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Ultimate greedy approximation of independent sets in subcubic graphs

Piotr Krysta∗ Mathieu Mari† Nan Zhi‡

Abstract
We study the approximability of the maximum size inde-
pendent set (MIS) problem in bounded degree graphs. This
is one of the most classic and widely studied NP-hard opti-
mization problems. It is known for its inherent hardness of
approximation.

We focus on the well known minimum degree greedy
algorithm for this problem. This algorithm iteratively
chooses a minimum degree vertex in the graph, adds it to
the solution and removes its neighbors, until the remaining
graph is empty. The approximation ratios of this algorithm
have been very widely studied, where it is augmented with
an advice that tells the greedy which minimum degree vertex
to choose if it is not unique.

Our main contribution is a new mathematical theory
for the design of such greedy algorithms with efficiently
computable advice and for the analysis of their approxi-
mation ratios. With this new theory we obtain the ulti-
mate approximation ratio of 5/4 for greedy on graphs with
maximum degree 3, which completely solves the open prob-
lem from the paper by Halldórsson and Yoshihara (1995).
Our algorithm is the fastest currently known algorithm with
this approximation ratio on such graphs. We also obtain a
simple and short proof of the (D+2)/3-approximation ratio
of any greedy on graphs with maximum degree D, the re-
sult proved previously by Halldórsson and Radhakrishnan
(1994). We almost match this ratio by showing a lower
bound of (D+1)/3 on the ratio of any greedy algorithm that
can use any advice. We apply our new algorithm to the
minimum vertex cover problem on graphs with maximum
degree 3 to obtain a substantially faster 6/5-approximation
algorithm than the one currently known.

We complement our positive, upper bound results with
negative, lower bound results which prove that the problem
of designing good advice for greedy is computationally hard
and even hard to approximate on various classes of graphs.
These results significantly improve on such previously known
hardness results. Moreover, these results suggest that
obtaining the upper bound results on the design and analysis
of greedy advice is non-trivial.

1 Introduction
Given a graph G, an independent set in G is a subset of
the set of its vertices such that no two of these vertices
are connected by an edge in G. The problem of finding
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an independent set of maximum size in a graph, the
Maximum Independent Set problem (MIS), is one of the
most fundamental NP-hard combinatorial optimization
problems. A polynomial time algorithm for MIS is an
r-approximation algorithm if it finds an independent set
in the input graph of size at least opt/r, where opt is the
size of the maximum size independent set, and r ≥ 1 is
an approximation ratio, guarantee or factor.

We study MIS on graphs with maximum degree
bounded by ∆, degree-∆ graphs. This problem is known
for its inherent hardness of approximation guarantee.
Even if ∆ = 3, MIS is known to be APX-hard, see
[1]. As ∆ grows, a stronger asymptotic hardness of
approximation of Ω(∆/ log4 ∆) is known, unless P =
NP [6]. The best known polynomial time approximation
ratio for this problem for small ∆ ≥ 3 is arbitrarily close
to ∆+3

5 , see [3, 4, 7]. It is a local search approach with
huge running time, e.g., n50 [11], where n is the number
of vertices in the graph. We are primarily interested in
MIS on graphs with small to moderate ∆ and therefore
not asymptotic.

Probably the best known method to find large
independent sets is the minimum degree greedy method,
which repeatedly chooses a minimum degree vertex in
the current graph as part of the solution and deletes it
and its neighbors until the remaining graph is empty.
This algorithm is extremely simple and time-efficient.
The first published approximation guarantee ∆ + 1 of
the greedy for MIS we are aware of can be inferred
from the proof of a conjecture of Erdős, by Hajnal and
Szemerédi [8, 2]. The best known analysis of greedy by
Halldórsson and Radhakrishnan [12, 10] for MIS implies
the approximation ratio of (∆ + 2)/3, and better ratios
are known for small ∆.

Halldórsson and Yoshihara [13] asked the following
fundamental question: what is the power of the greedy
algorithm when we augment it with an advice, i.e., a
fast method that tells the greedy which minimum degree
vertex to choose if there are many? They, e.g., proved
that no advice implies better than 5/4-approximation
of greedy for MIS with ∆ = 3. On the other hand,
they provide an advice for greedy leading to a 3/2-
approximation, and this is the best known to date
greedy approximation for MIS when ∆ = 3, that is in
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subcubic graphs.1

Our new positive results: upper bounds. Our
main technical contribution are new payment schemes
for proving improved/tight approximation ratios of
greedy with advice for MIS on degree-∆ graphs. As
a warm-up, we first apply these techniques to MIS on
degree-∆ graphs to obtain:

• A simple and short proof of the (∆ + 2)/3-
approximation ratio of any greedy algorithm (i.e.,
without any advice), the result proved previously
by Halldórsson and Radhakrishnan [12, 10]. We ex-
tend a lower bound construction from [12] to prove
that any greedy algorithm (with any, even expo-
nential time, advice) has an approximation at least
(∆ + 1)/3−O(1/∆).

• A simple proof of the (∆+6)/4-approximation ratio
of any greedy algorithm on triangle-free degree-
∆ graphs, improving the previous best known
greedy ratio of ∆/3.5 + O(1) [10] for MIS on such
graphs. Compared to the proof in [10] our proof is
extremely simple and short.

As we cannot obtain much better ratios than (∆ +
2)/3 by using any advice for greedy, we focus on small ∆.
We have to develop our payment schemes significantly
more compared to the above applications, and obtain
the following results for MIS and Minimum Vertex
Cover (MVC) problems:

• We completely resolve the open problem from
Halldórsson and Yoshihara [13] and design a
fast, ultimate advice for greedy obtaining a 5/4-
approximation, i.e., the best possible greedy ratio
for subcubic MIS. A lower bound of 5/4 on the ra-
tio of greedy with any advice on such graphs was
proved in [13], and the best previously known ra-
tio of greedy was 3/2 [13]. Our new greedy 5/4-
approximation algorithm has running time O(n2),
where n is the number of vertices. The best known
algorithm for this problem is a local search 6/5-
approximation algorithm of Berman and Fujito [3],
with running time no less than n50 [11]. If the ap-
proximation ratio of this local search algorithm is
fixed to 5/4, then the running time is n18.27 [7].

• We obtain a greedy 4/3-approximation algorithm
for MIS on subcubic graphs with linear running
time. By using our payment scheme, we can also
provide a simple proof of a 3/2-approximation ratio
of the greedy algorithm called MoreEdges in [11],

1They claimed an improved ratio of 9/7 by a greedy like
algorithm but they have retracted this result, see [9].

which was the best previously known approxima-
tion ratio of greedy for MIS on subcubic graphs.

• We obtain an O(n2)-time 6/5-approximation for
the subcubic MVC problem. To compare, the
best known algorithm is a 7/6-approximation with
run time of at least n50 [11]. Even obtaining the
6/5-approximation for MVC on subcubic graphs
required time of n18.27 [7].

Our new negative results: lower bounds. We com-
plement our upper bound results with hardness, lower
bounds, results which suggest that our upper bounds on
the design of good greedy advice are essentially (close
to) best possible, or non-trivial computational prob-
lems. We believe this also suggests that the design of
good greedy advice is a non-trivial task on its own.

To prove our lower bounds, we study the complexity
of computing a good advice for the greedy algorithm for
MIS. Towards this goal, Bodlaender et al. [5] defined
a problem MaxGreedy, which given an input graph
asks to find the largest independent set obtained by
any greedy algorithm. Thus, MaxGreedy asks for the
best advice for greedy. They proved that computing
an advice which finds an r-approximate solution to the
MaxGreedy problem is co-NP-hard for any fixed r ≥ 1
and NP-complete for r = 1 [5]. We significantly improve
the previous hardness results for MaxGreedy:

• We prove that the MaxGreedy problem is NP-
complete even on cubic planar graphs, signifi-
cantly strengthening the NP-completeness result
by Bodlaender et al. [5] who prove it on arbitrary
graphs. This result suggests that the problem of
design/analysis of good advice for greedy even on
cubic planar graphs is difficult.

• We prove that MaxGreedy is NP-hard to approxi-
mate to within a ratio of n1−ε for any ε > 0, and
hard to approximate to within n/ log n under the
Exponential Time Hypothesis. We also prove that
MaxGreedy remains hard to approximate to within
(∆ + 1)/3−O(1/∆)−O(1/n) on degree-∆ graphs,
nearly matching the approximation ratio (∆+2)/3
of the greedy algorithm.

• We prove that the MaxGreedy problem remains
hard to approximate on bipartite graphs. This is
quite interesting because the MIS problem itself is
polynomially solvable on bipartite graphs.

We also extend a lower bound construction of
Halldórsson and Radhakrishnan [12] to prove that any
greedy algorithm (with any, even exponential time,
advice) has an approximation ratio at least (∆ + 1)/3−
O(1/∆) on degree-∆ graphs. We note here that due
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to the lack of space we have only included the precise
statements of our lower bound results without proofs
in this proceedings version. Likewise, proofs of some of
our upper bounds results have not been included. Full
version of this paper is available at ArXiv.

Our technical contributions. Our main technical
contributions are a class of potential functions and pay-
ment schemes, and an inductive proof technique, used
to pay for solutions of greedy algorithms for MIS. These
techniques lead to very precise and tight analyses of
the approximation ratios of greedy algorithms. Here
we will explain intuitions about our proof of the 5/4-
approximation ratio of the greedy algorithms on subcu-
bic graphs, which uses our full technical machinery. Let
G be an input graph with an optimal independent set
OPT . Greedy algorithm executes reductions on G, i.e.,
a reduction is to pick a minimum degree vertex v in the
current graph (root of the reduction) into the solution
and remove its neighbors, see example reductions in Fig-
ure 1. Suppose the first reduction executed by greedy
is R and it is bad: its root v has degree 2, v 6∈ OPT and
both neighbors of v are in OPT . Then, locally, the ap-
proximation ratio is 2. To bring the approximation ratio
down to 5/4, we must prove that, in the future, there
will exist equivalent of at least three reductions, called
good, each of which adds one vertex to the solution and
removes only one vertex from OPT . For each executed
bad reduction, there must exists an unique (equivalent
of) three good ones.

