

Systèmes entrée-sortie non linéaires et applications en audio-acoustique

Thomas Hélie

▶ To cite this version:

Thomas Hélie. Systèmes entrée-sortie non linéaires et applications en audio-acoustique. Doctorat. 8
ième École d'été en Mécanique Théorique: Théorie du Contrôle en Mécanique, Quiberon, France. 2019. hal-04036312

HAL Id: hal-04036312 https://hal.science/hal-04036312v1

Submitted on 19 Mar 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Systèmes entrée-sortie non linéaires et applications en audio-acoustique

Séries de Volterra

Thomas Hélie, CNRS

Equipe S3AM (http://s3am.ircam.fr) Laboratoire des Sciences et Technologies de la Musique et du Son IRCAM - CNRS - SU, Paris, France

Ecole Thématique "Théorie du Contrôle en Mécanique" 2019

(ロ)、(型)、(E)、(E)、(E)、(O)(C) 1/29

Vito Volterra [1860 (Ancona) - 1940 (Roma)]

Mathématicien et physicien italien connu pour ses travaux sur les équations intégro-différentielles, la dynamique des populations, ... Prédécesseur de Fréchet et Banach, il est considéré comme l'un des fondateurs de l'analyse fonctionnelle. Il s'oppose au régime fasciste (1922) et refuse les honneurs académiques par conviction politique. Il vit alors en grande partie à l'étranger et revient à Rome peu avant sa mort.

Royal Society (1910) - Royal Society of Edinburgh (1913) Un cratère de lune porte son nom.

Avant de commencer, quelques rélénces bibliographiques

- V. Volterra. Theory of Functionnals and of Integral and Integro-Differential Equations. (Dover Pub., 1959).
- R. W. Brockett. Volterra series and geometric control theory. Automatica, 12:167–176, 1976).
- E. G. Gilbert. Functional expansions for the response of nonlinear differential systems. (*IEEE-TCAS*, 22:909–921, 1977).
- M. Fliess et al. An algebraic approach to nonlinear functional expansions. (IEEE-TCAS, 30(8):554-570, 1983).

- A. Isidori. Nonlinear control systems (3rd ed). (Springer, 3rd ed., 1995).
- W. J. Rugh. Nonlinear System Theory, The Volterra/Wiener approach. (The Johns Hopkins University Press, Baltimore, 1981).
- M. Schetzen. The Volterra and Wiener theories of nonlinear systems. (Wiley-Interscience, 1989).

- F. Lamnabhi-Lagarrigue. Analyse des Systèmes Non Linéaires. (Editions Hermès, 1994).
- S. Boyd and L. Chua. Fading memory and the problem of approximating nonlinear operators with Voltera series. (*IEEE-TCAS*, 32(11):1150–1161, 1985).
- M. Hasler. Phénomènes non linéaires. (Ed. Ecole Polytechnique Fédérale de Lausanne, 1999).
- F. Bullo. Series expansions for analytic systems linear in control. (Automatica, 38:1425–1432, 2002).

Doyle et al. Identification and Control Using Volterra Models. (Springer, 2002).

Hélie & collaborators. Quelques articles personnels joints (2003-2019).

- 2 Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel
- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

Plan

Préambule

Systèmes linéaires invariants dans le temps (/exemple)

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ • ○ < ○ 5/29

- Perturbations non linéaires régulières

Outline

Préambule

Systèmes linéaires invariants dans le temps (/exemple)

- Perturbations non linéaires régulières
- Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel
- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

State-space representation:
$$\mathbf{x}(t) = [\mathbf{z}(t), \mathbf{z}'(t)]^T, \mathbf{x}(0) = [0, 0]^T$$

$$\underbrace{\begin{bmatrix} \mathbf{z}'(t) \\ \mathbf{z}''(t) \end{bmatrix}}_{\mathbf{x}'(t)} = \underbrace{\begin{bmatrix} 0 & 1 \\ -k/m & -a/m \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} \mathbf{z}(t) \\ \mathbf{z}'(t) \end{bmatrix}}_{\mathbf{x}(t)} + \underbrace{\begin{bmatrix} 0 \\ 1/m \end{bmatrix}}_{\mathbf{B}} \mathbf{u}(t)$$

State-space representation: $\mathbf{x}(t) = [z(t), z'(t)]^{T}, \mathbf{x}(0) = [0, 0]^{T}$

