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Abstract

Nowadays, many signal processing activities are related to the orthogonal properties of specific signals. However,
only a few methods offer an analytical solution for generating orthogonal signals, especially when only one input to
the generating system is available. These methods are often related to very specific applications and lack general-
ization. In this paper, the use of the Gram-Schmidt orthogonalization process combined with simple transformation
operators is proposed as a new framework for generating orthogonal signals. The objective is to provide a rigorous,
clear and simple procedure capable of deriving multiple orthogonal signals from a single input. Many examples are
discussed to better illustrate the novelty of the method and the main results.
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1. Introduction

Today most high-performance signal processing approaches exploit orthogonality properties of signals in various
contexts as in telecommunications [12, 17, 22], in system-control engineering [5, 3] and in electrical engineering
[31, 11, 8], to make but a few. Orthogonality through the orthogonal functions is known to be the simplest way
to ensure perfect discrimination between different signals. The method can be grouped into four families [6]: i)
piecewise constant orthogonal functions (Haar functions, Walsh functions, ...), ii) orthogonal polynomials (Legendre,
Laguerre, Hermite, Tchebycheff, Jacobi, Gegenbauer, ...), iii) Sine-Cosine (Fourier) functions, iv) various functions
(Filtering, ...).

In telecommunications, pre-existing orthogonal bases (usually calculated from orthogonal polynomials) com-
posed of a large number of K channels [12, 17, 22] are used to account for several constraints simultaneously. The
real time constraint is the stronger but other constraints are also importante such as orthogonality in the complex
domain, maximum spectral efficiency, and a well-localized prototype function in time and frequency. The common
partial structure (see figure (1a)) of a transmitter using orthogonalization can be represented by a single input and
multiple out (SIMO) system with x(t) at the input and w1(t), w2(t), ..., wK(t) at the output. As reported in figure
(1a), this SIMO system, constituting the basic structure of the solution of our problem, can be also separated in
two sub-parts: i) a serial-parallel converter (SIMO system) and ii) a MIMO (Multiple Input and Multiple Output)
system where orthogonalization takes place.

In control engineering, the SIMO structure plays an important role for the identification-modeling of linear
systems [5, 6] and nonlinear systems [3] with subharmonics [1, 25], where pre-existing orthogonal functions are
also used. In this case, the block diagram is similar to the one presented in figure (1a). To give an example, the
orthogonal signals used in the modeling of subharmonics [1, 25] are presented in figure (1b).

In signal processing, the consideration of orthogonality has also been very fruitful. Many methods such as
Orthogonal Matching Pursuit [21, 2, 32], Orthogonal Least Square [3] and Orthogonal Wavelet Decomposition [19]
have been developed, to name a few.

More recently in electrical engineering [31, 11, 8, 15, 16, 30], accurately extracting the phase angle and frequency
from the grid voltage is of vital importance to ensure stable operation of power electronic equipment connected
to the grid. For phase detection, PLL-based systems are probably the most popular, especially those using an
Orthogonal Signal Generator (OSG). Here again, the SIMO structure has a special place in GSO-based systems.
For instance, OSG under study is often composed of few outputs (usually K = 2) and a single input. The structure
of a OSG is very similar to the one shown in figure (1a), except that w1(t) = v1(t) = x(t). As an illustration, the
OSG-SIMO system composed of two sub-parts (SIMO+MIMO) with two outputs and a single input is shown in
figure (2a). For this type of application, the system must adapt itself in real time to various network disturbances
such as voltage sags, phase and frequency jumps, and in the presence of harmonics. The other important point,
even if it is not really explained, is that the output signals must present the same properties as the input signal.
The periodic signal x(t) at the input and the orthogonal version w2(t) at the output both undergo a phase jump
(see figure (2b)). Eventually, note that w1(t) = x(t) guarantees that the properties of x(t) are preserved in w2(t).

(a) Partial SIMO-transmitter block diagram
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(b) Orthogonal signals in sub-harmonics modelisation
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Figure 1: a) Partial block diagram of a transmission/modelisation system as a Single Input Multiple Output (SIMO) system. This
SIMO system can be separated in a serial-parallel converter (another SIMO system) followed by a MIMO (Multiple Input and Multiple
Output) system composed of K mutually orthogonal signals. Usually, the orthogonalization function is merged with the serial/parallel
function. b) Orthogonal signals used in non linear systems modelisation in control engineering with sub-harmonics [1, 25], with
x(t) = w1(t) + w2(t).
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(a) SIMO-OSG block diagram
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(b) Signals with amplitude and phase jumps
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Figure 2: a) Common partial block diagram of a SIMO-OSG in electrical engineering. As in figure (1), the SIMO system can be separated
in two sub-parts: another SIMO system followed by a MIMO system with v1(t) = w1(t) = x(t), v2(t) = x(t) and with orthogonalized
signal w2(t) being obtained through a transformation G[•] as derivative, Hilbert transform, ... b) Periodic signal w1 = x(t) undergoing
a phase and an amplitude jumps at t = 0 and its orthogonalized version w2(t) obtained by applying the method of section 2.1.

Most of OSG (through the transformation G[•] in the block diagram of figure (2a)) can be clustured into three
categories of analytical methods. A table with several examples is reported in Appendix A.7.

• Filtering-based method. Different type of filters (or transformations G[•]) can be considered, the all-pass
filter [13], the Hilbert Transform [10, 14, 23], the combination of a band pass and low pass filter [4]. With the
objective of presenting only analytical calculations, the method based on Hilbert transform is presented alone.
The Hilbert transform (see definition in Appendix A.6) based method takes advantage of the fact that any real
signal v1(t), quadratically integrable, has a Hilbert transform HT [v1(t)] orthogonal to it: v1(t) ⊥ HT [v1(t)]; a
demonstration being given in Appendix A.4. In electrical engineering [23], the Hilbert transform can be used
for periodic signals such sine signals (see Table (A.1) in appendix). However, for a certain number of signals,
the calculation of the Hilbert transform often leads to solutions with singularities that may prevent their
practical use as is the case for rectangular signal (First raw in Table (A.1) in appendix). For other signals like
exponential based signals (Gaussian function for instance), the Hilbert transform has no analytical solution
and we resort to a numerical calculation (see Table (A.1), raw 7). As the successive use of the Hilbert
transform1 leads to a unique solution (with just a sign difference), this method cannot be used for K>2.

