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1. Introduction 

Today, many countries using nuclear energy are faced to the problem of managing 30 

the waste and according to different studies like NAGRA 1983 (National Cooperative 

for the Disposal of Radioactive Waste) or Yucca Mountain Project 1984 (Alexander 

and McKinley 2011, CoRWM 2018; Department of Business, Energy & Industrial 

Strategy 2018), the best alternative seems to be deep geological disposal. In France, 

the deep geological industrial storage center Cigéo project, when approved, will be a 35 

nuclear installation for radioactive waste. This project aims at storing in tunnels 

located at 490m deep in a clay layer, high activity (HA) and average long life activity 

(MAVL) radioactive waste. The project constraints are mainly the reversibility and 

the progressive storage of waste packages, over 100 years. For this reasons, it is 

necessary to monitor the structural strains by performing instrumentation and 40 

optimizing the location of the sensors in order to measure the convergence of cells in 

which the radioactive waste will be stored. Due to their robustness and the feedback 

of more than 80 years (Rosin-Corre and al. 2012), the Vibrating Wire Extensometer 

(VWE) have been preferred over the other sensors for monitoring the storage cells.  

All structure degrade over time and preoccupations about their conditions have 45 

prompted numerous studies on damage detection. This falls within this framework of 

structural health monitoring (SHM). Usually, the damage identification methods are 

classified on four levels (Rytter 1993) according to their finesse of analysis: 

- Methods detecting the presence of damage in the structure. These methods are 

based on either the direct measurement of a parameter, using sensors such as strain 50 

or stress gauges, vibrating wire (Kudva and al. 1992; Dinis da Gama 2004; Guan 

and Karbhari 2008; Zhou and Wu 2017) or non-invasive methods such as scans, 

electrical or ultrasonic measurements (Sbartaï and al. 2012; Ravi and al. 2016). 

Another possibility consists in studying the behaviour of structures under 

controlled stress (Lifshitz and Rotem 1969; Spillman and al. 1993; Doebling and 55 

al. 1996; Guratzsch and Mahadevan 2006; Guratzsch 2007; Guan and Karbhari 

2008; Abdo 2012; Goi and Kim 2017). In most cases, damage detection is carried 

out using regularly distributed sensors. The detection is done at an instant t and the 



structures are never inspected as a whole. Uncertainties are rarely considered in 

these works. 60 

- The next two levels of damage detection are often treated together. These are the 

methods for locating and quantifying the severity of the damage. In the 1990s, 

using neural networks has grown to estimate the extent and the location of 

damages in structures (Bishop 1994; Spillman et al. 1993; Rhim and Lee 1995; 

Seleemah and al. 2012). Using sensor measurements, this method can predict the 65 

location of the damaged area without error (Kudva and al. 1992; Guratzsch and 

Mahadevan 2006; Guratzsch 2007), but it is not very robust to allow the 

determination of the size of defects. Moreover, the works carried out on damage 

detection are essentially based on a regular sensor distribution within the structure. 

- Method for forecasting the residual life of the structure. Its objective is to estimate 70 

the operating time before the appearance of the damage or the residual life as well 

as the risk of existence or subsequent appearance of one or more damage (Ihn 

2006). Although this information is what scientists are looking for, very few 

applications are available. 

Cigeo project being based on the storage reversibility of radioactive waste, the aim 75 

of this project is to verify that cells strains do not exceed the clearance handling of the 

packages. These strains are mainly due to the soil stresses imposed on the cells. The 

objective of optimizing sensor locations making it possible to measure these strains 

can be akin to locating the most significant damage within a cell cross-section. So, 

this study focuses on the second and the third level of the damage identification 80 

methods with the objective of optimizing the location of strain sensors. 

 

The objective being to find the stress at the origin of a strain, it is an inverse 

problem. A problem is said to be inverse when it allows the causes to be determined 

from the effects. To distinguish these solutions from each other, it is essential to have 85 

additional information. Solving an inverse problem consists in reformulating, in the 

form of the minimization of an error function between the real measures and the 

measures of the direct problem. Among various method for solving an inverse 

problem, there is in particular the Bayesian inference which takes into account 

uncertainties and errors due to the measurement system. Several researchers have 90 



used Bayesian approach for monitoring the structural health. The data measured from 

the structure allows identifying the stiffness parameters of the structure (Vanik and al. 