Eq.:
$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

Sol.: $\mathbf{x}(t) = \int_0^t e^{\mathbf{A}\tau} \mathbf{B}\mathbf{u}(t-\tau) d\tau$ $\mathbf{y}(t) = [1,0] \mathbf{x}(t)$
 $= \mathbf{C} \mathbf{x}(t)$

$$mz''(t) + az'(t) + kz(t) = f(t)$$

Find the trajectory z(t) with respect to the force f(t)

System with input (u) / output (y) $u := f \longrightarrow \begin{bmatrix} \text{External} & & \\ \text{representation} & & \\ (\text{closed-form ?)} & & \\ y(t) = \int_{0}^{t} h(\tau) u(t-\tau) d\tau \\ \text{Convolution(/filtering) with the} \\ \text{impulse reponse} \\ h(\tau) = C e^{A\tau} B 1_{\tau > 0} \\ \end{bmatrix}$

State-space representation: $\mathbf{x}(t) = [z(t), z'(t)]^T, \mathbf{x}(0) = [0, 0]^T$

Eq.:
$$\mathbf{x}'(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t)$$

Sol.: $\mathbf{x}(t) = \int_0^t e^{\mathbf{A}\tau} \mathbf{B}\mathbf{u}(t-\tau) d\tau$ $\mathbf{y}(t) = [1,0] \mathbf{x}(t)$
 $= \mathbf{C} \mathbf{x}(t)$

2. AN EXAMPLE: in the LAPLACE domain

$$mz''(t) + az'(t) + kz(t) = f(t)$$

Find the trajectory z(t) with respect to the force f(t)

System with input (\boldsymbol{u}) / output (\boldsymbol{y}) $\boldsymbol{u} := f \longrightarrow \begin{bmatrix} \text{External} \\ \text{representation} \\ (closed-form ?) \end{bmatrix} \longrightarrow \boldsymbol{y} := \boldsymbol{z}$

 $\mathbf{Y}(\boldsymbol{s}) = H(\boldsymbol{s}) \; \boldsymbol{U}(\boldsymbol{s})$

Transfer function (/filter) $H(s) = C(s I_2 - A)^{-1}B$

State-space representation: $\mathbf{x}(t) = [z(t), z'(t)]^T, \mathbf{x}(0) = [0, 0]^T$

Eq.: sX(s) = AX(s) + BU(s)Sol.: $X(s) = (sI_2 - A)^{-1}BU(s)$ Y(s) = [1,0] X(s)= C X(s)

Outline

Préambule

Systèmes linéaires invariants dans le temps (/exemple)

- Perturbations non linéaires régulières

3. What about nonlinear systems ?

Input/Output nonlinear differential system (state x)

Linear case

F(x, u) = Ax + BuG(x, u) = Cx + Du

I/O relation: linear filter

Kernel: $h(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{B} + \mathbf{D}$ Trsf. fct: $H(s) = \mathbf{C}(s\mathbf{I} + \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

<u>Interests:</u> control, spectral analysis, identification, simulation, etc.

$$\mathbf{J} \longrightarrow \boxed{\begin{array}{c} \text{Closed-form} \\ \text{solution?} \end{array}} \longrightarrow \mathbf{y}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ . □ . つへで 10/29

3. What about nonlinear systems ?

Input/Output nonlinear differential system (state x)

u

$$\rightarrow \boxed{\begin{array}{c} \text{Closed-form} \\ \text{solution?} \end{array}} \rightarrow$$

In general, NO ! But...

Linear case

F(x, u) = Ax + BuG(x, u) = Cx + Du

Weakly nonlinear case

F, G: power series expansions around equilibrium point 0 (nonzero coeff. at order 1)

I/O relation: linear filter

Kernel: $h(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{B} + \mathbf{D}$ Trsf. fct: $H(s) = \mathbf{C}(s\mathbf{I} + \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

<u>Interests:</u> control, spectral analysis, identification, simulation, etc.

Example: a nonlinear spring

$$mz''(t) + az'(t) + \kappa(z(t)) = f(t)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ = のへで 10/29

3. What about nonlinear systems ?

Input/Output nonlinear differential system (state x)

U

$$\rightarrow \begin{array}{c} \text{Closed-form} \\ \text{solution?} \end{array} \rightarrow$$

In general, NO ! But...

