple levels of predictions in 
the brain in which the superior temporal cortex predominantly pre-
dicts short-term, shallow and syntactic representations whereas the 
inferior-frontal and parietal areas predominantly predict long-term, 
contextual, high-level and semantic representations.

Adapting GPT-2 into a predictive coding architecture
These results show that concatenating present and future word rep-
resentations of GPT-2 leads to a better modelling of brain activity, 
especially in frontoparietal areas (Fig. 2). Does fine-tuning GPT-2 to 
predict longer-range, more contextual and higher-level representa-
tions improve brain mapping in such regions? To answer this question, 
we fine-tuned GPT-2 on Wikipedia, not only using language modelling 
(that is, predicting the next word), but also a high-level and long-range 
objective (that is, predicting high-level representations of far-off 
words). Specifically, the high-level objective is to predict layer 8 of 
the pretrained GPT-2 model, of word t + 8 (Methods). The results show 
that GPT-2 fine-tuned with high-level and long-range modelling best 
accounts for frontoparietal responses (Fig. 5, >2% gain in the IFG and 
angular/supramarginal gyri on average, all P < 0.001). On the other 
hand, auditory areas and lower-level brain regions do not significantly 
benefit from such a high-level objective (Fig. 5 and Supplementary  
Fig. 7). These results further strengthen the role of frontoparietal areas 
in predicting long-range, contextual and high-level representations 
of language.

Discussion
In the present study, we put specific hypotheses of predictive coding 
theory to the test25–27. While deep language algorithms are typically 
trained to make nearby and word-level predictions1–3,53–55, we assessed 
whether cortical hierarchy predicts multiple levels of representations, 
spanning multiple timescales. With this aim in mind, we compared 
activations of the brain to those of state-of-the-art deep language 
models5–7,42,56. We successfully validated our hypothesis on a cohort 
of 304 participants listening to spoken narratives39. Brain activity is best 
explained by the activations of deep language algorithms enhanced 
with long-range and high-level predictions. Our study provides three 
additional contributions.

First, the lateral, dorsolateral and inferior-frontal cortices and the 
supramarginal gyrus exhibited the longest forecast distances. Inter-
estingly, these cortical regions were repeatedly linked to high-level 
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the representation that maximizes the forecast score in the brain, denoted k*. 
Forecast scores were computed for each depth, individual and voxel, at a fixed 
distance of d* = 8 and averaged across individuals. We computed the optimal 
depth for each individual and voxel and plotted the average forecast depth across 
individuals. Dark regions are best accounted for by deep forecasts, while light 
regions are best accounted for by shallow forecasts. Only significant voxels are 

colour-coded as in Fig. 2c). b, Same as a but with k* averaged across the voxels 
of nine regions of interest, in the left (circle) and right (triangle) hemispheres. 
Scores were averaged across individuals (n = 304) and the boxplot summarizes 
the distribution of the effect obtained on ten distinct and random subdivisions 
of the dataset. Pairwise significance between regions was assessed using a 
two-sided Wilcoxon rank-sum test on the left hemisphere’s scores (the grey bars 
indicate P < 0.001).
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semantics, long-term planning, attentional control, abstract think-
ing and other high-level executive functions57,58. This result echoes 
with previous studies showing that the integration constant of the 
frontoparietal cortices is larger than those of sensory and tempo-
ral areas46,59–61. Specifically, our findings suggest that these regions, 
located at the top of the language hierarchy, are not limited to pas-
sively integrating past stimuli but actively anticipate future language 
representations.

Second, we showed that the depth of predictive representations 
varies along a similar anatomical organization: low-level predictions 
best model the superior temporal sulcus and gyrus, while high-level 
predictions best model the middle temporal, parietal and frontal areas. 
This finding extends previous studies investigating the multiplicity of 
predictions underlying complex sound or speech processing28,34,36,62. 
While previous studies focused on correlating brain activity with a 
subset of hand-crafted and unidimensional prediction errors (for 
example, word or phoneme surprisal), the present analyses explored 
and decomposed high-dimensional predictions. More generally, our 
results support the idea that, unlike current language algorithms, the 
brain is not limited to predict word-level representations but rather 
predicts multiple levels of representations.