2000) or to estimate the location (Yan and al. 2016), the size, the direction and the 

depth of damages (Zhang and Yang 2012). 
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Among the two main optimization methods (continuous and combinational 

methods), given the finite number of solutions for the considered problem, 

optimization is combinational. But, in our case, one of the major problem with 

methods for optimizing the sensor locations in structures is that the number of 

potential locations will cause a combinatorial explosion, i.e. it exponentially increases 100 

with the number of variables (Dreyfus and al. 2002). Under these conditions, 

researchers use heuristics, which provide reliable solutions whose optimal character 

can be guaranteed, within a reasonable calculation time.  

The metaheuristics (Ausiello and al. 1995; Hao and al. 1999) which can be seen as 

an extension of the concept of heuristics are generic methods allowing the 105 

performance of heuristics to be improved by overcoming their main weaknesses, in 

particular through mechanisms allowing them to extract themselves from local 

optimums (Segretier 2013). The metaheuristics are actually very common and 

efficient for optimising the number and locations of the sensors as it has been shown 

in different works (Moslem and Nafaspour 2002; Greistorfer 2003; Perry and al. 110 

2006; Guratzsch 2007; Preis and Ostfeld 2008; Koh and Perry 2010; Aval and Razak 

2012; Domingo-Perez and al. 2016; Zhou and Wu 2017; Wrigley and al. 2019).  

Among the different metaheuristics algorithms (Simulated annealing algorithm 

(SA) (Černỳ 1985), Tabu search algorithm (TS) (Glover 1986), Ant Colony 

Optimization algorithm (ACO) (Dorigo and Di Caro 1999), Genetic Algorithm (GA) 115 

(Goldberg and Holland 1988), Particle Swarm Optimization (PSO) (Kennedy and 

Eberhart 1995)), the choice has to be done on the basis of different criteria: ease to 

implement, flexibility, the parameters number and their difficulty to adjust, 

computation time. 

Some researchers (Aval and Razak 2012) indicated that GA and PSO were the two 120 

most used techniques to solve an optimization problem. Others researchers 

(Hammouche and al. 2010; Khoshahval and al. 2011) compared different algorithms 



with each other and showed that GA and PSO converge faster, are more robust and 

more precise than the other algorithms. Finally, the GA converge in less generations 

but have a longer execution time than PSO. The number of parameters to be adjusted 125 

being lower in GA, this gives less uncertainties about the method. 

If several works showed the efficiency of these algorithms, most of them do not 

consider uncertainties (Perry and al. 2006; Koh and Perry 2010) and work only on 

data from numerical simulations. Moreover, the influence of the number of sensors is 

rarely evaluated. 130 

This paper presents a method for optimizing the VWE sensor locations and 

number within a storage cell cross-section based an inverse Bayesian model and a GA 

algorithm and taking into account various uncertainties (soil Young’s modulus, sensor 

intrinsic error and sensor location error). In a first part, the proposed optimization 

method is presented. Then the model and the choice of the input parameters are 135 

discussed. The third part deals with the results of inverse model and the influence of 

the sensors number and location and finally the results of the optimization of the 

number and locations of the sensor are presented. 

2. Proposed optimization method 

The methodology for observing and monitoring storage cells must address both the 140 

knowledge necessary for the storage exploitation, and the reversiblility management. 

They also contribute to safety analyses in operation and after closure. For risk 

management related to cell strain, this research work must define the optimal 

instrumentation. The optimization steps are (Fig. 1): 

- From the characteristics of the surrounding soil noted on the site and 145 

uncertainties considered, a finite element model representing a cell cross-

section was developed in order to create a database of strains. 

- From the VWE strains observations noted on the site and from previously 

created database, an inverse Bayesian model will estimate the horizontal stress 

at the origin of the observed strains.  150 



- For different number and/or placement of VWE on a cell cross-section, a 

fitness function will allow the results of the inverse model to be compared with 

each other. A GA will create new combinations of VWE placement for a given 

number of sensors and using the fitness function will ultimately give the 

optimal solution to estimate the horizontal stress. 155 

 

Fig. 1. Global methodology to answer the problem of optimizing the number and 
location of sensors in a tunnel. 

2.1 Modelling tunnel cross-section 

The tunnel cross-section has a thickness of 0.30 m. The outer diameter is of 5 m 160 

and the surrounding soil is an anisotropic clay layer. When digging the tunnel, the soil 

is damaged to a certain depth (about 3 m) and then anchor bolts compensate the 

resistance lost in this area. For modelling simplification, the combination of damaged 

soil and anchor bolts is considered equivalent to healthy soil. In the concrete thickness 

of the tunnels, VWE sensors are placed in cages. In each cage, there are two sensors: 165 

one orthoradial intrados and one orthoradial extrados. 