• Derivative-based method. As the name indicates, the method applies only to differentiable signals with
parity properties [28]. Indeed, if the signal under consideration is even/odd, the scalar product with its
odd/odd derivative is null, as shown in Appendix A.3.

The idea of using the derivability properties of orthogonal signals [28] or orthogonal polynomials [20] is
interesting and has received some attention in a discrete framework in telecommunications [12, 27] and in
electrical engineering [18, 7], to name a few.

For instance, the Gaussian signal (see definition in Appendix A.6) is an even function, derivable with non-
compact support2. It has a first derivative (see definition in Appendix A.6) that is an odd function3 whose
integral over the entire real axis is null.

Moreover, unlike to the method based on the Hilbert transform, there are as many solutions as the odd/even
signal is derivable. However for certain signals, the number of distinct solutions can be limited to two as it
is the case for the cos(ωt) and sin(ωt) signal. Note that for even/odd signals based on exponential (infinitely
derivable function), there is an infinity of distinct solutions and orthogonal bases functions can be constituted
as is the case of weighted Hermite polynomials (see definition in Appendix A.6) used in the telecommunications
field [12, 22]. In the case of discontinuous periodic signals such as a periodic square-wave or triangular signal,
derivatives showing singularities limit their application. Alternative solutions are thus expected.

• Block-pulse function method. A very simple way to guarantee the orthogonality between real signals of
finite energy, with bounded support or not, consists in finding an adequate time shift [6, 33] guaranteeing the

1ṽ1(t) = HT [v1(t)] and HT [ṽ1(t)] = −v1(t).
2Note that the support of a function is the part where the useful information is concentrated. The support is defined in the region

where the function presents nonzero values. The Gaussian function does not have a compact support.
3The product of an even function e(t) = e(−t) by an odd function o(t) = −o(−t) leads to an odd function y(t) = e(t)×o(t) = −y(−t).

Demonstration: −y(−t) = −e(−t)× o(−t) = −e(t)×−o(t) = y(t), EQD
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orthogonality between the generator signal and the created one. In the case of signals with bounded support,
this can be guaranteed if the supports of its shifted versions are disjoint. This is the case for example by
using a base of rectangular symbols (see Table (A.1) in appendix). For instance, RectT (t) and RectT (t− T )
are orthogonal since their respective support are disjoint leading to a null product and so to a null scalar
product.
If the signal does not present a compact support, one could implement a windowing operation in order to
get a bounded support signal. Note that this operation can be performed in time or frequency domain. In
telecommunications [22], to optimize the temporal or frequency band, the support can also be contiguous.
Instead of performing a simple shift, we can also use more complex decomposition bases like the orthogonal
Haar decomposition [6] or the Rademacher orthogonal decomposition (see definition in Appendix A.6) [6].
Moreover, for finite energy signals with non-compact support, it is also possible for some specific signals to use
a time shift that would guarantee orthogonality. This is the case for the cardinal sine function (see definition
in Appendix A.6 and see figure (4a)). In this case, the supports are no longer contiguous but they will present
an overlap.
The Block-pulse based method seems to be ideal for generating K mutually orthogonal signals from a single
signal. However, this approach is only suitable for finite energy signal and cannot be used for periodic signals.

To sum up, the literature review shows that OSG can be grouped into three types of analytical methods. The
method based on the Hilbert transform leads to the generation of a single orthogonal signal only, the solution being
obtained analytically or numerically, often presents singularities in the solution itself. The derivative method can
only be used if the signal is derivable and has parity properties, the number of solutions being related to the number
of times the signal is derivable. When the generating signal is not symmetric, this method cannot be applied. The
block-pulse function method produces as many solutions as desired, as long as the signals have finite energy and
compact support. A few rare solutions are possible when the supports are not bounded and no solution is possible
for periodic signals.

Furthermore, if we refer to the SIMO-OSG block diagram for electrical application (see figure (2a)), the SIMO
sub-part is not exploited at all since outputs are equal to the input. Moreover, most of the studied signals are
periodic signals and the number of orthogonal output signals is limited to two. In order to propose a method that
is not limited to periodic signals, whose number of outputs is not limited to two and that allows a greater variety
of solutions, new approaches are expected. Finally, since the three methods are always presented independently, a
formal framework bringing these methods together is also expected.

Based on this observation and these remarks, the purpose of this article is then to propose in a formal framework
an analytical method allowing to generate, from a single signal, as many signals as one wishes while preserving its
intrinsic properties: finite energy, derivable, even/odd, oscillating, periodic, etc. In this work, we will voluntarily
limit OSG to real signals but it can be easily extended to the case of complex signals.

Subsequently, the formal framework of the proposed method is presented. The main results based on many
original examples are presented. A discussion on the advantages and disadvantages is presented, then a conclusion
and perspectives are proposed.

2. Method and main results

In this section a new framework of Orthogonal Signal Generator (OSG) globalizing the SIMO and MIMO sub-
parts reported in figure (3) in presented. Several examples will show the originality of the solutions and the interest
of basing the analytical calculation exclusively on the use of the input signal x(t).

As previously mentioned, it is indeed the design of the SIMO sub-part that is crucial in our solution. As
illustrated in figure (3), the solution consists in building a dictionary VT = [v1(t), v2(t), ..., vK(t)] composed of K
non-orthogonal signals vk(t), by applying a transformation operator from the initial signal v1(t) = x(t). As we wish
a transformation preserving as much as possible the input properties to the output, the following transformations
Tk[•] involving time shifts, dilations/compressions will be considered. Afterwards, the orthogonal signals wk(t) are
obtained by applying the Gram-Schmidt (GS) procedure [9, 26, 29] (see (Appendix A.1) for details) from the non-
orthogonal atoms vk(t). Unlike other methods (QR and SVD decompositions, [29]), the GS approach maintains an
analytical framework. In this case, the SIMO dictionary is obtained iteratively as follows:

vk(t) = Tk−1 [vk−1(t)] , (1)

with v1(t) = x(t).
Using the GS procedure, the calculation of the k-orthogonal atoms ∀k = {1, 2, ...} leads to:

wk(t) = Tk−1[vk−1(t)]−
k−1∑
j=1

ρkjwj(t). (2)

with w1(t) = v1(t) = x(t) and with the coefficient

ρkj =
⟨Tk−1[vk−1], wj⟩t

⟨wj , wj⟩t
, (3)
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OSG block diagram

x(t) Transf.
T [•]

SIMO

x(t)

v2(t)

. . .

vK(t)

Orthog.

