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Abstract

We address here the problem of regularity for weak solutions of the 3D Boussinesq equation. By introducing the

new notion of partial suitable solutions, which imposes some conditions over the velocity field only, we show a local

gain of regularity for the two variables ~u and θ.
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1 Introduction

We consider in this article the 3D Boussinesq equation and for ~u : [0,+∞[×R3 −→ R3 a divergence free
velocity field, p : [0,+∞[×R3 −→ R a pressure and θ : [0,+∞[×R3 −→ R the temperature, we have the
system 

∂t~u = ∆~u− (~u · ~∇)~u− ~∇p+ θe3, div(~u) = 0,

∂tθ = ∆θ − ~u · ~∇θ,

~u(0, x) = ~u0(x), div(~u0) = 0, θ(0, x) = θ0(x),

(1.1)

where e3 = (0, 0, 1)t. Note that if θ ≡ 0 we then recover the usual 3D Navier-Stokes system which contains
many challenging open problems (see the book [18] for a detailed and up to date treatment of the Navier-
Stokes equations).

The Boussinesq system (in 2D or 3D) was extensively studied from many points of view, see [6], [7] and
[8] for existence results, [2] for the large time behavior, [10], [11] and [13] for some regularity properties.
See also [12], [16] and [21] and the references there in for other problems related to the Boussinesq equations.

∗diego.chamorro@univ-evry.fr
†mindrila@karlin.mff.cuni.cz
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In this work we will focus on the 3D case which, by its proximity to the Navier-Stokes problem, is
slightly more delicate to handle (in terms of regularity issues) than the 2D case. The Boussinesq system is
of course different than the Navier-Stokes equations: indeed, the presence of the temperature θ in the first
equation of (1.1) and the coupling via the drift term ~u · ~∇θ in the second equation induce some interesting
modifications. For example, applying the divergence operator to the first equation in (1.1) we obtain the
following relationship

−∆p = div
(
div(~u⊗ ~u)

)
− ∂x3θ, (1.2)

which gives an equation for the pressure that is distinct than in the case of the Navier-Stokes problem
since in order to recover the pressure p we need both variable ~u and θ. Another difference is related to the
energy inequalities: from some initial data ~u0, θ0 ∈ L2(R3) and for some fixed time 0 < T ∗ < +∞ we can
construct weak solutions (~u, θ) ∈ L∞([0, T ∗], L2(R3)) ∩ L2([0, T ∗], Ḣ1(R3)) that satisfy the following energy
inequalities (valid for all 0 < t < T ∗)

‖~u(t, ·)‖2L2 + 2

∫ t

0
‖~∇⊗ ~u(s, ·)‖2L2ds ≤ C(‖~u0‖2L2 + t2‖θ0‖2L2) (1.3)

‖θ(t, ·)‖2L2 + 2

∫ t

0
‖~∇θ(s, ·)‖2L2ds ≤ ‖θ0‖2L2 , (1.4)

but here the estimate (1.3) is not uniform in time and this fact can cause some problems when studying
global solutions. See for example [2], [6] and [8] for more details concerning existence issues.

Concerning regularity theories, the celebrated Caffarelli-Kohn-Nirenberg criterion for the Navier-Stokes
system (see [5]) was extended in [11] to the Boussinesq equation. This theory is based in the notion of
suitable solutions which are, roughly speaking, weak solutions that satisfy a local energy inequality. Let us
note that in the mentioned work [11], the suitability condition is imposed to the variables ~u and θ.

We will show here that this condition over the two variables is redundant and that it is enough to consider
some behavior for the velocity field ~u only: this fact will lead us to the notion of partial suitable solutions
and with the help of this concept we will see how to deduce a gain of regularity for both variables.

As we are interested in the behavior of the solutions on small neighborhood of points, we will consider
parabolic balls which are defined in the following manner:

QR(t, x) =]t−R2, t+R2[×BR(x), (1.5)

for some radius 0 < R < 1 such that t − R2 > 0 with 0 < t < T ∗, where T ∗ is a fixed bounded time for
which we have the estimates (1.3) and (1.4): we thus have (~u, θ) ∈ L∞([0, T ∗], L2(R3))∩L2([0, T ∗], Ḣ1(R3))
and also (~u, θ) ∈ L∞t L2

x(QR) ∩ L2
t Ḣ

1
x(QR). In this general framework, we have the following definition:

Definition 1.1 (Partial suitable solutions) Consider ~u, θ ∈ L∞t L2
x(QR)∩L2

t Ḣ
1
x(QR) two functions that

satisfy the equation (1.1) in the weak sense over the set QR. Assume moreover that we have the following

local information over the pressure: p ∈ L
3
2
t,x(QR). We will say that (~u, p, θ) is a partial suitable solution

for the 3D Boussinesq equation (1.1) if the distribution µ given by the expression

µ = −∂t|~u|2 + ∆|~u|2 − 2|~∇⊗ ~u|2 − div
(
(|~u|2 + 2p)~u

)
+ θe3 · ~u, (1.6)

is a non-negative locally finite measure on QR.

The condition p ∈ L
3
2
t,x is rather classical (see [18, Chapter 13]) and the contribution of the variable θ via

the relationship (1.2) does not cause any interference as we have θ ∈ L∞t L2
x(QR) ∩ L2

t Ḣ
1
x(QR).
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This notion of partial suitable solution is useful to deduce some local energy inequalities for the velocity
field ~u, but we do not need to impose a similar condition to the variable θ, which can be seen at this stage
as a non-divergence free external force. Indeed, by a separate study of each of these variables we will obtain
our main result:

Theorem 1.1 Consider (~u, p, θ) a partial suitable solution for the 3D Boussinesq equation (1.1) in the sense
of the Definition 1.1. There exists a small constant 0 < ε∗ � 1 such that if for some point (t0, x0) ∈ QR we
have

lim sup
r→0

1

r

∫
]t0−r2,t0+r2[×B(x0,r)

|~∇⊗ ~u|2dxds < ε∗, (1.7)

then, the solution (~u, θ) is Hölder continuous in time and space for some exponent 0 < α � 1 in a small
neighborhood of (t0, x0).

Some remarks are in order here. First note that besides the partial suitable condition we only need a
mild behavior for the gradient of the velocity field ~u (stated in the hypothesis (1.7) above), and thus no
particular constraint is asked for the variable θ. Next remark that in this context we can obtain a (local)
gain of regularity for both variables ~u and θ: when dealing with regularity issues we can thus observe that
the variable ~u dominates the variable θ, in the sense that we can deduce some regularity information on the
variable θ from the behavior of the variable ~u. This fact seems (to the best of our knowledge) to be new in
the study of the regularity properties for the 3D Boussinesq system.

Note also that the gain of regularity is stated in terms of Hölder spaces (in time and space) over a
small neighborhood of points (t0, x0) where we have (1.7), thus it will be quite natural to use parabolic
Hölder spaces which are defined in the expression (2.1) below. Finally, let us mention that the points
(t0, x0) ∈ [0, T ] × R3 for which we have (1.7) are called regular points and following [11] (or adapting the
ideas of [20] or [18, Section 13.10]) it can be proven that the parabolic 1-Hausdorff measure of the set of
singular points is null.

The outline of the article is the following. In Section 2 we recall the definition of the parabolic Hölder
spaces as well as the notion of parabolic Morrey spaces. These spaces, although completely absent in the
statement of Theorem 1.1, are a powerful tool when studying problems related to regularity in PDEs (see
the key Lemma 5.1 below) and in this article we will use them in a systematic manner. In Section 3 we
study the variable ~u considering the variable θ as an external force and we will obtain a gain of information
for ~u in terms of Morrey spaces. Section 4 is devoted to the study of the variable θ and we will see how to
obtain a gain of integrability (also stated in terms of Morrey spaces) for this variable. Finally, in Section 5,
gathering all the information available on the variables ~u and θ we will prove Theorem 1.1.

2 Parabolic Hölder and Morrey spaces

We will consider the homogeneous space (R×R3, d, µ) where d is the parabolic distance given by d
(
(t, x), (s, y)

)
=

|t− s|
1
2 + |x− y| and where µ is the usual Lebesgue measure dµ = dxdt. We then define the homogeneous

(parabolic) Hölder spaces Ċα(R× R3,R3) with 0 < α < 1 by the usual condition:

‖~φ‖Ċα = sup
(t,x) 6=(s,y)

|~φ(t, x)− ~φ(s, y)|(
|t− s|

1
2 + |x− y|

)α < +∞, (2.1)

and it is with respect to this functional space that we will obtain the regularity gain announced.
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Now, for 1 < p ≤ q < +∞, the (parabolic) Morrey spaces Mp,q
t,x(R × R3) are defined as the set of

measurable functions ~φ : R× R3 −→ R3 that belong to the space (Lpt,x)loc such that ‖~φ‖Mp,q
t,x

< +∞ where

‖~φ‖Mp,q
t,x

= sup
x0∈R3,t0∈R,r>0

(
1

r
5(1− p

q
)

∫
|t−t0|<r2

∫
B(x0,r)

|~φ(t, x)|pdxdt

) 1
p

. (2.2)

Morrey spaces appear to be very convenient functional spaces when dealing with regularity issues as it was
pointed out in [14], [18] and [19].

We present now some well-known facts:

Lemma 2.1 (Hölder inequalities)

1) If ~f,~g : R × R3 −→ R3 are two functions such that ~f ∈ Mp,q
t,x(R × R3) and ~g ∈ L∞t,x(R × R3), then for

all 1 ≤ p ≤ q < +∞ we have ‖~f · ~g‖Mp,q
t,x
≤ C‖~f‖Mp,q

t,x
‖~g‖L∞t,x.

2) Let 1 ≤ p0 ≤ q0 < +∞, 1 ≤ p1 ≤ q1 < +∞ and 1 ≤ p2 ≤ q2 < +∞. If 1
p1

+ 1
p2

= 1
p0

and
1
q1

+ 1
q2

= 1
q0

, then for two measurable functions ~f,~g : R × R3 −→ R3 such that ~f ∈ Mp1,q1
t,x (R × R3)

and ~g ∈Mp2,q2
t,x (R× R3), we have the following Hölder inequality in Morrey spaces

‖~f · ~g‖Mp0,q0
t,x

≤ ‖~f‖Mp1,q1
t,x
‖~g‖Mp2,q2

t,x
.

Lemma 2.2 (Localization) Let Ω be a bounded set of R× R3. If we have 1 ≤ p0 ≤ q0, 1 ≤ p1 ≤ q1 with
the condition q0 ≤ q1 < +∞ and if the function ~f : R×R3 −→ R3 belongs to the space Mp1,q1

t,x (R×R3) then
we have the following localization property

‖1Ω
~f‖Mp0,q0

t,x
≤ C‖1Ω

~f‖Mp1,q1
t,x

≤ C‖~f‖Mp1,q1
t,x

.

In our work, the notion of parabolic Riesz potential (and its properties) will be crucial and for some
index 0 < a < 5 we define the parabolic Riesz potential La of a locally integrable function ~f : R×R3 → R3

by

La(~f)(t, x) =

∫
R

∫
R3

1

(|t− s|
1
2 + |x− y|)5−a

~f(s, y)dyds. (2.3)

Then, we have the following property in Morrey spaces

Lemma 2.3 (Adams-Hedberg inequality) If 0 < a < 5
q , 1 < p ≤ q < +∞ and ~f ∈Mp,q

t,x(R×R3), then

for λ = 1− aq
5 we have the following boundedness property in Morrey spaces:

‖La(~f)‖
M

p
λ
,
q
λ

t,x

≤ C‖~f‖Mp,q
t,x
.

The three lemmas above constitute our main tools in Morrey spaces. For a more detailed study of these
functional spaces we refer to [1] and [18].

3 A partial gain of information for the variable ~u

In this section we will only focus our study in the variable ~u and its equation:

∂t~u = ∆~u− (~u · ~∇)~u− ~∇p+ θe3, div(~u) = 0.

Here, the variable θ can be seen as an external force for which we have the information θ ∈ L∞([0, T ], L2(R3))∩
L2([0, T ], Ḣ1(R3)), note that by interpolation we also have

θ ∈ L
10
3
t,x([0, T ]× R3). (3.1)

In order to obtain a gain of information in the variable ~u, we will first consider some estimates for the
pressure and then we will deduce inequalities for the velocity field ~u.
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3.1 Study of the Pressure

Since the pressure p satisfies the equation (1.2) and it depends on the velocity field ~u and on the temperature
θ, we first need to establish some controls for it. Although the equation for the pressure is in the case of
the 3D Boussinesq equation relatively similar to the equation of the pressure for the 3D Navier-Stokes one,
there are some differences that must be treated carefully.

We introduce the following quantities: for a point (t, x) ∈ R × R3 and for a real parameter r > 0 we
write

Ar(t, x) = sup
t−r2<s<t+r2

1

r

∫
B(x,r)

|~u(s, y)|2dy, αr(t, x) =
1

r

∫
Qr(t,x)

|~∇⊗ ~u(s, y)|2dyds,

Br(t, x) =
1

r2

∫
Qr(t,x)

|~u(s, y)|3dyds, Pr(t, x) =
1

r2

∫
Qr(t,x)

|p(s, y)|
3
2dyds,

(3.2)

and when the context is clear we will simply write Ar = Ar(t, x). Note that the previous quantities

correspond to the information L∞t L
2
x, L2

t Ḣ
1
x, L3

t,x and L
3
2
t,x, in particular we have the following relationships:

rAr = ‖~u‖2L∞t L2
x(Qr)

, rαr = ‖~∇⊗ ~u‖2L2
t,x(Qr)

, r2Pr = ‖p‖
3
2

L
3
2
t,x(Qr)

. (3.3)

With these quantities above we will deduce now a useful estimate for the pressure.