A finite element model FEM representing a tunnel cross-section has been 

developed using the finite element code Cast3M (Cast3M 2003). This model is 

developed to calculate the strain in the tunnel at the possible sensor locations. The 



tunnel cross-section is modelled by quadratic elements with linear elastic behaviour. 170 

The surrounding soil is represented by Winkler springs as shown in Fig. 2, and has a 

random rigidity principally due to the variability of the Young’s modulus. Horizontal 

and vertical stresses are applied on the tunnel. So these initial conditions are the 

random rigidity of springs and the stress value. All the VWE locations allow us to 

build a database whatever the stress applied to the tunnel. 175 

 

Fig. 2. Finite element model of the tunnel cross-section. Each mesh is 3 cm * 5.5 cm.  

 

In Fig. 2, the VWE are symbolized by lines and their names are noted P”0”e” with 

“0” the angle β of the sensor location with respect to the horizontal and “e” or “i” for 180 

respectively the extrados or intrados location. The surrounding soil is modelled using 

280 springs with stiffness k. The stress is converted into punctual equivalent point 

stress p before being modelled. 

2.2 Parameters 

For the structure, the concrete parameters are the Young’s modulus Ec of 39.1 GPa 185 

and the Poisson’s ratio νc of 0.25. These values come from the underground 

laboratory (set of tunnels already built in order to test construction techniques and 

reliability of monitoring tools). 



The surrounding soil is represented by springs, with variable stiffness k depending 

on the clay Young’s modulus Esoil and Poisson’s ratio νsoil. Respectively, modulus Esoil 190 

is arbitrarily supposed between 3 GPa and 9 GPa and νsoil is equal to 0.29. These 

values are drawn from soil studies in the clay layer of the project (Andra 2005 and 

internal Andra reports).  

The rigidity of the springs is defined according to Winkler model (Jacob 2006):  

�� =  �����
	
(�
�����

� )     (1) 195 

With Rm the medium radius of the springs. The calculation of the spring rigidity ks is 

multiplied by the length of the extrados contour taken up by each spring. In Fig. 3, 

kmoy corresponds to ks with Esoil the Young’s modulus mean, i.e. 6 GPa. 

Considering eight normal centred laws Δ1 to Δ8. Each one corresponds to the 

variation of the Young’s modulus mean, Esoil, of 6 GPa with extreme values at 200 

± 3 GPa. These eight laws allow us calculate eight rigidity soil distributions ki (Eq. 1) 

and can thus be applied to eight springs of the numerical model (Fig. 3). If a spring is 

placed at each node of the outer contour of the modelled cell, the eight calculated 

stiffness distributions are associated with eight springs placed every 45° (starting from 

0°). The choice of a new law every 45° is made to allow a significant variability on a 205 

section and to prevent the symmetry in the measure of strains. Between two springs 

separated by 45°, the evolution of the rigidity ki is linear and its calculation, for each 

intermediate spring, corresponds to an interpolation between two values at 45°. The 

linear simplification comes from the fact that soil variability is modelled by a random 

field whose values are self-correlated. The vertical symmetry of the problem cannot 210 

be used to improve the efficiency of the optimization algorithm because the stiffness k 

of each springs of the FEM can be different. So neither symmetry is possible. 



 

Fig. 3.  Linear evolution of the rigidity between two normal laws (Δ1 to Δ8). 
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The surrounding soil of the tunnels, is anisotropic with a constant vertical stress 

equal to 12.7 MPa. The horizontal stress is constant on one section but vary from one 

section to another between 12 and 18 MPa. For the generation of the strain database, 

intrados and extrados strains are recorded at each degree of the cross-section for seven 

loading cases σh between 12 MPa and 18 MPa. The output of the analysis is the 220 

distribution of strain for each possible position of the sensors. Input and output 

parameters of the numerical model are synthetized in Table 1. 

Table 1  

Input and output parameters of the numerical model. 