G[•]

MIMO

x(t)

w2(t)

. . .

wK(t)

Figure 3: OSG block diagram of our proposed method. In the SIMO sub-part, the K output signals are obtained from a transformation
T [•] defined in equations (1, 6, 10, 14, 17). The K mutually orthogonal signals are obtained with the Gram-Schmidt procedure (a
kind of transformation G[•]) in the MIMO sub-part. As for OSG represented in figure (2), the following relations must be verified:
v1(t) = w1(t) = x(t).

and < •, • >t defining the scalar product (see the definition in Appendix A.6) .
In order to apply the proposed method to a reduced number of examples, the equation (2) is voluntarily limited

for K = 3. Consequently, by using the equations (1), (2), (3), the orthogonal atoms become respectively:w1(t)
w2(t)
w3(t)

 =

 1 0 0
γ21 1 0
γ31 γ32 1

 v1(t)
T1 [v1(t)]
T2 [v2(t)]

 (4)

 γ21 = −ρ21,
γ31 = ρ32ρ21 − ρ31,
γ32 = −ρ32.

(5)

As mentioned earlier, the choice of these transformations Tk[•] depends on the properties of the generating
signal and its applications. Consequently, an infinite number of transformations may exist. However, following the
literature, we can limit the number of these transformations and their combinations to:

i) the scale change vk(t) = βkvk−1(βkt), as in the case in the Haar wavelet basis [6, 19];

ii) the time shift vk(t) = vk−1(t + τk) or frequency shift or block pulse, like in the case of the orthogonal
sine-cardinal basis used in telecommunications [12];

iii) the time reversal vk(t) = vk−1(−t + τk) as proposed in [24]. For the time reversal, a delay must be added,
otherwise all vk(t) = v1(−t) for odd k and vk(t) = v1(t) for even k lead to wk(t) = 0 : ∀k > 3;

iv) the amplitude shift vk(t) = αk + vk−1(t);

v) the amplification vk(t) = ηkvk−1(t) is not a good choice because it leads to the trivial solution (w2(t) = 0,
w3(t) = 0), since vk−1(t) and vk(t) are not independent;

vi) all compositions of time shifts, time reversal, amplitude shifts and scale changes can lead to other solutions
such as vk(t) = αk + vk−1(−βkt+ τk).

For the reasons mentioned in the introduction, the operations of derivative and Hilbert transforms will not
be considered. Finally, many examples that we found interesting will be presented, so the list of examples is not
exhaustive.

2.1. Time-shift operation
The time-shift operation is the method of block-pulse functions where the time shifts are fixed manually.

However, it does not exist in the form proposed here, i.e. by applying the Gram-Schmidt procedure. The manual
method is the most common solution when the signals are compactly supported, and is called Time-division
Multiplexing (TDM) in telecommunications [12, 17]. It consists on finding time-shifts that produce disjoint and
often contiguous compact supports, as it is the case for signals wk(t) = RectT (t− kT ) where k ∈ Z.

By applying the equations from (1) to (5) with a transformation based on time shifts, this yields with ∀k > 1
and K = 3:

vk(t) = Tk−1[vk−1(t)] = vk−1(t+ τk), (6)
5



with τk the time delay and {
v2(t) = T1[v1(t)] = v1(t+ τ1),
v3(t) = T2[v2(t)] = v2(t+ τ2) = v1(t+ τ3)

(7)

with τ3 = τ1 + τ2.
For K = 3, the orthogonal atoms can be written: w1(t) = v1(t),

w2(t) = v1(t+ τ1) + γ21 v1(t),
w3(t) = v1(t+ τ3) + γ32 v1(t+ τ1) + γ31 v1(t).

(8)

The coefficients of equations (3), and (5) are written for k = 1, 2, 3:
γ21 = −ρ(τ1),
γ31 = ρ(τ1)ρ(τ2)−ρ(τ3)

1−ρ2(τ1)
,

γ32 = −ρ(τ2)−ρ(τ1)ρ(τ3)
(1−ρ2(τ1))

.

(9)

with ρ21 = ρ(τ1), ρ31 = ρ(τ3) and with ρ(τ) the autocorrelation coefficient.
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(a) Sine cardinal function (Time shift Operation)
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(b) Sine cardinal function (Time shift Operation)

w1
w2
w3

Figure 4: (a) Orthogonal cardinal sine atoms obtained with time shifts τ1 = −1.0 s and τ2 = −1.0 s, and with γ21 = −0.005, γ31 = 0.005
and γ32 = −0.005; the first atom being defined as v1(t) = sinc(t). The values of the delays have been chosen so that the wk(t) are just
lagged versions. (b) Innovative orthogonal cardinal sines obtained with time shifts τ1 = −0.4 s and τ2 = 0.6 s, and with γ21 = −0.759,
γ31 = 0.899 and γ32 = −1.191. The values of the delays were chosen so that the wk(t) undergoes a temporal shift but also a modification
of its amplitude.

Three examples are proposed for constructing an orthogonal basis from the time-shift operation.

a) The first example proposes the cardinal sine function v1(t) = sinc(t) as generator signal (see definition in
Table (A.1)). It is an even signal, derivable, of finite energy of non-bounded support and oscillating of
period T . Applying equation (1), we get v2(t) = v1(t + τ1) = sinc(t + τ1) and v3(t) = v2(t + (τ1 + τ2)) =
sinc(t− (τ1 + τ2)). The correlation coefficient is ρ(τ) = sinc(τ) and cancels every τ = n ∈ Z∗. When τ1 = −1
and τ2 = −1, the orthogonal solutions plotted in figure (4a) are well known in telecommunications and we
have w2(t) = sinc(t + 1) and w3(t) = sinc(t + 2). By proposing any value of delay, different from τ1 = −τ2,
the solutions are completely new. For example, by proposing τ1 = −0.4 and τ2 = −0.6, the signals w1(t),
w2(t) and w3(t) obtained provide a much greater overlap than with the classic settings (see figure (4b)). The
price to pay is an amplitude modulation.

b) The second example proposes the Gaussian function v1(t) = e−at2 as generator signal 4. It is an even
signal, derivable, of finite energy, non-bounded and non-oscillating. The correlation coefficient is equal to
ρ(τ) = e−aτ2/2. The signals w1(t), w2(t) and w3(t) are depicted in figure (5a) with a = 2, τ1 = 1/4 s,
τ2 = −3/4 s, ρ21 = ρ(1/4) = 0.94, ρ31 = ρ(1/4 + 3/4) = 0.78, ρ(3/4) = 0.57, ρ32 = −1.38, γ21 = −0.94,
γ31 = −2.07 and γ32 = 1.38. An innovative example is given in figure (5b). Note that when the time shift τ
tends to zero, the solution obtained for w2(t) is proportional to the derivative of w1(t):

lim
τ→0

w2(t) = lim
τ→0

τ
w1(t+ τ)− ρ21(τ)w1(t)

τ
= lim

τ→0
τ
w1(t+ τ)− w1(t)

τ
= τ

dw1(t)

dt
,

with limτ→0 ρ21(τ) = 1. In the present example the derivative is expressed by dw1(t)

dt
= 1

τw2(t).