Consider instances Hi+1 of MIS in Figure 4, due to
Halldórsson and Yoshihara [13], where the base graph
H0 is H ′0, and black vertices are in OPT , and white not.
Any greedy executes on this instance many bad reduc-
tions, but only at the end, good reductions, triangles,
are executed. There is just enough good reductions to
uniquely map three of those to any executed bad reduc-
tion (there is exactly one unused good reduction). This
shows a lower bound of 5/4 on the ratio of any greedy
as i −→ ∞. Thus, the “payment” for bad reductions
arrives, but very late! Such a “payment” may not only
be late, but such “good” reductions might be very irreg-
ularly distributed. For instance, suppose that the first
reduction in H ′0 on Figure 4, let’s call it R, has two of its
contact edges (i.e., the four edges going down from R’s
two black vertices) going to an identical white vertex,
creating a follow up reduction of degree one. Then that
degree one reduction is good and when executed, it can
immediately (partially) pay for the bad reduction R.
Question: How do we prove an existence of such a
highly non-local and irregular payment scheme? We will
define a special potential of a reduction, in such a way
that each executed reduction can be “almost paid for”
locally. Thus, at every point in time we will keep the

potential of each connected component of at least −1.
For example in the instance from Figure 4 the execution
of the first bad reduction in Hi+1 creates 4 connected
components Hi and then greedy executes reductions
in each Hi independently. We will have an intricate
inductive argument, see Lemma 11, showing that an
execution of reductions in a connected graph will have
the potential at least −1. In the induction step, some
reductions R may create components with potential −1.
In such cases when we cannot keep potential at least
−1, we will make sure that before the execution of R,
such components contain reductions with higher greedy
priority than that of R, leading to a contradiction.

This process is complicated by the fact that vertices
can be black (in OPT ) and white (outside of OPT ) and
whether a reduction is “bad” depends on the distribution
of black/white vertices in the reduction. For instance,
a reduction like the first one in graph H ′0 on Figure
4 might have a black root and thus the two root’s
neighbors will be white. Such a reduction will in fact
be “good” when executed. The final value of −1 of the
potential will be paid by the “past”.

Intuitively, our potential will imply that we can
ship the payments from good reductions executed by
greedy anywhere in the graph into the places where bad
reductions need those payments. Such a shipment is
unique, in the above sense that there exists (equivalent)
3 good reductions for each bad reduction. We will
realize this shipment by deferring the need of payment
into the future along edges, contact edges, which are
incident to the neighbors of the reduction’s root. These
contact edges created by a bad reductionR will be called
loan edges. Each loan edge e created by R will have a
“dual” edge (identical to e), called a debt edge, which will
be inherited by the future reductions directly created by
R via its contact edges. Loan contact edges will help us
“predict” the future graph structure. And debt edges
enable us to keep track of the past reductions.

Our complete theory that realizes such precise
payment scheme allows us to achieve a very interesting
kind of result, namely, to (essentially) characterize all
graphs that can have negative potential! See Definition
10 and Lemma 11. This leads to an extremely tight
analysis, up to an additive unit in the following sense.
We prove that a version of our 5/4-approximate greedy
finds a solution of size at least 4

5 |OPT |+
1
5 in subcubic

graphs, and when run on the lower bound instances of
Halldórsson and Yoshihara [13], it finds a solution of size
precisely 4

5 |OPT |+
1
5 . An unusual aspect of our result

is that we can prove that any lower bound example
showing exact tightness of our guarantee 4

5 |OPT | +
1
5

must be an infinite family of graphs, see remark after
the proof of Theorem 7.
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Differences between our proof and Halldórsson
and Yoshihara [13]. According to our potential,
there are two kinds of reductions that are particularly
problematic to deal with. These are odd isolated
cycles with maximum independent sets in them, and
reductions like reduction (d) in Figure 2, which we
call an odd-backbone reduction. Their potential is −1
(for the cycle it can also be −2, but we can prevent
that case). This means that each such reduction when
executed would need a unit of payment originated from
some good reduction. Consider an instance Hi in
Figure 4 when i tends to ∞ (with the base graph H0).
Suppose that greedy executes the top bad reduction
and then recursively executes the following four created
bad reductions. Then at the very end it will reach a
collection of 7-cycles and each such cycle will need a
payment of 1. As we see this can only lead to a ratio
17/13 > 5/4. Already on any odd cycle, the potential of
[13] tells us that it actually needs a payment of 2 (which
is one unit more than our potential); we mention here
however that it is not possible to pay 2 units to such
odd cycles. Our approach is to either prevent greedy
from ever ending up with such isolated problematic
odd cycles or to show that we can actually pay for
such cycles in some cases. The key to a solution is to
carefully prioritize certain reductions that would “break”
the cycle before it becomes isolated, or to pay for it
when there is a spare reduction that can do so. For the
bad odd-backbone reductions in Figure 2(d), observe
that we could wisely execute them on a black degree-2
vertex which would make them good. But then how do
we know which of these two adjacent degree-2 vertices
is black/white? One way, pursued in [13], is to try
to pay for such odd cycles or odd-backbone reductions
by some kind of local analysis which tries to collect
locally good reductions that can pay. We can show
that such local analysis/payment is not possible and a
global payment or explicit exclusion of such reductions
are necessary. Instead, what we do is to impose a special
greedy order on such odd-backbone reductions, and with
this order we prove that we can pay for them whenever
they are executed as bad reductions. The source of these
payments, however, is non-local and our scheme proves
their unique existence.

To achieve the above payments or avoid bad cycles,
we introduce a powerful analysis tool which is a special
kind of reductions, called black and white reductions, see
Definition 9. We also introduce an inductive process to
argue about existence of such reductions in Lemma 11.
These techniques let us prove that when a reduction, say
R, that cannot pay is executed, there will exist a strictly
higher priority reduction (black or white) in the graph
before the execution of R, leading to a contradiction

with the greedy order. This argument is quite delicate
because their existence depends crucially on what kind
of contact edges R has. But it also depends on the
previously executed reductions.

Our potential definition is in perfect harmony with
our inductive proof, that the potential can be kept at
least −1. This lets us link the potential directly to
the graph structure of the reductions, see Definition
10. This lets us characterize the potentially problematic
graphs, i.e., with negative potential, which is the core
of our proof. The main tool that helps us in this task
is our Inductive Low-debt Lemma 11, which enables
us to design the greedy order and characterizes the
problematic graphs.

We have managed to prove the existence of appro-
priate payments coming from good reductions by us-
ing only “local” inductive arguments, but our payment
scheme is inherently non-local. This means that the
payment from good reductions, can be very far from
bad reductions they pay for.

This version of the paper contains, among other
results, the full description of our new theory outlined
above with full proofs of our main positive result of the
5/4-approximation of greedy for subcubic MIS.

Definitions and preliminaries. Given a graph G =
(V,E), we also denote V (G) = V and E(G) = E. For
a vertex v ∈ V , let NG(v) := {u ∈ V | uv ∈ E}
and NG[v] := NG(v)∪{v} denote respectively the open
and closed neighborhood of v in G. The degree of v in
G denoted dG(v) is the size of its open neighborhood.
More generally, we define the closed (resp. open)
neighborhood of a subset S ⊆ V as the union of all
closed (resp. open) neighborhoods of each vertex in S.

A graph is called subcubic or sub-cubic if its maxi-
mum degree is at most 3. If the degree of each vertex
in a graph is exactly 3 then it is called cubic. Given an
independent set I in G, we call black vertex a vertex v
in I and a white vertex otherwise. We denote by α(G)
the independence number of G, that is the number of
black vertices when I is of maximum size in G.

2 Greedy
The greedy algorithm, called a basic greedy, or just
Greedy, on a graph G = (V,E) proceeds as follows.
It starts with an empty set S. While the graph G is
non empty, it finds a vertex v with minimum degree in
the remaining graph, adds this vertex to S and removes
v and its neighbors from G. It is clear that at the
end, S is an independent set. Let S = {v1, . . . , vk}
be the ordered output. Let Gi denote the graph after
removing vertex vi and its neighboring vertices. More
precisely, G0 = G and Gi = G[V \ NG [{v1, . . . , vi}]],
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where vi is a vertex in Gi−1 that satisfies dGi−1
(vi) =

min
{
dGi−1

(v) : v ∈ V (Gi−1)
}
.

Each iteration of the algorithm is called a basic
reduction, denoted by Ri, which can be described by
a pair (vi, Gi−1). An execution E := (R1, . . . , Rk) of
our greedy algorithm is the ordered sequence of basic
reductions performed by the algorithm.

To analyse an execution, we will only require local
information for each basic reduction. Given a basic
reduction Ri = (vi, Gi−1), we call vi its root vertex, its
neighbors the middle vertices, and together they form
the ground of the reduction, namely the set of vertices
which are removed when the reduction is executed,
written ground(Ri). Vertices at distance two from the
root are the contact vertices. The set of contact vertices
is denoted by contact(Ri). Then, the edges between
middle and contact vertices are called contact edges.

From now on, we will consider that two basic
reductions R = (v,G) and R′ = (v′, G′) are isomorphic
if there exists a one-to-one function φ : NG[v] −→
NG′ [v

′] such that φ(v) = v′, u and w are adjacent in
G if and only if φ(u) and φ(w) are adjacent in G′, and
if each middle vertex u is incident in G to the same
number of contact edges than φ(u) in G′. Finally, the
degree of a basic reduction is defined as the degree of its
root vertex.

Figure 1 presents a table of all possible basic
reductions of degree at most two in sub-cubic graphs.
Notice that the middle vertices must have degrees equal
to or greater than the degree of the reduction.

