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Abstract. We present composition schemes for solving non-linear trans-
port equations, like the guiding-center model. This is based on direct
and adjoint transport steps. The adjoint steps being implicit, they are
replaced by explicit approximated adjoint steps using a given number
of fixed point iterations. This does not modify the order of accuracy.
Several numerical tests assess the performance of the method.
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1 Introduction

The guiding-center model is a non-linear two-dimensional transport equation
that describes a specific drift undergone by charged particles confined in a Toka-
mak by a strong magnetic field. More precisely, denoting f = f(t, x, y) the
density of the charged particles and Φ = Φ(t, x, y) the electrostatic potential,
the guiding-center model writes:{

∂tf + ∂yΦ∂xf − ∂xΦ∂yf = 0,
−∂xxΦ− ∂yyΦ = f,

(1)

with t ∈ [0, T ], x ∈ [0, L1], y ∈ [0, L2] and T > 0, L1 > 0, L2 > 0. This is sim-
plified model for turbulence in Tokamak. In order to make accurate predictions,
high-order methods are essential.

In this work, we focus on the time discretization. Different schemes have been
used in the litterature, especially in the context of semi-Lagrangian methods [10,
2, 6, 4, 9, 7, 11]. We propose here to use a composition scheme in the spirit of [7].
Composition schemes consist in chaining direct and adjoint steps. These methods
are interesting because they only need to store one or two copies of the density
f . In contrast, high-order Runge-Kutta methods require more storage.

Direct steps are explicit and can be either a 2d transport scheme or a splitting
scheme, which is the composition of two 1d transport along the two directions.
For these two kind of direct steps, we can identify their associated adjoint steps.

Since the adjoint steps are actually implicit, we propose to replace them by
a fixed point algorithm as in [3]. Note that it is sufficient to take the number
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of iterations equal to the desired order of accuracy. Contrary to [7], we con-
sider composition schemes with non-symmetric coefficients. Indeed, taking ben-
efit from the equivalence from composition and splitting schemes [5], we use the
coefficients obtained from the second order O2 and the fourth order O4 splitting
schemes. This enables to optimize the number of steps at a given accuracy.

The rest of the article is as follows. In Section 2, we first detail the direct and
adjoint steps, before describing the composition scheme in Section 3. Numerical
results are given in Section 4, before concluding in Section 5.

2 Direct and adjoint steps

In this section, we first define the elementary steps involved in the time dis-
cretization of the guiding center equation (1).

First, we define the transport operator over a time interval ∆t starting from
the initial condition g2 and with advection potential obtained from g1:

T αβ∆t [g1]g2 = g(∆t, ·, ·),

where g is the solution to:∂tg + α∂yΦ∂xg − β ∂xΦ∂yg = 0,
−∂xxΦ− ∂yyΦ = g1,
g|t=0 = g2.

Let now consider t0 = 0 < t1 < · · · < tN = T and fn ' f(tn, ., .). Then, at
iteration n ∈ N, denoting ∆t = tn+1 − tn, the first order direct 2d step writes

fn+1 = S2d∆tfn = T 11
∆t [f

n]fn, (2)

while the direct splitting step is given by

fn+1 = Sxy∆tf
n = T 01

∆t [f
n]T 10

∆t [f
n]fn, (3)

which corresponds to first make the advection in x and then in y. This splitting
version is more adapted to parallelization. The two schemes can be written:

fn+1 = R∆t[fn]fn,

with R∆t[g] = T 11
∆t [g] for the 2d scheme and R∆t[g] = T 01

∆t [g]T 10
∆t [g] for the

splitting scheme.
Given a scheme S∆t, its adjoint is defined as follows: S∗∆t = (S−∆t)−1.

Proposition 1. The adjoints of the first order 2d and splitting steps are:

fn+1 = S2d,∗∆t f
n = T 11

∆t [f
n+1]fn,

fn+1 = Sxy,∗∆t fn = T 10
∆t [f

n+1]T 01
∆t [f

n+1]fn.

They can be written:
fn+1 = R∗∆t[fn+1]fn,

with R∗∆t[g] = T 11
∆t [g] for the 2d adjoint step and R∗∆t[g] = T 10

∆t [g]T 01
∆t [g] for the

splitting adjoint step.
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Proof. For the direct scheme, by defining I2d∆tg = T 11
−∆t[(S2d∆t)−1g]g, we have

I2d∆tS2d∆tg = T 11
−∆t[(S2d∆t)−1S2d∆tg]S2d∆tg = T 11

−∆t[g]S2d∆tg = g.