4The Gaussian function being frequently used in signal processing, it seemed important to propose several analytical solutions other
than those obtained by the derivative method which is a particular solution of our approach when the delay approaches zero
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(a) Gaussian function (Time shift Operation)
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(b) Gaussian function (Time shift Operation)
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Figure 5: (a) Orthogonal Gaussian atoms obtained with time shifts τ1 = 1/4 s and τ2 = −3/4 s, and with a = 2, ρ21 = ρ(1/4) = 0.94,
ρ31 = ρ(1/4 + 3/4) = 0.78, ρ(3/4) = 0.57, ρ32 = −1.38, γ21 = −0.94, γ31 = −2.07 and γ32 = 1.38; the first atom being defined
by v1(t) = e−at2 .(b) Innovative orthogonal Gaussian atoms obtained with time shifts τ1 = 0.05 s, τ2 = −3/4 s, a = 2, ρ21 = 1.00,
ρ31 = 0.61, ρ(3/4) = 0.57, ρ32 = −8.28, γ21 = −1.00, γ31 = −8.88 andγ32 = 8.29, the first atom being defined by v1(t) = e−at2 . The
derivative of the Gaussian function is reported in dashed line with τ = −1/4 meaning that the derivative is (−4) times higher than
w2(t).

c) The third example proposes the periodic rectangular signal of period T as generator signal. It is an odd,
not derivable signal due to singularities and of finite average power. The correlation coefficient is equal to
ρ(τ) = TriT ∗III2T (τ) where ∗ is the convolution operation, TriT is the triangular signal and IIIT (t) is the
Dirac comb (see the three definitions in Appendix A.6). The signals w1(t), w2(t) and w3(t) are plotted in
figure (6) with τ1 = −0.15 s, τ2 = −0.30 s, T = 1 s, γ21 = −0.400, γ31 = 0.857, γ32 = −0.143. The
solution proposed in figure 6a) is an innovative and alternative solution to methods providing singularities
like the derivative and the Hilbert transform. Another solution is presented in figure 6b) with τ1 = −0.25 s,
τ2 = −0.25 s, γ21 = 0, γ31 = 1, γ32 = 0, the first atom being defined by v1(t) = sign(sin(ωt)) with T = 1 s,
the sign function is defined in Appendix A.6.
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(a) Square periodic function (Time shift Operation)
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(b) Square periodic function (Time shift Operation)
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Figure 6: (a) Innovative orthogonal atoms obtained with time shifts τ1 = −0.15 s, τ2 = −0.15 s, γ21 = −0.400, γ31 = 0.857,
γ32 = −0.143, the first atom being defined by v1(t) = sign(sin(ωt)) with T = 1 s. (b) Orthogonal atoms obtained with time shifts
τ1 = −0.25 s, τ2 = −0.25 s, γ21 = 0, γ31 = 1, γ32 = 0, the first atom being defined by v1(t) = sign(sin(ωt)) with T = 1 s.

At this level, several remarks can be expressed. First of all, whatever the type of signals considered (finite energy
and finite average power), the method always provides at least one solution. For finite energy signals, solutions for
K > 2 are possible with an adequate adjustment of the time delays. As for the periodic signal, note that when the
generator signal is a sinusoidal signal v1(t) = cos

(
2π
T t

)
, the correlation coefficient ρ(τ) = cos

(
2π
T τ

)
is periodic too

and the atoms obtained for K > 2 are null, for any chosen delays values. On the other hand, the periodic signal
reported in figure (6a) is completely novel. Finally, whatever the nature of the signal for which limτ→0 ρ21(τ) → 1
is verified and with K = 2, the solution obtained is proportional to the derivative.
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2.2. Scaling operation
The scaling operation is inspired by orthogonal wavelet based decompositions, such as the Haar base [6, 19].

However, in the case of the scaling operation proposed here, no particular property is imposed and any generative
signal can be used. In the case of scaling, the equation (1) becomes:

vk(t) = Tk−1[vk−1(t)] = βkvk−1(βkt), (10)

where βk is the scaling factor. With k > 1 and K = 3, it comes:{
v2(t) = T1[v1(t)] = v1(β1t),
v3(t) = T2[v2(t)] = v2(β2t) = v1(β3t)

(11)

with β3 = β1β2.
For K = 3, the orthogonal atoms are written: w1(t) = v1(t),

w2(t) = β1v1(β1t) + γ21 v1(t),
w3(t) = β3v1(β3t) + γ32 β1v1(β1t) + γ31 v1(t).

(12)

The coefficients of equations (3) and (4) are written for K = 3:
γ21 = −ρ(β1),
γ31 = ρ(β1)ρ(β2)−ρ(β3)

1−ρ2(β1)/β1
,

γ32 = −β1ρ(β2)−ρ(β1)ρ(β3)
(β1−ρ2(β1))

.

(13)

with ρ21 = ρ(β1), ρ31 = ρ(β3).
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(a) Rectangular signals
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(b) Rectangular signals (Scale Operation)
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Figure 7: (a) Orthogonal rectangular atoms w1(t), w2(t)/β2 and w3(t)/β3 obtained by a scale change with T = 1 s, β1 = 1/2, β2 = 1/3,
ρ21 = 1/2, ρ31 = 1/6, ρ32 = 1/3, γ21 = −1/2, γ31 = 0 and γ32 = −1/3; the first atom being defined by w1(t) = v1(t) = RectT (t−T/2).
(b) Innovative orthogonal atoms w1(t), w2(t)/β1 andw3(t)/β2 obtained by a scale change with T = 2.5 s, β1 = 3/2, β2 = 1/2, ρ21 = 1,
ρ31 = 3/4, ρ32 = 0, γ21 = −1, γ31 = −3/4 andγ32 = 0; the first atom being defined by w1(t) = v1(t) = RectT (t− T ).