Finally, we decomposed these neural activations into syntactic 
and semantic representations and showed that semantic features, as 
opposed to syntactic ones, drive long-range forecasts. This finding 

strengthens the idea that while syntax may be explicitly represented 
in neural activity40,63,64, predicting high-level semantics may be at the 
core of long-form language processing65,66.

Together, these results support predictive coding theories, 
whereby the brain continually predicts sensory inputs, compares 
these predictions to the truth and updates its internal model accord-
ingly25,26,67. Our study further clarifies this general framework. Not only 
does the brain predict sensory inputs but each region of the cortical 
hierarchy is organized to predict different temporal scopes and dif-
ferent levels of representations (Fig. 1a). However, the link between 
hierarchical constructs in syntax and functional hierarchy in the cortex 
and in the model is a major question to explore40,51,68.

This computational organization is at odds with current language 
algorithms, which are mostly trained to make adjacent and word-level 
predictions (Fig. 1a). Some studies investigated alternative learning 
rules4,53,55,69–72 but they did not combine both long-range and high-level 
predictions. We speculate that the brain architecture evidenced in 
this study presents at least one major benefit over its current deep 
learning counterparts. While future observations rapidly become 
indeterminate in their original format, their latent representations may 
remain predictable over long periods. This issue is already pervasive in 
speech- and image-based algorithms and has been partially bypassed 
with losses based on pretrained embedding73, contrastive learning 
and, more generally, joint embedding architectures74–77. In this study, 
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we highlight that this issue also prevails in language models, where 
word sequences, but arguably not their meaning, rapidly become 
unpredictable. Our results suggests that predicting multiple levels 
of representations over multiple temporal scopes may be critical to 
address the indeterminate nature of such distant observations and 
adjust their relative confidence accordingly78.

Three main elements mitigate these conclusions. First, unlike 
temporally resolved techniques7,11,36, the temporal resolution of fMRI 
is around 1.5 s and can thus hardly be used to investigate sublexical 
predictions. Second, the precise representations and predictions 
computed in each region of the cortical hierarchy are to be character-
ized. This will probably require new probing techniques because the 
interpretation of neural representations is a major challenge to both 
artificial intelligence and neuroscience. Finally, the predictive coding 
architecture presently tested is rudimentary. A systematic generaliza-
tion, scaling and evaluation of this approach on natural language pro-
cessing benchmarks is necessary to demonstrate the effective utility 
of making models more similar to the brain.

Beyond clarifying the brain and computational bases of language, 
our study thus calls for systematically training algorithms to predict 
multiple timescales and levels of representations.

Methods
Notations
We denote:
•	 w as a sequence of M words (that is, several short stories);
•	 X as the activations of a deep language model input with w,  

of size M × U, with U as the dimensionality of the embeddings 
(for a layer of GPT-2, U = 768). Except if stated otherwise, we 
used the activations extracted from the eighth layer of a 12-layer 
GPT-2 model. We explicitly denote Xk as the activations extracted 
from layer k when using another layer;

•	 Y as the fMRI recordings elicited by w, of size T × V, with T as the 
number of fMRI time samples and V as the number of voxels;

•	 ℛ(X) as the brain score of X;
•	 X̃(d) as the forecast window containing information up to d words 

in the future. Briefly, the forecast window is the concatenation of 
the deep net activations of seven successive words, the last word 
being at a distance d from the current word;

•	 ℱ(d)(X) as the forecast score at distance d, that is, the gain in brain 
score when concatenating the forecast window ̃X(d) to the 
network’s activations; ℱ(d)(X) = ℛ(X⊕ ̃X(d)) − ℛ(X);

•	 d* as the distance maximizing the forecast score; 
d∗ = argmaxd∈[−10,…,30] ℱ(d)(X);

•	 k* as the network’s depth maximizing the forecast score at a fixed 
distance d = 8; k∗ = argmaxk∈[0,…,12] ℱ(8)(Xk), with Xk as the 
activations extracted from the kth layer of GPT-2. We used d = 8 
because it was the distance with the best forecast score on 
average across individuals and voxels.