Input parameters 
Output parameters 

Structure Surrounding soil 

Diameter 5 m σh 12 MPa to 18 MPa Intrados strain at 

each degree (β) 
εint 

Thickness 0.3 m σv 12.7 MPa 

Ec 39.1 GPa Esoil 3 GPa to 9 GPa Extrados strain at 

each degree (β) 
εext 

νc 0.25 νsoil 0.29 

 225 



In the real tunnel, the VWE orientation may vary due to the implementation phase 

and concrete casting. This uncertainty on the angle θ of the VWE position compared 

to its theoretical orthoradial position is taken into account. This uncertainty is 

considered by a normal distribution with ± 20° of sensor orientation error 

corresponding to ± 3 standard deviations (Fig. 4). These errors are considered as the 230 

lower and upper bounds of the confidence interval defined by six standard deviations; 

i.e. probability of 3*10-3 to have greater errors than these bounds. In addition, the 

sensor intrinsic error of 1.75 % (Mei 2016) due to its resonance is also taken into 

account. 

 235 
Fig. 4. Uncertainty about the orthoradial theoretical position of the VWE.  

 
At one VWE location (Fig. 4 - red frame), the theoretical VWE position is centred 

in O. Δε is the length variation of the wire at the theoretical position and ε + Δε is the 

length variation of the wire with the uncertainty θ. 240 

2.3 Database 

As presented in Table 2, the model allows generating a strain database for each 

VWE position for a variation of stress between 12 MPa and 18 MPa. From a case of 

constant loading σh target and normal distribution of stiffness ki, the FEM results give 

normal laws of local strain at the VWE position. The sensor P0e at 0° extrados (Fig. 245 

2) provides the results presented in Fig. 5. 



Table 2 

Contents of the strain database ε for each degree β, each intrados i and extrados e 

location and each horizontal stress σh (Fig. 2). 

σh target [MPa] 12 13 14 15 16 17 18 

β [°] 0 0 1 1 … 359 359 0 … 359 … … … … 0 … 359 

Intrados (i) 

Extrados (e) 
e i e i … e i e … i …  …  e … i 

Values stem 

from normal 

strain laws 

ε 

ε1 …    ε1    …        

…     …            

ε500     ε500            
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Fig. 5. Normal laws of strain for extrados VWE εext at 0° for each 
horizontal stresses σh target between 12 MPa to 18 MPa. 

3. Horizontal stress at the origin of measured strains 

In Cigéo project, the strains measured at VWE location are the only known 

measurements. The model provides all these strains at all VWE locations for all 255 

stresses levels. In the reality, one sensor gives one strain observation εobserved and the 

objective is to deduce the horizontal stress σh producing this strain. As showed in Fig. 

5, the same strain can be the consequence of several horizontal stresses, this is the 



reason why an inverse model was developed to deduce the most probable horizontal 

stress σh. 260 

3.1 Inverse model 

For a strain measured by a VWE at a given location, Bayesian approach can be 

used to find in the database the probability of occurrence of each horizontal stress. 

The inverse model uses the following Bayes formula (Bayes 1763): 

����������� =  �����������×�(!"�)
∑ ���������$�×�(!"$)%

$&'
        (2)  265 

with εobs the strain measured by a VWE and ���  the soil pressure (σh = {12, 13, 14, 15, 

16, 17, 18}). 

In addition to the intrinsic VWE error, the excitation amplitude of the wire has an 

effect on the measured resonant frequency. To account for the uncertainties related to 

this sensor accuracy, a confidence interval around the strain observed value εobs is 270 

created with [εobs (1 - 0.1 %); εobs (1 + 0.1 %)]. For each strain realization in the 

database, for each stress σi, the conditional probability �(����|���) counts the number 

of occurrences in the considered interval. The occurrence probability of each �(���) is 

considered as uniform (i.e. non informative law) that is to say �(���)  =  1/7.  

For a given cross-section, several VWE may be placed. Consequently, several 275 

strain observations are considered for a given stress. In this case, Eq. 1 becomes: 

,�-.��/�0� � , /�0� � , … , /�0� 3� =  ,�/�0� � , /�0� � , … , /�0� 3�-.�� ∗ ,(-.�)
∑ ,�/�0� � , /�0� � , … , /�0� 3�-.5� ∗ ,(-.5)6

5&�
 (3) 

 

(Park and al. 2015) have studied the calculation error made when ignoring the 

correlation between the components of a system and showed in the case of the trellis 280 

design even the strongly correlated components have a minimal error in the 

optimization procedure. The article by (Baji and al. 2017) goes in the same direction 

with a negligible impact on the optimal maintenance strategy of a tunnel by ignoring 

the correlation between the components of a system. By considering the independence 



of the input values, the calculation of the system is simplified, hence the use of this 285 

model. As strain observations can be considered independant, and it is possible to 

write: 

������ ' , … , ���� 7����� = ������ '����� ∗ … ∗ �(���� 7|���)           (4) 
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in the following, ���������� ' , ���� 8 , … , ���� 7� is denoted P%. 