Three examples are proposed to build an orthogonal basis from the scaling operation.

a) The first example proposes the rectangular function as generator signal: v1(t) = RectT (t − T/2), RectT (t)
being the rectangular function defined in Appendix A.6. It is a finite energy signal with compact support
widely used in telecommunications (block-pulse method). The scale coefficient is equal to:

ρ(β) =

{
β ∀0 ⩽ β ⩽ 1,
1 ∀β > 1.

The orthogonal signals w1(t), w2(t)/β2 and w3(t)/β3 of duration T = 1 s, obtained with β2 = 1/2, β3 = 1/3,
ρ21 = 1/2, ρ31 = 1/6, ρ32 = 1/3, γ21 = −1/2, γ31 = 0 and γ32 = −1/3 are reported in figure (7a). The
signals obtained are of disjoint and contiguous supports. For another settings, the orthogonal rectangular
atoms w1(t), w2(t)/β2 and w3(t)/β3 are obtained by scaling with T = 2.5 s, β2 = 3/2, β3 = 1/2, ρ21 = 1,
ρ31 = 3/4, ρ32 = 0, γ21 = −1, γ31 = −3/4 and γ32 = 0 are reported in figure (7b). Orthogonal signals are no
longer disjoint.
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b) The second example proposes the cosine function as generator signal: v1(t) = cos
(
2π
T t

)
. It is a derivable,

even and oscillating signal of period T and finite average power. The scale coefficient is equal to

ρ(β) = β sinc(2π(β + 1)) + β sinc(2π(β − 1)).

It is an even function where the maximum values are located in β = ±1, and the zero crossings are located
every β = {0,±1/2,±3/2, ...}. An example of the signals w1(t), w2(t) and w3(t) is reported in figure (8a)
for a duration of 4 seconds, with f = 4 Hz, β1 = 3/4, β2 = 5/4. We notice here that the orthogonal signals
obtained w2(t) and w3(t) are of the same nature as the generator signal, they present however an amplitude
modulation.

c) The third example proposes as generator signal the modulated exponential function: v1(t) = cos(ωt)e−atu(t),
where u(t) is the Heaviside function defined in Appendix A.6. It is a derivable, oscillating signal of period T ,
causal and of finite energy with unbounded support. The scale function is

ρ(β) =

(
2β/(β + 1)

2 + (ω/a)2

)1 +
1 + (ω/a)2

1 +
(

ω(β−1)
a(β+1)

)2

 .

An example of the signals w1(t), w2(t) and w3(t) is depicted in figure (8b) for a duration of 8 seconds, with
β2 = 4, β3 = 3/2, a = 1/3, ω = 3a, γ31 = −0.058, γ32 = −0.746 and γ21 = −0.403. The obtained orthogonal
signals present the same properties of the generator signal, i.e. derivable, causal and of finite energy with
non-bounded support, only the frequency is modified.
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(a) Sinusoidal signal (Scale Operation)
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(b) Modulated exponential signal (Scale Operation)
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Figure 8: a) Orthogonal atoms obtained scale change with β1 = 3/4 andβ2 = 5/4, γ21 = −0.409, γ31 = −0.543, γ32 = −0.830; the first
atom being defined by v1(t) = cos(2πft) for f = 4 Hz.b) Orthogonal atoms obtained with w1(t) = cos(2πt/T )e−atu(t) with β2 = 4,
β3 = 3/2, a = 1/3, ω = 3a, γ31 = −0.058, γ32 = −0.746 and γ21 = −0.403.

For this type of transformation, there are no particular restrictions, as the orthogonal signals obtained present
similar properties if compared with the generator signal. Note that for the cosine generator signal, if there were only
2 distinct solutions in the case of the time-shifting operation, for the scaling operation, there are as many solutions
as necessary. It should also be noted that the solutions obtained correspond to sinusoidal signals modulated in
amplitude, because of the beat phenomenon between the generator signal of frequency f and the orthogonal signal
of frequency βf .

2.3. Time-reversal operation
The time-reversal operation proposed here echoes the method proposed by [24] in order to orthogonalize linearly

frequency modulated signals (sweep). The time-reversal operation, which allows us to obtain the atom vk−1(t) from
an atom vk(t), is defined ∀k > 1 and K = 3 by

vk(t) = Tk[vk−1(t)] = v1((−1)kt+ τk).

The introduction of the delay τk combined with the time reversal allows to increase the calculation of the number
of atoms. Indeed for τ1 = τ2 = 0, v2(t) = v1(−t) and v3(t) = v1(t), ρ31 = 1, γ31 = −1 and ρ32 = 0, results in
w3(t) = 0. For K = 3, this yields :{

v2(t) = T1[v1(t)] = v1(−t+ τ1),
v3(t) = T2[v2(t)] = v2(t+ τ2) = v1(−t+ τ3)

(14)
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with τ3 = τ1 − τ2. Coefficients are defined by:
γ21 = −ρ21
γ31 = ν32ρ21−ρ31

1−ρ2
21

,

γ32 = −ν32−ρ21ρ31

(1−ρ2
21)

,
(15)

with ρ21 = C(τ1)/∥w1∥2, ρ31 = C(τ3)/∥w1∥2 with ρ(τ) = C(τ)/∥w1∥2 and where C(τ) = v1(τ) ∗ v1(τ) is the
auto-convolution function and with ∥w2∥2 = ∥w1∥2(1− ρ221) and ν32 = R32(τ3−τ1)

∥w1∥2 where R32(τ3 − τ1) is the cross-
correlation function between v3(t) and v2(t).

For K = 3, the orthogonal atoms write: w1(t) = v1(t),
w2(t) = v1(−t+ τ1) + γ21 v1(t),
w3(t) = v1(−t+ τ3) + γ32 v1(−t+ τ1) + γ31 v1(t).

