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Abstract

We address here the problem of regularity for weak solutions of the 3D Boussinesq equation. By introducing the
new notion of partial suitable solutions, which imposes some conditions over the velocity field only, we show a local
gain of regularity for the two variables 4 and 6.
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1 Introduction

We consider in this article the 3D Boussinesq equation and for @ : [0, +oo[xR?® — R3 a divergence free
velocity field, p : [0, +oo[xR?> — R a pressure and 6 : [0, +0o[xR3> — R the temperature, we have the
System

Ot = At — (- V)i — Vp + ez,  div(i@) =0,

0,0 = A0 —T-V0, (1.1)
4(0,x) = up(x), div(ip) =0, 6(0,x)=6(x),

where e3 = (0,0, 1)%. Note that if § = 0 we then recover the usual 3D Navier-Stokes system which contains
many challenging open problems (see the book [I8] for a detailed and up to date treatment of the Navier-
Stokes equations).

The Boussinesq system (in 2D or 3D) was extensively studied from many points of view, see [6], [7] and
[8] for existence results, [2] for the large time behavior, [10], [I1] and [I3] for some regularity properties.
See also [12], [16] and [2I] and the references there in for other problems related to the Boussinesq equations.
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In this work we will focus on the 3D case which, by its proximity to the Navier-Stokes problem, is
slightly more delicate to handle (in terms of regularity issues) than the 2D case. The Boussinesq system is
of course different than the Navier-Stokes equations: indeed, the presence of the temperature 6 in the first
equation of and the coupling via the drift term « - V6 in the second equation induce some interesting
modifications. For example, applying the divergence operator to the first equation in we obtain the
following relationship

— Ap = div(div(d ® @) — 0,9, (1.2)

which gives an equation for the pressure that is distinct than in the case of the Navier-Stokes problem
since in order to recover the pressure p we need both variable 4 and 6. Another difference is related to the
energy inequalities: from some initial data i, g € L?(R?) and for some fixed time 0 < T* < 400 we can
construct weak solutions (@, 0) € L ([0, T*], L*(R3)) N L2([0,T*], H'(R?)) that satisfy the following energy
inequalities (valid for all 0 <t < T™)

A

t
(e, )2 + 2 / IV @ (s, )|2ads < C(lio]% + £2]60]22) (1.3)
t
16t )2 + 2 /0 I90(s,)[22ds < [0o]2, (1.4)

but here the estimate (1.3)) is not uniform in time and this fact can cause some problems when studying
global solutions. See for example [2], [6] and [§] for more details concerning existence issues.

Concerning regularity theories, the celebrated Caffarelli-Kohn-Nirenberg criterion for the Navier-Stokes
system (see [5]) was extended in [I1] to the Boussinesq equation. This theory is based in the notion of
suitable solutions which are, roughly speaking, weak solutions that satisfy a local energy inequality. Let us
note that in the mentioned work [11], the suitability condition is imposed to the variables @ and 6.

We will show here that this condition over the two variables is redundant and that it is enough to consider
some behavior for the velocity field 4 only: this fact will lead us to the notion of partial suitable solutions
and with the help of this concept we will see how to deduce a gain of regularity for both variables.

As we are interested in the behavior of the solutions on small neighborhood of points, we will consider
parabolic balls which are defined in the following manner:

Qr(t,x) =]t — R*,t + R*[x Bp(x), (1.5)

for some radius 0 < R < 1 such that t — R?> > 0 with 0 < t < T*, where T* is a fixed bounded time for
which we have the estimates (1.3)) and (1.4): we thus have (@, 6) € L>([0, T*], L>(R3)) N L2([0, T*], H'(R?))
and also (,0) € L°L2(Qr) N L?HL(QR). In this general framework, we have the following definition:

Definition 1.1 (Partial suitable solutions) Consider i@,0 € L°L2(Qr) N L?HX(QRr) two functions that
satisfy the equation in the weak sense over the set Qr. Assume moreover that we have the following

3
local information over the pressure: p € L{ (Qr). We will say that (i, p,0) is a partial suitable solution

or the oussinesq equation (1.1) if the distribution p given by the expression
the 3D B ' t 1.1 the distribution p by th
W= —8t|ﬁ\2 + A|1_[|2 — 2[6 ® 6]2 — div ((]ﬂ'|2 + 2p)11’) + fes -, (1.6)

is a non-negative locally finite measure on Qg.
3
2

The condition p € L?, is rather classical (see [I8, Chapter 13]) and the contribution of the variable § via

the relationship (1.2) does not cause any interference as we have € L°L2(Qr) N L HL(QR).



This notion of partial suitable solution is useful to deduce some local energy inequalities for the velocity
field @, but we do not need to impose a similar condition to the variable 6, which can be seen at this stage
as a non-divergence free external force. Indeed, by a separate study of each of these variables we will obtain
our main result:

Theorem 1.1 Consider (i, p,8) a partial suitable solution for the 3D Boussinesq equation in the sense
of the Definition . There exists a small constant 0 < €* < 1 such that if for some point (tg,z) € Qr we
have

lim sup — IV @ il|>dzds < €, (1.7)

r—0 T AO —r2,to+72[x B(z0,r)

then, the solution (i, 0) is Hélder continuous in time and space for some exponent 0 < a < 1 in a small
neighborhood of (to, xo).

Some remarks are in order here. First note that besides the partial suitable condition we only need a
mild behavior for the gradient of the velocity field @ (stated in the hypothesis above), and thus no
particular constraint is asked for the variable . Next remark that in this context we can obtain a (local)
gain of regularity for both variables @ and §: when dealing with regularity issues we can thus observe that
the variable 4 dominates the variable #, in the sense that we can deduce some regularity information on the
variable 6 from the behavior of the variable #. This fact seems (to the best of our knowledge) to be new in
the study of the regularity properties for the 3D Boussinesq system.

Note also that the gain of regularity is stated in terms of Holder spaces (in time and space) over a
small neighborhood of points (tg,z¢) where we have , thus it will be quite natural to use parabolic
Holder spaces which are defined in the expression below. Finally, let us mention that the points
(to,z0) € [0,T] x R? for which we have are called regular points and following [I1] (or adapting the
ideas of [20] or [18, Section 13.10]) it can be proven that the parabolic 1-Hausdorff measure of the set of
singular points is null.

The outline of the article is the following. In Section [2] we recall the definition of the parabolic Holder
spaces as well as the notion of parabolic Morrey spaces. These spaces, although completely absent in the
statement of Theorem are a powerful tool when studying problems related to regularity in PDEs (see
the key Lemma below) and in this article we will use them in a systematic manner. In Section [3| we
study the variable u considering the variable 8 as an external force and we will obtain a gain of information
for @ in terms of Morrey spaces. Section [4]is devoted to the study of the variable § and we will see how to
obtain a gain of integrability (also stated in terms of Morrey spaces) for this variable. Finally, in Section
gathering all the information available on the variables 4 and 6 we will prove Theorem

2 Parabolic Holder and Morrey spaces

We will consider the homogeneous space (RxR3, d, i) where d is the parabolic distance given by d((t, x), (s, y)) =

|t — s|% + [z — y| and where p is the usual Lebesgue measure du = dzdt. We then define the homogeneous
(parabolic) Holder spaces C*(R x R3?, R3) with 0 < a < 1 by the usual condition:

— —

I6llga = sup ot o) =)l (2.1)

(t)7(5.9) (\t —s|i 4|z y|)“

and it is with respect to this functional space that we will obtain the regularity gain announced.



Now, for 1 < p < g < +00, the (parabolic) Morrey spaces Mf}’g (R x R3) are defined as the set of
measurable functions ¢ : R x R¥ —s R? that belong to the space (L} 2)10c such that 8] M < 00 where

1
- 1 - P
[l apgpa = sup (5(1_p)/ / yqb(t,x)\pda:dt> . (2.2)
’ 2oER3 tgeR,r>0 \ T q [t—to|<r? J B(z0,T)

Morrey spaces appear to be very convenient functional spaces when dealing with regularity issues as it was
pointed out in [14], [18] and [19].

We present now some well-known facts:

Lemma 2.1 (Holder inequalities)
1) If f,5: R xR3 — R3 are two functions such that f € M7 (R x R3) and § € LS (R x R3), then for
all 1 < p < q < +oo we have | f- llpps < CIIJFHMngﬁHLm'
2) Let 1 < py < go < +00, 1 < p1 <1t < +00 and 1 < py < g2 < +o0. If oo+ - = - and
qil + q% = q%, then for two measurable functions f,§: R x R3 —s R3 such that f € MEET(R x R?)

and § € MP22(R x R3), we have the following Hélder inequality in Morrey spaces
t,x
If- g‘HMf%,qo < ||f||Mf}z"11 ||§||Mf2zq2

Lemma 2.2 (Localization) Let Q2 be a bounded set of R x R3. If we have 1 < pg < qo, 1 < p1 < q1 with
the condition qo < q1 < +oo and if the function f : R x R? — R3 belongs to the space Mf}lx’ql (R x R?) then
we have the following localization property

Lo fllppos < Cllafl ppra < Cllfll ppo-

In our work, the notion of parabolic Riesz potential (and its properties) will be crucial and for some
index 0 < a < 5 we define the parabolic Riesz potential £, of a locally integrable function f : R x R3 — R3

by
. 1 .
el = [ [ o s (2.3

Then, we have the following property in Morrey spaces

Lemma 2.3 (Adams-Hedberg inequality) If0 < a < 27 l<p<qg< oo and fe ./\/lfy’g(R x R3), then
for A\ =1— % we have the following boundedness property in Morrey spaces:

5
Hﬁu(f)HM%% < CHf”Mf,;J

t,x
The three lemmas above constitute our main tools in Morrey spaces. For a more detailed study of these
functional spaces we refer to [I] and [18].

3 A partial gain of information for the variable u

In this section we will only focus our study in the variable @ and its equation:
Oyt = At — (@ - V)i — Vp+0es,  div(id) = 0.