fMRI dataset
We used the brain recordings (denoted Y) of the Narratives dataset39, 
a publicly available dataset containing the fMRI recordings of 345 
individuals listening to 27 spoken stories in English, from 7 to 56 min 
(4.6 h of unique stimulus in total). We use the preprocessed fMRI sig-
nals from the original dataset, without spatial smoothing (referred to 
as ‘afni-nosmooth’ in the repository) and sampled with TR = 1.5 s. The 
preprocessing steps were performed using fMRIPrep79; no temporal 
filtering was applied. The resulting preprocessing led to the analysis 
of cortical voxels projected onto the surface and morphed onto an 
‘fsaverage’ template brain; hereafter, they are referred to as voxels for 
simplicity. As suggested in the original paper, some individual–story 
pairs were excluded because of noise, resulting in 304 individuals and 
622 individual–story pairs and 4 h of unique audio material in total.

Activations of deep language models
We compared the fMRI recordings with the activations of several pre-
trained deep language model inputs with the same sentences pre-
sented to the individuals. For clarity, we primarily focused on GPT-2, a 
high-performing causal language model trained to predict words given 
their previous context. GPT-2 consists of 12 Transformer modules1,2, 
each of them referred to as ‘layer’, stacked onto one non-contextual 
word embedding layer. We used the pretrained models from Hugging-
face80 (1.5 billion parameters trained on 8 million Web pages).

In practice, to extract the activations X elicited by a sequence of M 
words w from the kth layer of the network, we (1) formatted the textual 
transcript of the sequence w (replacing special punctuation marks such 
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Fig. 5 | Gain in brain score when fine-tuning GPT-2 with a mixture of language 
modelling and high-level prediction. a, Gain in brain scores between GPT-2 
fine-tuned with language modelling plus high-level prediction (for αhigh level = 0.5) 
and GPT-2 fine-tuned with language modelling alone. Only the voxels with a 
significant gain are displayed (P < 0.05 with a two-sided Wilcoxon rank-sum test 
after FDR correction for multiple comparisons). b, Brain score gain as a function 

of the high-level weight α in the loss (equation (8)), from full language modelling 
(left, α = 0) to full high-level prediction (right, α = 1). Gains were averaged across 
voxels within six regions of interests (see Methods for the parcellation and 
Supplementary Fig. 7 for the other regions in the brain). Scores were averaged 
across individuals and we display the 95% CIs across individuals (n = 304).
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as ‘-’ and duplicated marks ‘?.’ by dots), (2) tokenized the text using the 
Huggingface tokenizer, (3) inputted the network with the tokens and 
(4) extracted the corresponding activations from layer k. This resulted 
in a vector of size M × U, with M the number of words and U the number 
of units per layer (that is, U = 768). Given the constrained context size 
of the network, each word was successively inputted to the network 
with at most 1,024 previous tokens. For instance, while the third word’s 
vector was computed by inputting the network with (w1, w2, w3), the 
last word’s vector wM was computed by inputting the network with 
(wM−1,024,…,wM). The alignment between the audio recordings of the  
stories and their textual transcripts was provided in the original  
Narratives database39.

Brain scores
Following previous works7,42,56, we evaluated, for each individual s and 
voxel v, the mapping between (1) the fMRI activations Y(s,v) in response 
to the audio stories and (2) the activations X of the deep network input 
with the textual transcripts of the same stories. To this end, we fitted 
a linear ridge regression W on a training set to predict the fMRI scans 
given the network’s activations. Then, we evaluated this mapping by 
computing the Pearson correlation between predicted and actual fMRI 
scans on a held-out set:

ℛ(s,v) ∶ X ↦ corr (W ⋅ X,Y(s,v)) (1)

with W as the fitted linear projection, corr as Pearson’s correlation,  
X as the activations of GPT-2 and Y(s,v) as the fMRI scans of one individual 
s at one voxel v, both elicited by the same held-out stories.