3.2 Results  

In a first phase, the inverse model gives results only for one strain observed by one 

VWE. For the VWE P0e at 0° extrados, (Fig. 2), the inverse model results are 

presented in Fig. 6: 295 

 

Fig. 6. Inverse model results for P0e strain observation (0° VWE extrados, Fig. 2). 

This graph displays the evolution probability results of Eq. 2 (vertical axis) for 

different strain observations (horizontal axis) and each curve corresponds to one 

stress. 300 



For an observation εobs = 1.2*10-3, the inverse model gives a probability (P%) of 

90 % to have a stress σh = 12 MPa, P% = 9 % for σh = 13 MPa and P% = 1 % for 

σh = 14 MPa. For the other stresses (15, 16, 17 and 18 MPa), P% = 0 %. Here, the 

inverse model is discriminant and allows us to find the most probable stress 

(σh = 12 MPa).  305 

With a strain εobs = 1.5*10-3, the highest probability of the inverse model gives 

P% = 27 % for a stress σh = 15 MPa; the other probabilities are: P% = 21 % for 

σh = 16 MPa and 14 MPa, P% = 12 % for σh = 17 MPa, P% = 11 % to have 

σh = 13 MPa, P% = 6 % for σh = 18 MPa and P% = 2 % to have σh = 12 MPa. In this 

second case, the inverse model is not discriminant.  310 

Between 1.4*10-3 and 1.6*10-3, greatest probabilities are around 30 %, which leads 

to overlapping curves of different stresses. The inverse model is not discriminant for 

only one strain observation and it is impossible to choose one unique horizontal stress 

for a cross-section in these cases. 

In a second phase, the inverse model used several sensors (Fig. 7) for different 315 

positions (Fig. 8) when all strain observations are equal to 1.55*10-3. 

 

Fig. 7. Influence of the VWE numbers on the inverse model results. 

 



Fig. 7 represents the probability results of Eq. 3 (vertical axis) versus each 320 

horizontal stress between 12 MPa to 18 MPa (horizontal axis). Each curve allows 

seeing the influence of the VWE numbers and the strain observations on the 

determination of the horizontal stress.  

For just one sensor with a strain of 1.55*10-3, the sensor positioned at 0° extrados 

(point P0e on Fig. 2) gives a maximum pressure of 26 % at 15 MPa and the point 325 

P90e (arch extrados) gives a maximum probability of 23 % for 18 MPa. So the sensor 

location have an influence on the inverse model result. By combining information of 

two sensors at 0° and 90°, the best result is 27 % for 16 MPa. While the sensor at 0° 

alone already gave a probability P% = 26 % for 15 MPa adding one sensor gives little 

more information. If there is three sensors at 0°, 90° and 180°, the best P% is equal to 330 

34 % for 16 MPa. Here, combining one more VWE extrados gives the best result of 

the inverse model. Finally adding one other sensor does not improve the previous 

solution.  

Despite a relatively low probability, Fig. 7 shows that increasing the number of 

sensors provides better results. VWE positioned at kidneys (P0e and P180e) seem to 335 

give more information than sensors localized at arch and cross vault. 

Adding sensors gives additional strain information, which logically improves the 

result of the likelihood function and thus improves the result of the inverse model. 

The vertical stress is constant and equal to 12.7 MPa, VWE placed near the vault and 

the cross vault will be influenced by this single value. For the horizontal stress, sensor 340 

locations near the kidneys will be more sensitive to this stress variations. In front of 

the most important information on the kidneys of the cell, the sensor combination at 

these locations increases the quality results more quickly than sensor locations in 

vault or cross vault. 

 345 



 

Fig. 8. Influence of two VWE positions on inverse model results. 

 

Fig. 8 shows the variation of inverse model results according to the position of two 

sensors. As in the Fig. 7, the horizontal axis represents the horizontal stress and the 350 

vertical axis is the probability computed from Eq. 3. The duo arch (P90e) and cross 

vault sensors (P270e) provide the best probability of 31 % for 18 MPa. This result is 

different to the other combinations. The couple 0°/270° gives P% = 27 % for 16 MPa 

and the best result is for the two kidneys with a probability of 34 % to find a stress of 

15 MPa.  355 

This graph confirms the previous analysis that kidney sensors provide more 

information than arch and cross vault sensors. 