Linear case

F(x, u) = Ax + BuG(x, u) = Cx + Du

Weakly nonlinear case

F, G: power series expansions around equilibrium point 0 (nonzero coeff. at order 1)

I/O relation: linear filter

Kernel: $h(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{B} + \mathbf{D}$ Trsf. fct: $H(s) = \mathbf{C}(s\mathbf{I} + \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$

<u>Interests:</u> control, spectral analysis, identification, simulation, etc.

Example: a nonlinear spring

$$mz''(t) + az'(t) + \kappa(z(t)) = f(t)$$

I/O relation: Volterra series

Interests: idem!

4. From a qualitative point of view...

A few comparisons:

	closed-form sol.	distortions	self-oscillations
Case	w.r.t. input		bifucations, chaos
General	no	yes	yes
Volterra	yes	yes	no
Linear	yes	no	no

4. From a qualitative point of view...

A few comparisons:

	closed-form sol.	distortions	self-oscillations
Case	w.r.t. input		bifucations, chaos
General	no	yes	yes
Volterra	yes	yes	no
Linear	yes	no	no

Interest of Volterra series:

- Natural distortions for high amplitudes
- Possible extensions to partial differential equations
- Audio-acoustics: large dynamics (/fortissimo)

5. What is the idea ?

For a Weakly Nonlinear System ...

$\mathbf{x}'(t) = \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t))$	$\boldsymbol{F}(X,U) = \sum_{m,n} \frac{D_{m,n} \boldsymbol{F}(0,0)}{m! p!} (X,\ldots,X,U,\ldots,U)$
$\boldsymbol{y}(t) = \boldsymbol{G}(\boldsymbol{x}(t), \boldsymbol{u}(t))$	$\boldsymbol{G}(X,U) = \sum_{m,n} \frac{D_{m,n} \boldsymbol{G}(0,0)}{m! n!} (X,\ldots,X,U,\ldots,U)$

Consider the input as a **perturbation** of the system. Mark it with $\eta \in (0,1)$: $u(t) = \eta v(t)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 12/29

For a Weakly Nonlinear System ...

 $\begin{aligned} \mathbf{x}'(t) &= \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t)) \qquad \mathbf{F}(X, U) = \sum_{m,n} \frac{D_{m,n} \mathbf{F}(0,0)}{m!n!} (X, \dots, X, U, \dots, U) \\ \mathbf{y}(t) &= \mathbf{G}(\mathbf{x}(t), \mathbf{u}(t)) \qquad \mathbf{G}(X, U) = \sum_{m,n} \frac{D_{m,n} \mathbf{G}(0,0)}{m!n!} (X, \dots, X, U, \dots, U) \end{aligned}$

Consider the input as a perturbation of the system. Mark it with $\eta \in (0,1)$: $u(t) = \eta v(t)$

(i) Introduce $\mathbf{x}(t) = \sum_{n} \eta^{n} \mathbf{x}_{n}(t)$ and $\mathbf{y}(t) = \sum_{n} \eta^{n} \mathbf{y}_{n}(t)$ (ii) Inject these series expansions in the system equations (iii) Sort equations w.r.t. η^{n}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで 12/29

For a Weakly Nonlinear System ...

 $\begin{aligned} \mathbf{x}'(t) &= \mathbf{F}(\mathbf{x}(t), \mathbf{u}(t)) \qquad \mathbf{F}(X, U) = \sum_{m,n} \frac{D_{m,n} \mathbf{F}(0,0)}{m!n!} (X, \dots, X, U, \dots, U) \\ \mathbf{y}(t) &= \mathbf{G}(\mathbf{x}(t), \mathbf{u}(t)) \qquad \mathbf{G}(X, U) = \sum_{m,n} \frac{D_{m,n} \mathbf{G}(0,0)}{m!n!} (X, \dots, X, U, \dots, U) \end{aligned}$

Consider the input as a perturbation of the system. Mark it with $\eta \in (0,1)$: $u(t) = \eta v(t)$

(i) Introduce $\mathbf{x}(t) = \sum_{n} \eta^{n} \mathbf{x}_{n}(t)$ and $\mathbf{y}(t) = \sum_{n} \eta^{n} \mathbf{y}_{n}(t)$

(ii) Inject these series expansions in the system equations (iii) Sort equations w.r.t. η^n

We obtain a sequence of linear ODEs, indexed w.r.t. n

For a Weakly Nonlinear System ...