This leads to

S2d,∗
∆t f

n = I2d−∆tfn = T 11
∆t [(S2d−∆t)−1fn]fn = T 11

∆t [S
2d,∗
∆t f

n]fn = T 11
∆t [f

n+1]fn.

For the splitting scheme, defining Ixy∆tg = T 10
−∆t[(S

xy
∆t)
−1g]T 01

−∆t[(S
xy
∆t)
−1g]g,

we have

Ixy∆tS
xy
∆tg = T 10

−∆t[(S
xy
∆t)
−1Sxy∆tg]T 01

−∆t[(S
xy
∆t)
−1Sxy∆tg]Sxy∆tg

= T 10
−∆t[g]T 01

−∆t[g]T xy∆t g = T 10
−∆t[g]T 01

−∆t[g]T 01
∆t [g]T 10

∆t [g]g = g.

This leads to

Sxy,∗∆t fn = Ixy−∆tf
n = T 10

∆t [(S
xy
−∆t)

−1fn]T 01
∆t [(S

xy
−∆t)

−1fn]fn = T 10
∆t [f

n+1]T 01
∆t [f

n+1]fn. ut

As proposed in [3], the implicit adjoint steps can be approximated byK iterations
of fixed point algorithm:

fn+1 = fn+1,K , fn+1,k = R∗∆t[fn+1,k−1]fn, k = 1, . . . ,K, fn+1,0 = fn.

We denote the two corresponding approximated scheme:

fn+1 = S̃2d,∗∆t f
n, fn+1 = S̃xy,∗∆t fn.

Finally, we recall that composing a scheme with its adjoint, S∗∆tS∆t, results in
a second order accurate scheme [5]. We will consider in the next Section more
general composition methods.

3 Composition scheme

Composition schemes aim at constructing high-order time discretizations by
composing different elementary steps. Let s ∈ N∗ and composition coefficients
α1, . . . , αs, β1, . . . , βs ∈ R. The n-th iteration of the composition scheme reads:

fn+1 = Sαs∆tS̃∗βs∆t · · · Sα2∆tS̃∗β2∆tSα1∆tS̃∗β1∆tf
n,

where S and S̃∗ refer either to the 2d or the splitting direct and approximated
adjoint steps defined in the previous section. This can be equivalently written
fn+1
0 = fn:

for i = 1, . . . , s, fn+1
2i−1 = S̃∗βi∆tf

n+1
2(i−1)

fn+1
2i = Sαi∆tf

n+1
2i−1,

and fn+1 = fn+1
2s . Note that we use the approximated adjoint step with K

substeps, as detailed in Section 2, instead of the implicit exact adjoint step.
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A possible choice of composition coefficients is to impose αi = βi for any
i = 1, . . . , s, which makes the scheme the composition of second-order steps.
However, according to [8], the composition coefficients can also be more gener-
ally computed from splitting coefficients a0, a1, . . . , as and b1, . . . , bs through the
relations β1 = a0, α1 = b1 − β1, βi = ai − αi−1, αi = bi − βi, i = 2, . . . , s. We
will focus on a second order scheme O2, taking s = 1 a0 = a1 = 1/2, b1 = 1, and
a fourth order scheme O4 [1], taking s = 6 and a0 = 0.07920369643119569, a1 =
0.353172906049774, a2 = −0.0420650803577195, b1 = 0.209515106613362, b2 =
−0.143851773179818, completing by symmetry: a3 = 1−2(a0 +a1 +a2), a6−i =
ai, i = 0, 1, 2, b3 = 1/2− b1 − b2, b7−i = bi, i = 1, 2, 3.

By default, we will take for K the order of the corresponding composition
scheme, that is K = 2, for O2 and K = 4 for O4, thanks to the following
property, due to [3] in the symmetric case.