4. Optimization for VWE numbers and locations 

The purpose of the optimization is to find the best VWE location for a given 

number of sensors. So it consists in minimizing a fitness function taking into account: 360 

- �� % the stress given by the inverse model as a function of :; (:; is the location 

β of the ith VWE),  

- the location of each sensor, 



- �� <;=  the stress computed from the numerical model that the inverse model 

should be able to find.  365 

A genetic algorithm uses the fitness function to classify and select the best 

individual of a population.  

4.1 Fitness function 

Coupled with the inverse model, the fitness function helps us to solve the problem 

of optimizing the number and position of VWE. In order to select the “best” 370 

individual, the fitness function is: 

> = (� − @) ∑ ,�(-. %
-. A�B)�6
�

-. A�B² + @ 
 ∑ ,�∗EF (,�)6
�

�3(,-)                        (5) 

The first term of the fitness function will therefore be able to compare the results of 

the inverse model �� % with the stress �� <;=  of the DB from which the strains given as 

input parameters to the inverse model come. 375 

The second term integrates the measurement of the dispersion of the results of the 

inverse model by considering all the horizontal stresses between 12 MPa and 18 MPa. 

Among the tools allowing to estimate the dispersion of a distribution, one finds in 

particular the Shannon entropy dispersion. Shannon’s entropy (Shannon 2001) 

computes the disorder of a system. It is maximum when all the possibilities are a 380 

priori equiprobable. It is calculated using an information function inversely 

proportional to the occurrence probability of an observation. Entropy is used to 

evaluate the degree of certainty that one can have in data. This certainty is 

proportional to the dispersion of its belief mass on the judgment framework: i.e. data 

centred on a value will present more certainties than data interval including this value 385 

(representing more uncertainty in the evaluation). 

In the second term denominator, �! =  1 7G  with “7” the discrete variable number 

σh, between 12 MPa and 18 MPa in a step of 1 MPa. 

The coefficient α allows us to weight one or other of the two parts of the function. 

Pi is the probability of occurrence of each stress. 390 



4.2 Genetic Algorithm 

Genetic Algorithms (GA) are applied to sensor location optimization, according to 

the steps in Fig. 9. The algorithm explanation is presented with an example of five 

individuals with four couples of VWE intrados and extrados. Each individual is a 

tunnel cross-section with four couples of sensors.  395 



 

Fig. 9. Explanation of the different steps of GA allowing to obtain the best VWE 
locations in a cell cross-section from an initial population, for a given number of 

VWE. 



In order to obtain the best individual (the one with the lowest result of the fitness 400 

function), the GA is a method to create new individuals from the best individuals of 

each generation. 

The first step is to evaluate and rank individuals of this population according to 

their quality (results of inverse model and fitness function). This ranking appears in 

Fig. 9 by red number in quotation marks. Thus, P3 individual is the best in the current 405 

population, ahead of P4 individual which itself is of better quality than P2 individual. 

Some of these individuals are selected to crossing-over and mutate to create new 

individuals and evolve the population. The number of selected individuals is unknown 

because it depends of individual numbers which are lower quality than a random 

value issue by a uniform law. The selection of certain individuals from the current 410 

population is done by the “roulette” method. The selected individuals see their angles 

converted into binary angles and all of them are glued to form chromosomes whose 

purpose will be to modify them.  

 

The interest of creating new individuals from known individuals with this GA 415 

method is to keep the best solution while exploring the field of research to find 

individuals which can potentially be even better. 

Several tests were carried out on the GA input parameters in order to make the 

optimal choice for the calculation. These input parameters are: 

- The population size is the number of tunnel cross-sections with different VWE 420 

locations compared over a generation. 

- The generation number corresponds to the number of fitness function tests on 

the entire population. 

- The crossover probability is the percentage of individual selected in the 

population to create new individuals. 425 

- The mutation probability is the percentage of individual selected in the 

population to create new individuals. 