 $\begin{aligned} \mathbf{x}'(t) &= \mathbf{F}\big(\mathbf{x}(t), \mathbf{u}(t)\big) & \mathbf{F}(X, U) = \sum_{m,n} \frac{D_{m,n} \mathbf{F}(0,0)}{m! n!} (X, \dots, X, U, \dots, U) \\ \mathbf{y}(t) &= \mathbf{G}\big(\mathbf{x}(t), \mathbf{u}(t)\big) & \mathbf{G}(X, U) = \sum_{m,n} \frac{D_{m,n} \mathbf{G}(0,0)}{m! n!} (X, \dots, X, U, \dots, U) \end{aligned}$

Consider the input as a perturbation of the system. Mark it with $\eta \in (0,1)$: $u(t) = \eta v(t)$

(i) Introduce $\mathbf{x}(t) = \sum_{n} \eta^{n} \mathbf{x}_{n}(t)$ and $\mathbf{y}(t) = \sum_{n} \eta^{n} \mathbf{y}_{n}(t)$

(ii) Inject these series expansions in the system equations (iii) Sort equations w.r.t. η^n

We obtain a sequence of linear ODEs, indexed w.r.t. n

(iv) <u>Solution</u>: Each x_n is a **multiple convolution** of *n* repeated versions of the input and a computable multivariate kernel \longrightarrow Volterra kernel

Plan

rieambule

- 2 Séries de Volterra : généralités
 - Domaine temporel
 - Domaine fréquentiel et de Laplace

3 Calcul des noyaux de Volterra d'un système différentiel

- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

Outline

- 2 Séries de Volterra : généralités
 - Domaine temporel
 - Domaine fréquentiel et de Laplace
- 3 Calcul des noyaux de Volterra d'un système différentiel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�� 14/29

- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

Time domain

- Definition and examples
- A convergence criterion
- Non-uniqueness of kernels
- Remark on time-varying systems

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 15/29

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ � ♡ € 16/29

(with several possible functional settings)

Definition

A system $\underbrace{U}_{\{h_n\}}$ is defined by the Volterra series $\{h_n\}_{n\geq 1}$ if

$$\begin{aligned} \mathbf{y}(t) &= \sum_{n=1}^{+\infty} \int_{\mathbb{R}^n} h_n(\tau_1, \dots, \tau_n) \, u(t-\tau_1) \dots \, u(t-\tau_n) \, \mathrm{d}\tau_1 \dots \, \mathrm{d}\tau_n \\ &= \int_{\mathbb{R}} h_1(\tau_1) \, u(t-\tau_1) \, \mathrm{d}\tau_1 \end{aligned}$$

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ ○ ○ ○ 16/29

Example

• Linear filters: $h_n = 0$, if $n \ge 2$.

Definition

A system \underbrace{u}_{h_n} is defined by the Volterra series $\{h_n\}_{n\geq 1}$ if

$$\mathbf{y}(t) = \sum_{n=1}^{+\infty} \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t - \tau_1) ... u(t - \tau_n) d\tau_1 ... d\tau$$

$$= \sum_{n=1}^{+\infty} \alpha_n (u(t))^n$$
 Power series

Example

- Linear filters: $h_n = 0$, if $n \ge 2$.
- Memoryless fct: $h_n(\tau_1, ..., \tau_n) = \alpha_n \, \delta(\tau_1, ..., \tau_n), \qquad (\delta: \text{Dirac}).$

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ へ ○ 16/29

Definition A system $\underbrace{\underline{u}}_{n\geq 1} \{\underline{h}_n\}_{n\geq 1}$ is defined by the Volterra series $\{\underline{h}_n\}_{n\geq 1}$ if $y(t) = \sum_{\substack{n=1\\ \text{Sum}}}^{+\infty} \underbrace{\int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t - \tau_1) ... u(t - \tau_n) d\tau_1 ... d\tau_n}_{\text{of multiple convolutions}}$

Example

- Linear filters: $h_n = 0$, if $n \ge 2$.
- Memoryless fct: $h_n(\tau_1, ..., \tau_n) = \alpha_n \, \delta(\tau_1, ..., \tau_n), \qquad (\delta: \text{Dirac}).$

◆□ ▶ ◆ @ ▶ ◆ E ▶ ◆ E ▶ ○ E ♡ � ♡ € 16/29

• General case: n=1 (linear contrib.), n=2 (quadratic), etc.