2.1 Potential function of reductions. Suppose
that we are given an independent set I in a connected
graph G = (V,E) and an execution E = (R1, . . . , Rk)
of a greedy algorithm on the input graph G. This
execution is associated to a decreasing sequence of
subgraphs: G = G0 ⊃ · · · ⊃ Gk = ∅, where Gi =

G
[
V \

⋃i
j=1 ground(Rj)

]
is the induced sub-graph of

G on the set of vertices V \
⋃i
j=1 ground(Rj).

Given a basic reduction Ri = (vi, Gi−1), we define
loan edges of Ri as all contact edges with a white contact
vertex. Notice that the middle vertex of a loan edge
can either be black or white. The loan of reduction Ri,
denoted by loanI(Ri) corresponds to its total number
of loan edges.

We also define the debt of a white vertex in the
ground of Ri as the number of times this vertex was
incident to a loan edge, let us call it e′, of a reduction
that was previously executed. Such loan edge e′ is also
called a debt edge of reduction Ri. It turns out that
the debt of a white vertex corresponds exactly to the
difference between its degree in the original graph G

and in the current graph Gi−1. Similarly, we define
the debt of a reduction as the sum of the debts of the
vertices of its ground.

debtG,I(Ri) =
∑

u∈ground(Ri)\I

(
dG(u)− dGi−1(u)

)
Given two parameters γ, σ > 0, we now define the

exact potential of a reduction Ri, for 1 6 i 6 k, as

ΦG,I(Ri) := γ−σ · |I ∩ ground(Ri)|
+ loanI(Ri)− debtG,I(Ri)

The exact potential of an execution E =
(R1, . . . , Rk) is the sum of the exact potentials of all
reductions: ΦG,I(E) =

∑k
i=1 ΦG,I(Ri).

Because the independent set produced by the
greedy algorithm is maximal and the total debt and the
total loan are equal, we obtain the following property.

Proposition 1. Given an execution E = (R1, . . . , Rk),
we have: ΦG,I(E) = γk − σ|I|.

Proof. By the definition of the exact potential, this can
easily be seen by a simple counting argument.

Suppose we want to analyse the approximation ratio
of a greedy algorithm for a given class of graphs G. Then
if we manage to find suitable values γ, σ such that all
possible reductions have non negative potential, then a
direct corollary of Proposition 1 is that Greedy is an
(γ/σ)-approximation algorithm in G.

In order to measure the potential of each reduction,
we now define a new potential, called simply potential
that is a lower bound on the exact potential. This lower
bound is obtained by supposing that the debt of each
white vertex is maximal, or equivalently, that its degree
in the original graph was equal exactly to ∆.

debtI(Ri) :=
∑

u∈ground(Ri)\I

(
∆− dGi−1(u)

)
> debtG,I(Ri)

Then we define the potential of reduction Ri, which is
now independent from the original graph, as

ΦI(Ri) := γ − σ · |I ∩ ground(Ri)|
+ loanI(Ri)− debtI(Ri)

To evaluate the potential of a reduction, we do not
need anymore to know the set of reductions previously
executed but simply the structure of the graph formed
by the vertices at distance two from the root, and
also which vertices are black/white, which reduces to
a relatively small number of cases. We define the
potential of an execution similarly. Obviously, this new
potential is a lower bound on the exact potential defined
previously, and more precisely, we have the following
fact.
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Figure 1: Basic reductions of degree at most two in sub-cubic graphs. We will refer later to these basic reductions
by their names, for instance 2.b is a basic loop reduction. In this picture, we have drawn contact vertices as
distinct vertices, but in a reduction, several contact edges may be incident to the same contact vertex. When the
right-most contact vertex c of 2.e has degree three, this reduction is an odd-backbone reduction. Notice that in
this case, the middle vertex of degree two is also the root of a basic odd-backbone reduction.

Claim 2. Let G be a graph with maximum degree ∆,
I an independent set in G and E an execution in G.
Then, ΦG,I(E) = ΦI(E) +

∑
v/∈I(∆− dG(v)).

Proof. By the definition of the two potentials, this can
easily be seen by a simple counting argument.

2.2 Warm-up: New proof of ∆+2
3 -ratio for

greedy on degree-∆ graphs. Halldórsson and Rad-
hakrishnan [12, 10] proved that for any graph with max-
imum degree ∆, the basic greedy algorithm obtains a
∆+2

3 -approximation ratio. In here, we present an alter-
native proof for the same result, but using our payment
scheme. Our proof is simpler and shorter compared to
the proof in [12].

Let us use the potential from the previous section,
with parameters γ = (∆ + b)∆+2

3 and σ = ∆ + b
where b = 1 if ∆ ≡ 2 (mod 3), and b = 0 otherwise.
The choice of the value b is simply to ensure that the
potential value is integer. As we remark before, if we
can prove that the potential of any reduction is non-
negative, then the approximation ratio of Greedy in
graphs with maximum degree ∆ is γ/σ = (∆ + 2)/3.

Lemma 3. Let G be a graph with maximum degree ∆.
For any basic reduction R and any independent set I we
have

ΦI(R) := (∆ + b)
∆ + 2

3
− (∆ + b)·|I ∩ ground(R)|

+ loanI(R)− debtI(R) > 0

where b = 1 if ∆ ≡ 2 (mod 3), and b = 0 otherwise.

Proof. Let R be the set of all possible basic reductions,
and let I be a maximum independent set in the input
graph. We note that although there are many types of
reductions in R, their structure is highly regular. The
idea of the proof is to find the worst type reduction
and show that its potential is non-negative. Observe

that, if we want to find a reduction R∗ to minimize
the potential, R∗ = arg minR∈R ΦI(R), such reduction
intuitively needs more debt edges and vertices in I and
less loan edges. Also, if v∗ is the root of reduction R,
then for each v ∈ V (R) \ {v∗}, if dR(v∗) = k, then
dR(v) ≥ k, by the greedy rule. For any reduction R, let
i be the number of vertices in I ∩ ground(R) and let `
be the number of vertices in ground(R) \ I. We have
the following formulas:

loanI(R) ≥ (i+ `− 1− `) · i,
debtI(R) ≤ (∆− i− `+ 1) · `.

We will justify these bounds now. Let G′ be the
current graph just before R is executed. Note first that
the degree of the root of R is i + ` − 1. The lower
bound on loanI(R) depends on the vertices in I, by the
definition. By the greedy order, for each of vertex v ∈ I,
dG′(v) ≥ i+ `− 1. There are at most ` vertices not in I
which can be connected to v, thus, the total number of
loan edges of v is at least (i+`−1−`), and we have i such
vertices. Note that in this argument we have possibly
missed all loan edges that are contact edges of R with
both end vertices from ground(R)\I. The upper bound
on debtI(R) depends on ∆, the degree of the root vertex
and the number vertices not in I. The number of debt
edges is at most ∆ − i − ` + 1, as otherwise it violates
the greedy order, and we have ` vertices not in I.

ΦI(R) =
∆ + b

3
· (∆ + 2)− (∆ + b)|I ∩ ground(R)|

+ loanI(R)− debtI(R)

≥ ∆ + b

3
(∆ + 2)− (∆ + b)i

+ (i− 1)i− (∆− i− `+ 1)`

= `2 − (∆− i+ 1)`+
∆ + b

3
(∆ + 2)

− (∆ + b)i+ (i− 1)i.
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Let F (∆, i, `) = `2−(∆−i+1)`+ ∆+b
3 (∆+2)−(∆+b)i+

(i−1)i. Then, the question now is to find the minimum
value of F (∆, i, `) with constrains ∆, i, ` ∈ Z+ ∪ {0}.
We will first prove that F (∆, i, `) ≥ b/3 − b2/3 − 1/3
for any ∆, i, ` ∈ R+ ∪ {0}. For any fixed ∆ and i let us
treat the function F (∆, i, `) as a function of `. We know
that it is a parabola with the global minimum at point `
such that ∂F

∂` = 0, which gives us that ` = (∆− i+1)/2.
Plugging ` = (∆− i+1)/2 into F (∆, i, `), we obtain the
following function

F (∆,i, (∆− i+ 1)/2) = F (∆, i)

= −1

4
(∆− i+ 1)2 +

∆ + b

3
(∆ + 2)

− (∆ + b)i+ (i− 1)i

=
3

4
i2 − (∆/2 + 1/2 + b)i+

∆ + b

3
(∆ + 2)

− 1

4
∆2 − 1

2
∆− 1

4
.

Similarly as above for any fixed ∆, we see that the
function F (∆, i) = 3

4 i
2 − (∆/2 + 1/2 + b)i + ∆+b

3 (∆ +
2)− 1

4∆2− 1
2∆− 1

4 as a function of i is a parabola with
the global minimum for i such that ∂F

∂i = 0, which gives
us that i = 2

3 (∆
2 + 1

2 + b). Plugging i = 2
3 (∆

2 + 1
2 + b) in

F (∆, i) we obtain the following:

F

(
∆,

2

3

(
∆

2
+

1

2
+ b

))
= F (∆) =

b

3
− b2

3
− 1

3
.

From the above we have that F (∆, i, `) ≥ b/3− b2/3−
1/3 for any ∆, i, ` ∈ R+ ∪ {0}.

Now, let us observe that if ∆ ≡ 0, 1 (mod 3), then
F (∆, i, `) with b = 0 is an integer whenever ∆, i and `
are integers. This means that in those cases we have
F (∆, i, `) ≥ −1/3 which implies that F (∆, i, `) ≥ 0. In
case when ∆ ≡ 2 (mod 3), we have that F (∆, i, `) with
b = 1 is an integer whenever ∆, i and ` are integers.
This again means that in those cases F (∆, i, `) ≥ −1/3,
again implying F (∆, i, `) ≥ 0.

Corollary 4. ([12]) For MIS on a graph with maxi-
mum degree ∆, Greedy achieves an approximation ratio
of ∆+2

3 .

This theorem implies only an approximation of 5/3
for sub-cubic graphs. To do significantly better we need
a stronger potential, better advice for greedy and a new
method of analysis.