Proposition 3.1 (Pressure estimate) Under the hypotheses of Theorem 1.1 and with the notations given
in (3.2) for any 0 < r < ρ

2 < R we have the inequality

P
2
3
r ≤ C

((ρ
r

)
(Aραρ)

1
2 +

(
r

ρ

) 3
2

ρ
5
6 ‖θ‖L∞t L2

x(Qρ) +

(
r

ρ

) 2
3

P
2
3
ρ

)
. (3.4)

Proof. For proving the inequality above, we will start by the following estimate (where σ is a real number
such that 0 < σ < 1

2):

‖p‖
L

3
2
t,x(Qσ)

≤ C
(
σ

1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1) + σ

17
6 ‖θ‖L∞t L2

x(Q1) + σ2‖p‖
L

3
2
t,x(Q1)

)
, (3.5)

here Qσ and Q1 are parabolic balls of radius σ and 1 respectively (the definition of such balls is given in (1.5)).

To obtain this inequality (3.5) we introduce η : R3 −→ [0, 1] a smooth function supported in the ball B1

such that η ≡ 1 on the ball B 3
5

and η ≡ 0 outside the ball B 4
5
, note also that over the set Qσ we have the

identity p = ηp. Thus, by a straightforward calculation we have

−∆(ηp) = −η∆p+ (∆η)p− 2

3∑
i=1

∂i((∂iη)p),

from which we deduce the inequality

‖p‖
L

3
2
t,x(Qσ)

= ‖ηp‖
L

3
2
t,x(Qσ)

≤

∥∥∥∥∥
(
− η∆p

)
(−∆)

∥∥∥∥∥
L

3
2
t,x(Qσ)

+

∥∥∥∥(∆η)p

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)

+ 2
3∑
i=1

∥∥∥∥∂i((∂iη)p)

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)

.
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For the first term above, since we have the equation (1.2) for the pressure we can write

‖p‖
L

3
2
t,x(Qσ)

≤ C

∥∥∥∥∥∥ 1

(−∆)

(
η

3∑
i,j=1

∂i∂j(uiuj)
)∥∥∥∥∥∥

L
3
2
t,x(Qσ)︸ ︷︷ ︸

(p1)

+

∥∥∥∥ 1

(−∆)

(
η∂x3θ

)∥∥∥∥
L

3
2
t,x(Qσ)︸ ︷︷ ︸

(p2)

(3.6)

+

∥∥∥∥(∆η)p

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)︸ ︷︷ ︸

(p3)

+2

3∑
i=1

∥∥∥∥∂i((∂iη)p)

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)︸ ︷︷ ︸

(p4)

.

We will study each term above separately.

• For the term (p1) in (3.6), if we denote by Ci,j = ui(uj − (uj)1) where (uj)1 is the average of uj over

the ball of radius 1, since ~u is divergence free, we have the formula

3∑
i,j=1

∂i∂j(uiuj) =

3∑
i,j=1

∂i∂jCi,j and

thus we can write

(p1) =

∥∥∥∥∥∥ 1

(−∆)

(
η

3∑
i,j=1

∂i∂jCi,j

)∥∥∥∥∥∥
L

3
2
t,x(Qσ)

≤
3∑

i,j=1

∥∥∥∥ 1

(−∆)

(
∂i∂j(ηCi,j)− ∂i

(
(∂jη)Ci,j

)
− ∂j

(
(∂iη)Ci,j

)
+ 2(∂i∂jη)Ci,j

)∥∥∥∥
L

3
2
t,x(Qσ)

. (3.7)

Denoting by Ri = ∂i√
−∆

the usual Riesz transforms on R3, by the boundedness of these operators in

Lebesgue spaces and using the support properties of the auxiliary function η, we have for the first term
above (in the space variable):∥∥∥∥ ∂i∂j(−∆)

ηCi,j(t, ·)
∥∥∥∥
L

3
2 (Bσ)

≤ ‖RiRj(ηCi,j)(t, ·)‖
L

3
2 (R3)

≤ C‖ηCi,j(t, ·)‖
L

3
2 (B1)

≤ C‖ui(t, ·)‖L2(B1)‖uj(t, ·)− (uj)1‖L6(B1)

≤ C‖~u(t, ·)‖L2(B1)‖~∇⊗ ~u(t, ·)‖L2(B1),

where we used Hölder and Poincaré inequalities in the last line. Now taking the L
3
2 -norm in the time

variable of the previous inequality we obtain:∥∥∥∥ ∂i∂j(−∆)
ηCi,j

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1). (3.8)

For the other terms of (3.7) we note that ∂iη vanishes on B 3
5
∪Bc

4
5

and since Bσ ⊂ B 1
2
⊂ B 3

5
, using the

integral representation for the operator ∂i
(−∆) we have for the second term of (3.7) the estimate∥∥∥∥ ∂i

(−∆)

(
(∂jη)Ci,j

)
(t, ·)

∥∥∥∥
L

3
2 (Bσ)

≤ Cσ2

∥∥∥∥ ∂i
(−∆)

(
(∂jη)Ci,j

)
(t, ·)

∥∥∥∥
L∞(Bσ)

≤ C σ2

∥∥∥∥∥
∫
{ 3

5
<|y|< 4

5
}

xi − yi
|x− y|3

(
(∂jη)Ci,j

)
(t, y) dy

∥∥∥∥∥
L∞(Bσ)

, (3.9)

since this is a convolution with a bounded kernel (due to the support properties in the variables x and
y), by the Young inequalities we have

≤ C σ2‖Ci,j(t, ·)‖L1(B1) ≤ C σ2‖ui(t, ·)‖L2(B1)‖uj(t, ·)− (uj)1‖L2(B1)

≤ C ‖~u(t, ·)‖L2(B1)‖~∇⊗ ~u(t, ·)‖L2(B1),
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where we used the same ideas as in (3.8) before and the fact that 0 < σ < 1. Thus taking the L
3
2 -norm

in the time variable, we obtain∥∥∥∥ ∂i
(−∆)

(
(∂jη)Ci,j

)∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1). (3.10)

A symmetric argument gives∥∥∥∥ ∂j
(−∆)

(
(∂iη)Ci,j

)∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1), (3.11)

and observing that the convolution kernel associated to the operator 1
(−∆) is C

|x| , following the same

ideas we have for the last term of (3.7) the inequality∥∥∥∥(∂i∂jη)Ci,j
(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1). (3.12)

Therefore, combining the estimates (3.8), (3.10), (3.11) and (3.12) and getting back to (3.7) we finally
have:

(p1) =

∥∥∥∥∥∥ 1

(−∆)

(
η

3∑
i,j=1

∂i∂j(uiuj)
)∥∥∥∥∥∥

L
3
2
t,x(Qσ)

≤ C
(
σ

1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1)

)
. (3.13)

• For the term (p2) of (3.6) we write

(p2) =

∥∥∥∥ 1

(−∆)

(
η∂x3θ

)∥∥∥∥
L

3
2
t,x(Qσ)

≤
∥∥∥∥ 1

(−∆)
∂x3

(
ηθ
)∥∥∥∥
L

3
2
t,x(Qσ)︸ ︷︷ ︸

(p2a)

+

∥∥∥∥ 1

(−∆)

((
∂x3η

)
θ
)∥∥∥∥

L
3
2
t,x(Qσ)︸ ︷︷ ︸

(p2b)

.

For the quantity (p2a) we start by considering the space variable and by the Hölder inequality with
2
3 = 1

2 + 1
6 we write∥∥∥∥1Bσ 1

(−∆)
∂x3

(
ηθ
)
(t, ·)

∥∥∥∥
L

3
2 (Bσ)

≤ C‖1Bσ‖L2(Bσ)

∥∥∥∥ 1

(−∆)
∂x3

(
ηθ
)
(t, ·)

∥∥∥∥
L6(Bσ)

≤ Cσ
3
2

∥∥∥∥ ∂x3

(−∆)

(
ηθ
)
(t, ·)

∥∥∥∥
L6(R3)

,

and since the Riesz transforms are bounded in Lebesgue spaces we can write∥∥∥∥ ∂x3

(−∆)

(
ηθ
)
(t, ·)

∥∥∥∥
L6(R3)

≤ Cσ
3
2

∥∥∥∥∥ 1√
(−∆)

(
ηθ
)
(t, ·)

∥∥∥∥∥
L6
t,x(R3)

≤ Cσ
3
2 ‖(ηθ)(t, ·)‖L2(R3) ≤ Cσ

3
2 ‖η(t, ·)‖L∞‖θ(t, ·)‖L2(B1),

where we used the Hardy-Littlewood-Sobolev inequalities and the localizing properties of the function
η. Now, we integrate with respect to the time variable, and with the previous controls we obtain

(p2a) =

∥∥∥∥ 1

(−∆)
∂x3

(
ηθ
)
(t, ·)

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ
3
2σ

4
3 ‖θ‖L∞t L2

x(Q1) = Cσ
17
6 ‖θ‖L∞t L2

x(Q1). (3.14)
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For the term (p2b) we proceed as in (3.9) and due to the properties of the localizing function η we write∥∥∥∥ 1

(−∆)

((
∂x3η

)
θ
)

(t, ·)
∥∥∥∥
L

3
2 (Bσ)

≤ Cσ2

∥∥∥∥ 1

(−∆)

((
∂x3η

)
θ
)

(t, ·)
∥∥∥∥
L∞(Bσ)

≤ Cσ2

∥∥∥∥∥
∫
{ 3

5
<|y|< 4

5
}

1

|x− y|

((
∂x3η

)
θ
)

(t, ·)

∥∥∥∥∥
L∞(Bσ)

,

since the kernel of convolution above is bounded (as x ∈ Bσ with 0 < σ < 1
2 and y ∈ {3

5 < |y| <
4
5}),

we obtain ∥∥∥∥ 1

(−∆)

((
∂x3η

)
θ
)

(t, ·)
∥∥∥∥
L

3
2 (Bσ)

≤ Cσ2‖θ(t, ·)‖L1(B1) ≤ Cσ2‖θ(t, ·)‖L2(B1).

Thus, taking the L
3
2 -norm in the time variable we have

(p2b) =

∥∥∥∥ 1

(−∆)

((
∂x3η

)
θ
)∥∥∥∥

L
3
2
t,x(Qσ)

≤ Cσ
10
3 ‖θ‖L∞t L2

x(Q1) ≤ Cσ
17
6 ‖θ‖L∞t L2

x(Q1), (3.15)

(since 0 < σ < 1 and σ
10
3 ≤ σ

17
6 ). Now with the estimate (3.14) for (p2a) and (3.15) for (p2b) we can

write
(p2) ≤ Cσ

17
6 ‖θ‖L∞y L2

x(Q1). (3.16)

• We continue our study of expression (3.6) and for the term (p3) we first treat the space variable.
Recalling the support properties of the auxiliary function η and properties of the convolution kernel
associated to the operator 1

(−∆) , we can write as before (see (3.9)):∥∥∥∥(∆η)p(t, ·)
(−∆)

∥∥∥∥
L

3
2 (Bσ)

≤ Cσ2‖p(t, ·)‖L1(B1) ≤ Cσ2‖p(t, ·)‖
L

3
2 (B1)

,

and thus, taking the L
3
2 -norm in the time variable we obtain:

(p3) =

∥∥∥∥(∆η)p

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ2‖p‖
L

3
2
t,x(Q1)

. (3.17)

• For the last term of expression (3.6), following the same ideas displayed in (3.9) we can write∥∥∥∥ ∂i
(−∆)

(∂iη)p(t, ·)
∥∥∥∥
L

3
2 (Bσ)

≤ Cσ2‖p(t, ·)‖L1(B1) ≤ Cσ2‖p(t, ·)‖
L

3
2 (B1)

,

and we obtain

(p4) =

∥∥∥∥∂i((∂iη)p)

(−∆)

∥∥∥∥
L

3
2
t,x(Qσ)

≤ Cσ2‖p‖
L

3
2
t,x(Q1)

. (3.18)

Now, gathering the estimates (3.13), (3.16), (3.17) and (3.18) we obtain the inequality

‖p‖
L

3
2
t,x(Qσ)

≤ C
(
σ

1
3 ‖~u‖L∞t L2

x(Q1)‖~∇⊗ ~u‖L2
t,x(Q1) + σ

17
6 ‖θ‖L∞t L2

x(Q1) + σ2‖p‖
L

3
2
t,x(Q1)

)
,

which is (3.5).

To deduce inequality (3.4), if we fix σ = r
ρ ≤

1
2 and if we introduce the functions pρ(t, x) = p(ρ2t, ρx),

θρ(t, x) = θ(ρ2t, ρx) and ~uρ(t, x) = ~u(ρ2t, ρx), then from the control (3.5) we have

‖pρ‖
L

3
2
t,x(Q r

ρ
)
≤ C

((
r

ρ

) 1
3

‖~uρ‖L∞t L2
x(Q1)‖~∇⊗ ~uρ‖L2

t,x(Q1) +

(
r

ρ

) 17
6

‖θρ‖L∞t L2
x(Q1) +

(
r

ρ

)2

‖pρ‖
L

3
2
t,x(Q1)

)
,
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and by a change of variable we can write

‖p‖
L

3
2
t,x(Qr)

ρ−
10
3 ≤ C

((
r

ρ

) 1
3

ρ−
3
2 ‖~u‖L∞t L2

x(Qρ)ρ
− 3

2 ‖~∇⊗ ~u‖L2
t,x(Qρ) +

(
r

ρ

) 17
6

ρ−
3
2 ‖θ‖L∞t L2

x(Qρ)

+

(
r

ρ

)2

ρ−
10
3 ‖p‖

L
3
2
t,x(Qρ)

)
.