Definition

A system $\underbrace{U}_{\{h_n\}}$ is defined by the Volterra series $\{h_n\}_{n\geq 1}$ if

$$\mathbf{y}(t) = \sum_{n=1}^{\infty} \underbrace{\int_{\mathbb{R}^n} h_n(\tau_1, \dots, \tau_n) u(t-\tau_1) \dots u(t-\tau_n) d\tau_1 \dots d\tau_n}_{\text{of multiple convolutions}}$$

Example

- Linear filters: $h_n = 0$, if $n \ge 2$.
- Memoryless fct: $h_n(\tau_1, ..., \tau_n) = \alpha_n \, \delta(\tau_1, ..., \tau_n), \qquad (\delta: \text{Dirac}).$
- General case: n=1 (linear contrib.), n=2 (quadratic), etc.

A system is causal if

$$\begin{array}{rcl} \tau < 0 & \Rightarrow & h(\tau) = 0 & (\text{linear}) \\ \exists k \text{ s.t. } \tau_k < 0 & \Rightarrow & h_n(\tau_1, ..., \tau_k, ..., \tau_n) = 0 & (\text{Volterra}) \end{array}$$

RECALL: definition of a Volterra series

$$\mathbf{x}(t) = \sum_{n=1}^{+\infty} \mathbf{x}_n(t) \text{ with } \mathbf{x}_n(t) = \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

RECALL: definition of a Volterra series

$$\mathbf{x}(t) = \sum_{n=1}^{+\infty} \mathbf{x}_n(t) \text{ with } \mathbf{x}_n(t) = \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

Bounded Input Bounded Output (BIBO) result $(\|\boldsymbol{u}\|_{\infty} = \sup_{t \in \mathbb{R}} |\boldsymbol{u}(t)|)$

$$|\mathbf{x}_n(t)| = \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 17/29

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 17/29

RECALL: definition of a Volterra series

$$\mathbf{x}(t) = \sum_{n=1}^{+\infty} \mathbf{x}_n(t) \text{ with } \mathbf{x}_n(t) = \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

Bounded Input Bounded Output (BIBO) result $(\|\boldsymbol{u}\|_{\infty} = \sup_{t \in \mathbb{R}} |\boldsymbol{u}(t)|)$

$$\begin{aligned} \mathbf{x}_{n}(t) &= \left| \int_{\mathbb{R}^{n}} h_{n}(\tau_{1},...,\tau_{n}) \, u(t-\tau_{1})... \, u(t-\tau_{n}) \, \mathrm{d}\tau_{1}... \, \mathrm{d}\tau_{n} \right| \\ &\leq \left| \int_{\mathbb{R}^{n}} h_{n}(\tau_{1},...,\tau_{n}) \right| \underbrace{\left| u(t-\tau_{1}) \right| \ldots \left| u(t-\tau_{n}) \right|}_{\mathbf{U}(t-\tau_{n})} \, \mathrm{d}\tau_{1}... \, \mathrm{d}\tau_{n} \end{aligned}$$

RECALL: definition of a Volterra series

$$\mathbf{x}(t) = \sum_{n=1}^{+\infty} \mathbf{x}_n(t) \text{ with } \mathbf{x}_n(t) = \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

Bounded Input Bounded Output (BIBO) result $(\|\boldsymbol{u}\|_{\infty} = \sup_{t \in \mathbb{R}} |\boldsymbol{u}(t)|)$

$$\begin{aligned} \mathbf{x}_{n}(t) &= \left| \int_{\mathbb{R}^{n}} h_{n}(\tau_{1},...,\tau_{n}) u(t-\tau_{1})...u(t-\tau_{n}) d\tau_{1}...d\tau_{n} \right| \\ &\leq \int_{\mathbb{R}^{n}} \left| h_{n}(\tau_{1},...,\tau_{n}) \right| \underbrace{\left| u(t-\tau_{1}) \right| \dots \left| u(t-\tau_{n}) \right|}_{\leq \| u \|_{\infty} \dots \| u \|_{\infty}} d\tau_{1}...d\tau_{n} \end{aligned}$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 17/29

RECALL: definition of a Volterra series

$$\mathbf{x}(t) = \sum_{n=1}^{+\infty} \mathbf{x}_n(t) \text{ with } \mathbf{x}_n(t) = \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