Here, the variable f can be seen as an external force for which we have the information 6 € L>°([0, 77, L2(R3))N
L3([0,T), H'(R3)), note that by interpolation we also have

0 c L:?i([o,T} x R3). (3.1)

In order to obtain a gain of information in the variable u, we will first consider some estimates for the
pressure and then we will deduce inequalities for the velocity field .



3.1 Study of the Pressure

Since the pressure p satisfies the equation and it depends on the velocity field @ and on the temperature
0, we first need to establish some controls for it. Although the equation for the pressure is in the case of
the 3D Boussinesq equation relatively similar to the equation of the pressure for the 3D Navier-Stokes one,
there are some differences that must be treated carefully.

We introduce the following quantities: for a point (t,2) € R x R? and for a real parameter r > 0 we
write

1 . 1 -
blto)= s o isy)Pdy, arltr) =1 [ V@ ils,y)Pduds,
t—r2<s<t+r2 T JB(z,r) Qr(t,x)
1 1 , (3.2)
B (ta) =y [ falsy)Pdyds, Prta) = [ syl by,
r Q»,«(t,a?) r QT'(tvx)
and when the context is clear we will simply write Ar = A,(t,z). Note that the previous quantities
correspond to the information L{°L2, L2H 1 L3 and sz, in particular we have the following relationships:
TA, = ||6||%§0L§(QT)7 rop = Ve m@f,z(Qr)’ r? ||pH2 : (3.3)

t:): T

With these quantities above we will deduce now a useful estimate for the pressure.

Proposition 3.1 (Pressure estimate) Under the hypotheses of Theorem and with the notations given
mn for any 0 < r < § < R we have the inequality

3 2
2 1 r\2? s r\3 .2
Pf<c<(ff) <Apap>2+(p) pﬁueuLm(W(p) Ps). (3.4)

Proof. For proving the inequality above, we will start by the following estimate (where o is a real number
such that 0 < o < 3):

HPH <C (UBHUHLOOL?(Ql)HV ®UHL oy to v 101l Lo £2(Q1) + ‘72HPH ) ; (3.5)
(QU) ,m(Ql)

here @, and @ are parabolic balls of radius o and 1 respectively (the definition of such balls is given in ((1.5])).

To obtain this inequality ( . we introduce 7 : R — [0, 1] a smooth function supported in the ball By
such that 7 = 1 on the ball B 3 and 7 = 0 outside the ball B4, note also that over the set (), we have the

identity p = np. Thus, by a stralghtforward calculation we have

3
—A(np) = —nAp+ (An)p — 2 9:((9m)p),
=1

from which we deduce the inequality

— nAp)

An)p
P12 0 =11 ) = H( (-4) o

(=4)

)

3
L4 (Qo)

5



For the first term above, since we have the equation (|1.2)) for the pressure we can write

1
|m| < C }:aa ui +Hn@ﬁ . (3.6)
(QU) ( 4,J=1 ) Lt%,:t( o) (_A)( ) LiQ@(QU)
o) (p2)

(An)p
+ +2 .

(=2 128, . Z; Lt%,x(cza)

(ps) (pv4>

We will study each term above separately.
(3.6, if we denote by C; ; = u;(u; —

the ball of radius 1, since « is divergence free, we have the formula Z 0;0; (uiu;

e For the term (p;) in

thus we can write

(Pl)

(uj)1) where (uj); is the average of u; over

) = Z&@]Cm- and

t,j=1 i,j=1

( Zaa Ciy)

b=t L@
1
< ) A (2:0;(nCi3) — 9 ((9m)Ci ) — 9;((9m)Ciz) + 2(9;0m)Cij) || o - (3.7)
i,7=1 ( ) Lt%z(QU)
Denoting by R; = \/% , by the boundedness of these operators in

Lebesgue spaces and using the support properties of the auxiliary function 1, we have for the first term

above (in the space variable):

0;0;
Cia(t < [RiR;(nC; 5 < C||nCj.(t, - 3
- A)Tl 4 )L%(BG) < NRR;Cig) (6 g sy < ClCig (&) g 5
< Clluglt, )2y llus(t, ) = (willzssy)
< Cllitt, )2y IV @t ) r2epy),

where we used Holder and Poincaré inequalities in the last line. Now taking the L3-norm in the time
variable of the previous inequality we obtain:

0;0;

(3.8)

1 -
‘( L2 < Cosllil ez @nllV @ @lz (qu)-

For the other terms of 1) we note that 9;n vanishes on B s U B¢ i and since B, C 31 C B: 3 using the

integral representation for the operator i BA) we have for the second term of the estlrnate

&S

Co?

((0mCij) (¢, -)

9;

J

since this is a convolution with a bounded kernel (due to the support properties in the variables x and
y), by the Young inequalities we have

Ca?||Cij(t sy < C?lluilt, )l asy llus () —
C ||6(ta )HLQ(B1)||v ® U(

L3 (B,) L>=(By)

I (@) Ciy) () dy

< Co? S
<l<iy lz =yl

, (3.9)
L>*(By)

IN

(uj)luLQ(Bl)

IN

s )2 sy

6



where we used the same ideas as in 1) before and the fact that 0 < o < 1. Thus taking the L2-norm
in the time variable, we obtain

87; 1., = -
e ——— y Z y < oo . -1
[C@me]; . <etiienel?ol o 10
A symmetric argument gives
9; Lo S o
oy (@mCy)| <Ol oIV @iz, @) (3.11)
L7, (Qo)

and observing that the convolution kernel associated to the operator ﬁ is |%, following the same

ideas we have for the last term of (3.7]) the inequality

(816017)(]@-, j LT, = —
H < €Ml 1200 IV © Tlyz_qu- (3.12)

(=4)

3
L{.(Qo)

Therefore, combining the estimates (3.8)), (3.10), (3.11) and (3.12)) and getting back to (3.7]) we finally

have:

3
1 1, = o
)= | =gy (0 X aditwwy))| <O (e @ils,0)).  G13)
1,j=1 LZI(QJ)

For the term (p3) of (3.6) we write

) = g (00)

[ (@)

(p2a) (p2b)

3 3 :
L{4(Qo) Li(Qo)

For the quantity (p2,) we start by considering the space variable and by the Hélder inequality with
%z%—&—%wewrite

1 1
1p, —— 8y, (n0)(t, - < Clis,lres, ’am n0)(t, -
152 g0 ) Nys S CMlirn gyt @d|
s || O
< Co2 5 (n6)(t, ,
(7A)(77 )( )

L6(R3)

and since the Riesz transforms are bounded in Lebesgue spaces we can write

(NI

Co

IN

| 255000

(*A) (770) (tv )

Lo®) LY, (R%)

3 3
< Coz |[n0) (X, )l p2rsy < Co2ln(t, L= l10(t )l 2(5,),

where we used the Hardy-Littlewood-Sobolev inequalities and the localizing properties of the function
1. Now, we integrate with respect to the time variable, and with the previous controls we obtain

1 3 4 17
) = [ g0 | < CotoOlran = CoF IOl G

3
L4 (Qo)



For the term (pop) we proceed as in (3.9)) and due to the properties of the localizing function n we write
1

[en{(CUDIR Co* | =g ((@m0) .

L3(B,) L(B,)

fenegy e 0

since the kernel of convolution above is bounded (as z € B, with 0 < o < L and y € {2 < |y| < 1}),
we obtain

Co?

IN

)

L>o(Bq)

| s (@)t | < colote s, = o200 iz

L2(Bs)

Thus, taking the L3-norm in the time variable we have

1 10 17
(p2p) = H(_A)((aa:gn)9> 3 < Cos |0l Leer2(q) < Coo 10l Lecr2 (@) (3.15)

L. (Qo)

(since 0 < o0 < 1 and o < U%). Now with the estimate |i for (p2,) and 1D for (pop) we can

write .
(p2) < CU?WHL;@L%(QQ- (3.16)

e We continue our study of expression (3.6) and for the term (p3) we first treat the space variable.
Recalling the support properties of the auxiliary function n and properties of the convolution kernel
associated to the operator ﬁ, we can write as before (see (3.9)):

H (An)p(t, )

(—A) < 002"p(t7 ')”Ll(Bl) < 00'2”])@, )H 3

L2(B1)’

L3 (B,)

and thus, taking the L-norm in the time variable we obtain:

(ps) = H (?XZ; oy S Colpl g o (3.17)
e For the last term of expression , following the same ideas displayed in we can write
” (_@A) (it ')‘ 13 (B,) < Co®lIp(t, )leasyy < Collp(E g
and we obtain
(pa) = W o™ Co®pl,3 o (3.18)

Now, gathering the estimates (3.13]), (3.16[), (3.17)) and (3.18) we obtain the inequality

1 = 17 2
HpHLi(Qg) <C (as ]l Lge L2 lIV ® UHL%’I(Ql) + 06 (|0l Leer2(q) + o Hp”Li(Qg) )

which is (3.5)).

To deduce inequality (3.4), if we fix o = % < % and if we introduce the functions p,(t, z) = p(p?t, px),
0,(t,z) = 0(p*t, px) and @,(t, ) = i@(p*t, pz), then from the control (3.5) we have

1 17 2
r\3, . - . T\ 6 r

r
P



and by a change of variable we can write

ol

1
_10 3 3., 3=, r _3
5 0% < O((5) o il isaur 19 @l g+ (5) o Hbleszcn

t,x(QT)
2
—+(r) 2l 5 )

Now, recalling that by (3.2]) and (3.3) we have the identities
42 1 L L 1L =
rsPr =lpll 3 0 p2AF = lllierz,) and prap =[IVeil: g,

we finally obtain
3

2
P/ gc:((ﬁ)(Aﬁa»z-+<p) P lbllszien + (2 ¢?),

and this finishes the proof of Proposition [

3.2 Study of the velocity field

We continue our study with the treatment of the velocity field @ and we start with a relationship between
some of the quantities defined in (3.2)) above:

Lemma 3.1 For 0 <r <1 we have the relationship between B,., A, and «a.:

1
B < C(A, + ay)2. (3.19)
Proof. Indeed, using the definition of B, given in (3.2)) above and by Holder inequality we have

1, c ..
1@ (0, < 1] 10
, .