 

The next table presents the influence on the fitness function results for different 

input parameters. 430 



Table 3  

Different input parameters of GA for four couples of sensors intrados/extrados. Pc is 

the crossover probability and Pm is the mutation probability. 
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V
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E
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1 50 30 6 0.8 0.3 0 102 171 280 1.46 

2 50 30 5 0.8 0.3 4 95 171 280 1.49 

3 100 30 5 0.8 0.3 0 102 171 280 1.46 

4 100 30 6 0.8 0.3 91 171 280 354 1.26 

5 100 50 9 0.8 0.3 0 102 171 280 1.46 

6 100 20 5 0.8 0.3 4 95 171 280 1.49 

7 100 20 8 0.8 0.3 91 171 280 354 1.26 

8 100 20 13 0.9 0.3 91 171 280 354 1.26 

9 100 20 7 0.9 0.3 91 171 280 354 1.26 

10 50 20 7 0.9 0.3 91 171 280 354 1.26 

11 50 20 6 0.9 0.3 4 95 171 280 1.49 

12 100 20 7 0.6 0.3 91 171 280 354 1.26 

13 100 20 10 0.6 0.3 0 102 171 280 1.46 

 

During these tests, the mutation probability Pm is always equal to 0.3 and the stop 435 

criterion matches to the number of generation. The first seven tests have a crossover 

probability Pc of 0.8. Tests 1 and 2 count the same generation numbers (50) and the 

same individual numbers per generation (30). A small population size combined with 

a low generation number provide sufficient exploration of the research space to obtain 

the convergence of f, but the result is not the minimum global of the function. With 440 

the same generation numbers (30) and double individual numbers (100), tests 3 and 4 

gives different f result, but lower result appears. So the population size has an 

influence on the fitness function. The “bigger” is the population size, the best is the 



fitness function result. On the other hand, larger is the population size, longer is the 

computation time. So it is crucial to look for an optimal population size.  445 

The next steps shows the influence of the generation number to find the good 

fitness function as already found for test 4. If a largest number of generations (50) 

does not give the best result of f, all tests converged to a single solution. With a low 

generation number (20) the fitness function does not give the best result all the time 

(tests 6 and 7). 100 individuals out of 30 generations seems the best solution when the 450 

crossover probability is equal to 0.8.  

To see the influence of the probability (Pc), different values were tested. The 

highest probability (0.9) allows a greater mixing of the population and more often 

gives the best result of the fitness function. Finally, for this probability, 20 generations 

is enough to converge towards the optimal solution. But if the population size is not 455 

large enough (50), f does not reach a minimum at each test. 

As the calculation time is not significant, the chosen GA parameters are: 

- Population size: 100, 

- Generation numbers: 20, 

- Crossover probability: Pc = 0.9, 460 

- Mutation probability: Pm = 0.3. 

 

GA are metaheuristic method, the result of which is a good optimization solution in 

a suitable calculation time. So the result of the fitness function it is not necessarily the 

minimum global. Despite the setting parameters presented previously, several 465 

identical tests converged to different solutions. So, the adopted solution for a 

generation numbers is presented Fig. 10. The first ten tests are performed by 

randomly drawing position angle of VWE for the 100 individuals of the population. 

At the end of each test, the ten best individuals are retained to represent 1/10th of the 

initial population of the final test. 470 

 



 
Fig. 10. Construction of the initial population for the latest test. 

4.3 Results 

Results are presented for different weights of the fitness function (Eq. 5) and for 475 

different number of VWE cages and different locations of these VWE. For the 

weighting coefficient, if α = 0, only the difference to the target value �� HI=JKH , in 

comparison to the inverse model result �� %, is taken into account. When α = 1, only 

the entropy of Shannon is considered. The other α values tested are 0.25 and 0.5. 

Table 4 and Fig. 11 present the results of the fitness function for 2 to 10 intrados 480 

and extrados VWE, with different α values.  

Table 4 

Fitness function results according to the VWE couple numbers. 

α 
VWE couple numbers 

2 3 4 5 6 7 8 9 10 

0 0.009 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

0.25 0.481 0.221 0.087 0.044 0.019 0.009 0.004 0.002 0.001 

0.5 0.948 0.477 0.209 0.079 0.034 0.014 0.007 0.003 0.002 

1 1.883 0.855 0.411 0.173 0.064 0.026 0.010 0.004 0.002 

 



 485 

Fig. 11. Evolution of the fitness function for different α values. 

- Influence of the weighting: 

When α = 0, f = 0.001 from 4 couples of VWE. In the same condition, f = 0.087 

for α = 0.25, f = 0.209 for α = 0.5 and f = 0.411 for α = 1. It is necessary to consider 

5 couples of VWE to have f < 1.10-2 for α = 0.25 and α = 0.5, and 6 couples of VWE 490 

when α = 1. So, α value has an influence on the fitness function results f according to 

the VWE numbers. The weighting allowing to take into account the dispersion of the 

results of the inverse model increases the imprecision of the mathematical model. 