Now, recalling that by (3.2) and (3.3) we have the identities

r
4
3P

2
3
r = ‖p‖

L
3
2
t,x(Qr)

, ρ
1
2A

1
2
ρ = ‖~u‖L∞t L2

x(Qρ) and ρ
1
2α

1
2
ρ = ‖~∇⊗ ~u‖L2

t,x(Qρ),

we finally obtain

P
2
3
r ≤ C

((ρ
r

)
(Aραρ)

1
2 +

(
r

ρ

) 3
2

ρ
5
6 ‖θ‖L∞t L2

x(Qρ) +

(
r

ρ

) 2
3

P
2
3
ρ

)
,

and this finishes the proof of Proposition 3.1. �

3.2 Study of the velocity field

We continue our study with the treatment of the velocity field ~u and we start with a relationship between
some of the quantities defined in (3.2) above:

Lemma 3.1 For 0 < r < 1 we have the relationship between Br, Ar and αr:

B
1
3
r ≤ C(Ar + αr)

1
2 . (3.19)

Proof. Indeed, using the definition of Br given in (3.2) above and by Hölder inequality we have

B
1
3
r =

1

r
2
3

‖~u‖L3
t,x(Qr) ≤

C

r
1
2

‖~u‖
L

10
3
t,x(Qr)

.

By interpolation we have ‖~u‖
L

10
3
t,x(Qr)

≤ ‖~u‖
2
5

L∞t L
2
x(Qr)

‖~u‖
3
5

L2
tL

6
x(Qr)

. Now, for the L2
tL

6
x norm of ~u, we use the

classical Gagliardo-Nirenberg inequality (see [3]) to obtain ‖~u‖L2
tL

6
x(Qr) ≤ C

(
‖~∇⊗~u‖L2

tL
2
x(Qr) +‖~u‖L∞t L2

x(Qr)

)
and using Young’s inequalities we have

‖~u‖
L

10
3
t,x(Qr)

≤ C‖~u‖
2
5

L∞t L
2
x(Qr)

(
‖~∇⊗ ~u‖

3
5

L2
tL

2
x(Qr)

+ ‖~u‖
3
5

L∞t L
2
x(Qr)

)
≤ C

(
‖~u‖L∞t L2

x(Qr) + ‖~∇⊗ ~u‖L2
tL

2
x(Qr)

)
.

Recalling that ‖~u‖L∞t L2
x(Qr) = r

1
2A

1
2
r and ‖~∇⊗ ~u‖L2

tL
2
x(Qr) = r

1
2α

1
2
r , we finally obtain (3.19). �

Now, we will establish an estimate that relies in the energy estimate (1.3):

Proposition 3.2 Under the hypotheses of Theorem 1.1 and with the notations given in (3.2) we have for
any radius 0 < r < ρ

2 < 1 the inequality

Ar + αr ≤ C
r2

ρ2
Aρ +

ρ2

r2
α

1
2
ρAρ + C

ρ2

r2
P

2
3
ρ (Aρ + αρ)

1
2 + C

ρ
7
2

r
‖θ‖L∞t L2

x(Qρ)α
1
2
ρ . (3.20)

Proof. Following the idea of Scheffer [20], we will consider the following test function:
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Lemma 3.2 Let 0 < r < ρ
2 < R < 1. Let φ ∈ C∞0 (R× R3) be a function such that

φ(s, y) = r2ω

(
s− t
ρ2

,
y − x
ρ

)
θ

(
s− t
r2

)
g(4r2+t−s)(x− y),

where ω ∈ C∞0 (R × R3) is positive function whose support is in Q1(0, 0) and equal to 1 in Q 1
2
(0, 0). In

addition θ is a smooth function non negative such that θ = 1 over ]−∞, 1[ and θ = 0 over ]2,+∞[ and gt(·)
is the usual heat kernel. Then, we have the following points.

1) the function φ is a bounded non-negative function, and its support is contained in the parabolic ball Qρ,
and for all (s, y) ∈ Qr(t, x) we have the lower bound φ(s, y) ≥ C

r ,

2) for all (s, y) ∈ Qρ(t, x) with 0 < s < t+ r2 we have φ(s, y) ≤ C
r ,

3) for all (s, y) ∈ Qρ(t, x) with 0 < s < t+ r2 we have ~∇φ(s, y) ≤ C
r2 ,

4) moreover, for all (s, y) ∈ Qρ(t, x) with 0 < s < t+ r2 we have |(∂s + ∆)φ(s, y)| ≤ C r2

ρ5 .

A detailed proof of this lemma can be found in [18, Chapter 13].

With the all the properties of this function φ, exploiting the fact that (~u, θ) is a partial suitable solution
(it satisfies a local energy inequality) and using the notations (3.2) above, we can write:

Ar + αr ≤
∫
R3

(∂tφ+ ∆φ)|~u|2dxds︸ ︷︷ ︸
(1)

+2

∫
R

∫
R3

p(~u · ~∇φ)dxds︸ ︷︷ ︸
(2)

+

∫
R

∫
R3

|~u|2(~u · ~∇)φdxds︸ ︷︷ ︸
(3)

+2

∫
R

∫
R3

θe3 · (φ~u)dxds︸ ︷︷ ︸
(4)

. (3.21)

The terms of the right hand side above will be studied separately. Indeed,

• For the quantity (1) in (3.21), using the properties of the function φ given in Lemma 3.2 and by the
definition of the quantity Aρ given in (3.2) we have

∫
R3

(∂tφ+ ∆φ)|~u|2dxds ≤ C r
2

ρ5

∫
Qρ

|~u|2dxds = C
r2

ρ5

∫ t+ρ2

t−ρ2

∫
Bρ

|~u|2dxds ≤ C r
2

ρ2
Aρ.

• For the term (2) in (3.21), by the properties of the function φ given in Lemma 3.2 and by the Hölder
inequality, we obtain

∫
R

∫
R3

p(~u · ~∇φ)dxds ≤ C

r2

∫ t+ρ2

t−ρ2

∫
Bρ

|p||~u|dxds ≤ C

r2
‖p‖

L
3
2
t,x(Qρ)

‖~u‖L3
t,x(Qρ),

noting that by (3.2) we have ‖p‖
L

3
2
t,x(Qρ)

= ρ
4
3P

2
3
ρ and ‖~u‖L3

t,x(Qρ) = ρ
2
3λ

1
3
ρ , we can thus write

∫
R

∫
R3

p(~u · ~∇φ)dxds ≤ C

r2

(
ρ

4
3P

2
3
ρ

)(
ρ

2
3λ

1
3
ρ

)
≤ Cρ

2

r2
P

2
3
ρ (Aρ + αρ)

1
2 ,

where in the last estimate we used the control (3.19).
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• For the term (3) in (3.21), let us first define the average (|~u|2)ρ =
1

|B(x, ρ)|

∫
B(x,ρ)

|~u(t, y)|2dy and since

~u is divergence free we have

∫
Bρ

(|~u|2)ρ(~u · ~∇)φdx = 0. Then, we can write by the properties of the

function φ given in Lemma 3.2 and by the Hölder inequality:

∫
R

∫
R3

|~u|2(~u · ~∇)φdxds =

∫
Qρ

[|~u|2 − (|~u|2)ρ](~u · ~∇)φdxds ≤ C

r2

∫ t+ρ2

t−ρ2

∫
Bρ

∣∣|~u|2 − (|~u|2)ρ|
∣∣ ~u|dxds

≤ C

r2

∫ t+ρ2

t−ρ2

‖|~u|2 − (|~u|2)ρ‖
L

3
2 (Bρ)

‖~u(s, ·)‖L3(Bρ)ds.

Now, Poincare’s inequality implies

≤ C

r2

∫ t+ρ2

t−ρ2

‖~∇(|~u(s, ·)|2)‖L1(Bρ)‖~u(s, ·)‖L3(Bρ)ds

≤ C

r2

∫ t+ρ2

t−ρ2

‖~u(s, ·)‖L2(Bρ)‖~∇⊗ ~u(s, ·)‖L2(Bρ)‖~u(s, ·)‖L3(Bρ)ds

≤ C

r2
‖~u‖L6

tL
2
x(Qρ)‖~∇⊗ ~u‖L2

t,x(Qρ)‖~u‖L3
t,x(Qρ),

where in the last inequality we used the Hölder inequality in the time variable. We observe now that
by the notations given in (3.2) we can write

‖~u‖L6
tL

2
x(Qρ) ≤ Cρ

1
3 ‖~u‖L∞t L2

x(Qρ) ≤ Cρ
5
6A

1
2
ρ , ‖~∇⊗ ~u‖L2

t,x(Qρ) = ρ
1
2α

1
2
ρ , ‖~u‖L3

t,x(Qρ) = ρ
2
3λ

1
3
ρ ,

and we obtain, by (3.19):∫
R

∫
R3

|~u|2(~u · ~∇)φdxds ≤ Cρ
2

r2
A

1
2
ρ α

1
2
ρ λ

1
3
ρ ≤ C

ρ2

r2
A

1
2
ρ α

1
2
ρ (Aρ + αρ)

1
2 ≤ Cρ

2

r2
α

1
2
ρ (Aρ + αρ).

• Finally, for the term (4) in (3.21), by the Hölder inequality and by the properties of the function φ
given in Lemma 3.2, we write

∫
R

∫
R3

(θe3) · (φ~u)dxds ≤
∫ t+ρ2

t−ρ2

‖φ(s, ·)‖L3
x(Bρ)‖θ(s, ·)‖L2

x(Bρ)‖~u(s, ·)‖L6
x(Bρ)ds

≤ C
ρ

r

∫ t+ρ2

t−ρ2

‖θ(s, ·)‖L2
x(Bρ)‖~u(s, ·)‖Ḣ1

x(Bρ)ds

≤ C
ρ

r
‖θ‖L2

t,x(Qρ)‖~u‖L2
t Ḣ

1
x(Qρ) ≤ C

ρ3

r
‖θ‖L∞t L2

x(Qρ)‖~u‖L2
t Ḣ

1
x(Qρ),

where we applied the Sobolev inequalities (see Corollary 9.14 of [4]) and the Cauchy-Schwartz inequality

in the time variable. Since by (3.2) we have ‖~u‖L2
t Ḣ

1
x(Qρ) = ρ

1
2α

1
2
ρ , we conclude

∫
R

∫
R3

(θe3) · (φ~u)dxds ≤ Cρ
7
2

r
‖θ‖L∞t L2

x(Qρ)α
1
2
ρ .

Gathering all these estimates we obtain the inequality (3.20) and this ends the proof of Proposition 3.2. �
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3.3 Iterative process

With the estimates (3.4) and (3.20) and given in Propositions 3.1 and 3.2, respectively, we will set up a
general inequality that will help us to deduce a gain of integrability. For this, we introduce the notations

Ar =
1

r
2(1− 5

τ0
)

(Ar + αr) , Pr =
1

r
3
2

(1− 5
τ0

)
Pr and Or = Ar +

((
r

ρ

) 15
τ0
− 15

4

Pr

) 4
3

, (3.22)

for a fixed τ0 such that 5
1−α < τ0 < 6, which is possible since 0 < α < 1

10 . We have the following result:

Lemma 3.3 Under the hypotheses of Theorem 1.1, for 0 < r < ρ
2 < R < 1 there exists a constant ε > 0

such that

Or(t0, x0) ≤ 1

2
Oρ(t0, x0) + ε, (3.23)

where the point (t0, x0) ∈ QR is given by the hypothesis (1.7).

Proof. First, by the estimate (3.20) we can write

Ar =
1

r
2(1− 5

τ0
)

(Ar + αr)

≤ C

r
2(1− 5

τ0
)

(r2

ρ2
Aρ +

ρ2

r2
α

1
2
ρAρ +

ρ2

r2
P

2
3
ρ (Aρ + αρ)

1
2 +

ρ
7
2

r
‖θ‖L∞t L2

x(Qρ)α
1
2
ρ

)
, (3.24)

and we will treat each one of the previous terms separately. Indeed,

• For the first term of (3.24) we have

1

r
2(1− 5

τ0
)

(
r2

ρ2
Aρ
)
≤ 1

r
2(1− 5

τ0
)

r2

ρ2
ρ

2(1− 5
τ0

)
Aρ =

(
r

ρ

) 10
τ0

Aρ.

• For the second term of (3.24), using the definition of Aρ given in (3.22), we obtain

1

r
2(1− 5

τ0
)

(
ρ2

r2
α

1
2
ρAρ

)
≤ 1

r
2(1− 5

τ0
)

(
ρ2

r2
α

1
2
ρ ρ

2(1− 5
τ0

)
Aρ

)
=
(ρ
r

)4− 10
τ0 Aρα

1
2
ρ .

• The third term of (3.24) follows essentially the same arguments as above and by the definition of the
quantities Aρ and Pρ given in (3.22) we can write

1

r
2(1− 5

τ0
)

(
ρ2

r2
P

2
3
ρ (Aρ + αρ)

1
2

)
≤
(ρ
r

)4− 10
τ0 P

2
3
ρ A

1
2
ρ .

• Finally, for the last term of (3.24), we have

1

r
2(1− 5

τ0
)

(
ρ

7
2

r
‖θ‖L2

t,x(Qρ)α
1
2
ρ

)
≤
(ρ
r

)3− 10
τ0 ρ

1
2

+ 10
τ0 ‖θ‖L∞t L2

x(Qρ)α
1
2
ρ .

Thus, gathering all these estimates, we have

Ar ≤ C

((
r

ρ

) 10
τ0

Aρ +
(ρ
r

)4− 10
τ0 Aρα

1
2
ρ +

(ρ
r

)4− 10
τ0 P

2
3
ρ A

1
2
ρ +

(ρ
r

)3− 10
τ0 ρ

1
2

+ 10
τ0 ‖θ‖L∞t L2

x(Qρ)α
1
2
ρ

)
. (3.25)

Now, for the pressure, from the inequality (3.4) we can write

Pr =
1

r
3
2

(1− 5
τ0

)
Pr ≤

C

r
3
2

(1− 5
τ0

)

((ρ
r

) 3
2 A

3
4
ρ α

3
4
ρ +

(
r

ρ

) 3
2

ρ
5
6 ‖θ‖

3
2

L∞t L
2
x(Qρ)

+

(
r

ρ

)
Pρ
)
. (3.26)
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• Using the definition of Aρ given in (3.22) we obtain for the first term of the right-hand side above:

1

r
3
2

(1− 5
τ0

)

(ρ
r

) 3
2 A

3
4
ρ α

3
4
ρ ≤

1

r
3
2

(1− 5
τ0

)

(ρ
r

) 3
2
ρ

3
2

(1− 5
τ0

)
(Aραρ)

3
4 =

(ρ
r

)3− 15
2τ0 (Aραρ)

3
4 .