In practice and following Huth et al.42, we modelled the slow bold 
response thanks to a finite impulse response (FIR) model with six delays 
(from 0 to 9 s, TR = 1.5 s). Still following Huth et al.42, we summed the 
model activations of the words presented within the same TR to match 
the sampling frequency of the fMRI and language models (Supplemen-
tary Figs. 8 and 9). Then, we estimated the linear mapping W with an 
ℓ2-penalized linear regression after standardizing the data and reducing 
their dimensionality (for computational reasons). We implemented 
scikit-learn81 and used a pipeline with the following steps: (1) standardi-
zation of the features (set to 0 mean with an s.d. of 1 using a Standard-
Scaler), (2) principal component analysis (PCA) with 20 components 
and (3) ℓ2-penalized linear regression (RidgeCV in scikit-learn). In Sup-
plementary Fig. 3c, we replicated the main analyses without PCA (the 
brain scores and forecast effect were slightly underestimated by the 
PCA). The regularization hyperparameter of the RidgeCV was selected 
with a nested leave-one-out cross-validation among ten possible values 
log-spaced between 10−1 and 108 for each voxel and each training fold.

The outer cross-validation scheme, which allows for an independ-
ent performance evaluation, uses five folds obtained by splitting the 
fMRI time series into five contiguous chunks. The Pearson correlations 
averaged across the five test folds is called ‘brain score’ and denoted 
as ℛ(s,v)(X). It measures the mapping between the activation space X 
and the brain of one individual s at one voxel v in response to the same 
language stimulus.

In Fig. 2a,b, brain scores were computed for each (individual, 
voxel) pair. We then averaged brain scores across individuals (Fig. 2a) 
and/or voxels (Fig. 2b) depending on the analysis. For simplicity,  
we denote ℛ(X) as the brain scores averaged across individuals and/ 
or voxels.

Forecast windows
We tested whether adding forecast representations would improve 
our ability to predict brain activity. To this aim, we did not modify the 
deep network itself but added forecast representations to the encoding 
model’s input, that is, the forecast window. The forecast window at 
distance d, denoted by X̃(d), is the concatenation of the network’s activa-
tions of seven successive words, the last one being at a distance d from 

the current word. Precisely, the forecast window of a word wn at a dis-
tance d is the concatenation of the network’s activations elicited by 
words wn + d−6, …, wn + d. Thus,

X̃(d) = (Xwn+d−7 ⊕⋯⊕ Xwn+d )n∈[1,…,M] (2)

with ⊕ as the concatenation operator and M as the number of words in 
the transcript w (Supplementary Fig. 9). Note that d can be negative: 
in that case, the forecast window only contains past information. Except 
if stated otherwise, the forecast window was built out of the activations 
X extracted from the eighth layer of GPT-2. In Fig. 3, the forecast window 
was built out of the activations Xk extracted from different layers k  
of GPT-2. We denoted X̃(d)k  as the corresponding forecast windows.  
In Fig. 4, the forecast windows were built out of the syntactic (Xsyn) and 
semantic (Xsem) activations of GPT-2.

Forecast scores
For each distance d, individual s and voxel v, we computed the ‘forecast 
score’ ℱ(d,s,v), which is the gain in brain score when concatenating the 
forecast windows to the present GPT-2 activations. Thus,

ℱ(d,s,v) ∶ X ↦ ℛ(s,v)(X⊕ X̃(d)) − ℛ(X) (3)

To match the dimensionality of X and ̃X, the PCA used to compute 
the mapping was trained on X and ̃X  separately before concatenating 
the two features, that is, ℱ(X) = ℛ(PCA(X) + PCA( ̃X)) − ℛ(PCA(X)).

Forecast distance
To test whether the forecast scope varied along the cortical hierarchy, 
we estimated the distance maximizing the forecast score. Precisely, 
the optimal ‘forecast distance’ d* for each individual s and voxel v was 
defined as:

d∗(s,v) = argmaxd∈[−10,…,30]ℱ(d,s,v)(X) (4)

with X as the activations of the language model and ℱ(d,s,v) as the forecast 
score at distance d for individual s and voxel v (equation (3)). The fore-
cast distances d* were then averaged across individuals and/or voxels 
depending on the analyses.

The present analysis is only relevant for the brain regions for which 
forecast scores are not flat. Indeed, computing the distance maximizing 
a flat curve would be misleading. Thus, in Fig. 2e, we computed the 
difference ℱ8 − ℱ0 for each individual and voxel, assessed the signifi-
cance with a Wilcoxon rank-sum test across individuals and ignored 
the voxels with a non-significant difference (P > 0.01).