3 Subcubic graphs
The exact potential that we use for subcubic graphs is
given by the values γ = 5 and σ = 4. The table in
Figure 2 shows the potential of several basic reductions

for some different independent sets. Unfortunately, as
one can see in Figure 2, there exists reductions with
negative potential. The goal of our additional advice
for greedy will be to deal with these cases. The first
step is to collect some consecutive basic reductions into
one extended reduction so that the potential of some
basic reductions is balanced by others. For instance,
one way to deal with the basic reduction 2.d in Figure
1, which can have potential −2 (see (a) in Figure 2),
is to force Greedy to prioritize a vertex of degree two
with a neighbor with degree three. Therefore, if at some
point the reduction 2.d is executed it means that the
current graph is a disjoint union of cycles. This allows
us to consider that the whole cycle forms an extended
reduction — that we will call as cycle reduction — and
we will see later that its potential is now at least −1.
This advised greedy algorithm, called MoreEdges in
[13], improves the approximation ratio from 5/3 to 3/2
in sub-cubic graphs. This result can easily be proved by
using our potential function with parameters γ, σ = 6, 4.
Such approximation simply follows from the fact that all
reductions have now non-negative potential.

An useful observation in order to define an appro-
priate extended reduction is to notice that the (basic)
path reduction (1.b from Figure 1) has potential at least
zero. This observation suggests to introduce the follow-
ing notion. Given a graph G = (V,E) we will say that
the set B = {w, v1, . . . , vb, w

′} ⊂ V is a backbone if
the induced subgraph G[{v1, . . . , vb}] is a path and if w
and w′ have both degree three. In this case, w and w′
are called the end-points of the backbone B. Moreover,
when b is odd (resp. even), we will say that B is an
even (resp. odd) backbone — notice the asymmetry —
which corresponds to the parity of the number of edges
between the end-points. As an example, the ground of
the basic even-backbone reductions (2.f and 2.c in Fig-
ure 1) are special case of an even-length-backbone (of
edge-length two).

3.1 Extended reductions. An extended reduction
R = (R1, . . . , Rs) is a sequence of basic reductions
Ri of special type that we will precisely describe in
the next paragraph. All different extended reductions
are summarised in Proposition 5. To facilitate the
discussion, when there is no risk of confusion, we will
simply call it a reduction. The size of an extended
reduction R, written |R| is the number of executed
basic reductions. Its ground naturally corresponds
to the union of the grounds of its basic reductions,
ground(R) :=

⋃
i ground(Ri) and its root is the same

as the root of the first basic reduction. Finally, the
contact vertices corresponds to all contact vertices of
its basic reductions that are not in ground(R). The
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Figure 2: Basic reductions with negative potential. The root vertex of reductions is denoted by the letter r.
Dotted edges translate the debt of each white vertex. Grey vertex can either be black or white.

degree of a reduction is the degree of the first executed
basic reduction. All basic reductions of Figure 1
except 2.d will be considered as (extended) reductions
of size one. In particular, all (extended) reductions
of degree one considered by the algorithm have size
one. Other considered (extended) reductions of degree
two have a ground which is a backbone (except the
case of odd-backbone where one end-point is excluded).
When the two end-points of the backbone are the same
vertex, it corresponds to a loop reduction. Otherwise,
reductions associated to an even and odd backbone
are respectively called even-backbone and odd-backbone
reductions. When these reductions have size at least
two, they correspond to a sequence R = (R1, . . . , Rs) of
basic reductions where: the first (basic) reduction R1

is 2.e from Figure 1, intermediate reductions Ri, with
2 6 i 6 s−1, are basic path reduction (1.b from Figure
1), where the root vertex of Ri is the contact vertex of
Ri−1, and the final (basic) reduction Rs corresponds to:

• branching (1.c) or path (1.b), when R is an even-
backbone reduction. The case Rs = path, occurs
when the end-points are adjacent.

• path (1.b), when R is an odd-backbone reduction.

• point (0.a) or edge (1.a), when R is a loop reduc-
tion, depending on the parity of the length of the
backbone. Recall that the two end-points are iden-
tical in this case.

We give examples of different types of extended
reductions of degree two in Figure 3. Some further
remarks are in place here:

• The following basic reductions in Figure 1 are spe-
cial case of (extended) reduction of size one. 2.a:
cycle reduction, 2.c and 2.f: even-backbone re-
duction, 2.e: odd-backbone reduction (this applies
only when the right-most contact vertex c has de-
gree three), 2.b : loop reduction.

• The root of an even-backbone, odd-backbone or
loop reduction is always the neighbor of one of
the end-points of the backbone. For even-backbone
and loop reduction of even-length, any of the two
choices leads to the same solution. In the case
of an odd-loop reduction, the size of the solution
— and therefore also the potential — and the
ground of the reduction is exactly the same. For
loop and even-backbone reductions, the ground
of the reduction is the full backbone. However,
for odd-backbone reductions, given one backbone,
there are two distinct possible roots, associated
to two distinct grounds. For each odd-backbone
reduction, only one end-point is contained in the
ground. See Figure 3.

• All basic reductions of an extended reduction,
except the first one have degree at most one, so that
at any given moment, any executed basic reduction
has minimum degree in the current graph. This
means that we are allowed to execute the full
extended reduction without violating our original
greedy rule.

In what follows, we refer to an extended reduction
in two different (and equivalent) ways. We will either
write its name with the first capital letter or we will
write its name with the first lower-case letter followed
by the word “reduction”. Thus, for example, we will
say a loop reduction or just Loop, or an even-backbone
reduction, or just Even-backbone, etc. Note that basic
reductions are special case of extended reductions, and
therefore they also may follow this convention.

3.2 Ultimate advices for Greedy . We now
describe the additional rules used to reach the best
possible approximation. This advised greedy algorithm
will be called GreedyF . The first of these rules
is to execute basic reductions such that the obtained
sequence can be grouped in a sequence of extended
reductions as described above. This is justified by
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Figure 3: Some examples of (extended) reductions of degree two and size at least two. Light grey areas indicate
the ground of each executed basic reduction, that together form the ground of the (extended) reduction. Vertices
surrounded by grey rings are the roots of the corresponding basic reductions.

Proposition 5. This choice is always possible since all
basic reductions from Figure 1, except 2.d, are special
cases of extended reductions. In the case where any
minimum degree vertex is the root of a basic reduction
2.d, the graph must be a disjoint union of cycles. In
this case we are able to execute GreedyF so that its
execution corresponds to a sequence of cycle reductions.
This argument leads to Proposition 5.

Proposition 5. For each sub-cubic graph with mini-
mum degree at most two, it is always possible to execute
one of the following (extended) reductions:

Point - Edge - Path - Branching - Loop - Cycle -
Even-backbone - Odd-backbone.

GreedyF order. When several choices of reduc-
tions are possible,GreedyF will have to select one with
the highest priority, according to the following order
from the highest to the lowest priority:

1. Point, Edge, Path, Branching,

2. Cycle or Loop,

3. Even-backbone,

4. Odd-backbone.

Any two reductions among the first group or any
two reductions among the second group can be arbi-
trarily executed first, as soon as both have the mini-
mum degree. We say that a reduction is a priority re-
duction if there exists no reduction in the same graph
with strictly higher priority. Thus a priority reduction
is one of the highest priority reductions in the current
graph. One implication of this order is that when an
Even-backbone is executed, it means that the current

graph does not contain any degree one vertices, or any
loop reduction. Additionally, when the priority reduc-
tion is Odd-backbone, the graph does not contain any
Even-backbone. These structural observations will be
useful later.

When the priority reduction is an even-backbone
or an odd-backbone reduction, GreedyF applies the
following two additional rules.

Even-backbone rule. Suppose that the priority re-
duction in the current graph G is the even-backbone re-
duction, and several choices are possible. Unfortunately,
picking arbitrarily one of these reductions can lead to a
solution with poor approximation ratio. For instance,
consider the graph Hi in Figure 4.

It turns out that the difficulty comes from the fact
that executing an even-backbone reduction can split the
graph into several connected components, each of them
having a negative potential. To address this issue, we
want to make sure that we are able to “control” the
potential of almost all of these connected components.
This right choice, followed by GreedyF , is given by
the following lemma. For any reduction R in a graph
G we will say that R creates connected components
H1, . . . ,Hs if they are the connected components of
the graph G[V \ ground(R)]. Intuitively, it suffices to
execute an even-backbone reduction R such that all
other even-backbone reductions are all present in the
same connected component created by R.

Lemma 6. Let G be a connected graph, with no de-
gree one vertices, and no loop reduction. Let B =
{R1, . . . , Rp} be the set of all even-backbone reductions
in G. Each even-backbone reduction Ri has two root ver-
tices ri and r′i. In the case when Ri has only one root,
we set ri = r′i. Then, there exists one even-backbone
reduction, say R1, that satisfies the following property.
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Figure 4: For any i > 0, the highest priority reduction in Hi is Even-backbone, and picking recursively the top
vertex leads to a solution where the approximation ratio tends to 17/13 > 5/4 when i tends to infinity, when H0

is used as the base gadget. However, if we use H ′0 as the base gadget, because the greedy choice of the reduction is
essentially unique at each stage, these instances show that any greedy algorithm has an approximation guarantee
that tends to 5/4 when i tends to infinity. This second family is due to Halldórsson and Yoshihara [13].

Let H1, . . . ,Ht be the connected components created by
R1, with 1 6 t 6 4. Then either t = 1, or t ≥ 2
and then the following is true. If there exist ri, rj for
some i, j ≥ 2 and i 6= j, such that ri ∈ V (H1) and
rj ∈ V (H2) (in words: ri and rj belong to two different
connected components among H1, . . . ,Ht), then at least
one of ri, r′i, rj , r′j is a contact vertex of R1.