1
B? = 10 .
Lt,sz (QT)

2
r3

. Now, for the LZLS norm of @, we use the

2 3
By interpolation we have ||| 1o < WHE;NL;(QT)WHZ;LQ(QT)

L% (@r)
classical Gagliardo-Nirenberg inequality (see [3]) to obtain ||| ;216 (g,) < C’(Hﬁ@ﬁHL%L%(QT) + Il e r2(0,))
and using Young’s inequalities we have

2 — 3 3 -
7 e < Ol a1V @l a0y + Il Fr2(,) < Cller2i0n + IV @ ili21200,):

1 - 1
Recalling that ||u]|per2(q,) = rzAZ and IV ®llp2r20,) = r%aﬁ, we finally obtain ([3.19). [

Now, we will establish an estimate that relies in the energy estimate (|1.3)):

Proposition 3.2 Under the hypotheses of Theorem and with the notations given in we have for
any radius 0 < r < § <1 the inequality

7"2 p2 1 p2 2 1 p% 1
Ar + oy < O?Ap + ﬁaﬁ Ap + Cﬁpﬁ (Ap + Olp)5 + OTHQHL;’OL?C(Q,,)OZ;% . (320)

Proof. Following the idea of Scheffer [20], we will consider the following test function:



Lemma 3.2 Let 0 <r <5 <R < 1. Let ¢ € C°(R x R3) be a function such that

s—t y—=x s—t
¢(87y) =r’w < p2 ) Y > 0 ( > g(4r2+t—s)(x - y)7

p r?

where w € C3°(R x R3) is positive function whose support is in Q1(0,0) and equal to 1 in Q1(0,0). In
2

addition 0 is a smooth function non negative such that @ = 1 over | — oo, 1[ and 0 = 0 over ]2, 400 and g.(+)

s the usual heat kernel. Then, we have the following points.

1) the function ¢ is a bounded non-negative function, and its support is contained in the parabolic ball Q,,,
and for all (s,y) € Q. (t,z) we have the lower bound ¢(s,y) > %,

2) for all (s,y) € Qu(t,z) with 0 < s <t +r? we have ¢(s,y) < %,
8) for all (s,y) € Q,(t,x) with 0 < s <t +r? we have Vo(s,y) < g,

(0: + A)o(s.y)| < O

»

4) moreover, for all (s,y) € Q,(t,x) with 0 < s <t +r? we have

A detailed proof of this lemma can be found in [I8, Chapter 13].

With the all the properties of this function ¢, exploiting the fact that (i, @) is a partial suitable solution
(it satisfies a local energy inequality) and using the notations (3.2)) above, we can write:

Ar+a, < /(8t¢+A¢)|u] dxds+2// dxds—i—// |@|?(@ - V)¢dads

+2 /R /R fey - (¢u)duds. (3.21)

(4)

The terms of the right hand side above will be studied separately. Indeed,

e For the quantity (1) in (3.21]), using the properties of the function ¢ given in Lemma and by the
definition of the quantity A, given in (3.2)) we have

r2 P2 [t r2
pd + Ag)|t>deds < C— i|*dxds = C— i’ dzds < C—=A,.
5 5 2°°P
R3 P JQ, p” Jt—p2 JB, p

e For the term (2) in (3.21)), by the properties of the function ¢ given in Lemma and by the Holder
inequality, we obtain

. c [t C
u-V dxdsg/ / Uldzds < — 3 Ul s ,
[, fpSonaas < 5 [ [ pllatdeds < s 1

. a2 o 2 1 .
noting that by 1) we have HpHL% o) = p3P; and |’uHL§’,z(Qp) = p3 )5, we can thus write

t,x( P)

Jun

— C 4 2 9 1 p2 2 1
/ / p(u- Vo)dzds < — <p3735’> <p3)\,§> S CHPS(Ay+ap)?,
R JR3 r r
where in the last estimate we used the control (3.19)).
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1
e For the term (3) in (3.21), let us first define the average (|i@|*), = = Bl |i(t, y)|>dy and since
L5 P)I J B(z,p)

« is divergence free we have / (@) (i - V)¢dz = 0. Then, we can write by the properties of the
B,

function ¢ given in Lemma [3 9 and by the Holder inequality:

/’|Wwvmm8=/wW—me wmw<— /HW (122), || @ldds
R JR3

p

c [ 2 2
sﬂﬁﬂmu—w»u%ﬂm»m@m.
Now, Poincare’s inequality implies
C t+p? ) .
S=an IV (i(s, W) s lliE(s, ) zaa,)ds
p?
c [t -
§72 o HU(Sa‘)\\L?(BP)HV®U(Sv')\|L2(Bp)HU(3,‘)’\LS(Bp)dS
—p

C R
< 2||UHL6L2 (Qp) HV®UHL2 QP)HUHL%J(QP)a

where in the last inequality we used the Holder inequality in the time variable. We observe now that
by the notations given in (3.2) we can write

[un

1 2 .=

- Lo 5.5 = 11 S 2
1l r2(q,) < Cr3llillerz@, < Crohs, V@il g, =r2es, il @, =r32,
and we obtain, by (3.19)):

(Ap + ap).

bm\»—t

gc%

N[

2
//RS |2 (i <bdxds<C CAZoZA] <cp _AZoZ(A, +ap)

e Finally, for the term (4) in (3.21)), by the Holder inequality and by the properties of the function ¢
given in Lemma [3.2] we write

t+p?
[ [ e indsds < [ (s l065. Mz s, s, s
R JR3 t—p2
p [T
< O L 10Cs, Mz lla(s, )l g (g, ds
p 3
< CLI0lez il iy, < € 10z rz@n ¥l 2 s o,

where we applied the Sobolev inequalities (see Corollary 9.14 of [4]) and the Cauchy-Schwartz inequality
in the time variable. Since by 1) we have ||ﬁ||L§H1( Q) = p2ap, we conclude

N[ =

7
4 p?
/R RS(@eg) - (pt)dxds < CTHHHL;”L;(Q,,)%

Gathering all these estimates we obtain the inequality (3.20)) and this ends the proof of Proposition |

11



3.3 Iterative process

With the estimates (3.4)) and (3.20)) and given in Propositions and respectively, we will set up a
general inequality that will help us to deduce a gain of integrability. For this, we introduce the notations

15_15 3
1 ]. r 0 4
‘SM’I" = m (AT + 047") ) @7" = wpr and ﬁr = Jﬁr + <() t@r) y (322)
r 0 rzt T p

for a fixed 7 such that % < 19 < 6, which is possible since 0 < a < %. We have the following result:

Lemma 3.3 Under the hypotheses of Theorem for 0 <r < £ < R <1 there exists a constant € > 0
such that )
ﬁr(to,wo) < §ﬁp(t0, x()) + €, (3.23)

where the point (to,zg) € QR is given by the hypothesis .
Proof. First, by the estimate (3.20) we can write

1
m - m (AT + O[,r)
r 0
C r2 p2 1 p2 2 1 p% 1
r 0

and we will treat each one of the previous terms separately. Indeed,
e For the first term of (3.24]) we have

10

1 <7“2 > 1 r? ou_5) r\ 7
5 |38 ) S s mr VA=) 9
2(1-2) \ p? F20-25) p? p

T 70 0

e For the second term of (3.24), using the definition of A, given in (3.22)), we obtain
: <p2 : > : <p2 2,20-%) AR
— | 5 A, | < ———< (| 550 A, | = <7) o

y20-25) \r? y20-75) \(r? r
e The third term of (3.24]) follows essentially the same arguments as above and by the definition of the

quantities A, and P, given in (3.22) we can write
410

1 2 2 0 5
(f;ps <Ap+ap>%) <(8)" ™ ppat.

7"2(1_%) T r
e Finally, for the last term of (3.24)), we have
1 p% 1 p 37% 1,10 1
S | 1l | < (2) ™ o2 00l r2(0%
’r‘ T

Thus, gathering all these estimates, we have

10

PN (PSR b N R L\ !
o, < C <p> @44—(;) %aﬁ(;) P o, +(;) P> 0 ||0] e 20,002 |- (3.25)
Now, for the pressure, from the inequality (3.4) we can write

3
_ 1 C (PN i (TN e r
P = 3(1—5)PT§T§<1—,%)<<T) Aoap +{ 2 ) POz +\5) Pr ) (3.26)

r 70

12



e Using the definition of <7, given in (3.22)) we obtain for the first term of the right-hand side above:

15

7z (4) #lol < 5 (8) 0 et = (870 (o

r2 70 "
e Now, for the second term of (3.26]) we write

3 15
C r\2 5. 3 r\20 15 _2 3
6 — 27 3 2
s ) pﬁr\elrw@p)so(p) P00 sz 0,

e Finally we use the fact that

L () r= (0 e
p20-5) \p - \r P
(by the definition of &, given in (3.22)).
We thus conclude that

1

15
p\3= 275 s r\%0 15 2 3 P22
%g(J((T) 20(%%)4+C<p> i sy\eugﬂ%@pﬁ(;)? ). (3.27)

With the estimates (3.25)) and (3.27) at hand, we will now introduce a relationship between the parameters
r and p: indeed, let us fix 0 < kK <K % a real number and consider r = kp, then, by the definition of the

quantity @, given in (3.22) we obtain:

15_15 3 10 0.4 1 104 2 1 10 3 1,10 1
0, = i+ (k0 12,) <C( rra,+ k0 dpad + w0 PR 4 w0 pT 0|0l 130,03
(1) 2) @)
45 21 3 45 15 15 2 3 45 17 3
+C </€270 4(%ap)z+,€27—0 1 p20o BHQHz?OL%(Qp)_i_sz 4@;)) . (3.28)

We will rewrite now each one of the previous terms:

e Since by (3.22) we have o7, < 0, it is then easy to see that the term (1) above can be controlled in

the following manner:
10 10

10 10_4» 1 10 10 _4 1
kod,+ k0 dyal < (k0 + KO af)0,.
e For the quantity (2) in (3.28)), using Young’s inequality and the relationships given in (3.22)), we observe
that

1 4

0_4 2 1 10_ L1y 2 11y 1 10 11 11y 4
Ko 4@5’%2 = KT 4(55(70 2)9,)3 x (2 To),sz{,f) < KT 4</110(2 TO)%—FFLIO(TO 2)@5‘)

/ﬁ(%%—(,&g 203”) ) < KO,

e For the term (3) of 1 , we just remark that the power of k is % — 3 which is a negative number
since % < 19 < 6.