• Now, for the second term of (3.26) we write

C

r
3
2

(1− 5
τ0

)

(
r

ρ

) 3
2

ρ
5
6 ‖θ‖

3
2

L∞t L
2
x(Qρ)

≤ C
(
r

ρ

) 15
2τ0

ρ
15
2τ0
− 2

3 ‖θ‖
3
2

L∞t L
2
x(Qρ)

.

• Finally we use the fact that
1

r
3
2

(1− 5
τ0

)

(
r

ρ

)
Pρ =

(ρ
r

) 1
2
− 15

2τ0 Pρ

(by the definition of Pρ given in (3.22)).

We thus conclude that

Pr ≤ C
((ρ

r

)3− 15
2τ0 (Aραρ)

3
4 + C

(
r

ρ

) 15
2τ0

ρ
15
2τ0
− 2

3 ‖θ‖
3
2

L∞t L
2
x(Qρ)

+
(ρ
r

) 1
2
− 15

2τ0 Pρ

)
. (3.27)

With the estimates (3.25) and (3.27) at hand, we will now introduce a relationship between the parameters
r and ρ: indeed, let us fix 0 < κ � 1

2 a real number and consider r = κρ, then, by the definition of the
quantity Or given in (3.22) we obtain:

Or = Ar +
(
κ

15
τ0
− 15

4 Pr

) 4
3 ≤ C

(
κ

10
τ0 Aρ + κ

10
τ0
−4

Aρα
1
2
ρ︸ ︷︷ ︸

(1)

+κ
10
τ0
−4

P
2
3
ρ A

1
2
ρ︸ ︷︷ ︸

(2)

+κ
10
τ0
−3
ρ

1
2

+ 10
τ0 ‖θ‖L∞t L2

x(Qρ)α
1
2
ρ︸ ︷︷ ︸

(3)

)

+C

(
κ

45
2τ0
− 27

4 (Aραρ)
3
4 + κ

45
2τ0
− 15

4 ρ
15
2τ0
− 2

3 ‖θ‖
3
2

L∞t L
2
x(Qρ)

+ κ
45
2τ0
− 17

4 Pρ

) 4
3

︸ ︷︷ ︸
(4)

. (3.28)

We will rewrite now each one of the previous terms:

• Since by (3.22) we have Aρ ≤ Oρ, it is then easy to see that the term (1) above can be controlled in
the following manner:

κ
10
τ0 Aρ + κ

10
τ0
−4

Aρα
1
2
ρ ≤

(
κ

10
τ0 + κ

10
τ0
−4
α

1
2
ρ

)
Oρ.

• For the quantity (2) in (3.28), using Young’s inequality and the relationships given in (3.22), we observe
that

κ
10
τ0
−4

P
2
3
ρ A

1
2
ρ = κ

10
τ0
−4
(
κ

5( 1
τ0
− 1

2
)
P

2
3
ρ × κ

5( 1
2
− 1
τ0

)
A

1
2
ρ

)
≤ κ

10
τ0
−4
(
κ

10( 1
2
− 1
τ0

)
Aρ + κ

10( 1
τ0
− 1

2
)
P

4
3
ρ

)
≤ κ

(
Aρ +

(
κ

15
τ0
− 15

2 Pρ

) 4
3

)
≤ κOρ.

• For the term (3) of (3.28), we just remark that the power of κ is 10
τ0
− 3 which is a negative number

since 5
1−α < τ0 < 6.

• For the last term of (3.28), since
(
κ

15
τ0
− 15

4 Pρ

) 4
3 ≤ Oρ and Aρ ≤ Oρ, we have(

κ
45
2τ0
− 27

4 (Aραρ)
3
4 + κ

45
2τ0
− 15

4 ρ
15
2τ0
− 2

3 ‖θ‖
3
2

L∞t L
2
x(Qρ)

+ κ
45
2τ0
− 17

4 Pρ

) 4
3

≤ C
(
κ

30
τ0
−9

Aραρ + κ
30
τ0
−5
ρ

10
τ0
− 8

9 ‖θ‖2L∞t L2
x(Qρ) + (κ

45
2τ0
− 17

4 Pρ)
4
3

)
≤ C

(
κ

30
τ0
−9
αρ + κ

10
τ0
− 2

3

)
Oρ + Cκ

30
τ0
−5
ρ

10
τ0
− 8

9 ‖θ‖2L∞t L2
x(Qρ).
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Gathering these estimates we finally obtain

Or ≤ C

(
κ

10
τ0 + κ

10
τ0
−4
α

1
2
ρ + κ+ κ

30
τ0
−9
αρ + κ

10
τ0
− 2

3

)
Oρ (3.29)

+Cκ
10
τ0
−3
ρ

1
2

+ 10
τ0 ‖θ‖L∞t L2

x(Qρ)α
1
2
ρ + Cκ

30
τ0
−5
ρ

10
τ0
− 8

9 ‖θ‖2L∞t L2
x(Qρ). (3.30)

Futhermore, we claim that we have

C

(
κ

10
τ0 + κ

10
τ0
−4
α

1
2
ρ + κ+ κ

30
τ0
−9
αρ + κ

10
τ0
− 2

3

)
≤ 1

2
. (3.31)

Indeed, since κ = r
ρ �

1
2 is a fixed small parameter and since 10

τ0
− 2

3 > 0 (recall again that 5
1−α < τ0 < 6),

then the quantities κ
10
τ0 , κ and κ

10
τ0
− 2

3 in the previous formula are small. Now, using the fact that we have
the control αρ ≤ ε∗ which is given in the hypothesis (1.7) where ε∗ > 0 is small enough, then the terms

κ
10
τ0
−4
α

1
2
ρ and κ

30
τ0
−9
αρ can be made small enough and thus we obtain the estimate (3.31).

To continue, we need to treat the two remaining terms given in (3.30). For the first one we note that
the quantity ‖θ‖L∞t L2

x(Qρ) is bounded since θ ∈ L∞t L2
x(QR) ∩ L2

t Ḣ
1
x(QR), we can apply the same ideas used

previously (i.e. the fact that αρ ≤ ε∗ � 1) to obtain

Cκ
10
τ0
−3
ρ

1
2

+ 10
τ0 ‖θ‖L∞t L2

x(Qρ)α
1
2
ρ <

ε

2
.

For the last term of (3.30), recalling that 5
1−α < τ < 6, we have 30

τ0
−5 > 0 and 10

τ0
− 8

9 > 0. Thus, if 0 < ρ� 1

and since κ � 1
2 the quantity κ

30
τ0
−5
ρ

10
τ0
− 8

9 can be made small enough to absorb the term ‖θ‖2L∞t L2
x(Qρ) and

we obtain
κ

30
τ0
−5
ρ

10
τ0
− 8

9 ‖θ‖2L∞t L2
x(Qρ) <

ε

2
.

Then, with these estimates at hand and coming back to (3.29) we conclude that Or ≤ 1
2Oρ + ε and

Lemma 3.3 is proven. �

Proposition 3.3 Under the hypotheses of Theorem 1.1 consider (~u, p, θ) a partial suitable solution for the
Boussinesq equations (1.1) over the set QR given in (1.5). Then there exists a radius 0 < R1 <

R
2 and an

index τ0 such that 5
1−α < τ0 < 6 such that we have the following local Morrey information:

1QR1
(t0,x0)~u ∈M

3,τ0
t,x (R× R3), (3.32)

where the point (t0, x0) ∈ QR is given by the hypothesis (1.7).

Proof of the Proposition 3.3. Lemma 3.3 paved the way to obtain the wished Morrey information for
the velocity ~u. Indeed, from the definition of Morrey spaces given in (2.2) we only need to prove that for
all radius r > 0 such that r < R1 ≤ R

2 and (t, x) ∈ QR1(t0, x0), we have∫
Qr(t,x)

|~u|3dyds ≤ Cr5(1− 3
τ0

)
, (3.33)

and this will imply that 1QR1
~u ∈ M3,τ0(R × R3). In order to obtain the control (3.33), by the definitions

given in (3.2) and by the estimate (3.19), we observe that∫
Qr(t,x)

|~u|3dyds = r2Br(t, x) ≤ r2(Ar(t, x) + αr(t, x))
3
2 .
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Hence, it is then enough to prove for all 0 < r < R1 <
R
2 < R < 1 and (t, x) ∈ QR1 that one has the control

Ar(t, x) + αr(t, x) ≤ Cr2(1− 5
τ0

)
.

Recalling the definition of the quantity Ar given in (3.22), we easily see that the condition (3.33) above is
equivalent to prove that there exists some R1 and 0 < κ� 1

2 such that for all n ∈ N and (t, x) ∈ QR1(t0, x0),
we have estimates:

AκnR1(t, x) ≤ C. (3.34)

Note that, for any radius r such that 0 < r < R1 < min{R2 , dist(∂QR, (t0, x0))} (and since we have
QR1(t0, x0) ⊂ QR) by the hypotheses of the Theorem 1.1, we have the bounds

‖~u‖L∞t L2
x(Qr(t0,x0)) ≤ ‖~u‖L∞t L2

x(QR) < +∞, ‖~∇⊗ ~u‖L2
t,x(Qr(t0,x0)) ≤ ‖~∇⊗ ~u‖L2

t,x(QR) < +∞,

and ‖p‖
L

3
2
t,x(Qr(t0,x0))

≤ ‖p‖
L

3
2
t,x(QR)

< +∞. Then, by the notations introduced in (3.2), we have the uniform

bounds sup
0<r<R

{
rAr, rαr, r2Pr

}
< +∞ from which we can deduce by the definition of the quantities Aρ(t0, x0)

and Pρ(t0, x0) given in (3.22), the uniform bounds

sup
0<r<R

r
3− 10

τ0 Ar(t0, x0) < +∞, and sup
0<r<R

r
5− 3

2
(1+ 5

τ0
)
Pr(t0, x0) < +∞.

Thus, there exists a radius 0 < r0 < R small such that, by the estimates above, the quantities Ar0 and Pr0

are bounded: indeed, recall that we have τ0 >
5

1−α > 5 (where 0 < α < 1
10) and this implies that all the

powers of r in the expression above are positive. As a consequence of this fact, by (3.22) the quantity Or0

is itself bounded. Remark also that, if r0 is small enough, then the inequality (3.23) holds true and we can
write Oκr0(t0, x0) ≤ 1

2Or0(t0, x0) + ε. We can iterate this process and we obtain for all n > 1,

Oκnr0(t0, x0) ≤ 1

2n
Or0(t0, x0) + ε

n−1∑
j=0

2−j ,

and therefore there exists N ≥ 1 such that for all n ≥ N we have Oκnr0(t0, x0) ≤ 4ε from which we obtain
(using the definition of Or given in (3.22)) that

AκNr0(t0, x0) ≤ 1

8
C and PκNr0(t0, x0) ≤ 1

32
C.

This information is centered at the point (t0, x0), in order to treat the uncentered bound, we can let 1
2κ

Nr0

to be the radius R1 we want to find, thus for all points (t, x) ∈ QR1(t0, x0) we have that QR1 ⊂ Q2R1(t0, x0),
which implies

AR1(t, x) ≤ 2
3− 10

τ0 A2R1(t0, x0) ≤ 8A2R1(t0, x0) ≤ 8AκNρ(t0, x0) < C,

and PR1(t, x) ≤ 2
5− 3

2
(1+ 5

τ0
)
P2R1(t0, x0) ≤ 32P2R1(t0, x0) ≤ 8PκNr(t0, x0) < C. Having obtained these

bounds, by the definition of OR1 , we thus get OR1(t, x) ≤ C. Applying the Lemma 3.3 and iterating once
more, we find that the same will be true for κR1 and then, for all κnR1, n ∈ N. Since by definition we have
AκnR1(t, x) ≤ OκnR1(t, x) we have finally obtained the estimate AκnR1(t, x) ≤ C and the inequality (3.34)
is proven which implies the Proposition 3.3. �

Corollary 3.1 Under the hypotheses of Proposition 3.3, we also have the following local control:

1QR1
(t0,x0)

~∇⊗ ~u ∈M2,τ1
t,x (R× R3), with

1

τ1
=

1

τ0
+

1

5
. (3.35)
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Proof. In the previous results we have proved the estimate (3.34). Let us recall now that, by the definition
of the quantity Ar given in (3.22), we can easily deduce for all 0 < r ≤ R1 and (t, x) ∈ QR1 the control

αr ≤ Cr
2(1− 5

τ0
)

which can we rewritten as

1

r

(∫
Qr(t,x)

|~∇⊗ ~u|2dyds
)
≤ Cr2(1− 5

τ0
)
.

Thus, since 1
τ1

= 1
τ0

+ 1
5 , for all 0 < r ≤ R1 and (t, x) ∈ QR1(t0, x0), we have the estimate∫

Qr

|~∇⊗ ~u|2dyds ≤ Cr3− 10
τ0 = Cr

5(1− 2
τ1

)
,

and by the definition of Morrey spaces given in (2.2), we obtain that 1QR1
(t0,x0)

~∇⊗ ~u ∈M2,τ1
t,x (R× R3). �

3.4 A partial gain of information for the variable ~u

Proposition 3.4 Under the hypotheses of Theorem 1.1 and within the framework of Proposition 3.3, there
exists a radius R2 with 0 < R2 < R1 < R < 1 such that

1QR2
(t0,x0)~u ∈M

3,σ
t,x (R× R3),

for some σ close to 5
1−α < τ0 < 6 such that τ0 < σ.