Proof. (Lemma 6) Let a ∈ V (G) be any degree three
vertex. Consider a graph G̃ obtained from G by
replacing each backbone from ri to r′i by a single
degree two vertex which is also called ri. On this
contracted graph, let dG̃(u, v) denote the shortest path
distance (i.e. with minimum number of edges) between
vertices u, v ∈ V (G̃) in G̃. Now, let us pick the
root ri in G̃ that has the largest distance dmax :=
maxi dG̃(ri, a) from a. Without loss of generality this
is r1 : dG̃(r1, a) = dmax. Denote by H1, . . . ,Ht

the connected components created after executing the
corresponding even-backbone reduction R1. At most
one connected component, say H1, contains a. Suppose
that there is another connected component, i.e., H2,
that contains a vertex rj . Any path from rj to a
intersects ground(R1), including the shortest one, and
dG̃(rj , a) = dG̃(r1, a) = dmax. It follows that rj and r1

have one common neighbor b, so that dG̃(r1, rj) = 2.
In particular, in the original graph G, r1 (or r′1) is
at distance two from rj (or r′j) which means that this
vertex is a contact vertex of R1.

Notice that this proof is constructive and allows us
to find the appropriate Even-backbone in time O(|V |).

Odd-backbone rule. Suppose now that the prior-
ity reduction is the odd-backbone reduction. In this
case, GreedyF chooses the one that was created latest.
More formally, suppose that we are given a partial ex-
ecution R1, . . . , Rj in a graph G such that the priority
reduction in Gj is an odd-backbone reduction, where Gi

is the subgraph of G obtained from G after the execu-
tion of R1, . . . , Ri, for i = 1, . . . , j. We associate to each
vertex v of degree two a creation time tv ∈ {0, . . . , j−1},
such that tv is the greatest integer such that v had de-
gree three in Gtv−1. Moreover, if v had already degree
two in the original graph G, then set tv = 0. When
tv > 1, this means that v was a contact vertex of tv-th
reduction. Then, the creation time of an (odd) back-
bone B is the greatest creation time over all vertices of
degree two in B.

GreedyF picks the odd-backbone reduction that
has the greatest creation time, among all possible odd-
backbone reductions. If several choices are possible, it
can pick any of them.

We believe that this rule is not necessary in the
sense that it does not improve the approximation ratio.
However, this rule makes the algorithm easier to anal-
yse. Intuitively, with this rule, we can not have several
successive reductions with negative potential within the
same connected component.

Rule for cubic graphs. When the input graph is
cubic, i.e. each vertex has degree exactly three, then
the first reduction has degree three. However, this is
the only degree three reduction executed during the
whole execution since there will always be a vertex
with degree at most two after the execution of the
first reduction. In such a situation, we guess the first
degree three vertex to pick, so that the potential of the
associated execution is positive. By guessing, we mean
choosing any single fixed vertex u and then trying all
four executions, each starting from a vertex in the closed
neighborhood of vertex u. We show later that the first
step can only increase the total potential of the whole
sequence. After this step, all reductions have degree at
most two, and therefore in the following sections, we
will always consider graphs with at least one vertex of
degree at most two.
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We present below a formal description of our algo-
rithm GreedyF .

Algorithm GreedyF

Input: a subcubic graph G
Output: an independent set S in G
1. S ← ∅
2. if all vertices have degree three then
3. Let u be any vertex.
4. Execute four times while loop (line 6.) starting

with S = {v} and G = G \NG[v], for all v ∈
NG[u] and output the maximum size solution.

5. end
6. while G 6= ∅ do
7. if the priority reduction (w.r.t. GreedyF order)

in G is Even-backbone then
8. Let R be the Even-backbone given by Lemma

6 (Even-backbone rule).
9. end
10. if the priority reduction in G is Odd-backbone

then
11. Let R be the latest created Odd-backbone

(Odd-backbone rule).
12. end
13. else
14. Let R be any priority reduction.
15. end
16. Let v1, . . . , vs be roots of the basic reductions of R.
17. S ← S ∪ {v1, . . . , vs}
18. G← G \ ground(R)
19. end
20. return S.

It is clear that the set returned by Algorithm
GreedyF is an independent set. In the next section,
we establish its approximation ratio.

3.3 Analysis of the approximation ratio

Theorem 7. GreedyF is a 5/4-approximation algo-
rithm for MIS in subcubic graphs.

Let E = (R1, . . . , R`) is a sequence of extended
reductions performed by GreedyF on an input graph
G. In order to analyse the approximation ratio of
GreedyF , we use our potential function in sub-cubic
graphs (∆ = 3) with parameters γ, σ = 5, 4. Given an
independent set I in G, the potential of an (extended)
reduction R is

ΦI(R) = 5 · |R| − 4 · |I ∩ ground(R)|
+ loanI(R)− debtI(R).

We start by looking at the potential of (extended)
reductions.

3.3.1 Potential of extended reductions

Claim 8. For any independent set I we have the fol-
lowing potential estimates for the reductions:

ΦI(Edge,Cycle,Odd-backbone) > −1

ΦI(Path, Loop,Even-backbone) > 0

ΦI(Point,Branching) > 1

For basic reductions, one can easily check by hand
all possible cases. Notice that the worst case poten-
tial always arises when I is maximum in the ground
of a reduction. Figure 2 presents these worst cases for
basic reductions: Edge, Cycle and Odd-backbone. Fig-
ure 6 shows the worst potential cases of the remaining
basic reductions: Path, Even-backbone, Loop, Point, and
Branching. From the worst case potential of basic reduc-
tions, we can lower-bound the potential of (extended)
reductions.

Proof. (Claim 8) It remains to prove lower-bounds for
reductions of arbitrary size. See Figure 5. An odd-
backbone reduction is a sequence of basic reductions
starting with 2.e (in Figure 1), which has a potential
at least −1 (Figure 2 (d)), and a certain number of
path reductions, with potential at least zero (Figure 6
(a) and (b)), so that the total potential is at least −1.
More generally, the potential of an extended reduction
is lower-bounded by the sum of the potentials of the
first and the last basic reduction. For Even-backbone
with non-adjacent backbone end-points, these first and
last basic reductions are 2.e (Φ > −1) and Branching
(Φ > 1, see Figure 6 (g) and (h)) so that the sum is
non-negative.

Consider now a cycle reduction R of length n > 3.
Let us denote by b and w, respectively, the number of
black and white vertices, i.e. b = |I ∩ ground(R)| and
b+ w = n. Since Greedy is optimal in degree at most
two graphs and the size of I is at most bn/2c, we have:

ΦI(R) = 5
⌊n

2

⌋
− 4b− w = 5

⌊n
2

⌋
− 3b− n

> 5
⌊n

2

⌋
− 3

⌊n
2

⌋
− n > −1.(3.1)

For Loop and Even-backbone with adjacent end-
points, simply observe that their ground is a cycle with
one or two additional edges. Each of these edges is
either a debt edge — the loan increases by one — or
the corresponding middle white vertex has now degree
three — the debt decreases by one. In any case, the
potential increases by the number of added edges, so
that we proved what we wanted.

Notice that the worst potential of Cycle and Loop
depends on the length of the ground and the worst case
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Figure 5: A cycle reduction. On the left, a even cycle with potential ΦI(R1, R2, R3) = −2 + 0 + 2 = 0 and on the
right a odd cycle with potential −1. Vertices surrounded by a grey disk are the ones picked by the algorithm and
dotted edges are debt edges.

corresponds to odd-length cycles. Moreover, notice that
when its two end-points are adjacent, the potential of
an Even-backbone is at least one.

3.3.2 Proof of the inductive lemma. As we have
seen before, we are able to avoid reduction with poten-
tial −2 (Figure 2 (a)) by grouping this basic reduction
with the following ones, so that the resulting (extended)
reduction, a cycle reduction, has now only potential −1.
Unfortunately, we can not use the same trick to avoid
reductions with potential −1. Moreover, such reduc-
tions: edge, (odd) cycle and odd-backbone reductions
can not be avoided if we want to respect the original
greedy constraint which is to pick a vertex with mini-
mum degree.

In order to prove that GreedyF delivers a 5/4-
approximation, we show that the exact potential of
any execution is non-negative. Unfortunately, it is not
true that the potential of any execution is non-negative.
For instance, picking the top vertex of H0 in Figure 4
produces an execution with potential −1. Hopefully, we
will prove that −1 is the worst value for the potential
of any execution.

A potential problem may arise when an execution
creates a lot of connected components where each corre-
sponding execution has negative potential. This could
possibly lead to an execution with arbitrarily negative
potential. Such connected components might be created
by reductions having many contact vertices, such as the
even-backbone reduction. Our Even-backbone rule was
designed to keep the potential of the created connected
components under control, ensuring that at most one
(or two) of them have negative potential.

This suggests that to solve our problem we could try
to characterize the type of graphs that can have nega-

tive potential, i.e. , for which there exists an execution
with negative potential. Finding such a characteriza-
tion seems difficult but hopefully, since we know which
reduction’s potential is −1, we are able to formulate a
necessary condition together with a suitable induction
hypothesis. In the following, we describe this class of
graphs called potentially problematic graphs. Addition-
ally, all executions starting with a negative potential
reduction, namely the bad odd-backbone reduction, can
possibly have a negative potential. Notice that “poten-
tially” refers to the potential function and at the same
time to the fact that there exist some executions on
some potentially problematic graphs with non-negative
potential.

Given a graph G and an independent set I in
G, recall that a vertex v ∈ V (G) ∩ I from I is
black and white otherwise. We say that a backbone
B = {w, v1, . . . , vb, w

′} is alternating for I (or simply
alternating) when vi is black (or white) if and only if i is
even. See Figure 7 for an example of an odd alternating
backbone. Notice that there is no restriction on the
types of the end-points of the backbone.