IN

4
15_15 3
e For the last term of (3.28)), since (/wo 1P )3 < 0, and &7, < 0,, we have

45 _ 27 3 5 15 15 2 3 45 1i
K270 4(%0%)1_'_&270 4p27’0 3”9”2 @ )+H2TO 4 p
x
30 _5 45 _ 17 4
< (w0 oyt 50 30l aq,) + (570 T Py
30

<Ol ® 203G 4 Crro 0 00 g)12
sC{k™ apt+ kT p+Crmo"p™0 9|0]| 7o 12 -

13



Gathering these estimates we finally obtain

10 10 _4 L 30_g 10_2
O, < ClKk™o 4K aj +k+K0 a,+Kk70 3|0, (3.29)
o_g 1,10 1 30_5 10_38 2
FCRM 2 pE 0 0] e 120908 + CRD 070 6] 120 (3.30)

Futhermore, we claim that we have

10 0_, 1 30 _g 10_2 1
Cleo +Kk0 "aj +K+K0 “ap+r0 3| < 3 (3.31)
Indeed, since k = % < % is a fixed small parameter and since % — % > 0 (recall again that % < 19 < 6),

10 10
then the quantities k70, k and k™ 3 in the previous formula are small. Now, using the fact that we have
the control a, < €* which is given in the hypothesis (1.7) where € > 0 is small enough, then the terms

10 4 1

1 30 _
k™ "o and K70 gap can be made small enough and thus we obtain the estimate (3.31).

To continue, we need to treat the two remaining terms given in (3.30). For the first one we note that
the quantity [|0||zez2(q,) is bounded since ¢ € LPLE(Qr) N L?HL(QR), we can apply the same ideas used
previously (i.e. the fact that o, < €* < 1) to obtain

Crm "p2 770 ||0]| Lo p2(q,) 5 <

N

For the last term of 1} recalling that % < T < 6, we have i—g —5> 0and E—% > 0. Thus,if0< pk 1

70
30 - 10_8

and since k < % the quantity k0 “p7 9 can be made small enough to absorb the term HQHQLOO £2(Q,) and
t L
we obtain 0_5 108 €
K70 pro? H9||L§°L§(Qp) < 92"

Then, with these estimates at hand and coming back to 1| we conclude that 0, < %ﬁp + ¢ and
Lemma |3.3|is proven. |

Proposition 3.3 Under the hypotheses of Theorem consider (i, p,0) a partial suitable solution for the
Boussinesq equations over the set Qr given in . Then there exists a radius 0 < Ry < g and an
index 19 such that % < 19 < 6 such that we have the following local Morrey information:

Lo, (to.20) € M (R x R?), (3.32)

where the point (to,zo) € QR 1is given by the hypothesis .

Proof of the Proposition Lemma [3.3] paved the way to obtain the wished Morrey information for
the velocity @. Indeed, from the definition of Morrey spaces given in ([2.2) we only need to prove that for
all radius 7 > 0 such that r < By < £ and (t,z) € Qg (to, z0), We have

/ iPdyds < O, (3.33)
Qr(t,x)

and this will imply that 1¢, u € M3 (R x R3). In order to obtain the control 1} by the definitions
given in (3.2)) and by the estimate (3.19)), we observe that

Njw

/ (@B dyds = r2Bo(t, ) < r2(An(t 2) + an (L, 7))
Qr(t,l’)

14



Hence, it is then enough to prove for all 0 < r < R} < g < R < 1and (t,x) € Qpr, that one has the control

Aty 7) + an(t,z) < Cr20 7).

Recalling the definition of the quantity o7 given in (3.22)), we easily see that the condition (3.33)) above is
equivalent to prove that there exists some R; and 0 < k < 3 such that for all n € N and (¢,z) € Qg (o, z0),
we have estimates:

A, (t,2) < C. (3.34)

Note that, for any radius r such that 0 < r < Ry < min{%,dist(dQr, (to,20))} (and since we have
Qr, (to,z0) C Qr) by the hypotheses of the Theorem we have the bounds
20)) IV ® il (@r) < +00

HﬁHL?OL%(QT(tO’”CO)) < HﬁHL?OL%(QR) < +00, HV ®UHL2 (Qr(to,

and HpH < llpll s

< +00. Then, by the notations introduced in 1) we have the uniform
2. (Qr(to,m0)) L?,.(Qr)

bounds sup < rA,, ra,, ?”2737«} < 400 from which we can deduce by the definition of the quantities <7,(to, zo)
0<r<R

and Z,(to, xo) given in (3.22)), the uniform bounds

_10 _3 5
sup ¥ oy (tg, xg) < 400, and  sup P20+ )9 (to, xo) < 400.
0<r<R 0<r<R

Thus, there exists a radius 0 < rg < R small such that by the estimates above, the quantities <7, and &,
are bounded: indeed, recall that we have 79 > 2~ > 5 (where 0 < a < 10) and this implies that all the
powers of r in the expression above are posmve As a consequence of this fact, by ( - the quantity &,
is itself bounded. Remark also that, if rg is small enough, then the inequality holds true and we can
write Oy, (to, xo) < %ﬁro (to, o) + €. We can iterate this process and we obtain for all n > 1,

n—1

1 .
fﬁm (to, l’o) +€ Z 2_J,

ﬁn"m(t0>x0) S on
§=0
and therefore there exists N > 1 such that for all n > N we have Oyny,(to,z0) < 4e from which we obtain
(using the definition of &, given in (3.22))) that

1 1
N (to, 2o) < éc and P~ (to, z0) < 3720'
This information is centered at the point (tg,xg), in order to treat the uncentered bound, we can let %/@N 70
to be the radius R; we want to find, thus for all points (¢, z) € QRg, (to, o) we have that Qr, C Qar, (to, Z0o),
which implies
310
AR, (t,x) <27 70 ghp (to, v0) < 8hR, (to, o) < 8, ,(to, T0) < C,

and Ppg, (t,z) < 25_%(1+%)32’231 (to, o) < 32PR, (to, o) < 8Z,.n,(to,x0) < C. Having obtained these
bounds, by the definition of Og,, we thus get Og, (t,z) < C. Applying the Lemma and iterating once
more, we find that the same will be true for kR and then, for all k" R;, n € N. Since by definition we have
np, (t,x) < Ogng, (t,x) we have finally obtained the estimate @np, (t,2) < C and the inequality (3.34] -
is proven which implies the Proposition

Corollary 3.1 Under the hypotheses of Proposition[3.3, we also have the following local control:

= 1 1 1
2,7 3 .
]]'QRl (1‘/07300)v @u e M I(R x R?),  with ?1 = ?0 + 5 (3.35)
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Proof. In the previous results we have proved the estimate (3.34]). Let us recall now that, by the definition
of the quantity &7, given in (3.22)), we can easily deduce for all 0 < r < R; and (¢,z) € Qg, the control

21— . .
o, < Cr (=75 which can we rewritten as

1(/ V® ﬁ%lyds) < or?=w),
T Qr(t,x)

Thus, since % = % + %, for all 0 < r < R; and (¢,z) € Qr, (to, x0), we have the estimate

, e .,
/ IV ® @2dyds < Cr* 0 = o),

T

and by the definition of Morrey spaces given in 1' we obtain that L p, (to20) V Q1 € M?;l (RxR3). &

3.4 A partial gain of information for the variable «

Proposition 3.4 Under the hypotheses of Theorem[1.1] and within the framework of Proposition[3.3, there
exists a radius Ry with 0 < Ry < R1 < R < 1 such that

= 3,0
L, (to,z0) U € My (R x R?),

T

for some o close to % < 719 < 6 such that 1y < o.

Proof of the Proposition In order to obtain this small additional gain of integrability we will first
localize the variable # in a suitable manner and then we will study its evolution: the wished result will then
be deduced from the Duhamel formula and from all the available information over @. Let us start fixing the
parameters R, Ry, R, such that

0 < Ry <R <NRp <Ry < Ry,

with the associated parabolic balls Qr, C Qn. C Qn, C Qxn, C Qr, (all centered in the point (¢, zo)).
Consider now ¢, : R x R¥ — R two non-negative functions such that ¢, € C§°(R x R3) and such that

=1 over Qu,, supp(¢) C Qn, and ¢ =1 over Qu,, supp(¥) C Qg,- (3.36)

Using these auxiliar functions we will study the evolution of the variable ¥ = ¢ 4 given by the system

T =AT+V,
(3.37)
(0,2) =0,

where we have
3

V = (0 — Ap)T— 2 (8:9)(85) — p(@0 - V)T — 26V p + p(Bes). (3.38)

=1

We will now rewrite the term ¢6p above in order to avoid a direct derivative over the pressure. Indeed, as
we have the identity p = ¥p over Qn,, then over the smaller ball Qg, (recalling that ¢y = 1 over Qr, by

3
3.36) since Qr, C Qmn,), we can write —A(¢Yp) = —pAp + (Ay)p — 2261-((&1[))]9) from which we deduce

i=1

the identity

=

. TN
5p— ¢v((:1bAA)p) N ¢V(((_Aib))p) _2; (bV(&((_(@Aﬂ)D)p))_ (3.39)
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At this point we recall that we have by (1.2 the following equation for the pressure
3
== 30 (uiuy) + 0,0,
ij=1

and thus, the first term of the right-hand side of the previous formula can be written in the following manner:

GRZ-V) B N (R N R
A T <A>(Zw<&aju)) ¢(_A)<u}ame>

3 —
\Y%
- Yooy (20,000 ) - Z¢ ¥ (3@ + @) - @
¢ ¢

Recalling that by construction of the auxiliar functions ¢, ¢ given in (3.36) we have the identity ¢y = ¢,
we can write for the first term above:

V8;0; V0,0,
(7/)U1UJ) [¢7 —A )] (@bulu]) + ?A;(ﬁbuiuj),

)

and we finally obtain the following expression for (3.39):
3 = 3 &

V0,0, V0,0,

(—A) (wulu]) + ijZ:1 (—A (¢ulu])

oVp = >
2,7=1
3 —

=3 o (@) + oy ((@yus) - @3 i)

1,j=1

o

LV v V(AYp) K V@(0:)p)
Oy O (V0) + 0y (Da¥)6) + 013 2§¢> A

With this expression for the term that contains the pressure p, we obtain the (lengthy) formula for (3.38]):

- . 5[ Voo ) 0
w 2:: w-V)u— ZZl [d% —A )] (Yujuj) + Zl ) ;)
(1) (2) 3 & i,j \
(4) ()
3 ¢ =) ﬁ
- Z A [ 0:((059)uiug) + 0;((Di)usuy) — (8:05) (wiuyg) | — O a0 (40) (3.40)
= (6) (7) (8) T
+¢i((a 50 )+2¢> 2Z¢5 )) + $(fes) .
(—Aa) \ )
(13)
(10) (11) (12)

Thus, by the Duhamel formula, the solution ¥ of the equation (3.37)) is given by

t 13 t 13
U= / I8V (5, )ds = Z/ =AY, (s, )ds = ZV’C'
0 k=10 k=1

Since ¢ = ¢, and due to the support properties of ¢ (see (3.36))), we have ]IQR217 = ]IQRQQZ and to conclude
that Lo, @ € M,y (R x R?) we will study Lq,, Vi for all 1 <k < 13.
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For V1, by the term (1) in (3.40) we have

\1QR2\71(E r)| = ‘]IQRZ /Ot =28, — Ap)id] (s, x)ds| (3.41)

since the convolution kernel of the semi-group e(=*)2 is the usual 3D heat kernel g;, we can write by

the decay properties of the heat kernel as well as the properties of the test function ¢ (see (3.36))), the

estimate )

L, Vi(t,2)| < Clgp, // T ‘ﬂmeﬁ(s,y)‘ dy ds,
RJRS ([t — 5|2 + |z —y|)?

Now, recalling the definition of the parabolic Riesz potential given in (2.3) and since Qr, C Qn, we
obtain the pointwise estimate

[Lar, Vit 2)| < Clgy, Lo(|lqgy, @) (¢ ), (3.42)
and taking the Morrey Mf’g -norm we obtain
||nQR2v1<t,:c>||M;,; < Ol a(lL0m, WDl -

Now, for some 2 < ¢ < % we set A =1 — %, Then, we have 3 < ¢ and o< %. Thus, by Lemma
and by Lemma [2.3] we can write:

IN

1L, L2(Lgm, @)l pae < CllLa(|Lgn, @)

34
>\>\

IN

Cla, Tl g0 < Clllgp, 50 < +00,

where in the last estimate we applied again Lemma (noting that ¢ < 79 < 6) and we used the

estimates over 4 available in (3.32)).
For Vs, using the expression (2) in (3.40) we write (8;¢)(9s@) = 9;((8;¢)@) — (82¢)ii and we have

3

Lo, Valt, z) (3.43)

t
|tan, /0 (=980, ((2ig)id) ds| + ‘“QR /0 IR (D7 g)alds|

Remark that the second term of the right-hand side of (3.43|) can be treated in the same manner as the
term V; so we will only study the first term: by the propertles of the heat kernel and by the definition
of the Riesz potential £; (see (2.3))), we obtain

t
AQ = ‘]IQR2/ (t— S)Aa (( 7,¢) )dS

Lon, / [, Bl = 0)(@i0)i(s, s

1oy, @(s,y

<Clg // | me )l dyds < Clg,, (L1(|Loy, d]))(t, ). (3.44)

R3 ( t—s‘2+’m_y’) b

Taking the Morrey Mf’; norm we obtain HA2HM3,0 < CH]IQR2 (El(\]lmeﬁ]))HMa,a. Now, for some
t,x t

4<q<5<—<Tg<6wedeﬁne)\—1—f,notingthat?)g%andag %,byLemmaﬁ,wecan
write

IN

10, (£1(1Tam e < Cler(an @Dl 34 < gy, dllyos
’ t,x ’

CllLgp, Tl o0 < +00,

IN

from which we deduce that ||11QR2V2HM3,U < +00.
t,x
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For the term @3, by the same arguments given to obtain the pointwise estimate 1’ we have

|Lp, Vs(t, )]

IN

110n, Vsl e < C [[1an, 2 (1tan, (@ V)

'ﬂ% / t [ sste =) [0 (@ 9)3)] (s, dus

Cligy, £ ([1am, ((@-9)7)]) (¢, 2),

(recall (3.36)) from which we deduce

. 3.45
HMf;;’ (3.45)

We set now % <qg< % and A=1-— %. Since 3 < 5% and 79 < 6 < 0 < {, applying Lemmaand

Lemma 2.3] we have

H]IQRQ Lo (|]1me (- 6){”) HM?

Recall that we have 79 < 6 < o and by the Holder inequality in Morrey spaces (see Lemma we

obtain
H]lme (@ V)i ‘

where =

condition 7y < 6 < ¢ and the relationship % =

(recall that 0 < a < 7).

g = 10l o

10, V ®ﬁH

< 400
2,7 Y
My

611 = ;10 + % = T% + % These two last quantities are bounded by 1j and () Note that the
% + % are compatible with the fact that 37% <g< g

The term V4 is the most technical one. Indeed, by the expression of 1_/;1 given in 1} we write

7

V(‘)O

} (Yusu;)(s. )|

|]]'QR V4| < Z ]lQRQ //

3,j=1

and taking the Mi’g—norm we have [|1gp, V4||M3,a < Z?j:l H]IQR2£2 (‘ [¢» =A) A)

Weset%:%—F%and)\:l——thenwehave3< 2 and for
o < g 57’0
A 10 — TO
by Lemmas [2.2] and [2.3] we obtain:
va 0;
(o o), = e
M7
Vo0, |
< Cll|o S
(4) |

t—8\2+!w—y|)

3
dyds < Z 1gg, L2
i =1

V8,8;
<| ¢, A (Yuiuy) ),
4] ) -
(3.46)

V9;0;
¢7 (—A) (wuzuﬂ )H 3 g
MEYA
(wuzuj) 3
ME)!

We will study this norm and by the definition of Morrey spaces (12.2)), if we introduce a threshold

ER;, Ra

t= , we have

- 3
V0,0, .

ey

(Puiuy)

|

3
299
M

T

3
1 \%) 2
< sup ——5~ / b, (Yusu;)|  dzdt
(t2) PP1=20) Jq, w2 (—4) !
- (3.47)
3
1 V8;0; :
+ sup / o, Yuug)|  dxdt.
a2 21730 Jo.ua) (=A4) (i)

<r
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Now, we study the second term of the right-hand side above, which is easy to handle as we have vt < r
and we can write

3 . 3
1 / V0;0; 2 V90, 2
sup  ——5~ 0, (Yujuy)| dzdt < Cy |||, L (Yuju;) ,
(a)erxrs r°172) JQ,(12) [ (—A)] ’ LA 7,3
r<r t,x
and since ¢ is a regular function and % is a Calderon—Zydmund operator, by the Calderén com-
Vo, 0j

mutator theorem (see the book [I7]), we have that the operator ¢, } is bounded in the space

3
L7, and we can write (using the support properties of ¢ given in (3.36]) and the information given in

®:32):

|

where in the last line we used Holder inequalities in Morrey spaces and we applied Lemma

V,8;

ey

IN

(Yuiuy) CllYuinsl| 3 < Cllloguwivill 33
Ltm Mt

, T

2
Lt,x

IN

CH]IQR1 ﬁ”/\/@g ”]lQRl ﬁHMf;” < CH]]'QRl EHM?ZO H]]'QRl U”M?;O < +00,

The first term of the right-hand side of (3.47) requires some extra computations: indeed, as we are
interested to obtain information over the parabolic ball Q,(t,Z) we can write for some 0 < r < t:

V8;0;
(—=4)

V8;8;

. A)

o

Lo, (I = 1q,, )duiug), (3.48)

(usuz)) = !¢, (V_a a) ] (Lo tusuy) + 1o,

3
and as before we will study the L7, norm of these two terms. For the first quantity in the right-hand
side of (3.48)), by the Calderén commutator theorem, by the definition of Morrey spaces and by the
Hoélder inequalities we have

for all 0 < r < v, from which we deduce that

V8 0;
[¢’ “a)

N

V@@

ey

IN

3 5(1—3 3
(1, Yuiu;) CllLgy, vuiul|®s < Cr 70 1o, wiug|? , -
M?’T

3
2 x t,x

h
Sholee

L

t,x

< D g, @2 5 1o, @l
< O g 1 M, 1

3
2

(]leﬂv/}u%u])

1 / 3 3
sup ——— dedt < Cl|lg. Ul||? 5. [[1o, @l|? 5, < 4oo.
(t,a’g T5(17237q) QT({j:) H QR1 HM?:ZO H QR1 HM:::IO

o<r<t

We study now the second term of the right-hand side of and for this we consider the following

operator:

\) 0;
—-A

T:f— <]1Qr (I—- HQQTW) f,

and by the properties of the convolution kernel of the operator (7—2) we obtain

I-1 1 ) —
T(f)(@)] < Clg, () / (- 10.)W)loy, W W)6) — Sw)]

R3 |9C—ZJ|4
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Recalling that 0 < r < v = m" 2 by the support properties of the test function ¢ (see (3 ), the
integral above is meaningful if \x —y| > r and thus we can write

) 2 y 3
Lo, |6y =47 | (T Tz )duiuy) SCHnQT/ Iw_iy\;’(ﬂ_nQQT)(y)]IQRl(y)\uiuj\dy ,
(=4) 3 |z — y| id
t,x ;
o\ prltanulc vl d <ol E
< 1 Uil 3 y| <cor 3o, wu; ’
y|>7’ |y|4 QR1 v LtQ,a:(Q'r) QRl v %z r

with this estimate at hand and using the definition of Morrey spaces, we can write