(16)

Two examples are proposed and reported in figure (9):

• The generator signal is v1(t) = e−atu(t). It is a derivable, causal, finite energy signal with unbounded support.
The coefficients are written ρ21 = ρ(τ1), ρ31 = ρ(τ3) with ρ(τ) = 2aτe−aτu(τ), ρ32 = e−a|τ3−τ1| and a = 1.
Orthogonal signals are reported in figure (9a); Note that for τ1 ⩽ 0, we obtain the anti-causal solution for
w2(t) = eatu(−t).

• The generator signal is v1(t) = RectT (t) with T = 1 s. It is note derivable due to discontinuities at |t| = T/2
and it is a finite energy signal with compact support. The auto-convolution is C(τ) = TriT (τ) . Parameters
are τ1 = 0.2, τ2 = −0.4, γ21 = −0.702, γ31 = −0.714 and γ32 = 0.590. Orthogonal signals are reported in
figure (9b).
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(a) Exponential signals (Time reversal Operation)
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(b) Rectangular signals (Time reversal Operation)
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Figure 9: a) Orthogonal atoms obtained for w1(t) = e−atu(t) with a = 1, τ1 = 4, τ2 = 2, γ21 = −0.147, γ31 = −0.619 and γ32 = 0.533.
b) Orthogonal atoms obtained for w1(t) = RectT (t) with T = 1 s, τ1 = 0.2, τ2 = −0.4, γ21 = −0.702, γ31 = −0.714 and γ32 = 0.590.

Note that the orthogonal signals shown in the figure (9) are completely new. In practice, time-reversal signals
can be obtained using memories.

2.4. Amplitude shift operation
For the 3 previous operations, the energy nature of the signal has not been strongly modified. Here, the

amplitude shift operation which consists in adding a DC component to the generating signal will transform a finite
energy signal into a finite average power signal, the nature of the finite average power generating signals will not
be changed. If this point is not a constraint then from the atom vk−1(t), the atom vk(t) is obtained ∀k > 1 and
K = 3 by:

vk(t) = Tk−1[vk−1(t)] = αk + vk−1(t), (17)

where αk is the shift amplitude.
For K = 3, the equation (1) becomes :{

v2(t) = T1[v1(t)] = α1 + v1(t),
v3(t) = T2[v2(t)] = α1 + v2(t) = α3 + v1(t),

(18)
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with α3 = α1 + α2, α1, α2, α3 ∈ R∗. For K = 3, the orthogonal atoms being: w1(t) = v1(t),
w2(t) = α1 + v1(t) + γ21v1(t),
w3(t) = (α3 + v1(t)) + γ32(α1 + v1(t)) + γ31v1(t).

(19)

Note that orthogonal signals can be expressed simply as wk(t) = ηk + µkv1(t). The coefficients are expressed as :
γ21 = −ρ(α1)

γ31 = ν+ρ(α1+α3)−ρ(α1)ρ(α3)
(1−ρ(α1))

,

γ32 = ν+ρ(α1+α3)−ρ(α1)ρ(α3)
ρ(α1)(1−ρ(α1))

,

(20)

with ν = α1α3c
∥v1∥2 where c is a constant of integration, and with ρ(α) = 1 + α v1

∥v1∥2 , ρ21 = ρ(α1), ρ31 = ρ(α3), where
v1(t) = ⟨v1, 1⟩t.

Two examples are proposed to build an orthogonal basis from the amplitude shift operation.

a) The first proposed example has as generator signal the exponential signal: v1(t) = e−atu(t). It is a derivable,
causal and finite energy signal with non-bounded support. The coefficient ρ(α) is written: ρ(α) = 2α + 1.
The orthogonal atoms w1(t), w2(t), w3(t) obtained by amplitude shift α1 = 1/4 and α2 = 1/4 are plotted
in figure (10a) with a = 1, γ21 = −1.491, γ31 = −7.701, and γ32 = 3.835. Although the generating signal is
causal, the atoms w2(t), w3(t) are no longer causal due to the amplitude shift;

b) The second example proposed has for generator signal the absolute value function of the cosine signal: v1(t) =
| cos(2πft)|. It is not derivable over R, even, periodic signal of period T = 1/2 s of finite average power.
The coefficient ρ(α) is equal to ρ(α) = α

(
8

π−2

)
+ 1. An illustration of the orthogonal atoms w1(t), w2(t)

and w3(t) is reported in figure (10b) with f = 1Hz, α1 = 1/2, α3 = 3/4, γ21 = −1.636, γ31 = −5.379 and
γ32 = 2.093. Note that the all input-output properties are preserved.

This transformation seems more adapted to signals with finite average power since the added component αk is
itself of finite average power. However, for finite energy signals, we could replace αk by αkRectT (t) and by other
elementary signals.
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Figure 10: (a) Orthogonal atoms obtained by amplitude shift, α1 = 1/4, α2 = 1/4, the first atom being defined by w1(t) = e−atu(t),
with a = 1, γ21 = −1.491, γ31 = −7.701 and γ32 = 3.835. (b) Orthogonal atoms obtained by amplitude shift α1 = 1/2, α3 = 3/4. The
first atom being defined by w1(t) = | cos(2πft)|, with f = 1 Hz, γ21 = −1.636, γ31 = −5.379 and γ32 = 2.093.

2.5. Note: Numerical calculation
Note that in all cases, it is always possible to compute numerically the different scalar products from equation

(3). In the case of digital signals or digitized continuous signals, the calculation of the γk,j coefficients (from
equation (5)) is obtained by numerically calculating the ρk,j coefficients from the digital versions of the signals
vT
k = [vk(1), ..., vk(N)], N being the number of points composing the vector vT

k . For example for the calculation
of ρ2,1 we get: ρ2,1 =

vT
1 v2

vT
1 v1

where vT
1 = [v1(1), ...., v1(N)] and vT

2 = [v2(1), ..., v2(N)] are the numerical versions of
signals v1(t) and v2(t).

For example by applying a transformation operator from the composition of operations Tk[vk−1] = αk +
βkv1((−1)kβkt+ τk) and applied to the generating signal v1(t) = t2e−at cos(2πft2) representing a linear frequency
modulation (see Matlab code in Appendix A.5). In this case, the too complex analytical form is not accessible
whereas its numerical calculation is possible and leads to the results reported in figure (11) with K = 3.
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Frequency modulation signals (Miscellaneous Operations)
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Figure 11: Orthogonal atoms obtained numerically from the transformation Tk[v1] = αk + βkv1((−1)kβkt+ τk) and for the generator
signal v1(t) = t2e−at cos(2πft2) with K = 3. The sampling frequency is of Fs = 1000 Hz.