The next definition of the white and black type
reductions is absolutely crucial to our proof. The
main intention of this definition is that the black and
white reductions should have the greedy priority strictly
higher than that of an odd-backbone reduction, and in
many cases, also higher than that of an even-backbone
reduction. However we must be very careful here
because what will matter will be in some sense a “parity”
of the reductions. Namely, the first observation is that
the potential of an odd-backbone reduction, let us call
it R, can be −1 in the case when all its contact vertices
are white (see Figure 2 (d)). Therefore when such a
reduction R is executed first, then we need to “pay”

1447
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

03
/1

9/
23

 to
 8

9.
64

.9
0.

52
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Figure 6: Basic reductions with worst potential equal to 0 or 1. Dotted edges translate the debt of each white
vertex. Grey vertex can either be black or white.

for it by showing that the potential of the following
reductions in the connected components it creates will in
total be zero (as this is the only way of keeping the total
value of the potential to be at least −1). What we now
want is that if the potential of a connected component
H created by R is negative, then because R has only
white contact vertices in H, even before R is executed,
H must contain a reduction with higher priority than
R, thus leading to a contradiction. Our definition below
will ensure this by guaranteeing that such a reduction
in H exists with a black root vertex in H by R’s contact
edges.

A kind of a “dual” such high priority reduction
is also needed in H. Imagine namely that the first
executed reduction R, that created component H, is
also an odd-backbone reduction but its contact vertices
are all black. Then they will “block” the black vertices
in H. But then our definition below still guarantees an
existence of a reduction in H, before executing R, which
has a white root vertex and has priority strictly higher
than R.

The third possibility is when R is an odd-backbone
reduction with a white and black contact vertex. This is
not a problem because the potential of such a reduction
is non-negative or even positive. It turns out that we
can deal with R being an even-backbone reduction in a
different way.

There are some further technicalities and details
and they can be read in the details of our full proof.

Definition 9. (Black and white type reductions)
Given a graph G and an independent set I in G, we
define the black or white type reductions in G by the
following rules:
(1) Any path reduction or branching reduction in G
with black root and white middle vertex ( resp. with
white root vertex and black middle vertex) is a black
( resp. white) type reduction.
(2) Any loop reduction R in G, where I ∩ ground(R)

is a maximum independent set in ground(R), whose
both root vertices are white ( resp. whose at least one
root vertex is black) is called a white ( resp. black) type
reduction.
(3) Any even-backbone reduction R in G, with an
alternating backbone, whose both root vertices are white
( resp. black) is called a white ( resp. black) type
reduction.

We note here that the black and white reductions
correspond to the worst case of the potential (see Fig-
ures 2 and 6). We also say that an odd-backbone re-
duction R is bad for I (or simply bad) if ΦI(R) = −1,
see Figure 2 (d). More generally, given an indepen-
dent set I, we will say that a reduction R is bad
when its potential is minimized by I, i.e. ΦI(R) =
min{ΦI′(R), I ′ independent set}.

Notice that an odd-backbone reduction does not
appear in the definition of the black and white type
reductions. Recall that our intention was that any
black/white reduction has a strictly higher priority than
Odd-backbone.

Definition 10. Let G be a connected graph with min-
imum degree at most 2 and I an independent set in G.
We say that G is potentially problematic for I (or just
potentially problematic), if either:
(1) G is an odd cycle or an edge and I is maximum in
G.
(2) or, there exists one reduction of black type and one
reduction of white type in G.

Notice that Cycle (and also Edge) reduction has
potential −1 if and only if its ground has odd-length
and I is maximum (Claim 14). In this situation, we will
call these graphs bad cycle and bad edge.

The following Lemma states that any execution
has a potential always at least −1. We prove this
result by induction together with a necessary condition
characterizing executions with minimum potential.
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Lemma 11. (Inductive low-debt Lemma) Let G
be a connected graph with minimum degree at most
two, I an independent set in G and E = (R1, . . . , Rκ)
an execution on G. Then
(1) ΦI(E) > −1

(2) If ΦI(E) = −1, then either

(a) The first reduction R1 is a bad odd-backbone
reduction.

(b) or, G is potentially problematic.

Along the proof of Lemma 11 we will refer to several
technical claims proved in Section 3.4 about extended
reductions.

Proof. (of Lemma 11) We prove this result by induction
on the number κ of extended reductions in the execution
E . First, if κ = 1, then since G is connected, the
reduction is a terminal reduction, i.e. point, edge or
cycle reduction, and by Claim 8 we know that their
potential is at least −1. Moreover, if the potential is
exactly −1, it is not difficult to see from the proof of
Claim 8 that the reduction is either an edge or odd cycle
reduction, which are potentially problematic graphs.
For a detailed proof of this fact see Claim 14.

Suppose now that E consists of κ > 2 extended
reductions. We will treat all cases depending on the
first extended reduction R1. We denote its root and
the contact vertices by letters r and ci, with 1 6
i 6 4. In all these cases we will apply the induction
hypothesis to each connected component of the graph
after executing the first reduction. Recall that we say
that R1 creates connected components H1, . . . ,Hs if
they are connected components of the graph G[V \
ground(R1)]. Here, s with 1 6 s 6 4, denotes
the number of connected components created by R1.
Reductions executed byGreedyF in distinct connected
components are independent. Therefore, without loss of
generality we can assume that each execution on Hi

corresponds to a sub-execution Ei of E so that E =
(R1, E1, . . . , Es). Notice that according to Proposition
1, we have

ΦI(E) = ΦI(R1) + ΦI(E1) + · · ·+ ΦI(Es).

We first prove hypothesis (1) and (2) if the first
reduction is Path, Branching or Loop.

When R1 is Path, Branching or Loop. These are
easy cases since the number of connected components
created (and therefore the potential of each correspond-
ing execution) is always balanced by the potential of the
reduction. This is precisely written in the following fact
that can be easily verified thanks to Figure 1 and Claim
8.

Observation 12. For any independent set I, and any
reduction R that is Path, Branching or Loop:

ΦI(R) > |contact(R)| − 1.

Remark: The inequality is also valid for an even-
backbone reduction whose both end-points are adjacent.

Then, if R1 is a path, branching, or loop reduction
then the number of connected components is at most
the number of contact-edges, therefore by the induction
hypothesis (1) on each connected component of G[V \
ground(R1)], we have

ΦI(E) = ΦI(R1) + ΦI(E1) + · · ·+ ΦI(Es)
> ΦI(R1) + (−1)s

> ΦI(R1) + (−1)|contact(R1)| > −1.

Moreover, if ΦI(E) = −1, then all these inequalities are
tight and in particular, the potential of R1 is minimum.
This implies that R1 must be a reduction of black or
white type by Claim 15, and additionally, it must create
exactly |contact(R)| connected components, and each
one must have potential −1. Applying the inductive
assumption (2) to these connected components, together
with the following Claim 13 implies property (2b) for G.

Claim 13. Let G be a connected graph, and I an
independent set in G. Consider E = (R1, . . . , Rκ) an
execution in G. Let H be a connected component created
by the first reduction R1, such that all contact vertices of
R1 that are in H are all white ( resp. all black). Then,
if H is potentially problematic or if the first reduction
executed in H is a bad odd-backbone reduction, then
there exists a black ( resp. white) reduction R in G such
that ground(R) ⊆ V (H).

We will prove that in this situation, R1 can not be
an Odd-backbone, since this would not be the priority
reduction according to GreedyF order. This claim is
useful in the sense that, when the potential of R1 is
minimum then R1 is white (or black) and its contact
vertices are all white (or all black) (Claims 14, 16), so
that G is a potentially problematic graph.

Proof. (Claim 13) Suppose thatH is created by R1 with
contact vertices c1, . . . , ct ∈ V (H) all white (resp. all
black), with 1 6 t 6 4. We show that there exists
one black (resp. white) reduction R in G such that
ground(R) ⊆ V (H).

First, assume that the first reduction executed in
H, say R2, is a bad odd-backbone reduction. Denote by
B = {w, v1, . . . , v2b, w

′} its backbone, with end-points w
and w′. Since ΦI(R2) = −1, its backbone is alternating
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(Claim 17) and without loss of generality we assume
that vj is white if and only if j is odd.

According to the Odd-backbone-rule, at least one
of the contact vertices ci must be one vertex of its
backbone. Since all ci are white (resp. black), the
distance along B between any pair of {c1, . . . , ct, w′}∩B
(resp. {w, c1, . . . , ct} ∩ B) is even. Therefore, there is
an alternating even-length-backbone between any two
consecutive ones. This implies the existence of a black
(resp. white) even-backbone reduction in G, see Figure
7.

Now, assume that H is a potentially problematic
graph, and suppose first that there is one black (resp.
white) reduction R2 with a black (resp. white) root
vertex r in H. Notice that this vertex is distinct than
all ci, and then has the same degree in G. Then, if
dH(r) = dG(r) = 1, then r is also the root of a black
(resp. white) reduction in G. Then, suppose that
dH(r) = dG(r) = 2.

If r is the root of a black (resp. white) even-
backbone reduction R2 in H, with backbone end-
points w and w′, then any two consecutive vertices of
the set {w,w′, c1, . . . , ct} along this backbone form a
alternating even-length-backbone. In particular, r is the
root of a black (resp. white) Even-backbone in G.

The case when R2 is a Loop is very similar, but
slightly more technical. First, if there is no ci in the
ground of R2, the root of this reduction is obviously
also the root of an black (resp. white) Loop in G.
Now, suppose that there is at least one contact vertex
in ground(R2). Let w the vertex of degree three in
ground(R2), and r, r′ its two neighbors. Let us focus on
the first two contact vertices c and c′ met when we sweep
the loop from w in each direction (or just c its the only
contact vertex present). We claim that at least one of r
of r′ a the black (resp. white) root of an (alternating)
black (resp. white) Even-backbone in G. See Figure 8
(a) and (b) (resp. (c)). Form left to right this vertex is
respectively r′, r and r.

We now turn our attention to the case when H is a
bad2 edge or cycle. If H is a bad edge, then its black
(resp. white) vertex has degree one in G, and therefore
is the root of black (resp. white) path or branching
reduction in G. Similarly as the case when R2 is a
Loop, if H is a bad cycle, then there exists a black (resp.
white) vertex r′ ∈ V (H) that is the root of a black (resp.
white) Loop in G, when R1 has one contact vertex in
H, or the root of a black (resp. white) Even-backbone
in G, when R1 has more that one contact vertex in H.