Proposition 2. Let (E, ‖ · ‖) a normed space, and f0 ∈ E. Let R∗∆t[g],R∆t[g] :
E → E, Lipschitz and Lipschitz in ∆t ∈ R and O(∆t)-Lipschitz in g ∈ E, first
order approximations of T exact∆t . Let s ∈ N∗ and α1, . . . , αs, β1, . . . , βs ∈ R. We
suppose that the composition method is given by f10 = f0 ∈ E

f12i−1 = R∗βi∆t[f
1
2i−1]f12(i−1) (4)

f12i = Rαi∆t[f
1
2i−1]f12i−1 (5)

for i = 1, . . . , s and f1 = f12s. We suppose that the method is of order ≥ p:
‖f1 − T exact∆t f0‖ = O(∆tp+1). Then, if the adjoint step (4) is replaced by its
K-th fixed point iteration, with K ≥ p, the modified method is still of order ≥ p.

Proof. Let us denote f̃1j the solution to the approximated scheme. At the 2i−1-

th iteration, we have f̃1,k2i−1 = R∗βi∆t
[f̃1,k−12i−1 ]f̃12(i−1), k = 1, . . . ,K, and f12i−1 =

R∗βi∆t
[f12i−1]f12(i−1). Using the O(∆t)-Lipschitz in g1 and Lipschitz property in

g2 of R∗βi∆t
[g1]g2, we get

‖f̃1,K2i−1 − f
1
2i−1‖ 6 ‖R∗βi∆t[f̃

1,K−1
2i−1 ]f̃12(i−1) −R

∗
βi∆t[f

1
2i−1]f̃12(i−1)‖

+ ‖R∗βi∆t[f
1
2i−1]f̃12(i−1) −R

∗
βi∆t[f

1
2i−1]f12(i−1)‖

6 C1∆t‖f̃1,K−12i−1 − f12i−1‖+ C2‖f̃12(i−1) − f
1
2(i−1)‖.

Consequently, iteratively, we have:

‖f̃12i−1 − f12i−1‖ 6 (C1∆t)
K‖f̃12(i−1) − f

1
2i−1‖+

C2

1− C1∆t
‖f̃12(i−1) − f

1
2(i−1)‖

≤ (C1∆t)
K‖f12(i−1) − f

1
2i−1‖+ (

C2

1− C1∆t
+ (C1∆t)

K)‖f̃12(i−1) − f
1
2(i−1)‖.

Since, using the Lipschitz property in ∆t, ‖f12(i−1)−f
1
2i−1‖ = ‖R∗0[f12i−1]f12(i−1)−

R∗βi∆t
[f12i−1]f12(i−1)‖ = O(∆t), we obtain that ||f̃12i−1 − f12i−1|| = O(∆tp+1) as

soon as ||f̃12(i−1) − f
1
2(i−1)|| = O(∆tp+1). The property is also true at the 2i-th

iteration, and this leads to the result, by using the triangular inequality. ut
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4 Numerical results

The May model Before considering the guiding center model, we test the
composition scheme on the May model [3], which is the following non-linear
differential system:{

x′(t) = a x(t)(1− x(t)/b)− c x(t)y(t)/(x(t) + d)
y′(t) = e y(t)− y2(t)/(fx(t)).

We consider the following initial condition x(0) = 100, y(0) = 20 and the fol-
lowing parameters: a = 0.6, b = 10, c = 0.5, d = e = 0.1, f = 2. We compute
the error in L∞ norm on R2 and consider as reference solution at time T = 5
(x(T ), y(T )) = (4.463072920803955, 3.133825837839541), obtained with a RK4
scheme using ∆t = 1.25 · 10−6.

Here the equivalent “transport operator” is defined by T αβ∆t [(u∗, v∗)](u0, v0) =
(u(∆t), v(∆t)), where u is solution to:u′(t) = αau(t)(1− u(t)/b)− βcu(t)v∗/(u∗ + d)

v′(t) = αev(t)− βv(t)v∗/(fu∗),
(u(0), v(0)) = (u0, v0).

The exact formula is used:

v(t) = v0 exp((αe− βv∗/(fu∗))t), u(t) =
b exp((αa− βcv∗

u∗+d )t)

γ(exp((αa− βcv∗

u∗+d )t)− 1) + b
u0

,

with γ = αa/(αa− βcv∗

u∗+d ). Numerical results are shown on Figure 1. The functions

0.1∆t2 and 5 · 10−5∆t4 are also plotted for comparison, and we can check that
the RK4 scheme behaves asymptotically as 3.5∆t4, meaning that the O4 scheme
RK4 scheme with a time step ∆t/16 has around the same accuracy as the O4
scheme using K = 4 and time step ∆t.