Njw

lo, [¢, o ] (1~ 1, )puiuy)

5 £(1_3 3
dedt < Cr27° TO)H]IQR uitg[* o
1 MEJ’CT
s 3
< OBt} o
t,x
5(1—3) 5(1-2)

where in the last inequality we used the fact that % = T% + %, which implies ror 0 =7 2q7,

Thus we finally obtain
3
2

1o, [¢ (Vf)f)] (1~ 1qu,)puiy)

1 3 3
sup ———=— dedt < Cl||lg, ul|? 5. [|1os @2 5. < 4oc.
w o [ 0, 71 . 1 1

o<r<t

We have proven that all the term in (3.47)) are bounded and we can conclude that ||]1QR2 V4HM3,J < +oo.
t,x

Remark 3.1 The condition (3.46|) implies an upper bound for o depending on the current Morrey
information of U, which a priori is close to 79 with % < 19 < 6. Nevertheless it is clear that whether
we obtain a better Morrey information on integrability for i, the value of o can increase.

e For the quantity \75, based in the expression 1D we write

3
1o, Vs(t,z)| < © Z // [RiRy(Puirt)(:9)| g s < o 3" Lon, L1 (RiR;(duiwy)]) (¢, ),
ij—1 R3 ( t—5|2+|$—y|) ij=1

where we used the decaying properties of the heat kernel (recall that R; = \/% are the Riesz trans-

47’0 +5

forms). Now taking the Morrey Mf;’ norm and by Lemma (with v = , p =3, q= 19 such

that £ > 3 and 1 > ¢ which is compatible with the condition 79 < o) we have

I1an, Vallype < € Z 1TQn, L1 (RiR; (duiu;)|) |

1,j=1

P g
Vv

My

y

Then by Lemma [2.3| with A =1 — TO—E)/2 (recall 79 < 6 < 10 so that v > 2)) and by the boundedness of
Riesz transforms in Morrey spaces we obtain:

1Lqg, L1 (IRiR;(Puiug)|) ||

A

g CllL1 (IRiRj(uius)) || . 4 < CllRiRj(¢uz'Uj)||M3 7

’ - 222X 22
Mt@ Mt,I t,x

IN

HﬂQRluz‘ug‘||Mtg,%o < CltQr, dll ygz:r0 11Qa, Tl y2.70 < 00,
T
and we obtain H]IQRQ\75HM3,J < +o00.

t,x
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For the term Vg and following the same ideas we have

tonTol <03 10, //R

|25 050)uius(5,)

) |

0;
dyds = C Z L1gg, Lo ( gﬁVA)( 9 uiug

2,7=1 S’2+|ZL‘ y|) 1,7=1
For 2 < g < 2, define A =1 — &, we thus have 3 < % and o < {. Then, by Lemma and Lemma
2.3l we can write
Vo, Vo, Vo,
]IQR2£2 ¢ A (0j9)uu; <C ]lQR2£2 LAZ(&jw)u,u] , <C %(ajw)ulu] ,
( ) Mf:g ( ) Mgzv% (_ ) Mfg,;cq

but since the operator ¢_V§i is bounded in Morrey spaces and since 2 < ¢ < % < B < 3 (since 19 < 6),

one has by Lemma 2.2 and by the Holder inequalities

Vo
zb_A) (050 uiu;

< C |[1gn vty 5.0 < CllLan utsll g 5 < Clar, Tlygsll L @l ymo:
t,x t ) 3

214 \T
ME,

from which we deduce [[1¢gy, Vel Ao < +oo. Note that the same computations can be performed to
t,x
obtain that ||1g,, V7| \p@e < 4o0.
t,x

The quantity Vg based in the term (8) of 1' is treated in the following manner: we first write

3 —
o, \Y
Man, Vsl yse <C Y | Lan, | L2|6— Ay (0i0) (wiu;)
t,x z]:l ( ) M3,o‘
. t,x
Weset 1 <v< 2,2u<q< v and)\—l—— thus we have 3 < ¥ and o < %,then, byLemma
and by Lemma we can erte
\% \Y%
L1Qg, | £2 07— (0:05) (uiuy) < Clgg, | L2 07— (0:0;9) (uiu;)
Ay , Ay
Mt,’z Mti\mA
\Y \Y
< C||¢7—75 (0:059) (uiuy) < C||¢7—7x (0:059) (uiuy)
(=4) (—A) v5y
M;’,’z Mt,zQ
\Y%
< Ol (9:059) (wiy) (3.49)
(=4) VL
tx
Sv
where in the last estimate we used the space inclusion LY L° C Mty I~
Remark 3.2 Note that if the parameter q above is close to the value 3%, then A\ = 1 — 57 is close to
0 and thus the value § can be made very big: in the estimates (E) we can consider a Morrey space

,/\/l with o > 1.

Let us focus now in the L® norm above (i.e. without considering the time variable). Remark that due
to the support properties of the auxiliary function ¢ given in (3.36]) we have supp(9;0;v) C Qr, \ Qn,
and recall by (3.36) we have supp ¢ = Qn, where R, < R, < Ry, thus by the properties of the kernel

of the operator (j%) we can write

v
‘cb(_A)(@iOﬂl})(umj) <C ‘/3 |x_1y|211me (:v)]lQRl\Q% (y)(aiaj@b)(uiuj)(.,y)dy‘
SC/ W% (x)]l@m\@ma(y)@i@ﬂb)(uiuj)(ny)dy', (3.50)
R [T —yl
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and the previous expression is nothing but the convolution between the function (9;0;¢)(u;u;) and a
L°-function, thus we have

—

\Y

‘qﬁ(_m(aiajw)(uz‘ua')(ta D[ < Cl0i059) (uiug) (X, )l < Clllgg, (wiug)(E, )l v, (3.51)

LOO

and taking the L”-norm in the time variable we obtain

=

\%
Hsb(_A)(@i@W)(uwj)

< Ollgpuiujlicy, < Clllgg, dll o0l Lep, @l ypm0 < +oo,
LY L ’ ’

where we used the fact that 1 < v < % < 3 and we applied Hélder’s inequality. Gathering together
all these estimates we obtain [|1¢y, \78||M3,o < +o00.
t,x

For the quantity Vg based in the term (9) of 1D we have

: -
5 ) \V,
H]IQRQVQH 30 ]lQRz / e(t )Ad) A 83U3 We) (Sv )ds )
Mt:a: 0 (_ ) M?,o‘
and following the same ideas as before we can write
PV, ¢V 0y
|t0n, %] oo < |Lan,22 ( A )| <o | TR o) ,
t,x Mi’):;‘ M?’lz(),?)l()
if we set ¢ = %, we have 2 < £ = 16225, A=1-— gq = %5 and £ = 310, so we can write
vam Vo,
Mila:O,ZilO Mt)’\:;)\
OV 0y
< 0|0 o) <0l g (3.52)
A i

where we used the Lemma as well as the fact that Riesz transforms are bounded in Lebesgue spaces.
Since g = % < % (and due to the support properties of the function ) we obtain (recall ):

98 0aage < C 100N spag = C 0l 3g < CIOI 3p < oo

The quantity V1o based in the term (10) of 1' and by the same arguments displayed to deduce
(3.49), we can write (recall that 1 < v < 3):

-

\Y

H]lQR2V10||Mf:; <C qsm ((89637/])9)

LYLge

If we study the L*>-norm in the space variable of this term, by the same ideas used in - we
obtain Hgb (Day )0 H < ()80t )| 11 < CllLgy, Ot )| v Thus, takmg the L¥-norm

in the time varlable we have

-

\%

”]]'QRQQ]-OHMS’:; <C ‘1’@ ((0239)0) < Cllgg,Olly, < Cllgg,OllLerz < +oo.

LYLge
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e The quantity Vi, givin in the term (11) of (3.40), can be treated in a similar manner. Indeed, by the
same arguments displayed to deduce 1} we can write (recall that 1 < v < %)

- v
]1 V o < C AN
H QR2 9”/\/[?7*1 — (—A)

¢ ((A¢)p)

)

LyLe

and if we Study the L°°-norm in the space variable of this term, by the same ideas used in -
we obtain |5 (Avp)(t, )|, < CIlAW(E s < CllTgp, plt, e Thus, ki the Z-orm,
in the time variable we have

=

v
(=4)

11Qr, V9HM30 <Clo—s

((A¢)p) < Clggp,pllzy, < Clligg,pl

LYLe

< +o0.

3
L2
t

e The study of the quantity Vlg follows almost the same lines as the terms Vg and VH. However instead

of (3.50) we have

Vo;
‘¢( R((0wm) <

Liz—y|> (2, —9%)
/Rs Ty e (len\an, W)@W)p(Ly)dy).

and thus we can write:

Vo,
(=4)

¢

11r, Violly2e < ((9:¢)p)

< ClQg,pliy, < Clllogpll g < -oo.
LYL b

e Finally, for the term Vi3 based in the term (13) of (3.40) we write:

t
1Qp, Vil = ‘]lcm/ =918 (Bes) (s, z)ds)| .
0

Using the same ideas as in (3.41)-(3.42) and applying again the Lemma [2.2] we obtain

1an, Tisllpes < Clliar, (£2(llgn, )l
S Ol gn, (L2110, D) 101 (3.53)
<

CliL2(am, 0Dl

49 49,
/\A

where we used the same parameters as in (3.52)) and we can write (recall (3.1])):

1£2(1Lan, DI, 5.5 < Clan,lugs = Clitan, 0l 1o 1p = Tan, 0l 39 < oc.
We can thus conclude that
11z, iall v < +00.
With all these estimates Proposition is now proven. |

Remark 3.3 Note that the value of the index o of the Morrey space Mi’g(R x R3) is potentially bounded by
the information available over the variable 0 (recall ) and the mazimal possible value for this parameter
is close to o = 310 (see the expression above).
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This result gives a small gain of integrability as we pass from an information on the Morrey space Mf;o

to a control over the space Mi’; with 79 < ¢ with o close to 7. This is of course not enough and we
need to repeat the arguments above in order to obtain a better control. In this sense we have the following
proposition:

Proposition 3.5 Under the hypotheses of Theorem [I.1] and within the framework of Proposition[3.3, there
exists a radius Ry with 0 < Ry < Ry such that

- 3,310
Lgp, (tow0) @ € My (R X R?), (3.54)
Proof. By the Proposition above it follows that 1g, @ € M?E(R x R3) with o very close to 7o (say
o = 19 +¢). Hence, with the information 1¢, @ € Mi’;ﬁE(R x R3) at hand, we can reapply the Proposition
to obtain for some smaller radius Ry < Ry that Lo, u € MPTHR x R3) where 01 = 0 4 ¢ = 79 + 2.