We now turn our attention to the case when R1 is

2Meaning here that I is maximum in H.

a backbone reduction.
R1 is an even-backbone reduction. If the first

reduction executed in G is an Even-backbone, it means
according to Greedy order, that the graph G does not
contain any degree one vertices or any loop reductions.
All degree two vertices are contained in some backbones
linking two distinct degree three vertices. If the end-
points of the backbone of R1 are adjacent, then R1

satisfies Observation 12, so that this case was treated
in the previous section. From now, let us assume that
these end-points are independent. In the following, we
use the same terminology as in Lemma 6.
• If all contact vertices ofR1 are white (resp. black),

then at most one connected component created by R1

has potential −1. Indeed, suppose for a contradiction,
that Hi, with i > 2, has potential −1. By induction
hypothesis, it must satisfy assumptions (2a) or (2b) of
Lemma 11. According to Claim 13, there was a black
(resp. white) reduction in Hi before R1 was executed.
This reduction is neither a degree one nor a loop
reduction, so it must be an even-backbone reduction.
Since they are black (resp. white), the root vertices of
this reduction are distinct than R1’s contact vertices,
which contradicts Lemma 6. We proved (1) when all
contact vertices of R1 are all white (resp. black). For
(2), if ΦI(E) = −1, then one connected component
created, say H1 has potential −1, which by induction
satisfies (2a) or (2b) and ΦI(R1) = 0, so that R1

is a white reduction with only white contact vertices
(Claim 16). Claim 13 guarantees the existence of a black
reduction in G, so that G is potentially problematic.
• If some of R1 contact vertices are both black

and white, then we argue that ΦI(E) > 0. First, the
potential of R1 is at least two3 (Claim 16). Therefore
we should argue that there are at most two connected
components with potential −1. This is true since
there are at most two connected components with
strictly more than one contact vertex, and at most
one connected component with exactly one contact
vertex can have potential −1. Indeed, for connected
components with only one contact vertex, Claim 13
applies so that we can use the same argumentation than
in the previous paragraph.

R1 is an odd-backbone reduction. Assume first
that R1 has potential ΦI(R1) = −1 (resp. ΦI(R1) = 0).
Then, Claim 17 indicates that all its contact vertices are
white (resp. black).

(1) We prove that all connected components created by
R1 have potential at least zero. Assume that it is
not true for the component H1. By induction it

3We assume here that the two end-points of the corresponding
backbone are not adjacent.
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Figure 7: Existence of a black reduction in proof of Claim 13. B is an alternating odd backbone in H. Grey
end-points illustrate the fact that these vertices can either be black or white. Dashed edges are contact edges
from R1. Before the execution, there exists a black (alternating) Even-backbone in G between w′, c1 and c1, c2.

Figure 8: Different types of black, (a) and (b), and white Loop (c). Dashed edges are contact edges.

satisfies (2a) or (2b). According to Claim 13, there
exists a black (resp. white) reduction in H1 before
R1 is executed which contradicts Greedy order4 ,
since any black or white reduction has a priority
strictly higher than Odd-backbone.

(2) When R1 is supposed to be bad odd-backbone by
assumption, (2a) is always true, and otherwise, if
ΦI(R1) = 0, we just proved that ΦI(E) > 0.

Suppose now that ΦI(R1) > 1. We claim that at
most one component created by R1 can have potential
−1. First note that R1 has three contact edges and
thus at most three contact vertices. Indeed, at most one
connected component created has at least two contact
vertices, and any connected component H created with
exactly one contact vertex can not have potential −1
since Claim 13 would imply the existence of an highest
priority reduction in H.

This concludes the proof of Lemma 11.

Proof. (of Theorem 7) We first treat the case where
the input graph has at least one vertex with degree at
most 2. Let G be a connected graph, I a maximum

4This is where the Odd-backbone-rule is used : in any execution
we can not have two consecutive odd-backbone reductions with
minimum potential.

independent set in G, and E an execution. Our goal is
to show that the exact potential is non-negative :

(3.2) ΦG,I(E) > 0

Suppose this is true. Then from Proposition 1 we have

that 5|E|−4|I| > 0, which can be re-written as
|I|
|E|

6
5

4
,

and since this is true for any independent set, then we
have established the desired approximation.

In Lemma 11, we proved that ΦI(E) > −1. Suppose
that the inequality is tight. Then, the first reduction
is a bad odd-backbone reduction or G is potentially
problematic. In any case there exists in G a white vertex
with degree at most two — that is the root of the first
Odd-backbone or of the white reduction in G— so that,
using Claim 2 we have:

ΦG,I(E) = ΦI(E) +
∑
v/∈I

(3− dG(v)) > −1 + 1 = 0

Suppose now that all vertices in G have degree three,
and assume that I is maximal, so that for any vertex
u, |NG[u] ∩ I| > 1. Then, let us consider any degree 3
vertex u and we see that one of the four executions of
the algorithm will be execution with v ∈ NG[u] being
black, and let us call this first reduction R∗. We detect
which of those four executions to take by taking the one
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that leads to the largest size solution. By Claim 18 it
implies that this execution has the largest potential.

On the other hand let us consider the execution E
of R∗ with its black root v. Let H1, . . . ,Hs denote the
connected components created by R∗, and E1, . . . , Es the
corresponding executions. Without loss of generality
we have E = (R∗, E1, . . . , Es). To prove that the exact
potential of E in G is positive, the trick is to consider
that the first reduction R∗ does not use any loan from
its loan edges, so that its potential is exactly 1. This
implies also that each connected component will not
have any debt edges. Then as we proved before, since
each connected component Hi has a vertex with degree
at most two, its exact potential in Hi is non-negative.
Therefore, we have ΦG,I(E) = 1 +

∑s
i=1 ΦHi,I(Ei) > 1.

Remark: Notice that our analysis implies that the size
of the final solution is in fact at least (4/5)OPT +1/5 if
the first executed reduction is of degree 3. Moreover, if
the first reduction R is a bad even-backbone reduction,
and G is not a problematic graph, then our analysis
proves that the GreedyF solution’s size is at least
(4/5)OPT + 1/5. This precisely matches the size of the
lower bound example of Halldórsson and Yoshihara from
Figure 4. Our analysis even indicates that this lower
bound example has the worst possible approximation
ratio for any ultimate greedy algorithm. Indeed, this
counter example is actually a sequence of graphs (Gn)n,
and the solution returned by any Greedy has size
(4/5)OPT (Gn) + 1/5, and therefore the corresponding
approximation ratio tends to 5/4 when the size of Gn
tends to infinity. However, one may wonder if there
exists a (finite) graph G, such that any greedy produces
a solution of size at most (4/5)OPT (G). Our previous
analysis indicates that such a graph can not exist.

Indeed, this graph must satisfy (2a) or (2b)
from Lemma 11, otherwise our GreedyF outputs a
solution of size at least (4/5)OPT (G) + 1/5. Then,
for any maximum independent set, this graph must
have at least one black minimum degree vertex,
and in this situation, we could for instance try all
possible minimum degree vertices (only for the first
step), and pick the execution of maximum size.
This modified greedy algorithm returns a solution of
size at least (4/5)OPT (G)+1/5, for any input graph G.

Remark: Through basically the same technique, we
can achieve a greedy algorithm with an approximation
ratio of 4

3 but with linear running time. Observe that
if we set γ = 4 and σ = 3, the minimum potential
of an odd-backbone reduction changes from −1 to 0.
Now, only Cycle has potential value of −1. With
this observation, we are able to extend Loop in a

particular way, which implies, finally, that we are able to
exclude even-backbone reductions from the definition of
black and white type reductions, and also preserve the
induction hypothesis in our inductive proof. It implies
that the Even-backbone rule is not necessarily needed,
and then the running time of such greedy algorithm will
be linear.

3.4 Technical claims

Claim 14. Given a connected graph G, where any exe-
cution consists of one extended reduction R, i.e. Point,
Edge or Cycle, then and if ΦI(R) = −1, for an given in-
dependent set I in G, then G is either a bad odd-length
cycle, or a bad Edge, and I is maximum in G.

Proof. First, by Claim 8, if R is a Point then ΦI(G) ≥ 1.
Then, if it is an edge reduction, since it is a basic
reduction, it is easy to check that ΦI(R) = −1 only
when one vertex is black i.e. I is maximum, see Figure
2 (b).

Finally, when G is a cycle then, the corresponding
cycle reduction has potential −1 when all inequalities
from equation (3.1) in the proof of Claim 8 are tight.
In particular the number b of black vertices must be
maximum, and

⌊
n
2

⌋
−
⌈
n
2

⌉
= 1, that only arises when

the length n of the cycle is odd.

Claim 15. Any Path, Branching, Loop with minimum
potential have type black or white, and have contact
vertices all black, or all white.

Proof. For (basic) path and branching reductions, worst
case potential (Figure 6 (a),(h) — resp. (b),(g)) are
white (resp. black) reductions, with white (resp. black)
contact vertices.

Next, as noticed before, the potential of a Loop,
is correlated to the potential of the cycle reduction
obtained by removing its contact edge, because adding
an edge to a ground of reduction either increases the
loan by one or decreases the debt by one, so that the
potential increases by one or by two. In particular,
when Loop has minimum potential, the corresponding
cycle has also minimum potential. By Claim 14, we
know that the independent set must be maximum, and
its backbone must have odd-length, so that the loop
reduction must have type black or white. Moreover
when the potential is minimum, the contact edge can
not be incident to two white vertices, otherwise making
the contact vertex black would decrease the potential.
Therefore, when ΦI(R) = −1, the contact vertex has
the same type as the reduction.

Claim 16. Let R be Even-backbone, then for any inde-
pendent set I we have ΦI(R) ≥ 0, and moreover,
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Figure 9: Some examples of good case potential value.