As in [3], we see that the number of iterations needed to keep the order
of accuracy (that is 4 for O(4) and 2 for O(2)) is a sharp bound, both for
the splitting and 2d-scheme. The O2 2d-scheme (which is in fact the classical
predictor-corrector scheme) is more accurate than the O2 splitting scheme for
a given ∆t, and for the O4 scheme, the splitting scheme is little more accurate.
Concerning the efficiency, the O4 2d-scheme with K = 4 is around 50 (resp. 30)
slower than the RK4 scheme, in our python (resp. C) implementation, meaning
that it is around 3 (resp. 2) times slower than the classical RK4 scheme for a
given accuracy.

The guiding center model We now consider the guiding center model. Cen-
tered Lagrange interpolation of degree 17 (ref. [2]) is used for the interpolation
and the characteristics (assumed to be exact in the previous analysis) are ap-
proximated by the RK4 method, for the 2d-scheme and by a RK2 method for
the splitting scheme (similar results are obtained with a RK4 scheme). Initial
condition is f(t = 0, x, y) = sin(y) + 0.015 cos(x/2), x ∈ [0, 4π], y ∈ [0, 2π],
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Fig. 1. Error at time T = 5 vs ∆t for 2d-scheme (left) and splitting scheme (right) for
the May model

periodic boundary conditions are considered for f , Dirichlet boundary condi-
tions for Φ. Numerical results are shown on Figures 2, 3 and 4. We consider
only the O4 scheme with K = 4: the 2d-scheme and the splitting scheme. The
reference solution has been computed with the O4 2d scheme with 256 × 256
spatial discretization points and a time step ∆t = 0.0078125. Both schemes
exhibit a convergence order around 4, with enhanced convergence for the 2d-
scheme for large time steps and convergence order around 5. For comparison,
we consider also the fourth order time-scheme (RKEI4) developed in [11], whose
error is approximated by the function 4 ·10−4∆t4. The cost of the O4 2d-scheme
is around 6 times slower, while the error is divided by 40. So again, we see that
the scheme is around 2−3 times slower than the RKEI4 scheme for a given
accuracy. On the other hand, it seems that the O4 schemes seem to behave well
regarding the mass and energy conservation (see Figure 3), and they have both
similar accuracy. This is rather unsual for splitting schemes. The L1 et L2 norms
are on the contrary better conserved by the RKEI4 scheme. Note also that the
splitting version, despite the known inherent disadvantage of breaking the con-
servative/advective form of the equations, is faster (around 6 times faster than
the 2d version, in our implementation, in the O4 case), can be easily parallelized,
and conservative versions are easier to handle. The fact that it gives quite good
results for a high order time discretization (O4 here) may thus enlarge its range
of applicability.

5 Conclusion and perspectives

In this paper, we present second and fourth order composition schemes for the
guiding-center model. They are based on explicit steps and approximated adjoint
steps, which are all composition of 2d or 1d transports. Note that the total
number of steps is quite large: for instance, the fourth order method requires 30
steps per iteration (counting all the steps of the fixed point iterations). However,
the numerical simulations show that it is only 2-3 slower than the RKEI4 scheme
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[11]. Since composition methods reduces the amount of copies of f to be stored,
they can still be competitive for some applications.

Moreover, the method is quite generic. Here a semi-Lagrangian scheme has
been used for the spatial discretization but conservative schemes, like finite-
volume or discontinuous Galerkin schemes, could be considered instead. The
method could then be tested to more complex models.
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10. Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A. (1999). The semi-
Lagrangian method for the numerical resolution of the Vlasov equation. Journal
of Computational Physics, 149(2), 201–220.

11. Zheng, N., Cai, X., Qiu, J. M., Qiu, J. (2022). Fourth-order conservative non-
splitting semi-Lagrangian Hermite WENO schemes for kinetic and fluid simulations.
arXiv preprint arXiv:2208.03890.



8 M. Mehrenberger, L. Navoret and A.-T. Vu

Fig. 2. L∞ error at time T = 5 vs ∆t for 2d-scheme (left) and splitting scheme (right)
for the guiding center model for different spatial discretizations. The functions 3 ·
10−5∆t5, 4 · 10−4∆t4,10−4∆t4 and 4 · 10−6∆t3.6 are also plotted for comparison.

Fig. 3. Time evolution of mass (left) and energy (right). Spatial discretization: 128 ×
128.

Fig. 4. Time evolution of L1 norm (left) and L2 norm (right). Spatial discretization:
128 × 128.