X
Iterating these arguments as long as necessary, we obtain the information ]IQRQU € Mi’fO(R x R3) where
the value ¢ = 60 is fixed by the information available for the quantity @ which is the only term that is

fixed: see the computation leading to the estimate (3.53) and Remark Let us note that a slight abuse of
language has been used for the radius Ra: at each iteration this radius is smaller and smaller, but in order
to maintain the notations we still denote the final radius by Rs. |

4 A gain of information for the variable 6

Note that the Proposition and the Corollary give interesting control (on a small neighborhood of a
point (tg,xg)) for the variable @. Indeed, we have obtained so far the information

1o, (a0 € MEZ R X R, and  Tg, (tg.a)V @ € M{T (R x R?), (4.1)

t,x

where

0< Ry <R <R<1, (4.2)
with % < 7p < 6 and 7 is given by the condition L = % + % (see the Corollary .

T1

Now we will exploit all this information in order to derive some Morrey control for the variable 6, indeed,
we have:

Proposition 4.1 Under the general hypotheses of Theorem if we have the controls over U then
we have, for some radius 0 < Rg < Ra, we have

12 50
579

Lgp, (toa)f € M2 ° (R X R?).

T

Proof. Consider ¢ : R x R3 — R a non-negative function such that ¢ € C§°(R x R?) and such that

¢ =1 over Qp,(to,z0), supp(¢) C Qp,(to,z0), (4.3)

where we have B
0 <R3 < pp < pa < Ro, (4.4)

where the radius Ry is fixed in (4.2). With the help of this auxiliar function we define the variable © by
© = ¢9,

note that, due to the support properties of the function ¢ we have 1o R,g@ =1gg, 0.
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Thus, if we study the evolution of © we obtain (by (1.1)))

80 = (0,0)0+ ¢<Ae —q- ve)

3
= AO+ (0p+ AP0 —2) 0i(( — div(¢b) + (V) - (@0), (4.5)
=1
3
where we used the identities A = A(pf) + Aph — 2 Z 9;((8;0)0) and the fact that
i=1

o(ii - VO) = pdiv(ih) = div(pih) — Ve - (@),

since div(@) = 0. As we have ©(0,-) = 0 (by the properties of the localizing function ¢ given in ([4.3)),
applying the Duhamel formula we can write:

t 3 t t
ot,z) = /0 =% (0, + A)Ods —2) /0 =929, ((9;0)0)ds — /O =92 div(puh)ds  (4.6)
=1

(Sh (D} O3
t
+ / =2 (V ) - (h)ds,
0

O4

and we will estimate each one of the terms above to prove that we have the wished Morrey control over the
set QR;.

e For the first term ©; we write,

t
100,011 = [tan, [ €95+ Ad0as (17)
0

by the decay properties of the heat kernel, by the properties of the test function ¢ (see (4.3)) and by
the definition of the parabolic Riesz potential Lo given in ([2.3]), we can write the estimate

1 (s
|]1QR @1 < CILQRB// ’ Qpa y)‘ dyds
B (|t = 5|2 + o — y|)?

< Clgg, (L2([1q,, O1))(E, ). (4.8)

If we fix p = %, q= g—g and A = T by applying Lemma and Lemma we obtain

IN

Clie2(e,, 01

q
A

CH]lQpa@H

| 10x, (L2110, 0|, 2.0
t,x

& cn‘m

IN

Cllto, 0l .
t,x

< Cllt, 0l 3 < oo,

t,x

62 10 10
25 33

“s

where we used the information (3.1)).

e For the term O of (4.6) we need to study, for all 1 <14 < 3, the quantities

t
vi= ‘HQRS/O (=%, ((9:9)0)ds
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Thus, using the definition of the parabolic Riesz potential £; given in (2.3)) and applying the Lemma
we can write

10| 12 50 < C’HILQRSL‘,l((é?Z&)G)H 1250 <C Hﬁl((azgz_ﬁ)G)H 50 50 -

M, MZE M
If we set now ¢ = %, 0<1l< 2, A=1-— % = %, we have % = 590, we can use the Lemmato obtain
”(O) || TQ 50 S CHﬁl( 3 G)HM% %
<

C @180 aigs = C @3] g 9 < OOl sp < o0

3

Note that the value %0 is related to the information available over 6 stated in 1’ With these estimates
at hand we deduce that

|1O92]] < +o0.

12 50
5’9

e We study now the term ©3 defined in (4.6 and we write (using the same arguments as before)

¢
on O3l 2y = H]IQR;),/ i (i) ds| o < C|1gn, L1(30)| 2
t,x 0 Mt,sz’ 9 Mt,z
Weset g=32 AX=1-2 =1 and p=22. Since 2 < £ and 2 < ¢ we obtain (by the Lemma
HnQRgm(qﬁue)HMg% < Cller@m)l, g < o]
< CH]IQUHM?;S.IO”]IQGHM?ZTO < 400,
where in the last estimate we used the Holder inequalities in Morrey spaces with % = % + % and

94

1
310 = 70 T 310- We conclude that

Mep, Osll | 1250 < +o0.

t,x

e For the term O4 given in (4.6)), by the same arguments as before we obtain the estimates

110r, €4l 2.5 < C|[Lon, (La(la,, @], 125 -

t,x t,x

Setting p = 19, q= 25 2 and \ = % since 152 < £ and % < 4, applying Lemma and Lemma we

have
10, C2tan @] e < 12210 @D, 2.4 < €0 @], 3.5
t,x a:
< CH]lQp u@” 5793970 C||]1QUHM3310H]1Q9H TOTO < 400,

where we used the Holder inequalities with % = 10 + 1 3 and 2 310 = 1% + %. We finally obtain

ILan,Oull | 12 50 < Foo.

t,x

With all these controls, Proposition [4.1]is proven. [ |
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5 The end of the proof of Theorem (1.1

The key result for obtaining a gain of regularity is the following lemma coming from the theory of parabolic
equations (see [15] [1§]).

Lemma 5.1 Let o be a smooth homogeneous function over R3\ {0}, of exponent 1 with o(D) the Fourier
multiplier associated. Consider the functions ® € M?fx’qo (R x R3) and h € M?gc’ql(R x R3) such that

1 < pg < qo, with q% = 2_?0‘,% = PT“, for 0 < a < 1. Then, the function v equal to 0 fort <0 and

v(t,x) = /0 e(t_S)A(CD(s, )+ o(D)h(s,-))ds,

for t > 0, is Holder continuous of exponent o with respect to the parabolic distance.

In order to apply this lemma to the proof of Theorem we will first localize each one of the equations of
the Boussinesq system ((1.1)) and then we will show the terms of the corresponding Duhamel formula belongs
either to the space M’if’m’qo (R x R?) or to the space MJ%™ (R x R?).

We start by localizing the problem and for this we consider ¢ : R x R® — R a test function such that
supp(¢) C]— %, X[xB(0,3) and ¢ =1 over | — 1, ;=[x B(0, I). We consider next a radius R > 0 such that

JR<R3<Ry<Ri<R<I, (5.1)

where Rj3 is the radius of Proposition Ry is the radius of Proposition and R is the radius obtained
in Proposition We then define

L= M’) . (5.2)

e =o ("t g

We start with the equation over the velocity field and we consider the variable U defined by the formula

—

U =ni, (5.3)

then, by the properties of the auxiliar function 7, we have the identity U = i over a small neighborhood of
the point (tg,x¢), the support of the variable U is contained in the parabolic ball @Qr and moreover we also
have U(0,x) = 0. Thus, if we study the evolution of this variable, following the system 1) we have

U = (8m)id+ nAd —n((@-V)@) — nVp + nbes.

3
We use now the identity nA7 = AU + (An)id — 2 Z 0;((0;m)(@)) to obtain the equation

i=1
3
O = AU + (O + An) (i + &) — 2> 8;((9m)(i0)) — n((@ - Vi) — nVp + nfes.
i=1
Noting that we have (since div(@) = 0) the identity
n((@ - V)i) = ndiv(@ ® @) = div(ni @ @) — TR @ - V),
we finally deduce the following equation for the variable U:
3
oU = AU + (O + An)d — 2 Z 9;((0im)(W)) — divini @ @) + 4@ @ - Vn — nVp + nles. (5.4)

i=1
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We consider now the equation for the variable # and we consider the variable O defined by the formula
O =nb. (5.5)

Thus, following the same ideas used to deduce the equation (4.5) we can write

3
80 = DO + (O + A0 — 23 0,((0m)0) — div(nih) + (V) - (70). (5.6)

i=1
nu , .
ol thus with the equations (5.4)) and (5.6) we
n

— —

3
OV =AV+A-2Y 9,B—div(C)+D—E+F,

.U
At this point, we define the (3 4+ 1)D vector V' =

obtain the system

— (5.7)
V(0,z) = 0.
where the (34 1)D vectors A, ..., H are defined by
" 7 - |(Om)u i ® U
A= (0Om+A B= C=
(O & (0m)6 it
(5.8)

URU- 677
(V) - (i@0)

—

e [2}o-15)

0 0
note that the term C is not exactly a (3 + 1)D vector (the first bloc is a tensor) and the quantity div(C)
div(nt ® )

must be understood in the following sense: div(C) = div(niib)
iv(nu

. This slight abuse of notation can be

easily understood if we work component by component.