(1) if ΦI(R) = 0, then R is a white reduction with only
white contact vertices.

(2) if the end-points of R’s backbone are not adjacent,
and if its contact vertices are not all white or all
black, then ΦI(R) ≥ 2.

Proof. (1) Suppose that the potential of an Even-
backbone R = (R1, . . . , Rt) is minimum : ΦI(R) = 0.
We know that its end-points are not adjacent, otherwise
it has potential at least one, and the potential of all basic
reductions Ri must be minimum. When R has size one,
the worst case arises only when I is such as in Figure
6 (e), that is a particular case of white reduction with
white contact vertices. For greater sizes, this implies
that the first basic reduction R1 is like Figure 2 (d).
Then R2 must be a Path with minimum potential and
a white root, i.e. Figure 6 (a), so on and so long for
all path reductions. The final branching reduction Rt
has minimum potential and a white root, as in Figure 6
(h). Finally we proved that this backbone is alternating
and the root is white, so that R is a white reduction.
Moreover, all its end-points must be white.

(2) In the following we will say that a reduction is
mixed if it has two different type contact vertices. When
R has size one and is mixed, we can easily check by
hand, that its potential is at least two (Figure 9 (a), (b)).
Consider now a mixed even-backbone R = (R1, . . . , Rt),
and without loss of generality5, assume that the last
branching reduction Rt has at least one black contact
vertex.

First, if R1 or Rt are mixed, then their potential is
respectively at least 1 and 2 (see Figure 9 (c),(d) and
(e)) so that ΦI(R) > 2.

Otherwise, assume that R1 and Rt have only respec-
tively white and black contact vertices. In particular the
root r of the first Path R2 is white. If the root r′ of the
last branching reduction is white then6, its potential is
at least 3 (Figure 9 (f)), so that ΦI(R) > 2. Then, if r′
is black, since the distance between r and r′ is even, we

5Recall that we are free to choose the root of Even-backbone.
6We assume here that at least one contact vertex is black.

must have found a Path Ri with both root and middle
white vertices. Such a reduction has potential at least
2 (Figure 9 (g)) so that ΦI(R) > 2.

Claim 17. Let R be odd-backbone, then for any inde-
pendent set I we have ΦI(R) ≥ −1, and moreover,

(1) if ΦI(R) = −1, then it has an alternating backbone,
a white root and only white contact vertices.

(2) if ΦI(R) = 0, then it has an alternating backbone,
a black root and only black contact vertices.

Proof. These assumptions can be easily checked by
hand for odd-backbone reduction R of size one, see
Figure 2 (d) and Figure 9 (h). Suppose now that
R = (R1, . . . , Rt) has size at least two, where R1 is
the basic odd-backbone reduction, and Ri are path
reductions, for i > 2.

If ΦI(R) = −1, then necessarily, ΦI(R1) = −1 and
for all Path, ΦI(Ri) = 0. The first reduction has only
white contact vertices (Figure 2 (d)), and then R2 has a
white root, so it must be as in Figure 6 (a), in particular
it must have a white contact vertex, so that R3 has a
white root, and so on and so forth. This implies that
the corresponding backbone is alternating, and the root
vertex and all contact vertices are white.

If ΦI(R) = 0, then we either have Case 1: all
basic reductions have potential zero, or we have Case
2: ΦI(R1) = −1 and there is one Path Rj with potential
one.

Case 1: R1 must be like in Figure 9 (h), and
using exactly the same argumentation than in the
previous paragraph, we show that all the following
path reductions are like in Figure 6 (b), so that the
R’s backbone is alternating, and R has black root and
contact vertices.

Case 2: We show that this case is impossible.
Indeed, as before all path reductions Ri, with i < j
have a white contact vertex (Figure 6 (a)), so that Rj
has a white root. Since it has potential one, its middle
vertex must be white (otherwise its potential is zero, see
Figure 6 (a)), and in this case its potential is at least
two (Figure 9 (g)).

1453
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

03
/1

9/
23

 to
 8

9.
64

.9
0.

52
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



Claim 18. Let G be a connected graph and I an inde-
pendent set in G. Let E = (R1, R2, . . . , Rκ) be an execu-
tion of greedy on G, and let this execution produce a so-
lution of size sr. Let E ′ = (R

′
1, R

′
2, . . . , R

′
κ′) correspond

to another execution of greedy on G producing a solu-
tion of size sr′ . Then if sr > sr′ then ΦI(E) > ΦI(E ′),
and otherwise, if sr < sr′ then ΦI(E ′) > ΦI(E).

Proof. We know that ΦI(E) = 5sr − 4|I ∩ V (G)|, and
ΦI(E ′) = 5sr′ −4|I ∩V (G)|. Therefore, ΦI(E) < ΦI(E ′)
if and only if sr < sr′ .

4 Lower bounds
Due to lack of space, we present in this section only
formal statements of our lower bound results.

Given a graph G = (V,E), we say that I is a greedy
set of G, if I is an independent set, and its elements
can be ordered, I = {v1, . . . , vk} in such a way that, for
all 1 6 i 6 k, the vertex vi has minimum degree in the
subgraph Gi, where Gi := G[V \ NG[{v1, . . . , vi−1}]].
The size of a maximum greedy set in G is denoted by
α+(G).

4.1 Ultimate lower bounds for high degree
graphs

Theorem 19. The ratio of any Greedy like algorithm

in graphs with degree at most ∆ is at least
∆ + 1

3
−

O(1/∆).

This result is an extension of Theorem 6 in [12].
In this result Halldórsson and Radhakrishnan present
examples where the ratio between the worst execution
of the basic Greedy and the optimal independent set

is
∆ + 2

3
− O(∆2/n). However, on these examples

there exists several vertices with minimum degree and
picking the right minimum degree vertex could lead
greedy to an optimal solution. Equivalently, it means
that there exists graphs of bounded-degree where the
minimum greedy set is small compared to the maximum
independent set. We prove that we can extend this
observation to the maximum greedy set while keeping
roughly the same ratio. Our extension of these examples
consists in increasing the degree of some vertices of this
graphs by one, so that any greedy set has the same size

and the corresponding ratio is
∆ + 1

3
−O(1/∆).

4.2 Cubic planar graphs. The maximization prob-
lem MaxGreedy consists in finding a maximum size
greedy set in a given graph G. This problem was shown
to be NP-hard [5]. We first prove that this problem
remains NP-hard in the very restricted class of planar

cubic graphs. The proof is a reduction from MIS in
cubic planar graphs, which is known to be NP-hard.

Theorem 20. MaxGreedy is NP-complete for planar
cubic graphs.

4.3 Hardness of approximation. We are able to
prove the following results, showing that not only
exact but also approximate version of the MaxGreedy
problem is computationally hard.

Theorem 21. • For general graphs with n vertices,
MaxGreedy is hard to approximate within a fac-
tor of n1−ε, for any constant ε > 0, assuming
P 6= NP .

• For general graphs, MaxGreedy is hard to ap-
proximate within a factor of n/ log n, assuming the
Exponential Time Hypothesis.

• For graphs with maximum degree ∆ > 7, Max-
Greedy is hard to approximate within a factor of
(∆ + 1)/3−O(1/∆)−O(1/n), assuming P 6= NP .

• For bipartite graphs, MaxGreedy is hard to ap-
proximate within a factor of n1/2−ε, for any con-
stant ε > 0, assuming P 6= NP .

The last result is especially interesting, because an
optimal independent set can be computed in polynomial
time in a bipartite graph. Therefore, Greedy is not a
good algorithm for this class of graphs. However, this
negative result suggests that even knowing a maximum
independent set may not be helpful in order to design
good greedy advises.

5 Conclusions and future steps
Our main technical contribution is a non-local payment
scheme together with an inductive argument that can
be embedded with greedy-style algorithms for MIS
on bounded degree graphs. These techniques imply
best possible approximation guarantees of greedy on
subcubic graphs. We have also shown versatility of these
techniques by proving (via simple proofs) that they
imply close to best possible greedy guarantees on graphs
with maximum degree ∆, for any ∆. Furthermore,
they also imply fast improved approximation algorithms
for the minimum vertex cover problem on bounded
degree graphs. We have complemented these results by
hardness results, showing that it is hard to compute
good advice for the greedy MIS algorithms.

Our techniques have a potential to give further in-
sights into the design of fast non-greedy algorithms that
go past the greedy “barrier” in terms of approximation
factors. Namely, a non-greedy algorithm can in certain
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situations choose degree-3 black vertex adjacent to the
top white degree-2 vertex in the 5/4-lower bound in-
stances Hi in Figure 4 with H0 = H ′0. Observe that
after such a non-greedy reduction, the algorithm can
then follow greedy rules to finally compute an optimal
solution on these instances. We have found a way of
implementing such “super-advice” in O(n2) time. More-
over, our potential function and the inductive argument
can be adapted to analyze the approximation guaran-
tee of this method. This breaks through the 5/4 lower
bound of greedy and could even lead to approximations
close to 6/5. Recall, that 6/5 is essentially the best cur-
rently known polynomial time approximation for sub-
cubic MIS, achieved by local search algorithms which
however have exorbitant running times. “Super-advice”
could also be used to design non-greedy algorithms that
go beyond the proved lower bound of (∆ + 1)/3 for
greedy on ∆-bounded degree graphs.

Moreover, our techniques have a potential for fur-
ther generalizations and applications. Our potential
function and the inductive argument are quite general
and they could be applied to other related problems on
bounded degree graphs. Such general problem should
have the following features: given a graph, the opti-
mal solution should be ubiquitously “distributed” over
the input graph, and therefore also a feasible solution
should be computable sequentially/locally by “choosing
parts of the graph”, debt and loan should be definable
on such a problem as problem specific, depending on the
problem’s constraints. Possible candidates are, for in-
stance, the set packing and set covering problems with
sets of bounded size and bounded element occurrences.
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and for his explanations to the results about greedy
algorithms.
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