Forecast’s depth
To test whether the depth of the forecast varied along the cortical 
hierarchy, we computed the forecast score for different depths of rep-
resentation. We replaced X by the activations Xk extracted from layer 
k of GPT-2 (k ∈ [0, …, 12]) in equations (3) and (4). Then, we computed 
the depth maximizing the forecast score, called ‘forecast depth’, and 
given by:

k∗(d,s,v) = argmaxk∈[0,…,12]ℱ(d,s,v)(Xk) (5)

with ℱ(d,s,v)(Xk) = ℛ(s,v)(Xk ⊕ X̃k
(d)
) − ℛ(Xk) (equation (3)). For simplicity, 

we studied the depth focusing on the fixed distance d = 8 (Fig. 3c,d), 
which maximizes the forecast score in Fig. 2.

Decomposing model activations into syntactic and semantic 
components
To extract the syntactic and semantic components of X, a vector of 
activations in response to a story w, we applied a method introduced 
in Caucheteux et al.40 (Fig. 4a). For each word, (1) we generated n = 10 
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futures of the same syntax as the true future (that is, same part of 
speech and dependency tags as the true future) but randomly sampled 
semantics, (2) we computed the activations for each of the 10 possible 
futures and (3) we averaged the activations across the 10 futures. We 
used the same hyperparameter n = 10 as in the original paper. The 
method actually converges from n = 7 (Supplementary Fig. 8 in the 
paper). This method allows to extract the average vector Xsyn, which con-
tains syntactic information but is deprived of semantic information. 
The semantic activations Xsem = X − Xsyn are the residuals of syntax in 
the full activations X. In the original paper (Fig. 3), the authors checked 
with probing analyses that the syntactic embeddings encoded relevant 
syntactic information (part of speech and depth of the syntactic tree) 
and no longer encoded semantic information (word frequency, word 
embedding, semantic category).

Syntactic and semantic forecast windows
To investigate syntactic and semantic forecasts in the brain, we built 
forecast windows out of the syntactic and semantic activations of  
GPT-2, respectively. To this aim, we first built the forecast windows out 
of GPT-2 activations X̃(d). Then, we extracted the syntactic X̃(d)syn and 
semantic X̃(d)sem components of the concatenated activations, as intro-
duced in Caucheteux et al.40. Finally, the syntactic forecast score is the 
increase in brain score when concatenating the syntactic window:

ℱ(d)
syn = ℛ(X⊕ X̃(d)syn) − ℛ(X) (6)

Similarly, the semantic forecast score is given by:

ℱ(d)
sem = ℛ(X⊕ X̃(d)sem) − ℛ(X) (7)

Brain parcellation
We systematically implemented whole-brain analyses and computed 
scores for each voxel in the brain. Yet, for simplicity, we report the 
scores averaged across selected regions of interest in Figs. 2f,g 
and 3c. To this aim, we used a subdivision of the Destrieux atlas82. 
Regions with more than 500 vertices were split into smaller parts. 
This resulted in 142 regions per hemisphere, each containing fewer 
than 500 vertices.

Statistical significance
We systematically implemented single-individual and whole-brain 
analyses: all metrics (brain score, forecast score, forecast distance and 
depth) were computed for each individual–voxel pair. We report the 
metrics averaged across individuals and/or voxels depending on the 
analysis. Statistics were computed across individuals using a two-sided 
Wilcoxon rank-sum test from Scipy83 assessing whether the metric (or 
the difference between two metrics) was significantly different from 
zero and then corrected for multiple comparisons using the false 
discovery rate (FDR). We report an effect as significant if P < 0.01. The 
shaded regions in Figs. 2, 4 and 5 correspond to the 95% confidence 

intervals (CIs) across individuals (n = 304). The boxplots in Figs. 2–5 
summarize the distribution of the effect obtained on 10 distinct and 
random subdivisions of the dataset.

Noise ceiling
The fMRI recordings are inherently noisy. To assess the amount of 
explainable signal, we used a ‘noise ceiling’ analysis, that is, we pre-
dicted the brain responses Y(s) of each individual s given the responses 
of the other individuals to the same story Y. We proceeded similarly as 
the brain score computation and applied the same setting as equation 
(1) but used the average brain signals of other individuals’ brains 

Y
(s)

= 1
|𝒮𝒮|
∑s′≠sY(s

′) (of size T × V) instead of the network’s activations X. 