Proof of the Proposition 3.4. In order to obtain this small additional gain of integrability we will first
localize the variable ~u in a suitable manner and then we will study its evolution: the wished result will then
be deduced from the Duhamel formula and from all the available information over ~u. Let us start fixing the
parameters Rc,Rb,Ra such that

0 < R2 < Rc < Rb < Ra < R1,

with the associated parabolic balls QR2 ⊂ QRc ⊂ QRb ⊂ QRa ⊂ QR1 (all centered in the point (t0, x0)).
Consider now φ, ψ : R× R3 −→ R two non-negative functions such that φ, ψ ∈ C∞0 (R× R3) and such that

φ ≡ 1 over QRc , supp(φ) ⊂ QRb and ψ ≡ 1 over QRa , supp(ψ) ⊂ QR1 . (3.36)

Using these auxiliar functions we will study the evolution of the variable ~v = φ~u given by the system∂t~v = ∆~v + ~V ,

~v(0, x) = 0,
(3.37)

where we have

~V = (∂tφ−∆φ)~u− 2

3∑
i=1

(∂iφ)(∂i~u)− φ(~u · ~∇)~u− 2φ~∇p+ φ(θe3). (3.38)

We will now rewrite the term φ~∇p above in order to avoid a direct derivative over the pressure. Indeed, as
we have the identity p = ψp over QRa , then over the smaller ball QR2 (recalling that ψ = 1 over QR2 by

(3.36) since QR2 ⊂ QRa), we can write −∆(ψp) = −ψ∆p+ (∆ψ)p− 2
3∑
i=1

∂i((∂iψ)p) from which we deduce

the identity

φ~∇p = φ
~∇(−ψ∆p)

(−∆)
+ φ

~∇((∆ψ)p)

(−∆)
− 2

3∑
i=1

φ
~∇(∂i((∂iψ)p))

(−∆)
. (3.39)
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At this point we recall that we have by (1.2) the following equation for the pressure

∆p = −
3∑

i,j=1

∂i∂j (uiuj) + ∂x3θ,

and thus, the first term of the right-hand side of the previous formula can be written in the following manner:

φ
~∇(−ψ∆p)

(−∆)
= φ

~∇
(−∆)

 3∑
i,j=1

ψ
(
∂i∂juiuj

)− φ ~∇
(−∆)

(ψ∂x3θ)

=
3∑

i,j=1

φ
~∇

(−∆)

(
∂i∂j(ψuiuj)

)
−

3∑
i,j=1

φ
~∇

(−∆)

(
∂i((∂jψ)uiuj) + ∂j((∂iψ)uiuj)− (∂i∂jψ)(uiuj)

)

−φ
~∇

(−∆)
∂x3 (ψθ) + φ

~∇
(−∆)

((∂x3ψ)θ) ,

Recalling that by construction of the auxiliar functions φ, ψ given in (3.36) we have the identity φψ = φ,
we can write for the first term above:

φ
~∇

(−∆)
∂i∂j(ψuiuj) =

[
φ,
~∇∂i∂j
(−∆)

]
(ψuiuj) +

~∇∂i∂j
(−∆)

(φuiuj),

and we finally obtain the following expression for (3.39):

φ~∇p =

3∑
i,j=1

[
φ,
~∇∂i∂j
(−∆)

]
(ψuiuj) +

3∑
i,j=1

~∇∂i∂j
(−∆)

(φuiuj)

−
3∑

i,j=1

φ
~∇

(−∆)

(
∂i((∂jψ)uiuj) + ∂j((∂iψ)uiuj)− (∂i∂jψ)(uiuj)

)

−φ
~∇

(−∆)
∂x3 (ψθ) + φ

~∇
(−∆)

((∂x3ψ)θ) + φ
~∇((∆ψ)p)

(−∆)
− 2

3∑
i=1

φ
~∇(∂i((∂iψ)p))

(−∆)
.

With this expression for the term that contains the pressure p, we obtain the (lengthy) formula for (3.38):

~V = (∂tφ−∆φ)~u︸ ︷︷ ︸
(1)

−2
3∑
i=1

(∂iφ)(∂i~u)︸ ︷︷ ︸
(2)

−φ(~u · ~∇)~u︸ ︷︷ ︸
3

−
3∑

i,j=1

[
φ,
~∇∂i∂j
(−∆)

]
(ψuiuj)︸ ︷︷ ︸

(4)

+
3∑

i,j=1

~∇∂i∂j
(−∆)

(φuiuj)︸ ︷︷ ︸
(5)

−
3∑

i,j=1

φ~∇
(−∆)

[
∂i((∂jψ)uiuj)︸ ︷︷ ︸

(6)

+ ∂j((∂iψ)uiuj)︸ ︷︷ ︸
(7)

− (∂i∂jψ)(uiuj)︸ ︷︷ ︸
(8)

]
− φ

~∇
(−∆)

∂x3 (ψθ)︸ ︷︷ ︸
(9)

(3.40)

+ φ
~∇

(−∆)
((∂x3ψ)θ)︸ ︷︷ ︸

(10)

+2φ
~∇((∆ψ)p)

(−∆)︸ ︷︷ ︸
(11)

−2

3∑
i=1

φ
~∇(∂i((∂iψ)p))

(−∆)︸ ︷︷ ︸
(12)

+φ(θe3)︸ ︷︷ ︸
(13)

.

Thus, by the Duhamel formula, the solution ~v of the equation (3.37) is given by

~v =

∫ t

0
e(t−s)∆~V (s, ·)ds =

13∑
k=1

∫ t

0
e(t−s)∆~Vk(s, ·)ds =

13∑
k=1

~Vk.

Since ~v = φ~u, and due to the support properties of φ (see (3.36)), we have 1QR2
~v = 1QR2

~u and to conclude

that 1QR2
~u ∈M3,σ

t,x (R× R3) we will study 1QR2

~Vk for all 1 ≤ k ≤ 13.

17



• For ~V1, by the term (1) in (3.40) we have

|1QR2

~V1(t, x)| =
∣∣∣∣1QR2

∫ t

0
e(t−s)∆[(∂tφ−∆φ)~u](s, x)ds

∣∣∣∣ , (3.41)

since the convolution kernel of the semi-group e(t−s)∆ is the usual 3D heat kernel gt, we can write by
the decay properties of the heat kernel as well as the properties of the test function φ (see (3.36)), the
estimate

|1QR2

~V1(t, x)| ≤ C1QR2

∫
R

∫
R3

1

(|t− s|
1
2 + |x− y|)3

∣∣∣1QRb
~u(s, y)

∣∣∣ dy ds,
Now, recalling the definition of the parabolic Riesz potential given in (2.3) and since QR2 ⊂ QRb we
obtain the pointwise estimate

|1QR2

~V1(t, x)| ≤ C1QRb
L2(|1QRb

~u|)(t, x), (3.42)

and taking the Morrey M3,σ
t,x -norm we obtain

‖1QR2

~V1(t, x)‖M3,σ
t,x
≤ C‖1QRb

L2(|1QRb
~u|)‖M3,σ

t,x
.

Now, for some 2 < q < 5
2 we set λ = 1 − 2q

5 . Then, we have 3 ≤ 3
λ and σ ≤ q

λ . Thus, by Lemma 2.2
and by Lemma 2.3 we can write:

‖1QRb
L2(|1QRb

~u|)‖M3,σ
t,x
≤ C‖L2(|1QRb

~u|)‖
M

3
λ
,
q
λ

t,x

≤ C‖1QRb
~u‖M3,q

t,x
≤ C‖1QR1

~u‖M3,τ0
t,x

< +∞,

where in the last estimate we applied again Lemma 2.2 (noting that q < τ0 < 6) and we used the
estimates over ~u available in (3.32).

• For ~V2, using the expression (2) in (3.40) we write (∂iφ)(∂i~u) = ∂i((∂iφ)~u)− (∂2
i φ)~u and we have

|1QR2

~V2(t, x)| ≤
3∑
i=1

∣∣∣∣1QR2

∫ t

0
e(t−s)∆∂i

(
(∂iφ)~u

)
ds

∣∣∣∣+

∣∣∣∣1QR2

∫ t

0
e(t−s)∆[(∂2

i φ)~u]ds

∣∣∣∣ . (3.43)

Remark that the second term of the right-hand side of (3.43) can be treated in the same manner as the
term ~V1 so we will only study the first term: by the properties of the heat kernel and by the definition
of the Riesz potential L1 (see (2.3)), we obtain

A2 :=

∣∣∣∣1QR2

∫ t

0
e(t−s)∆∂i

(
(∂iφ)~u

)
ds

∣∣∣∣ =

∣∣∣∣1QR2

∫ t

0

∫
R3

∂igt−s(x− y)(∂iφ)~u(s, y)dyds

∣∣∣∣
≤ C1QR2

∫
R

∫
R3

|1QRb
~u(s, y)|

(|t− s|
1
2 + |x− y|)4

dyds ≤ C1QR2
(L1(|1QRb

~u|))(t, x). (3.44)

Taking the Morrey M3,σ
t,x norm we obtain ‖A2‖M3,σ

t,x
≤ C‖1QR2

(L1(|1QRb
~u|))‖M3,σ

t,x
. Now, for some

4 ≤ q < 5 < 5
1−α < τ0 < 6 we define λ = 1− q

5 , noting that 3 ≤ 3
λ and σ ≤ q

λ , by Lemma 2.3, we can
write

‖1QR2
(L1(|1QRb

~u|))‖M3,σ
t,x
≤ C‖L1(|1QRb

~u|)‖
M

3
λ
,
q
λ

t,x

≤ C‖1QRb
~u‖M3,q

t,x

≤ C‖1QR1
~u‖M3,τ0

t,x
< +∞,

from which we deduce that ‖1QR2

~V2‖M3,σ
t,x

< +∞.
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• For the term ~V3, by the same arguments given to obtain the pointwise estimate (3.42), we have

|1QR2

~V3(t, x)| =

∣∣∣∣1QR2

∫ t

0

∫
R3

gt−s(x− y)
[
φ
(

(~u · ~∇)~u
)]

(s, y)dyds

∣∣∣∣
≤ C1QR2

L2

(∣∣∣1QRb

(
(~u · ~∇)~u

)∣∣∣) (t, x),

(recall (3.36)) from which we deduce

‖1QR2

~V3‖M3,σ
t,x
≤ C

∥∥∥1QR2
L2

(
|1QRb

(~u · ~∇)~u|
)∥∥∥
M3,σ

t,x

. (3.45)

We set now 5
3−α < q < 5

2 and λ = 1− 2q
5 . Since 3 ≤ 6

5λ and τ0 < 6 < σ ≤ q
λ , applying Lemma 2.2 and

Lemma 2.3 we have∥∥∥1QR2
L2

(
|1QRb

(~u · ~∇)~u|
)∥∥∥
M3,σ

t,x

≤ C
∥∥∥1QR2

L2

(
|1QRb

(~u · ~∇)~u|
)∥∥∥
M

6
5λ
,
q
λ

t,x

≤ C
∥∥∥1QRb

(~u · ~∇)~u
∥∥∥
M

6
5 ,q

t,x

.

Recall that we have τ0 < 6 < σ and by the Hölder inequality in Morrey spaces (see Lemma 2.1) we
obtain ∥∥∥1QRb

(~u · ~∇)~u
∥∥∥
M

6
5 ,q

t,x

≤
∥∥∥1QR1

~u
∥∥∥
M3,τ0

t,x

∥∥∥1QR1

~∇⊗ ~u
∥∥∥
M2,τ1

t,x

< +∞,

where 1
q = 1

τ0
+ 1

τ1
= 2

τ0
+ 1

5 . These two last quantities are bounded by (3.32) and (3.35). Note that the

condition τ0 < 6 < σ and the relationship 1
q = 2

τ0
+ 1

5 are compatible with the fact that 5
3−α < q < 5

2

(recall that 0 < α� 1
10).

• The term ~V4 is the most technical one. Indeed, by the expression of ~V4 given in (3.40), we write

|1QR2

~V4| ≤
3∑

i,j=1

1QR2

∫
R

∫
R3

∣∣∣[φ, ~∇∂i∂j(−∆)

]
(ψuiuj)(s, y)

∣∣∣
(|t− s|

1
2 + |x− y|)3

dyds ≤
3∑

i,j=1

1QR2
L2

(∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
)
,

and taking the M3,σ
t,x -norm we have ‖1QR2

~V4‖M3,σ
t,x
≤
∑3

i,j=1

∥∥∥1QR2
L2

(∣∣∣[φ, ~∇∂i∂j(−∆)

]
(ψuiuj)

∣∣∣)∥∥∥
M3,σ

t,x

. If

we set 1
q = 2

τ0
+ 1

5 and λ = 1− 2q
5 then we have 3 ≤ 3

2λ and for

σ ≤ q

λ
=

5τ0

10− τ0
, (3.46)

by Lemmas 2.2 and 2.3 we obtain:∥∥∥∥∥1QR2
L2

(∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

≤ C

∥∥∥∥∥1QR2
L2

(∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
)∥∥∥∥∥
M

3
2λ
,
q
λ

t,x

≤ C

∥∥∥∥∥
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∥∥∥∥∥
M

3
2 ,q

t,x

,

We will study this norm and by the definition of Morrey spaces (2.2), if we introduce a threshold
r = Rb−R2

2 , we have∥∥∥∥∥
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∥∥∥∥∥
3
2

M
3
2 ,q

t,x

≤ sup
(t,x̄)

0<r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
3
2

dxdt

+ sup
(t,x̄)
r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
3
2

dxdt.

(3.47)

19



Now, we study the second term of the right-hand side above, which is easy to handle as we have r < r
and we can write

sup
(t,x̄)∈R×R3

r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∣∣∣∣∣
3
2

dxdt ≤ Cr

∥∥∥∥∥
[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∥∥∥∥∥
3
2

L
3
2
t,x

,

and since φ̄ is a regular function and
~∇∂i∂j
(−∆) is a Calderón-Zydmund operator, by the Calderón com-

mutator theorem (see the book [17]), we have that the operator
[
φ,

~∇∂i∂j
(−∆)

]
is bounded in the space

L
3
2
t,x and we can write (using the support properties of ψ given in (3.36) and the information given in

(3.32)):∥∥∥∥∥
[
φ̄,

~∇∂i∂j
(−∆)

]
(ψuiuj)

∥∥∥∥∥
L

3
2
t,x

≤ C ‖ψuiuj‖
L

3
2
t,x

≤ C‖1QR1
uiuj‖

M
3
2 ,

3
2

t,x

≤ C‖1QR1
~u‖M3,3

t,x
‖1QR1

~u‖M3,3
t,x
≤ C‖1QR1

~u‖M3,τ0
t,x
‖1QR1

~u‖M3,τ0
t,x

< +∞,

where in the last line we used Hölder inequalities in Morrey spaces and we applied Lemma 2.2.