3. Discussions and Conclusion

In this paper, a new OSG structure composed of two parts was proposed. A SIMO sub-part exploits trans-
formations T [•] and a MIMO sub-part uses the Gram-Schmidt procedure (a kind of transformation G[•]). The
method provides a formal framework that provides directly usable analytical solutions through the calculation of
coefficients (ρk,j , γk,j) and the setting of parameters (τk, βk, αk) depending of the transformation used. The
proposed method can be used both from analytical and digital framework. Moreover, the obtained orthogonal
signals are novel for most of them and their properties are very similar to the only available signal x(t). This could
be an important advantage for practical applications. Furthermore, these solutions could probably not have been
obtained from traditional methods. To show the applicability of the presented approach, two families of signals
have been studied: finite energy signals and finite average power signals.

Based on existing orthogonal decompositions from purely mathematical approaches, four elementary signal
processing operations have been proposed: time shifts, scaling, time reversal and amplitude shifts. We then built
a base of orthogonal atoms by proposing a generator signal at the k iteration of the process which follows the
same model: vk(t) = Tk[vk−1]. In this case the transformation is identical throughout the process. However, other
transformations different at each iteration can also be used, such as v2(t) = T2[v1] = v1(t+τ1) and v3(t) = T3[v2] =
v2(β2t) = v1(β2t+ τ1). Although only linear transformations have been used, this work can be extended to the use
of non-linear transformations, such as v2(t) = T2[v1] = v

1/2
1 (t) and v3(t) = T3[v2] = v2(β2t) = v

1/3
1 (t). In this case,

the difficulty lies in the analytical calculation of the coefficients γkj and ρkj .
Another interesting point in the presented approach is that the different elements resulting from the αk, βk

and τk transformations can be calculated randomly from a list of pre-established values or not. For example, in
a communication protocol, the time shift τk could be carrier frequencies archived in the configuration system and
made secret to the users. This may enhance security and privacy.

Finally, the strength of the proposed method lies in its simplicity, its efficiency and it offers an analytical
framework that can be easily replaced by a numerical one.

The main drawback of the presented method is that for some transformations and generator signals, the ana-
lytical formulation becomes of difficult application. In these particular cases, a numerical implementation may be
considered.

Finally, the real time aspect was not taken into account in this work, it could constitute a new track to explore.
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Appendix A. Appendix

Appendix A.1. Gram-Schmidt (GS) procedure
The Gram-Schmidt (GS) procedure [9, 26, 29, 20] is used to make orthogonal an input dictionary VT =

[v1(t), v2(t), ..., vK(t)] composed of K signals, the output dictionary WT = [w1(t), w2(t), ..., wK(t)] being com-
posed of K mutually orthogonal signals. The orthogonal signals wk(t) are obtained iteratively using the following
relationship for k ranging from 1 to K:

wk(t) = vk(t)−
k−1∑
j=1

ρkjwj(t)

with the coefficient

ρkj =
⟨vk, wj⟩t
⟨wj , wj⟩t

,

and < •, • >t defining the scalar product in the time domain ranging from t1 to t2. Note however that our approach
is not limited to signals, the method can also be applied to spectra [12] and in this case, the scalar product will
relate to the variable f over an integration space ranging from f1 to f2. As an illustration, a signal approximation
example using the GS procedure is reported in (Appendix A.2).

Appendix A.2. Signal approximation
As an illustration, let’s consider the signal approximation issue for which the signal to be approximated is

x(t) = RectT (t − T/2). The signal x(t) is a non-oscillating signal of finite energy, of compact support with 2
discontinuities at t = 0 and t = T = 1 s. This signal can be decomposed into a dictionary whose generative signal is
vk(t) = exp(−kt)u(t), u(t) being the Heaviside signal (see figure (A.12)). In this case, the different scalar products
are calculated from t = 0 to +∞. With K = 3 and after calculation, the approximated signal is a linear combination
x̂(t) ≈ −1.31v1(t) + 9.58v2(t) − 7.64v3(t) and the mean square error is MSE = 0.029. From the input dictionary
VT = [v1(t), v2(t), v3(t)], we construct a dictionary of mutually orthogonal signals WT = [w1(t), w2(t), w3(t)]. For
K = 3, the approximated signal x̂(t) is a linear combination: x̂(t) ≈ 1.27w1(t) + 0.36w2(t) − 7.64w3(t) and the
mean square error is MSE = 0.029. In this case, w1 = v1(t), w2 = v2(t) − 2

3v1(t), w3 = v3(t) − 6
5v2(t) +

3
10v1(t),

v1(t) = exp(−t)u(t), v2(t) = exp(−2t)u(t) and v3(t) = exp(−3t)u(t). Whatever the approximation (via vk(t) or
wk(t) ), the mean square error from the original signal is significant (MSE = 0.029). This deviation could be
reduced by increasing the number K of signals used or by changing the base with a more adapted generative signal.

Appendix A.3. Derivative based method
Let’s show ⟨ve, v̇e⟩ = 0. If the real signal v(t) = ve(t) is even (or odd v(t) = vo(t)), then the derivative of the

signal y(t) = v̇e(t) is orthogonal: ⟨ve, v̇e⟩ = 0. To prove it, one could just show that y(t) is odd, i.e. −y(t) = y(−t):

y(t) = v̇e(t) = lim
h→0

ve(t+ h)− ve(t)

h
, (A.1)

y(−t) = lim
h→0

ve(−t+ h)− ve(−t)
h

.
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(a) Signal to be approximated x(t) = RectT (t− T/2)
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(b) Exponential dictionary
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Figure A.12: a) Rectangular signal x(t) to be approximated and its approximation x̂(t) (in dashed line). b) Exponential dictionary
with v1(t), v2(t), v3(t) and its orthogonal basis w1(t) = v1(t), w2(t), w3(t) (dashed line).

As v(t) is even, we verify that ve(t) = ve(−t) and ve(t− h) = ve(−t+ h). Hence

y(−t) = lim
h→0

ve(t− h)− ve(t)

h
,

and if we impose τ = t− h, this yields:

lim
h→0

ve(τ)− ve(τ + h)

h
= lim

h→0
−ve(τ + h)− ve(τ)

h
= −y(τ).