Thus, by the Duhamel formula, the solution of the equation (5.7)) can be written in the following manner:

t 3
V(tz) = / (=92 (z ~93 B din(C)+ D - B+ F> s, (5.9)
0 i=1

thus, in order to apply the Lemma [5.1| to this system and obtain a parabolic gain of regularity, we only need
to prove that the quantities A F defined in (5.8|) satisfy:

—

A,D,E,F e M{%*(R xR% and B,Ce MG (R xRY), (5.10)

where we will assume 1 < pg < g < qo, with q% = Z_Tavq% = 1_?0‘, for some 0 < a < %0.

To prove (5.10) we recall that we have the following controls

Loy @€ M R xR, 1o, Voie M (R xR
12 50 10 10 (5.11)
and Qr,0 EMEP (RXR?),  1g0e M (RxR?),

where we have 4R < R3 < Ry < Ry < R and % < 19 < 6 and 77 is given by the condition -1

T1 T0

U=
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e Let us start with the quantity A. We write, by Lemma [2.2| and since 1 < pg g

u
50

noting that qo = i < al<ak %, we thus have

2—a

—

(O + An) <C

SCHﬂQRUIIM , T Cllggo|l Js0’

N U
HAHM;OQCMO = 9 ‘ 6
Mg;‘lo t,:c T

‘ P0-40
M

||A||Mpo 0 < CH]IQR uHMzs 310 + C||]1QR ol < 400,

12 50
5’9

since we have the controls (5.11)).
e For the term B given in ll we have

e

since 1 < pg < g and q; = % < %0 (as 0 < a <k %0), by Lemmawe have

< O 1gn il g0 + Cll gm0
Mg{)ﬁ;‘ll t,x t,x

1Bllygon < Cllqy, @lygan +Cllign ol 2

?q
t,x

< +o00,

50
9

since we have the controls ([5.11)).

Remark 5.1 Note that in this particular stage the information 6 € L s not enough and we need the

t,x
12 50
sharper control 1, 0 e ./\/lf 9,
e For the quantity C defined in ([5.8) we have
nu @ u o .
||(C||Mp07q1 = = < CH]IQRU by UHMPOAU + O”]IQRUHHMPOML (5.12)
t,x 7’]“9 0,91 t,x t,x
Mt,z
For the first term in the right-hand side above we write, since pg < g < % and q; = % < 6 as

I<akl:

[1gp@® u||Mp0 n < Cllgru® u|| 3 155 < CH]leu & u||M3 310||]1Q2u & UHM3 310 < 00,

th

where we used the Holder inequalities in Morrey spaces and the information given in (5.11)).

For the second term in the right-hand side of 1} we have (since py < % < % and q1 = 25 < ﬁg,

which is possible if 0 < o < 1)

1Lon @l ygum < L@l s g5 < Clllag, @l ygsolllon, ol 2.5 < +oc,

318 = ?%
) ;
Mpo

142 _ 1 9
775 — 310 + 50"

where we used the Hélder inequalities in the Morrey space setting with 3 =3 Ly 2 and
We thus obtain [|C|| , jpo.s1 < +00.
t,x

30



e The term D given in 1) we write
URU - 677
(Vi) - (af)

For the first term of the right-hand side above we write, by Lemma since 1 < pg g < % and since
Jo = E < 155:

”DHME,%% = < Cllgru® ﬁ”Mfgqu + CH]IQRI_[QHM;J%%. (5.13)

‘ P0-90
M

[ton@ @l < Cllond@ @l 34 < Cllondlypm ondlya

tz

< CH]IQ%UHME:;mH]IQ%I_[HM::’,;sw < +00,

as We have the controls ([5.11]). For the second term of (5.13)), by the Holder inequalities we have (since
S=38 4 3 and L =122 4 3 a5 g0 = 52)
6 15 ' 10 P 10 10 3890 = 375

H]lQRﬁ‘9||M§?z’q0 < C”]lQRﬁQHMtg;qO < CH]IQRﬁ”Mt%i = ||1QR9||M£,%7

since % < 3 and % < 310 (recall that 0 < a@ < 1, see Remark below), we have

I80n 8 g0 < Ly, s L0, 0l . p <+,
since we have the controls (5.11)).

We deduce that ||D_)HMP01‘10 < +00.
t,x

e The term E defined in li is treated as follows. Recall that by the equation 1} over the pressure
we have the expression

3
0;0; 7]
ij=1
We consider now a positive test function ¢ such that

g =1 over Q,(to,0) and supp(i2) C Qr, (to, o),

where 4R < r, < R3. Note in particular that by definition of the auxiliary functions ¢ and 7 (see
1) we have the identities n = ny and V¢ = 0. Thus for the term nVp we have

0,0} O
nVp = neVp =V (pp) = NV Z e ay ) ~ oAyl |-
i,j=1
and this expression can be rewritten in the following manner
3 = 3 =
Vo, 0; Vo; Vo;
1V = 3 0 py (i) - Z 27 N R D av GO
ij=1 ij=1
(a) (b) (c)
V((A9)p) <~ V(9:(@ip)p)
+2 Z 77 88]@)(UZUJ)+77W —QZWﬁ (5.14)
7-7 1 %,—/ =1
(d) © (f)
\Y \Y
- nmaxs (309) + Um ((636390)0) :

(9) (h)

We study each term above separately.
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For the term (a) in (5.14)), since the Riesz transforms are bounded in Morrey spaces, we obtain
\)
n —-Z&) (901L11Lj)

now, for 1 < k <3, using all the information available over @ (see (5.11))), by Lemma (recall
that po < % <3 3 and q¢ = 5725 < 155) and by the Hélder inequality in Morrey spaces, we have

<[t

I

Mpoqu
> t,
ME0;0 .

H(amp)uiujHMquo <C H]IQRZUZ*UJ'HM?;% < CH]IQRQui”Mi’i’lOH]IQRQUJ'HMi’jw < 4o00.

By essentially the same arguments (recall the informations over @ given in (5.11))) we have (note
that po S and qo = 525 < 120 since 0 < v < 1):

7 > 1445
t,x

||80(akui)uj“Mfoz’% < ClipOruiusll | o130 < Clilr, V@l o 3320 110, usll pez 210,
’ t,x ’

3 § _ 1445 _ b1 .
since 2 = £ 4+ £ and 120 = 122 + 5. Recall now that we have 7 = 2% (see (5.11)) and since
% < To < 6, the parameter 75 can be chosen so that %ﬁg < 711 and we obtain

(@il paposo < Clllgr, V & @l y2m [, ujll yar0 < +o0,
and a symmetric argument gives
lpri(Okug) | g < ClilQruill pzarolllon, V & Ul y2m < +o0.

Thus we can deduce that we have the estimate

V,8;
(=4) MO0
Remark 5.2 Note that the condition q; = 2= < 120 1s the most restrictive constraint over the

parameter a and it implies that 0 < a < i ~ 0.04166.

The terms (b) and (c¢) of (5.14)) can be treated in a similar manner and using the information
available in (5.11)) we have:

77631'

nVo;
—A) (Djp)uiuy

6 120 < C11(0jp)uiu]| gTy

Mp AT -

P0o-90
My

IN

Clgn uiti | 150 < Clag, il ygp 0l L, usll gm0 < +oc.

tz

The term (d) is treated as follows. By Lemma . since po < ¢ <3 3 and qo < 14270 < 4 , we have
v v
Um(aiaj@)(ui“j) <C n(_T)(aiajSO)(uiuj) 515
M M, T
315
Now, by the space inclusion L2L°O C M{,* we obtain
76 (0;0;) (uiu;) <C 7ﬁ (0:05) (uiu;)
77(_A) K3 ]gp (2] M%’% — 77(_A) (3 j@ (2l LjLoo
t,x t T



Following the same ideas displayed in formulas - due to the support properties of the
auxiliary functions we obtain

-

9;9;) (uiuy) < Clqy, wiug| L} < CllLqg, | yg.s10lTqg, @l yg.310 < +oo.

ni(
(_A) L?Loo tz

* The term (e) of ((5.14) follows the same ideas as before, indeed we have

V((Ap)p V((Ap)p V((Ap)p
U] ((—A) ) <C ﬁ((_A)) L SO ((—A) ) \ < Ol Lggpll .3 < +o0,
M Mzt Ly Ly Lo
3
since we have by hypothesis that 1g,p € L, (R x R?).
* The term (f) of (5.14) is estimated in a very similar manner:
V (9i((9i0)p)) < oll, Y@(@)p) < o|l, Y@:(@2)p))
T war || (D) g = (-8) 3,18
Mt,o a0 ME,;; a7 MtQ;T
V(9:((Dig)p)
< C ﬂ((A)) < Cl[Lggpll 3 < Fo0.
L?Lg Lisa
* For the quantity (g) of -) since pg < g < ?0 and qg < 14270 < 130, we have (since the Riesz
transforms are bounded in Lebesgue spaces)
V0, Vo,
7 (9) <C < (90) < Cllef| 19 < +oo.
‘ (_A) MP0:90 _A) Lt%g L,

* Finally, the term (h) of (5.14)), is treated as follows

\Y v
Mig MEE
< C 77—ﬁ ((0z5)0) < C|1gL0| 10 <400
=~ x -~ 10 .
(—A) 3 Lt%LOO Qr L;i

Gathering all these estimates, we finally obtain that \|E||Mpo,qo < 400.
t,x

e The term F given in |D is treated as follows:
= Oe
IFlugue = | [0

where we used the Lemma and pg < g < %2, qo = % < %0 as well as the controls 1' We
finally obtain that \\ﬁ]\Mpo,qo < +o00.
t,x

< 10l ygom < M0l ey < oo

T

P0-490
Mt’z

With all the previous computations we have proven all the information stated in (5.10), which applied in
the integral representation formula (5.9) allows us, with Lemma to conclude that V € C*(R x R3) with
0 < o < 1, and since we have
_ 0
no
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we deduce that 4 and 0 are also Holder regular over a small neighborhood of the point (tg,xo) and this
finishes the proof of Theorem [
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