The first term of the right-hand side of (3.47) requires some extra computations: indeed, as we are
interested to obtain information over the parabolic ball Qr(t, x̄) we can write for some 0 < r < r:

1Qr

[
φ,

~∇∂i∂j
(−∆)

]
(ψuiuj)) = 1Qr

[
φ,

~∇∂i∂j
(−∆)

]
(1Q2rψuiuj) + 1Qr

[
φ,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ψuiuj), (3.48)

and as before we will study the L
3
2
t,x norm of these two terms. For the first quantity in the right-hand

side of (3.48), by the Calderón commutator theorem, by the definition of Morrey spaces and by the
Hölder inequalities we have∥∥∥∥∥1Qr

[
φ,

~∇∂i∂j
(−∆)

]
(1Q2rψuiuj)

∥∥∥∥∥
3
2

L
3
2
t,x

≤ C‖1Q2rψuiuj‖
3
2

L
3
2
t,x

≤ Cr5(1− 3
τ0

)‖1QR1
uiuj‖

3
2

M
3
2 ,
τ0
2

t,x

≤ Cr
5(1− 3

τ0
)‖1QR1

~u‖
3
2

M3,τ0
t,x

‖1QR1
~u‖

3
2

M3,τ0
t,x

,

for all 0 < r < r, from which we deduce that

sup
(t,x̄)

0<r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣1Qr
[
φ,

~∇∂i∂j
(−∆)

]
(1Q2rψuiuj)

∣∣∣∣∣
3
2

dxdt ≤ C‖1QR1
~u‖

3
2

M3,τ0
t,x

‖1QR1
~u‖

3
2

M3,τ0
t,x

< +∞.

We study now the second term of the right-hand side of (3.48) and for this we consider the following
operator:

T : f 7→

(
1Qr

[
φ,

~∇∂i∂j
−∆

]
(I− 1Q2r)ψ

)
f,

and by the properties of the convolution kernel of the operator 1
(−∆) we obtain

|T (f)(x)| ≤ C1Qr(x)

∫
R3

(I− 1Q2r)(y)1QR1
(y)|f(y)||φ(x)− φ(y)|
|x− y|4

dy.
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Recalling that 0 < r < r = Rb−R2
2 , by the support properties of the test function φ (see (3.36)), the

integral above is meaningful if |x− y| > r and thus we can write∥∥∥∥∥1Qr
[
φ,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ψuiuj)

∥∥∥∥∥
3
2

L
3
2
t,x

≤ C
∥∥∥∥1Qr ∫

R3

1|x−y|>r

|x− y|4
(I− 1Q2r)(y)1QR1

(y)|uiuj |dy
∥∥∥∥ 3

2

L
3
2
t,x

≤ C

(∫
|y|>r

1

|y|4
‖1QR1

|uiuj |(· − y)‖
L

3
2
t,x(Qr)

dy

) 3
2

≤ Cr−
3
2 ‖1QR1

uiuj‖
3
2

L
3
2
t,x(Qr)

,

with this estimate at hand and using the definition of Morrey spaces, we can write

∫
Qr(t,x̄)

∣∣∣∣∣1Qr
[
φ,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ψuiuj)

∣∣∣∣∣
3
2

dxdt ≤ Cr−
3
2 r

5(1− 3
τ0

)‖1QR1
uiuj‖

3
2

M
3
2 ,
τ0
2

t,x

≤ Cr
5(1− 3

2q
)‖1QR1

uiuj‖
3
2

M
3
2 ,
τ0
2

t,x

,

where in the last inequality we used the fact that 1
q = 2

τ0
+ 1

5 , which implies r−
3
2 r

5(1− 3
τ0

)
= r

5(1− 3
2q

)
.

Thus we finally obtain

sup
(t,x̄)

0<r<r

1

r
5(1− 3

2q
)

∫
Qr(t,x̄)

∣∣∣∣∣1Qr
[
φ,

~∇∂i∂j
(−∆)

]
((I− 1Q2r)ψuiuj)

∣∣∣∣∣
3
2

dxdt ≤ C‖1QR1
~u‖

3
2

M3,τ0
t,x

‖1QR1
~u‖

3
2

M3,τ0
t,x

< +∞.

We have proven that all the term in (3.47) are bounded and we can conclude that ‖1QR2

~V4‖M3,σ
t,x

< +∞.

Remark 3.1 The condition (3.46) implies an upper bound for σ depending on the current Morrey
information of ~u, which a priori is close to τ0 with 5

1−α < τ0 < 6. Nevertheless it is clear that whether
we obtain a better Morrey information on integrability for ~u, the value of σ can increase.

• For the quantity ~V5, based in the expression (3.40) we write

|1QR2

~V5(t, x)| ≤ C

3∑
i,j=1

1QR2

∫
R

∫
R3

|RiRj(φuiuj)(s, y)|
(|t− s|

1
2 + |x− y|)4

dyds ≤ C
3∑

i,j=1

1QR2
L1 (|RiRj(φuiuj)|) (t, x),

where we used the decaying properties of the heat kernel (recall that Ri = ∂i√
−∆

are the Riesz trans-

forms). Now taking the Morrey M3,σ
t,x norm and by Lemma 2.2 (with ν = 4τ0+5

5τ0
, p = 3, q = τ0 such

that p
ν > 3 and q

ν > σ which is compatible with the condition τ0 < σ) we have

‖1QR2

~V5‖M3,σ
t,x
≤ C

3∑
i,j=1

‖1QR2
L1 (|RiRj(φuiuj)|) ‖

M
p
ν ,
q
ν

t,x

Then by Lemma 2.3 with λ = 1− τ0/2
5 (recall τ0 < 6 < 10 so that ν > 2λ) and by the boundedness of

Riesz transforms in Morrey spaces we obtain:

‖1QR2
L1 (|RiRj(φuiuj)|) ‖

M
p
ν ,
q
ν

t,x

≤ C‖L1 (|RiRj(φuiuj)|) ‖
M

p
2λ
,
q

2λ
t,x

≤ C‖RiRj(φuiuj)‖
M

3
2 ,
τ0
2

t,x

≤ ‖1QR1
uiuj‖

M
3
2 ,
τ0
2

t,x

≤ C‖1QR1
~u‖M3,τ0

t,x
‖1QR1

~u‖M3,τ0
t,x

< +∞,

and we obtain ‖1QR2

~V5‖M3,σ
t,x

< +∞.
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• For the term ~V6 and following the same ideas we have

|1QR2

~V6| ≤ C
3∑

i,j=1

1QR2

∫
R

∫
R3

∣∣∣φ~∇∂i(−∆)(∂jψ)uiuj(s, y)
∣∣∣

(|t− s|
1
2 + |x− y|)3

dyds = C
3∑

i,j=1

1QR2
L2

(∣∣∣∣∣φ~∇∂i(−∆)
(∂jψ)uiuj

∣∣∣∣∣
)
.

For 2 < q < 5
2 , define λ = 1 − 2q

5 , we thus have 3 ≤ 3
2λ and σ ≤ q

λ . Then, by Lemma 2.2 and Lemma
2.3 we can write∥∥∥∥∥1QR2

L2

∣∣∣∣∣φ~∇∂i(−∆)
(∂jψ)uiuj

∣∣∣∣∣
∥∥∥∥∥
M3,σ

t,x

≤ C

∥∥∥∥∥1QR2
L2

∣∣∣∣∣φ~∇∂i(−∆)
(∂jψ)uiuj

∣∣∣∣∣
∥∥∥∥∥
M

3
2λ
,
q
λ

t,x

≤ C

∥∥∥∥∥φ~∇∂i(−∆)
(∂jψ)uiuj

∥∥∥∥∥
M

3
2 ,q

t,x

,

but since the operator φ~∇∂i
(−∆) is bounded in Morrey spaces and since 2 < q < 5

2 <
τ0
2 < 3 (since τ0 < 6),

one has by Lemma 2.2 and by the Hölder inequalities∥∥∥∥∥φ~∇∂i(−∆)
(∂jψ)uiuj

∥∥∥∥∥
M

3
2 ,q

t,x

≤ C
∥∥∥1QR1

uiuj

∥∥∥
M

3
2 ,q

t,x

≤ C‖1QR1
uiuj‖

M
3
2 ,
τ0
2

t,x

≤ C‖1QR1
~u‖M3,τ0

t,x
‖1QR1

~u‖M3,τ0
t,x

,

from which we deduce ‖1QR2

~V6‖M3,σ
t,x

< +∞. Note that the same computations can be performed to

obtain that ‖1QR2

~V7‖M3,σ
t,x

< +∞.

• The quantity ~V8 based in the term (8) of (3.40) is treated in the following manner: we first write

‖1QR2

~V8‖M3,σ
t,x
≤ C

3∑
i,j=1

∥∥∥∥∥1QR2

(
L2

∣∣∣∣∣φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

.

We set 1 < ν < 3
2 , 2ν < q < 5ν

2 and λ = 1 − 2q
5ν , thus we have 3 ≤ ν

λ and σ ≤ q
λ , then, by Lemma 2.2

and by Lemma 2.3 we can write∥∥∥∥∥1QR2

(
L2

∣∣∣∣∣φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∣∣∣∣∣
)∥∥∥∥∥
M3,σ

t,x

≤ C

∥∥∥∥∥1QR2

(
L2

∣∣∣∣∣φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∣∣∣∣∣
)∥∥∥∥∥
M

ν
λ
,
q
λ

t,x

≤ C

∥∥∥∥∥φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∥∥∥∥∥
Mν,q

t,x

≤ C

∥∥∥∥∥φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∥∥∥∥∥
M

ν, 5ν2
t,x

≤ C

∥∥∥∥∥φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∥∥∥∥∥
Lνt L

∞
x

(3.49)

where in the last estimate we used the space inclusion LνtL
∞
x ⊂M

ν, 5ν
2

t,x .

Remark 3.2 Note that if the parameter q above is close to the value 5ν
2 , then λ = 1 − 2q

5ν is close to
0 and thus the value q

λ can be made very big: in the estimates (3.49) we can consider a Morrey space

M3,σ
t,x with σ � 1.

Let us focus now in the L∞ norm above (i.e. without considering the time variable). Remark that due
to the support properties of the auxiliary function ψ given in (3.36) we have supp(∂i∂jψ) ⊂ QR1 \QRa

and recall by (3.36) we have supp φ = QRb where Rb < Ra < R1, thus by the properties of the kernel

of the operator
~∇

(−∆) we can write∣∣∣∣∣φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∣∣∣∣∣ ≤ C
∣∣∣∣∫

R3

1

|x− y|2
1QRb

(x)1QR1
\QRa

(y)(∂i∂jψ)(uiuj)(·, y)dy

∣∣∣∣
≤ C

∣∣∣∣∫
R3

1|x−y|>(Ra−Rb)

|x− y|2
1QRb

(x)1QR1
\QRa

(y)(∂i∂jψ)(uiuj)(·, y)dy

∣∣∣∣ , (3.50)
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and the previous expression is nothing but the convolution between the function (∂i∂jψ)(uiuj) and a
L∞-function, thus we have∥∥∥∥∥φ ~∇

(−∆)
(∂i∂jψ)(uiuj)(t, ·)

∥∥∥∥∥
L∞

≤ C‖(∂i∂jψ)(uiuj)(t, ·)‖L1 ≤ C‖1QR1
(uiuj)(t, ·)‖Lν , (3.51)

and taking the Lν-norm in the time variable we obtain∥∥∥∥∥φ ~∇
(−∆)

(∂i∂jψ)(uiuj)

∥∥∥∥∥
Lνt L

∞
x

≤ C‖1QR1
uiuj‖Lνt,x ≤ C‖1QR1

~u‖M3,τ0
t,x
‖1QR1

~u‖M3,τ0
t,x

< +∞,

where we used the fact that 1 < ν < 3
2 <

τ0
2 and we applied Hölder’s inequality. Gathering together

all these estimates we obtain ‖1QR2

~V8‖M3,σ
t,x

< +∞.

• For the quantity ~V9 based in the term (9) of (3.40) we have∥∥∥1QR2

~V9

∥∥∥
M3,σ

t,x

=

∥∥∥∥∥1QR2

∫ t

0
e(t−s)∆φ

~∇
(−∆)

∂x3 (ψθ) (s, ·)ds

∥∥∥∥∥
M3,σ

t,x

,

and following the same ideas as before we can write∥∥∥1QR2

~V9

∥∥∥
M3,σ

t,x

≤

∥∥∥∥∥1QR2
L2

(
φ~∇∂x3

(−∆)
(ψθ)

)∥∥∥∥∥
M3,σ

t,x

≤

∥∥∥∥∥L2

(
φ~∇∂x3

(−∆)
(ψθ)

)∥∥∥∥∥
M310,310

t,x

,

if we set q = 62
25 , we have 2 < q

5 = 125
62 , λ = 1− 2q

5 = 1
125 and q

λ = 310, so we can write∥∥∥∥∥L2

(
φ~∇∂x3

(−∆)
(ψθ)

)∥∥∥∥∥
M310,310

t,x

=

∥∥∥∥∥L2

(
φ~∇∂x3

(−∆)
(ψθ)

)∥∥∥∥∥
M

q
λ
,
q
λ

t,x

≤ C

∥∥∥∥∥φ~∇∂x3

(−∆)
(ψθ)

∥∥∥∥∥
Mq,q

t,x

≤ C ‖ψθ‖Mq,q
t,x

(3.52)

where we used the Lemma 2.3 as well as the fact that Riesz transforms are bounded in Lebesgue spaces.
Since q = 62

25 <
10
3 (and due to the support properties of the function ψ) we obtain (recall (3.1)):

‖ψθ‖Mq,q
t,x
≤ C ‖ψθ‖

M
10
3 , 10

3
t,x

= C ‖ψθ‖
L

10
3
t,x

≤ C‖θ‖
L

10
3
t,x

< +∞.