By replacing t→ τ , it comes

y(t) = lim
h→0

−ve(t+ h)− ve(t)

h
= −y(t). (A.2)

Consequently, as y(t) = v̇e(t) is odd and ve(t) is even, then ⟨ve, v̇e⟩ = 0. QED (quod erat demonstrandum).

Appendix A.4. Hilbert Transform
a) Let’s show HT [HT [v1(t)]] = HT [ṽ1(t)] = −v1(t) where HT [•] refers to the Hilbert Transform. Let’s consider

v1(t) and ṽ1(t) := HT [v1(t)]. By definition, the spectrum of v1(t) is: FT [ṽ1(t)] = Ṽ1(f) (FT [•] refers to the
Fourier Transform) and the spectrum of ṽ1(t) is:

Ṽ1(f) := (−j) · sgn(f)V1(f).

By multiplying the right and left term by (−j)sgn(f), it comes:

(−j) sgn(f)× Ṽ1(f) = (−j) sgn(f)(−j) sgn(f)V1(f) = −V1(f).

With sgn2(f) = 1, it comes:
FT−1[(−j) sgn(f)Ṽ1(f)] = FT−1[−V1(f)]

HT [ṽ1(t)] = −v1(t).

QED.

b) Let’s show v1(t) ⊥ ṽ1(t), i.e.< v1, ṽ1 >t= 0. Let’s consider v1(t) is real. By virtue of the product theorem, it
comes:

< v1, ṽ1 >t=< V1, Ṽ1 >f

< V1, Ṽ1 >f=

∫
V1(f)× Ṽ1(f)df =

∫
V1(f)× (−j) sgn(f)V1(f)df

< V1, Ṽ1 >f= (−j)
∫
V 2
1 (f)sgn(f)df.

As v1(t) is real then V1(f) is even. As sgn(f) is odd then V1(f)× sgn(f) is odd too and
∫
V 2
1 (f)sgn(f)df = 0

that implies < V1, Ṽ1 >f= 0 < v1, ṽ1 >t, QED.
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Appendix A.5. Matlab code of example from figure (11)

c l e a r ; c l c ; c l o s e a l l ;N=10000;
Duration=14; t=(−Duration /2 : Duration /(N−1) : Duration /2) ;
f =0.5 ; a=1.6 ;
beta1 =0.54; beta2 =0.71; beta3=beta1 ∗beta2 ;
tau1 =3.1 ; tau2=−1.7;
tau3=tau1+tau2 ;
alpha1=0; alpha2=0; alpha3=alpha1+alpha2 ;
v1=t .^2 .∗ exp(−a∗ t ) .∗ cos (2∗ pi ∗ f ∗ t .^2) .∗(1/2+1/2∗ s i gn ( t ) ) ;
v2=alpha1+ beta1 ∗ (−beta1 ∗ t+tau1 ) .^2 .∗ exp(−a∗(−beta1 ∗ t+tau1 ) ) .∗ cos (2∗ pi ∗ f ∗(−beta1 ∗

t+tau1 ) .^2) .∗(1/2+1/2∗ s i gn (−beta1 ∗ t+tau1 ) ) ;
v3=alpha3+ beta3 ∗ ( beta3 ∗ t+tau3 ) .^2 .∗ exp(−a ∗( beta3 ∗ t+tau3 ) ) .∗ cos (2∗ pi ∗ f ∗( beta3 ∗

t+tau3 ) .^2) .∗(1/2+1/2∗ s i gn ( beta3 ∗ t+tau3 ) ) ;
rho21=v1∗v2 ’ / ( v1∗v1 ’ ) ;
rho31=v1∗v3 ’ / ( v1∗v1 ’ ) ;
nu32=v2∗v3 ’ / ( v1∗v1 ’ ) ;
rho32=(nu32∗ rho21−rho31 ) /(1− rho21 ^2) ;
gamma21=−rho21 ;
gamma31= rho32∗ rho21−rho31 ;
gamma32=−rho32 ;
w1=1∗v1 +0∗v2 +0 ∗v3 ;
w2=gamma21∗v1 + 1∗ v2 +0∗v3 ;
w3=gamma31∗v1 + gamma32∗v2 + 1∗v3 ;
f i g u r e (1 ) ; p l o t ( t , v1 , t , v2 , t , v3 ) ; f i g u r e (2 ) ; p l o t ( t ,w1 , ’ k ’ , t , w2 , ’ r ’ , t , w3 , ’ g ’ ) ;

Appendix A.6. Some definitions

• RectT (t) =


0 if |t| > T/2

1/2 if |t| = T/2

1 if |t| < T/2.

;

• TriT (t) =

{
1− |t/T | for |t| ≤ T

0 otherwise

• sgn(t) =


−1 if t < 0

0 if t = 0

1 if t > 1.

• IIIT (t) =
∑+∞

k=−∞ δ(t− kT );

• δ(t) =

{
1 if t = 0

0 if t ̸= 0.

• u(t) =


0 if t < 0

1/2 if t = 0

1 if t > 0.

• sinc(t) = sin(πt)
(πt) where sinc(n) = 0 ∀n ∈ Z∗;

• x(t) ∗ y(t) =
∫
x(τ)y(τ − t)dτ ;

• Scalar product of a signal of finite energy: ⟨x, y⟩t =
∫ t2
t1
x(t)y(t)dt;

• Scalar product of a periodic signal of period T : ⟨x, y⟩t =
1
T

∫ t1+T

t1
x(t)y(t)dt.

• HT [x(t)] = 1
π

∫ +∞
−∞

x(τ)
(t−τ)dτ ;

• FT [x(t)] =
∫ +∞
−∞ x(t)e−2πjftdt;

• Weighted Hermite polynomials: (−1)n dne−t2

dtn
;

• orthogonal Haar decomposition: ψm,k(t) = ψ(2m/2t+k) with ψ(t) = 1∀0 ⩽ t ⩽ 1/2, ψ(t) = −1∀1/2 ⩽ t < 1
and ψ(t) = 0 otherwise;

• Rademacher orthogonal decomposition: ψk(t) = sgn
(
sin(2kπt/T )

)
.
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Appendix A.7. Table 1
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ẋ
1
9
(t
)
=
ẋ
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Table A.1: First group (G1): finite energy signals with compact support. Second group (G2): even signals of finite energy. Third
group (G3): causal signals of finite energy. Fourth group (G4): signals at finite average power (periodic). For all groups, solutions with
singularities: 1-2,8-9, 17-19.
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