Bounded Input Bounded Output (BIBO) result

$$(||u||_{\infty} = \sup_{t \in \mathbb{R}} |u(t)|)$$

$$|\mathbf{x}_{n}(t)| = \int_{\mathbb{R}^{n}} h_{n}(\tau_{1},...,\tau_{n}) u(t-\tau_{1})...u(t-\tau_{n}) d\tau_{1}...d\tau_{n}$$

$$\leq \int_{\mathbb{R}^{n}} |h_{n}(\tau_{1},...,\tau_{n})| \underbrace{|u(t-\tau_{1})|...|u(t-\tau_{n})|}_{\leq ||u||_{\infty}...||u||_{\infty}} d\tau_{1}...d\tau_{n}$$

$$||\mathbf{x}_{n}||_{\infty} \leq \underbrace{\int_{\mathbb{R}^{n}} |h_{n}(\tau_{1},...,\tau_{n})| d\tau_{1}...d\tau_{n}}_{=||h_{n}||_{1}} (L^{1}\operatorname{-norm})$$

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ ○ 17/29

RECALL: definition of a Volterra series

$$\mathbf{x}(t) = \sum_{n=1}^{+\infty} \mathbf{x}_n(t) \text{ with } \mathbf{x}_n(t) = \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

Bounded Input Bounded Output (BIBO) result

$$(||u||_{\infty} = \sup_{t \in \mathbb{R}} |u(t)|)$$

$$|x_n(t)| = \left| \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t - \tau_1) ... u(t - \tau_n) d\tau_1 ... d\tau_n \right|$$

$$\leq \int_{\mathbb{R}^n} \left| h_n(\tau_1, ..., \tau_n) \right| \underbrace{|u(t - \tau_1)| \dots |u(t - \tau_n)|}_{\leq ||u||_{\infty} \dots ||u||_{\infty}} d\tau_1 ... d\tau_n$$

$$||x_n||_{\infty} \leq \underbrace{\int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n)}_{= ||h_n||_1} \underbrace{(L^1\text{-norm})}_{(L^1\text{-norm})}$$

Hence,
$$\|x\|_{\infty} \leq \sum_{n=1}^{+\infty} \|x_n\|_{\infty} \leq \sum_{n=1}^{+\infty} \|h_n\|_1 (\|u\|_{\infty})^n.$$

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 17/29

A convergence criterion (2/2)

(see e.g. [Boyd, 1984])

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 18/29

Gain bound function φ

Define $\varphi(z) = \sum_{n \ge 1} \|h_n\|_1 z^n$ with convergence radius ρ at z = 0.

Theorem (BIBO result)

If $\|u\|_{\infty} < \rho$, then the Volterra series expansion of x is normally convergent and

 $\|\mathbf{X}\|_{\infty} \leq \boldsymbol{\varphi}(\|\mathbf{U}\|_{\infty}) < +\infty.$

A convergence criterion (2/2)

(see e.g. [Boyd, 1984])

Gain bound function φ

Define $\varphi(z) = \sum_{n \ge 1} \|h_n\|_1 z^n$ with convergence radius ρ at z = 0.

Theorem (BIBO result)

If $\|u\|_{\infty} < \rho$, then the Volterra series expansion of x is normally convergent and

$$\|\mathbf{X}\|_{\infty} \leq \boldsymbol{\varphi}(\|\mathbf{U}\|_{\infty}) < +\infty.$$

Moreover, the truncation error is bounded:

$$\left\|\sum_{n=N+1}^{+\infty} x_n\right\|_{\infty} \leq \sum_{n=N+1}^{+\infty} \|h_n\|_1 \left(\|u\|_{\infty}\right)^n$$

◆□ ▶ ◆ @ ▶ ◆ @ ▶ ◆ @ ▶ ○ @ ○ 18/29

Remark:

Permuting variables
$$\tau_k$$
 in $\mathbf{y}(t) = \sum_{n=1}^{+\infty} \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t - \tau_1) ... u(t - \tau_n) d\tau_1 ... d\tau_n$

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ へ ○ 19/29

leaves the output y unchanged.

Remark:

Permuting variables
$$\tau_k$$
 in $\mathbf{y}(t) = \sum_{n=1}^{+\infty} \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t - \tau_1) ... u(t - \tau_n) d\tau_1 ... d\tau_n$
leaves the output \mathbf{y} unchanged.

Example

 $h_2(\tau_1, \tau_2)$, $h_2(\tau_2, \tau_1)$, but also $\alpha h_1(\tau_1, \tau_2) + (1 - \alpha)h_2(\tau_2, \tau_1)$ define the same Input-Ouput system.