Precisely:

•	 For the brain score computation, Y(s) represents the fMRI record-
ings of individual s, corresponding to all the stories individual 
s listened to while being scanned. X consists of the contextual 
embeddings of the corresponding words, summed within each 
TR and transformed with FIR. Thus,

Rbrain score(s) = corr[W(s) ⋅ X,Y(s)]

with X as the GPT-2 embeddings, temporally aligned with Y using FIR.
•	 For the noise ceiling computation, Y(s) is the same as for the brain 

score computation. X consists of the average fMRI recordings 
of the other individuals who listened to the same stories as 
individual s. X and Y have the same dimensionality and the bold 
delay is assumed to be comparable across individuals, so we did 
not apply a FIR to X. Thus,

Rnoise ceiling(s) = corr[W(s) ⋅ Y
(s)
,Y(s)]

with Y(s) as the average fMRI of the other individuals who listened to the 
same story as individual s.

For both the brain score and noise ceiling computation, we fit-
ted a ridge regression W(s) for each individual s, predicting Y(s) given 
X, using the same fivefold cross-validation setting. We evaluated the 
prediction successively on the five test folds using Pearson correlation 
and averaged the correlation scores across folds. This resulted in one 
brain score and one noise ceiling estimate per individual (and voxel). 
Results averaged across individuals are displayed in Supplementary 
Fig. 10. This score is one possible upper bound for the best brain score 
that can be obtained given the level of noise in the dataset.

Fine-tuning GPT-2 with a long-range and high-level objective
Does fine-tuning GPT-2 to predict long-term, high-level and more 
contextualized representations increase its similarity with the brain?

To test this question, we fine-tuned GPT-2 using a mixture of 
language modelling loss and high-level and long-term loss. We then 
evaluated brain scores and test whether the high-level objective would 
lead to significantly higher brain scores than the language modelling 
objective.

Architecture and losses. We fine-tuned the pretrained GPT-2 model 
provided by Huggingface with a mixture of language modelling and 
high-level forecast. The mixture loss was parameterized by a hyperpa-
rameter α ∈ [0,1]. The total loss minimized is given by:

ℒ = α′ℒhigh−level + (1 − α′)ℒlanguage modelling (8)

with the constraint that α′ℒhigh−level = α(1 − α′)ℒlanguage modelling. Doing so, 
setting α to 0.5 means that each term of the loss contributes to 50% of 
the total loss. The language modelling objective predicts the next word 
and it is given by:

This results in 142 regions per hemisphere, each containing fewer than 500 
vertices

STG / STS Superior temporal gyrus / sulcus

aSTS Anterior STS

mSTS Mid STS

pSTS Posterior STS

Angular / Supramar Angular / Supramarginal inferior parietal gyrus

IFG / IFS Inferior frontal gyrus / sulcus

Tri / Op Pars triangularis / opercularis (IFG)

Heschl G / Heschl S Heschl gyrus / sulcus
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ℒlanguage modelling = CE [hlanguage modelling ∘ f(xt), xt+1]

with:

•	 CE as the cross-entropy loss;
•	 f as the learned fine-tuned model. f is initialized with the weights 

of pretrained GPT-2. Thus, f is a 12-layers Transformer network 
stacked onto a word embedding, each layer having a dimension-
ality of 768;

•	 hlanguagemodelling as the language modelling linear head on top of 
the last layer of f, from 768 to nvocab, which predicts the next 
word;

•	 xt as the input tokens;
•	 xt + 1 as the input tokens shifted from one time step (the succeed-

ing words).

The high-level objective predicts layer k of word at distance d from 
the current word and it is given by:

ℒk,d
high−level = CPC[hhigh−level ∘ f(xt),Nk(xt+d)]

where:

•	 Nk is a separate and fixed network. Here, we use the pretrained 
version of GPT-2 provided by Huggingface, taken at layer k.  
Its weights are fixed: they do not vary with training.

•	 hhigh-level is a linear head on top of the last layer of f, from 768 to 
768, which predicts the activations of the kth layer of the fixed 
network Nk, corresponding to the word at distance d from the 
current word.

•	 x represents the inputs, xt marks the current words and xt + d 
marks the words at distance d from the current word.