However, dispersion should be considered to account for uncertainties.  

 495 

- Influence of the number of VWE cages: 

Whatever the value of the weighting coefficient, the addition of a cage containing 2 

VWE improves the result of the fitness function. Considering the uncertainties with a 

coefficient α = 0.25, the addition of a couple of VWE improves, on average, the 

results of the fitness function of 24 %. This average improvement goes to 11 % when 500 

α = 0.5. 
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To observe the position of 5 VWE couples on a cross-section, the results obtained 

by genetic algorithm are presented in Table 5. 

Table 5 

VWE positions and fitness function results in terms of α values. 505 

α 
VWE 

f 
1 2 3 4 5 

0 22 53 205 325 352 30*10-5 

0.25 20 159 171 192 317 4449*10-5 

0.5 70 159 178 204 355 7912*10-5 

1 22 139 171 192 355 17335*10-5 

 
- Influence of the weighting: 

When α increases, the fitness function increases and VWE positions vary.  

- Influence of VWE cages location: 

In addition to influencing the result of the fitness function, the measurement of the 510 

dispersion varies the optimization of VWE’s positions. Except for VWE1 = 70° for 

α = 0.5 and VWE2 = 53° for α = 0, regardless of α value, all VWE are in the range of 

90° around 0° (0° ± 45°, i.e. [315°, 45°]) and 180° (180° ± 45°, i.e. [135°, 225°]). This 

comfort results presented in part 3 (Fig. 7 and Fig. 8) that showed that VWE 

positioned at 0° or 180° seemed to provide more information than sensors localized in 515 

arch and cross vault.  

For all results, VWE are generally located between [315°, 45°] and [135°, 225°]. 

With this observation, the best α value seems be 0.25 or 1. By observing this result 

combined with the first result of f (Fig. 11 and Table 4) the best α value seems finally 

to be 0.25. 520 

 

Finally, the weighting have an influence of the inverse model results (Fig. 12). 



 

 

 

 

Fig. 12. Inverse model for each horizontal stress and different α for 5 VWE couples.  

For a) α = 0, b) For α = 0.25, c) For α = 0.5, d) For α = 1. 
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- Influence of the weighting: 525 

In Fig. 12, each graph presents the result for one individual of 5 couples of VWE 

for all horizontal stresses. When α = 0, the inverse model has about 100 % of good 

results for all σh target (Fig. 12 a). When α ≠ 0, the inverse model is wrong for certain 

horizontal stresses like σh target = 17 MPa for α = 0.25 and α = 1 (Fig. 12 b and d, 

orange curve) and for α = 0.5 when σh target = 17 MPa and σh target = 18 MPa (Fig. 12 c, 530 

orange and dark blue curves).  

The value of the dispersion influences the results. Indeed, the dispersion decreases 

the efficiency of the inverse model. 

5. Conclusions 

In order to optimize the location and the number of sensors in a tunnel cross-535 

section, a three-step methodology has been developed. The first step consists in 

building a strain distribution database through a finite element analysis, taking into 

account uncertainties of the Young’s modulus of the soil, intrinsic error of sensors and 

the angle error of sensors. The second step is to develop an inverse model using this 

database with Bayes theory, allowing us to estimate the most probable horizontal 540 

stress corresponding to a strain measured by a VWE. Finally, an optimization of the 

number and the position of sensors is proposed by using a Genetic Algorithm for 

various couples of orthoradial VWE. The results show that the dispersion of the 

inverse model plays a significant role on the fitness function and on the VWE 

locations. The choice of an optimal solution is a compromise between the inverse 545 

model results and the dispersion measurement. In our project, the best result seems to 

set up 5 VWE couples at locations in the ± 45° around 0° or 180°.  

The solution presented in this article treats the problem in a discrete way – 

deformations at the VWE – whereas a continuous approach would allow treating the 

problem in its entirety – global deformation and highlighting of the interactions 550 

between close deformations. Consequently, the next step of this work is to optimize 

the VWE number and location to find the deformed tunnel cross-section and thus to 

verify that this deformed section does not prevent the handling of waste packages, as 



required for the reversible management of Cigéo project. The fitness function will 

evolve to solve the optimization problem allowing to know the deformed shape. The 555 

uncertainty on the variable thickness concrete of the cell cross-section will be taken 

into account. The orientation (orthoradial or radial) and the number of VWE per cage 

will also be considered. Finally a 3D model can be set up in order to know the spacing 

between two consecutive sections. 
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