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ < つ < ○ 19/29</p>

Remark:

Permuting variables
$$\tau_k$$
 in $\mathbf{y}(t) = \sum_{n=1}^{+\infty} \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t - \tau_1) ... u(t - \tau_n) d\tau_1 ... d\tau_n$
leaves the output \mathbf{y} unchanged.

Example

 $h_2(\tau_1, \tau_2)$, $h_2(\tau_2, \tau_1)$, but also $\alpha h_1(\tau_1, \tau_2) + (1 - \alpha)h_2(\tau_2, \tau_1)$ define the same Input-Ouput system.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで 19/29

Definition: A kernel is symmetrical if

for all permutations π , $h_n(\tau_{\pi(1)}, ..., \tau_{\pi(n)}) = h_n(\tau_1, ..., \tau_n)$

Remark:

Permuting variables
$$\tau_k$$
 in $\mathbf{y}(t) = \sum_{n=1}^{+\infty} \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t - \tau_1) ... u(t - \tau_n) d\tau_1 ... d\tau_n$
eaves the output \mathbf{y} unchanged.

Example

 $h_2(\tau_1, \tau_2)$, $h_2(\tau_2, \tau_1)$, but also $\alpha h_1(\tau_1, \tau_2) + (1 - \alpha)h_2(\tau_2, \tau_1)$ define the same Input-Ouput system.

Definition: A kernel is symmetrical if

for all permutations π , $h_n(\tau_{\pi(1)}, ..., \tau_{\pi(n)}) = h_n(\tau_1, ..., \tau_n)$

Symmetrical versions of Volterra kernels $SYM[h_n]$ are unique

$$\mathsf{SYM}[h_n](\tau_1,...,\tau_n) = \frac{1}{n!} \sum_{\pi} h_n(\tau_{\pi(1)},...,\tau_{\pi(n)})$$

Other unique versions (triangular kernels, regular kernels) are also available.

Remark on time varying systems

A definition is also available for time-varying systems:

$$y(t) = \sum_{n=1}^{+\infty} \int_{\mathbb{R}^n} g_n(t,\theta_1,\dots,\theta_n) u(\theta_1)\dots u(\theta_n) d\theta_1\dots d\theta_n$$

Time-Invariant (TI) case and link with kernels h_n

TI case:
$$y(t) = \sum_{n=1}^{+\infty} \int_{\mathbb{R}^n} h_n(\tau_1, ..., \tau_n) u(t-\tau_1) ... u(t-\tau_n) d\tau_1 ... d\tau_n$$

Kernels g_n of a TI system are such that $(\theta_k = t - \tau_k)$

$$g_n(t,t-\tau_1,...,t-\tau_n)=h_n(\tau_1,...,\tau_n)$$

does not depend on t

Causal kernels g_n

$$\exists k \text{ s.t. } \theta_k > t \Rightarrow g_n(t, \theta_1, ..., \theta_k, ..., \theta_n) = 0$$

◆□ → < 団 → < 臣 → < 臣 → 臣 の Q (20/29)</p>

Outline

2 Séries de Volterra : généralités

- Domaine temporel
- Domaine fréquentiel et de Laplace

3 Calcul des noyaux de Volterra d'un système différentiel

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - 釣�� 21/29

- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

Laplace(/Fourier) domain and analogies with linear systems

Laplace domain (or Fourier domain with $s = 2i\pi f$)

Transfer function:
$$H(s) = \int_{\mathbb{R}} h(\tau) e^{-s\tau} d\tau$$
 (lin.)

Transfer kernel:
$$H_n(s_{1:n}) = \int_{\mathbb{R}^n} h_n(\tau_{1:n}) e^{-(s_1\tau_1 + \ldots + s_n\tau_n)} d\tau_1 \ldots d\tau_n$$
 (Volt.)
denoting $(s_{1:n}) = (s_1, \ldots, s_n)$ and $(\tau_{1:n}) = (\tau_1, \ldots, \tau_n)$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → ○ へ ○ 22/29

Laplace(/Fourier) domain and analogies with linear systems

Laplace domain (or Fourier domain with $s = 2i\pi f$)

Transfer function:
$$H(s) = \int_{\mathbb{R}} h(\tau) e^{-s\tau} d\tau$$
 (lin.)