•	 CPC is the contrastive predicting coding loss84.

CPC = −log
Exp [S (ypredicted, ytrue,positive) /τ]

∑negativeExp [S (ypredicted, ytrue,negative) /τ]

with S as a similarity metric, ytrue,negative as a set of negative samples and 
ytrue,positive as a set of positive samples.

In practice, we chose to predict the hidden states at layer k = 8 of 
the future word at distance d = 8. We chose layer k = 8 and d = 8 because 
it led to the best results (Fig. 2d). To compute the CPC loss, we took 
τ = 0.1 and used the cosine similarity as similarity metric S. We used 
2,000 negatives randomly sampled from a negative queue (of size 
2,500). The negative queue was updated at each batch by adding the 
hidden states to the non-target words from the current batch. Such 
hidden states were extracted from the pretrained network at layer k 
(Nk). For the high-level and language modelling losses to have a fixed 
contribution α and 1 − α over training, we updated the parameter α′ in 
equation (8) every 100 gradient steps.

Dataset and training. We fine-tuned GPT-2 on the already preproc-
essed English Wikipedia dataset (https://huggingface.co/datasets/
wikipedia) consisting of 6M documents (30 GB) on 2 graphics pro-
cessing units. We used the ‘Trainer’ implementation from Hugging-
face with the default training arguments (Adam optimizer, learning 
rate = 0.00005; see https://huggingface.co/docs/transformers/
main_classes/trainer for the other default parameters). Because of 
memory constraints, we restricted the context size of GPT-2 to 256 
tokens and used a batch size of 4 per device (thus, 2 × 4 × 256 = 1,024 
tokens per batch and gradient updates). For stability, we fine-tune 
the top tier layers of the network (from layer 8 to layer 12), while the 
bottom layers were kept frozen. Fine-tuning the whole network with 
language modelling led to a significant drop in brain scores (with fixed 
training parameters). Losses were monitored on a separate evaluation 
set of 1,000 Wikipedia documents.

Evaluation. We fine-tuned seven GPT-2 models with different high-level 
weight α, from a loss being full language modelling (α = 0), half lan-
guage modelling and high-level (α = 0.5) to full high-level (α = 1). During 
the training, we saved ≈15 model checkpoints (regularly log-spaced 
between 0 and 106 gradient updates). For each model and step, we com-
puted the brain scores of its concatenated layers [0,4,8,12] on the same 
Narratives dataset39. We chose to span all layers from 0 to 12 because 
representations could ‘move’ across layers during the fine-tuning, 
which could bias the results. We then averaged the brain scores across 
steps and assessed the gain of one network over another. In Fig. 5, we 
report the gain averaged across individuals when adding increasingly 
more high-level prediction in the loss.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The Narratives dataset39 is publicly available on OpenNeuro https:// 
openneuro.org/datasets/ds002345/versions/1.1.4.

Code availability
All analyses were performed using Python and scikit-learn81. The fMRI 
data were analysed with nilearn (https://nilearn.github.io/stable/index. 
html), mne-python85–88 and freesurfer (https://surfer.nmr.mgh.harvard. 
edu/). Deep language models were analysed using the transformers 
library80. Statistical significance was assessed using Scipy83.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No data collection was performed

Data analysis All analyses were performed using python (3.7) and scikit-learn. The fMRI data was analyzed using nilearn, MNE-Python, and freesurfer. The 
NLP algorithms were analyzed using the open source transformers library. Statistical significance was assessed using Scipy. 

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size We studied all the subjects in the original dataset, n=345 (Nastase et al. 2020).

Data exclusions As suggested in the original dataset, subjects were excluded because of noise or non-natural stimuli (Nastase et al. 2020). This results in a 
dataset of 304 subjects. 

Replication The experiment was successfully replicated on each of the 304 subject. Statistical significance is systematically assessed across subjects. 

Randomization For each subject, the stimuli (aggregated stories) were split into five folds. Then, a model was trained on four folds (80% of the words) and 
tested on the last fold (20% of held out words). The procedure was repeated for each possible split (five) and the results were averaged across 
the five test folds.

Blinding For each subject, we blind 20% of the subject data. The model is trained on 80% and evaluated on the 20% left out data. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study
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Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data
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