• The quantity ~V10 based in the term (10) of (3.40) and by the same arguments displayed to deduce
(3.49), we can write (recall that 1 < ν < 3

2):

‖1QR2

~V10‖M3,σ
t,x
≤ C

∥∥∥∥∥φ ~∇
(−∆)

((∂x3ψ)θ)

∥∥∥∥∥
Lνt L

∞
x

.

If we study the L∞-norm in the space variable of this term, by the same ideas used in (3.50)-(3.51) we

obtain
∥∥∥φ ~∇

(−∆) ((∂x3ψ)θ) (t, ·)
∥∥∥
L∞
≤ C‖(∂x3ψ)θ(t, ·)‖L1 ≤ C‖1QR1

θ(t, ·)‖Lν . Thus, taking the Lν-norm

in the time variable we have

‖1QR2

~V10‖M3,σ
t,x
≤ C

∥∥∥∥∥φ ~∇
(−∆)

((∂x3ψ)θ)

∥∥∥∥∥
Lνt L

∞
x

≤ C‖1QR1
θ‖Lνt,x ≤ C‖1QR1

θ‖L∞t L2
x
< +∞.
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• The quantity ~V11, givin in the term (11) of (3.40), can be treated in a similar manner. Indeed, by the
same arguments displayed to deduce (3.49), we can write (recall that 1 < ν < 3

2):

‖1QR2

~V9‖M3,σ
t,x
≤ C

∥∥∥∥∥φ ~∇
(−∆)

((∆ψ)p)

∥∥∥∥∥
Lνt L

∞
x

,

and if we study the L∞-norm in the space variable of this term, by the same ideas used in (3.50)-(3.51)

we obtain
∥∥∥φ ~∇

(−∆)((∆ψ)p)(t, ·)
∥∥∥
L∞
≤ C‖(∆ψ)p(t, ·)‖L1 ≤ C‖1QR1

p(t, ·)‖Lν . Thus, taking the Lν-norm

in the time variable we have

‖1QR2

~V9‖M3,σ
t,x
≤ C

∥∥∥∥∥φ ~∇
(−∆)

((∆ψ)p)

∥∥∥∥∥
Lνt L

∞
x

≤ C‖1QR1
p‖Lνt,x ≤ C‖1QR1

p‖
L

3
2
t,x

< +∞.

• The study of the quantity ~V12 follows almost the same lines as the terms ~V8 and ~V11. However instead
of (3.50) we have∣∣∣∣∣φ ~∇∂i

(−∆)
((∂iψ)p)

∣∣∣∣∣ ≤ C
∣∣∣∣∫

R3

1|x−y|>(Ra−Rb)

|x− y|3
1QRb

(x)1QR1
\QRa

(y)(∂iψ)p(t, y)dy

∣∣∣∣ ,
and thus we can write:

‖1QR2

~V10‖M3,σ
t,x
≤

∥∥∥∥∥φ ~∇∂i
(−∆)

((∂iψ)p)

∥∥∥∥∥
Lνt L

∞
x

≤ C‖1QR1
p‖Lνt,x ≤ C‖1QR1

p‖
L

3
2
t,x

< +∞.

• Finally, for the term ~V13 based in the term (13) of (3.40) we write:

|1QR2

~V13| =
∣∣∣∣1QR2

∫ t

0
e(t−s)∆φ(θe3)(s, x)ds

∣∣∣∣ .
Using the same ideas as in (3.41)-(3.42) and applying again the Lemma 2.2, we obtain

‖1QR2

~V13‖M3,σ
t,x
≤ C‖1QR2

(L2(|1QRb
θ|))‖M3,σ

t,x

≤ C‖1QR2
(L2(|1QRb

θ|))‖M310,310
t,x

(3.53)

≤ C‖L2(|1QRb
θ|)‖

M
q
λ
,
q
λ

t,x

,

where we used the same parameters as in (3.52) and we can write (recall (3.1)):

‖L2(|1QRb
θ|)‖

M
q
λ
,
q
λ

t,x

≤ C‖1QRb
θ‖Mq,q

t,x
= C‖1QRb

θ‖
M

10
3 , 10

3
t,x

= ‖1QRb
θ‖
L

10
3
t,x

< +∞.

We can thus conclude that

‖1QR2

~V13‖M3,σ
t,x

< +∞.

With all these estimates Proposition 3.4 is now proven. �

Remark 3.3 Note that the value of the index σ of the Morrey spaceM3,σ
t,x (R×R3) is potentially bounded by

the information available over the variable θ (recall (3.1)) and the maximal possible value for this parameter
is close to σ = 310 (see the expression (3.53) above).
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This result gives a small gain of integrability as we pass from an information on the Morrey space M3,τ0
t,x

to a control over the space M3,σ
t,x with τ0 < σ with σ close to τ0. This is of course not enough and we

need to repeat the arguments above in order to obtain a better control. In this sense we have the following
proposition:

Proposition 3.5 Under the hypotheses of Theorem 1.1 and within the framework of Proposition 3.3, there
exists a radius R̄2 with 0 < R̄2 < R2 such that

1QR̄2
(t0,x0)~u ∈M

3,310
t,x (R× R3), (3.54)

Proof. By the Proposition 3.4 above it follows that 1QR2
~u ∈ M3,σ

t,x (R × R3) with σ very close to τ0 (say

σ = τ0 + ε). Hence, with the information 1QR2
~u ∈M3,τ0+ε

t,x (R×R3) at hand, we can reapply the Proposition

3.4 to obtain for some smaller radius R̄2 < R2 that 1QR̄2
~u ∈ M3,σ1

t,x (R × R3) where σ1 = σ + ε = τ0 + 2ε.

Iterating these arguments as long as necessary, we obtain the information 1QR2
~u ∈ M3,60

t,x (R × R3) where
the value σ = 60 is fixed by the information available for the quantity ~ω which is the only term that is
fixed: see the computation leading to the estimate (3.53) and Remark 3.3. Let us note that a slight abuse of
language has been used for the radius R̄2: at each iteration this radius is smaller and smaller, but in order
to maintain the notations we still denote the final radius by R̄2. �

4 A gain of information for the variable θ

Note that the Proposition 3.5 and the Corollary 3.1 give interesting control (on a small neighborhood of a
point (t0, x0)) for the variable ~u. Indeed, we have obtained so far the information

1QR̄2
(t0,x0)~u ∈M

3,310
t,x (R× R3), and 1QR1

(t0,x0)
~∇⊗ ~u ∈M2,τ1

t,x (R× R3), (4.1)

where
0 < R̄2 < R1 < R < 1, (4.2)

with 5
1−α < τ0 < 6 and τ1 is given by the condition 1

τ1
= 1

τ0
+ 1

5 (see the Corollary 3.1).

Now we will exploit all this information in order to derive some Morrey control for the variable θ, indeed,
we have:

Proposition 4.1 Under the general hypotheses of Theorem 1.1, if we have the controls (4.1) over ~u then
we have, for some radius 0 < R3 < R̄2, we have

1QR3
(t0,x0)θ ∈M

12
5
, 50

9
t,x (R× R3).

Proof. Consider φ̄ : R× R3 −→ R a non-negative function such that φ̄ ∈ C∞0 (R× R3) and such that

φ̄ ≡ 1 over Qρb(t0, x0), supp(φ̄) ⊂ Qρa(t0, x0), (4.3)

where we have
0 < R3 < ρb < ρa < R̄2, (4.4)

where the radius R̄2 is fixed in (4.2). With the help of this auxiliar function we define the variable Θ by

Θ = φ̄θ,

note that, due to the support properties of the function φ̄ we have 1QR3
Θ = 1QR3

θ.
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Thus, if we study the evolution of Θ we obtain (by (1.1))

∂tΘ = (∂tφ̄)θ + φ̄

(
∆θ − ~u · ~∇θ

)
= ∆Θ + (∂tφ̄+ ∆φ̄)θ − 2

3∑
i=1

∂i
(
(∂iφ̄)θ

)
− div(φ̄~uθ) + (~∇φ̄) · (~uθ), (4.5)

where we used the identities φ̄∆θ = ∆(φ̄θ) + ∆φ̄θ − 2

3∑
i=1

∂i
(
(∂iφ̄)θ

)
and the fact that

φ̄(~u · ~∇θ) = φ̄div(~uθ) = div(φ̄~uθ)− ~∇φ̄ · (~uθ),

since div(~u) = 0. As we have Θ(0, ·) = 0 (by the properties of the localizing function φ̄ given in (4.3)),
applying the Duhamel formula we can write:

Θ(t, x) =

∫ t

0
e(t−s)∆(∂tφ̄+ ∆φ̄)θds︸ ︷︷ ︸

Θ1

−2

3∑
i=1

∫ t

0
e(t−s)∆∂i

(
(∂iφ̄)θ

)
ds︸ ︷︷ ︸

Θ2

−
∫ t

0
e(t−s)∆div

(
φ̄~uθ

)
ds︸ ︷︷ ︸

Θ3

(4.6)

+

∫ t

0
e(t−s)∆(~∇φ̄) · (~uθ)ds︸ ︷︷ ︸

Θ4

,

and we will estimate each one of the terms above to prove that we have the wished Morrey control over the
set QR3 .

• For the first term Θ1 we write,

|1QR3
Θ1| =

∣∣∣∣1QR3

∫ t

0
e(t−s)∆(∂tφ̄+ ∆φ̄)θds

∣∣∣∣ (4.7)

by the decay properties of the heat kernel, by the properties of the test function φ̄ (see (4.3)) and by
the definition of the parabolic Riesz potential L2 given in (2.3), we can write the estimate

|1QR3
Θ1| ≤ C1QR3

∫
R

∫
R3

|1Qρaθ(s, y)|
(|t− s|

1
2 + |x− y|)3

dyds

≤ C1QR3
(L2(|1Qρaθ|))(t, x). (4.8)

If we fix p = 12
5 , q = 62

25 and λ = 1
125 , by applying Lemma 2.2 and Lemma 2.3 we obtain∥∥∥1QR3

(L2(|1Qρaθ|))
∥∥∥
M

12
5 , 50

9
t,x

≤ C‖L2(|1Qρaθ|)‖M
12
λ5
,
q
λ

t,x

≤ C‖1Qρaθ‖M
12
5 , 62

25
t,x

≤ C‖1Qρaθ‖M
10
3 , 10

3
t,x

≤ C‖1Qρaθ‖
L

10
3
t,x

< +∞,

where we used the information (3.1).

• For the term Θ2 of (4.6) we need to study, for all 1 ≤ i ≤ 3, the quantities

Oi =

∣∣∣∣1QR3

∫ t

0
e(t−s)∆∂i

(
(∂iφ̄)θ

)
ds

∣∣∣∣ .
26



Thus, using the definition of the parabolic Riesz potential L1 given in (2.3) and applying the Lemma
2.2 we can write

‖Oi‖
M

12
5 , 50

9
t,x

≤ C
∥∥∥1QR3

L1

(
(∂iφ̄)θ

)∥∥∥
M

12
5 , 50

9
t,x

≤ C
∥∥L1

(
(∂iφ̄)θ

)∥∥
M

50
9 , 50

9
t,x

.

If we set now q = 10
3 , 0 < 1 < 5

q , λ = 1− q
5 = 3

5 , we have q
λ = 50

9 , we can use the Lemma 2.3 to obtain

‖Oi‖
M

12
5 , 50

9
t,x

≤ C
∥∥L1

(
(∂iφ̄)θ

)∥∥
M

q
λ
,
q
λ

t,x

≤ C
∥∥(∂iφ̄)θ

∥∥
Mq,q

t,x
= C

∥∥(∂iφ̄)θ
∥∥
M

10
3 , 10

3
t,x

≤ C‖θ‖
L

10
3
t,x

< +∞.

Note that the value 50
9 is related to the information available over θ stated in (3.1). With these estimates

at hand we deduce that

‖Θ2‖
M

12
5 , 50

9
t,x

< +∞.

• We study now the term Θ3 defined in (4.6) and we write (using the same arguments as before)

‖1QR3
Θ3‖

M
12
5 , 50

9
t,x

=

∥∥∥∥1QR3

∫ t

0
e(t−s)∆div

(
φ̄~uθ

)
ds

∥∥∥∥
M

12
5 , 50

9
t,x

≤ C
∥∥∥1QR3

L1

(
φ̄~uθ

)∥∥∥
M

12
5 , 50

9
t,x

.

We set q = 310
94 , λ = 1− q

5 = 16
47 and p = 30

19 . Since 12
5 < p

λ and 50
9 < q

λ we obtain (by the Lemma 2.3)∥∥∥1QR3
L1

(
φ̄~uθ

)∥∥∥
M

12
5 , 50

9
t,x

≤ C
∥∥L1

(
φ̄~uθ

)∥∥
M

p
λ
,
q
λ

t,x

≤ C
∥∥φ̄~uθ∥∥

M
30
19 ,

310
94

t,x

≤ C‖1Q~u‖M3,310
t,x
‖1Qθ‖

M
10
3 , 10

3
t,x

< +∞,

where in the last estimate we used the Hölder inequalities in Morrey spaces with 19
30 = 3

10 + 1
3 and

94
310 = 3

10 + 1
310 . We conclude that

‖1QR3
Θ3‖

M
12
5 , 50

9
t,x

< +∞.

• For the term Θ4 given in (4.6), by the same arguments as before we obtain the estimates

‖1QR3
Θ4‖

M
12
5 , 50

9
t,x

≤ C
∥∥∥1QR3

(L2(|1Qρa~uθ|))
∥∥∥
M

12
5 , 50

9
t,x

.