Transfer kernel:
$$H_n(s_{1:n}) = \int_{\mathbb{R}^n} h_n(\tau_{1:n}) e^{-(s_1\tau_1 + \dots + s_n\tau_n)} d\tau_{1\dots} d\tau_n$$
 (Volt.)
denoting $(s_{1:n}) = (s_1, \dots, s_n)$ and $(\tau_{1:n}) = (\tau_1, \dots, \tau_n)$.

Causal stable system: NO poles (and NO singularities)				
of <i>H</i> (<i>s</i>)	for $\Re \mathbf{e}(s) > 0$	(linear)		
of <i>H_n(s_{1:n}</i>)	for $\Re \mathbf{e}(s_k) > 0$	(Volterra)		

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Laplace(/Fourier) domain and analogies with linear systems

Laplace domain (or Fourier domain with $s = 2i\pi f$)

Transfer function:
$$H(s) = \int_{\mathbb{R}} h(\tau) e^{-s\tau} d\tau$$
 (lin.)

Transfer kernel: $H_n(s_{1:n}) = \int_{\mathbb{R}^n} h_n(\tau_{1:n}) e^{-(s_1\tau_1 + \dots + s_n\tau_n)} d\tau_1 \dots d\tau_n$ (Volt.) denoting $(s_{1:n}) = (s_1, \dots, s_n)$ and $(\tau_{1:n}) = (\tau_1, \dots, \tau_n)$.

Causal stable system: NO poles (and NO singularities)				
of <i>H</i> (<i>s</i>)	for $\Re e(s) > 0$	(linear)		
of <i>H_n(s_{1:n}</i>)	for $\Re e(s_k) > 0$	(Volterra)		

Input/Output relation

 $u \rightarrow \text{system} \rightarrow y$

Transfer function: Y(s) = H(s) U(s) (lin.)

Transfer kernel: more complex (Volt.)

(next part: use interconnection laws)

A result on periodic signals

Analytic input signal
$$u(t) = ae^{i\omega t}$$

 $u(t) = ae^{i\omega t} \longrightarrow [\{h_n\}] \longrightarrow y(t) = \sum_{n=1}^{+\infty} a^n H_n(i\omega, ..., i\omega) e^{in\omega t}$

Periodic input signals / Fourier series

$$u(t) = \sum_{k=-\infty}^{+\infty} u_k e^{ik\omega t} \longrightarrow [\{h_n\}] \longrightarrow y(t) = \sum_{k=-\infty}^{+\infty} y_k e^{ik\omega t}$$

with $y_k = \sum_{n=1}^{+\infty} \sum_{\substack{k_1, \dots, k_n = -\infty \\ k_1 + \dots + k_n = k}}^{+\infty} u_{k_1} \dots u_{k_n} H_n(ik_1\omega, \dots, ik_n\omega)$

Distortion coefficient for $u(t) = a \cos(\omega t)$

 $D(a,\omega) = \sum_{n=2}^{+\infty} |y_n|^2 / |y_1|^2$: closed-form solution w.r.t. a, ω, H_n .

In summary:

A Volterra series ...

- catches distortions (memory combined with nonlinearities)
- sorts the nonlinear responses w.r.t. the degree n of homogenous contributions of u
- generalizes the convolution principle
- can be described by transfer kernels in the frequency domain (as filters).
- is usually non unique but uniquely defined versions are available (useful for identification purposes)

◆□ → ◆□ → ◆ 三 → ▲ 三 → ○ へ ○ 24/29

- 2 Séries de Volterra : généralités
- Calcul des noyaux de Volterra d'un système différentiel
 - Exercices et applications en audio-acoustique
 - 5 Convergence
- Extension en dimension infinie et application
- Conclusion

- 2 Séries de Volterra : généralités
- Calcul des noyaux de Volterra d'un système différentiel

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�� 26/29

Exercices et applications en audio-acoustique

5 Convergence

Extension en dimension infinie et application

Conclusion

- Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�� 27/29

Exercices et applications en audio-acoustique

5 Convergence

Extension en dimension infinie et application

Conclusion

- Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel

Exercices et applications en audio-acoustique

5 Convergence

Extension en dimension infinie et application

7 Conclusion

- 2 Séries de Volterra : généralités
- 3 Calcul des noyaux de Volterra d'un système différentiel
- Exercices et applications en audio-acoustique
- 5 Convergence
- Extension en dimension infinie et application