Setting p = 30
19 , q = 62

25 and λ = 1
125 , since 12

5 < p
λ and 50

9 < q
λ , applying Lemma 2.3 and Lemma 2.2 we

have∥∥∥1QR3
(L2(|1Qρa~uθ|))

∥∥∥
M

12
5 , 50

9
t,x

≤
∥∥L2(|1Qρa~uθ|)

∥∥
M

p
λ
,
q
λ

t,x

≤ C
∥∥1Qρa~uθ∥∥M 30

19 ,
62
25

t,x

≤ C
∥∥1Qρa~uθ∥∥M 30

19 ,
310
94

t,x

≤ C‖1Q~u‖M3,310
t,x
‖1Qθ‖

M
10
3 , 10

3
t,x

< +∞,

where we used the Hölder inequalities with 19
30 = 3

10 + 1
3 and 94

310 = 3
10 + 1

310 . We finally obtain

‖1QR3
Θ4‖

M
12
5 , 50

9
t,x

< +∞.

With all these controls, Proposition 4.1 is proven. �
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5 The end of the proof of Theorem 1.1

The key result for obtaining a gain of regularity is the following lemma coming from the theory of parabolic
equations (see [15, 18]).

Lemma 5.1 Let σ be a smooth homogeneous function over R3 \ {0}, of exponent 1 with σ(D) the Fourier
multiplier associated. Consider the functions Φ ∈ Mp0,q0

t,x (R × R3) and h ∈ Mp0,q1
t,x (R × R3) such that

1 ≤ p0 ≤ q0, with 1
q0

= 2−α
5 , 1

q1
= 1−α

5 , for 0 < α < 1. Then, the function v equal to 0 for t ≤ 0 and

v(t, x) =

∫ t

0
e(t−s)∆(Φ(s, ·) + σ(D)h(s, ·))ds,

for t > 0, is Hölder continuous of exponent α with respect to the parabolic distance.

In order to apply this lemma to the proof of Theorem 1.1, we will first localize each one of the equations of
the Boussinesq system (1.1) and then we will show the terms of the corresponding Duhamel formula belongs
either to the space Mp0,q0

t,x (R× R3) or to the space Mp0,q1
t,x (R× R3).

We start by localizing the problem and for this we consider φ : R× R3 −→ R a test function such that
supp(φ) ⊂]− 1

4 ,
1
4 [×B(0, 1

2) and φ ≡ 1 over ]− 1
16 ,

1
16 [×B(0, 1

4). We consider next a radius R > 0 such that

4R < R3 < R̄2 < R1 < R < 1, (5.1)

where R3 is the radius of Proposition 4.1, R̄2 is the radius of Proposition 3.5 and R1 is the radius obtained
in Proposition 3.3. We then define

η(t, x) = φ

(
t− t0
R2

,
x− x0

R

)
. (5.2)

We start with the equation over the velocity field and we consider the variable ~U defined by the formula

~U = η~u, (5.3)

then, by the properties of the auxiliar function η, we have the identity ~U = ~u over a small neighborhood of
the point (t0, x0), the support of the variable ~U is contained in the parabolic ball QR and moreover we also
have ~U(0, x) = 0. Thus, if we study the evolution of this variable, following the system (1.1), we have

∂t ~U = (∂tη)~u+ η∆~u− η((~u · ~∇)~u)− η~∇p+ ηθe3.

We use now the identity η∆~u = ∆~U + (∆η)~u− 2
3∑
i=1

∂i((∂iη)(~u)) to obtain the equation

∂t ~U = ∆~U + (∂tη + ∆η)(~u+ ~ω)− 2

3∑
i=1

∂i((∂iη)(~u))− η((~u · ~∇)~u)− η~∇p+ ηθe3.

Noting that we have (since div(~u) = 0) the identity

η((~u · ~∇)~u) = ηdiv(~u⊗ ~u) = div(η~u⊗ ~u)− ~u⊗ ~u · ~∇η,

we finally deduce the following equation for the variable ~U :

∂t ~U = ∆~U + (∂tη + ∆η)~u− 2
3∑
i=1

∂i((∂iη)(~u))− div(η~u⊗ ~u) + ~u⊗ ~u · ~∇η − η~∇p+ ηθe3. (5.4)
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We consider now the equation for the variable θ and we consider the variable O defined by the formula

O = ηθ. (5.5)

Thus, following the same ideas used to deduce the equation (4.5) we can write

∂tO = ∆O + (∂tη + ∆η)θ − 2
3∑
i=1

∂i
(
(∂iη)θ

)
− div(η~uθ) + (~∇η) · (~uθ). (5.6)

At this point, we define the (3 + 1)D vector ~V =

[
~U
O

]
=

[
η~u

ηθ

]
, thus with the equations (5.4) and (5.6) we

obtain the system ∂t
~V = ∆~V + ~A− 2

3∑
i=1

∂i ~B − div(C) + ~D − ~E + ~F ,

~V (0, x) = 0.

(5.7)

where the (3 + 1)D vectors ~A, ..., ~H are defined by

~A = (∂tη + ∆η)

[
~u

θ

]
, ~B =

[
(∂iη)~u

(∂iη)θ

]
, C =

[
η~u⊗ ~u
η~uθ

]
,

~D =

[
~u⊗ ~u · ~∇η
(~∇η) · (~uθ)

]
, ~E =

[
η~∇p

0

]
, ~F =

[
ηθe3

0

]
,

(5.8)

note that the term C is not exactly a (3 + 1)D vector (the first bloc is a tensor) and the quantity div(C)

must be understood in the following sense: div(C) =

[
div(η~u⊗ ~u)

div(η~uθ)

]
. This slight abuse of notation can be

easily understood if we work component by component.

Thus, by the Duhamel formula, the solution of the equation (5.7) can be written in the following manner:

~V (t, x) =

∫ t

0
e(t−s)∆

(
~A− 2

3∑
i=1

~B − div(C) + ~D − ~E + ~F

)
ds, (5.9)

thus, in order to apply the Lemma 5.1 to this system and obtain a parabolic gain of regularity, we only need
to prove that the quantities ~A, ..., ~F , defined in (5.8) satisfy:

~A, ~D, ~E, ~F ∈Mp0,q0
t,x (R× R3) and ~B,C ∈Mp0,q1

t,x (R× R3), (5.10)

where we will assume 1 ≤ p0 ≤ 6
5 ≤ q0, with 1

q0
= 2−α

5 , 1
q1

= 1−α
5 , for some 0 < α� 1

10 .

To prove (5.10) we recall that we have the following controls

1QR̄2
~u ∈M3,310

t,x (R× R3), 1QR1

~∇⊗ ~u ∈M2,τ1
t,x (R× R3)

and 1QR3
θ ∈M

12
5
, 50

9
t,x (R× R3), 1QRθ ∈M

10
3
, 10

3
t,x (R× R3),

(5.11)

where we have 4R < R3 < R̄2 < R1 < R and 5
1−α < τ0 < 6 and τ1 is given by the condition 1

τ1
= 1

τ0
+ 1

5 .

29



• Let us start with the quantity ~A. We write, by Lemma 2.2 and since 1 ≤ p0 ≤ 6
5 :

‖ ~A‖Mp0,q0
t,x

=

∥∥∥∥∥(∂tη + ∆η)

[
~u

θ

]∥∥∥∥∥
Mp0,q0

t,x

≤ C

∥∥∥∥∥1QR

[
~u

θ

]∥∥∥∥∥
M

6
5 ,q0
t,x

≤ C‖1QR
~u‖
M

6
5 ,q0
t,x

+ C‖1QR
θ‖
M

6
5 ,q0
t,x

,

noting that q0 = 5
2−α <

50
9 as 0 < α� 1

10 , we thus have

‖ ~A‖Mp0,q0
t,x
≤ C‖1QR̄2

~u‖M3,310
t,x

+ C‖1QR3
θ‖
M

12
5 , 50

9
t,x

< +∞,

since we have the controls (5.11).

• For the term ~B given in (5.8), we have

‖ ~B‖Mp0,q1
t,x

=

∥∥∥∥∥
[

(∂iη)~u

(∂iη)θ

]∥∥∥∥∥
Mp0,q1

t,x

≤ C‖1QR
~u‖Mp0,q1

t,x
+ C‖1QR

θ‖Mp0,q1
t,x

,

since 1 ≤ p0 ≤ 6
5 and q1 = 5

1−α <
50
9 (as 0 < α� 1

10), by Lemma 2.2 we have

‖ ~B‖Mp0,q1
t,x
≤ C‖1QR̄2

~u‖M3,310
t,x

+ C‖1QR3
θ‖
M

12
5 , 50

9
t,x

< +∞,

since we have the controls (5.11).

Remark 5.1 Note that in this particular stage the information θ ∈ L
10
3
t,x is not enough and we need the

sharper control 1QR3
θ ∈M

12
5
, 50

9
t,x .

• For the quantity C defined in (5.8) we have

‖C‖Mp0,q1
t,x

=

∥∥∥∥∥
[
η~u⊗ ~u
η~uθ

]∥∥∥∥∥
Mp0,q1

t,x

≤ C‖1QR
~u⊗ ~u‖Mp0,q1

t,x
+ C‖1QR

~uθ‖Mp0,q1
t,x

. (5.12)

For the first term in the right-hand side above we write, since p0 ≤ 6
5 < 3

2 and q1 = 5
1−α < 6 as

0 < α� 1:

‖1QR
~u⊗ ~u‖Mp0,q1

t,x
≤ C‖1QR

~u⊗ ~u‖
M

3
2 ,155

t,x

≤ C‖1Q̄2
~u⊗ ~u‖M3,310

t,x
‖1Q̄2

~u⊗ ~u‖M3,310
t,x

< +∞,

where we used the Hölder inequalities in Morrey spaces and the information given in (5.11).

For the second term in the right-hand side of (5.12) we have (since p0 ≤ 6
5 <

4
3 and q1 = 5

1−α <
775
142 ,

which is possible if 0 < α� 1)

‖1QR
~uθ‖Mp0,q1

t,x
≤ ‖1QR

~uθ‖
M

4
3 ,

775
142

t,x

≤ C‖1QR̄2
~u‖M3,310

t,x
‖1QR3

θ‖
M

12
5 , 50

9
t,x

< +∞,

where we used the Hölder inequalities in the Morrey space setting with 3
4 = 1

3 + 5
12 and 142

775 = 1
310 + 9

50 .

We thus obtain ‖C‖Mp0,q1
t,x

< +∞.
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• The term ~D given in (5.8) we write

‖ ~D‖Mp0,q0
t,x

=

∥∥∥∥∥
[
~u⊗ ~u · ~∇η
(~∇η) · (~uθ)

]∥∥∥∥∥
Mp0,q0

t,x

≤ C‖1QR
~u⊗ ~u‖Mp0,q0

t,x
+ C‖1QR

~uθ‖Mp0,q0
t,x

. (5.13)

For the first term of the right-hand side above we write, by Lemma 2.2, since 1 ≤ p0 ≤ 6
5 ≤

3
2 and since

q0 = 5
2−α < 155:

‖1QR
~u⊗ ~u‖Mp0,q0

t,x
≤ C‖1QR

~u⊗ ~u‖
M

3
2 ,q0
t,x

≤ C‖1QR
~u‖M3,2q0

t,x
‖1QR

~u‖M3,2q0
t,x

≤ C‖1QR̄2
~u‖M3,310

t,x
‖1QR̄2

~u‖M3,310
t,x

< +∞,

as we have the controls (5.11). For the second term of (5.13), by the Hölder inequalities we have (since
5
6 = 8

15 + 3
10 and 1

q0
= 1−2α

10 + 3
10 as q0 = 5

2−α)

‖1QR
~uθ‖Mp0,q0

t,x
≤ C‖1QR

~uθ‖
M

6
5 ,q0
t,x

≤ C‖1QR
~u‖
M

15
8 , 10

1−2α
t,x

‖1QR
θ‖
M

10
3 , 10

3
t,x

,

since 15
8 < 3 and 10

1−2α < 310 (recall that 0 < α� 1, see Remark 5.2 below), we have

‖1QR
~uθ‖Mp0,q0

t,x
≤ C‖1QR̄2

~u‖M3,310
t,x
‖1QR3

θ‖
M

10
3 , 10

3
t,x

< +∞,

since we have the controls (5.11).

We deduce that ‖ ~D‖Mp0,q0
t,x

< +∞.

• The term ~E defined in (5.8) is treated as follows. Recall that by the equation (1.2) over the pressure
we have the expression

p =
3∑

i,j=1

∂i∂j
(−∆)

(uiuj)−
∂x3

(−∆)
θ.

We consider now a positive test function ϕ such that

ϕ ≡ 1 over Qra(t0, x0) and supp(ϕ) ⊂ QR3(t0, x0),

where 4R < ra < R3. Note in particular that by definition of the auxiliary functions φ and η (see
(5.2)) we have the identities η = ηϕ and η~∇ϕ = 0. Thus for the term η~∇p we have

η~∇p = ηϕ~∇p = η~∇(ϕp) = η~∇

 3∑
i,j=1

ϕ
∂i∂j

(−∆)
(uiuj)− ϕ

∂x3

(−∆)
θ

 ,

and this expression can be rewritten in the following manner

η~∇p =
3∑

i,j=1

η
~∇∂i∂j
(−∆)

(ϕuiuj)︸ ︷︷ ︸
(a)

−
3∑

i,j=1

η~∇∂i
(−∆)

(∂jϕ)uiuj︸ ︷︷ ︸
(b)

−
3∑

i,j=1

η~∇∂j
(−∆)

(∂iϕ)uiuj︸ ︷︷ ︸
(c)

+ 2
3∑

i,j=1

η
~∇

(−∆)
(∂i∂jϕ)(uiuj)︸ ︷︷ ︸
(d)

+ η
~∇
(
(∆ϕ)p

)
(−∆)︸ ︷︷ ︸

(e)

−2
3∑
i=1

η
~∇
(
∂i((∂iϕ)p)

)
(−∆)︸ ︷︷ ︸

(f)

− η
~∇

(−∆)
∂x3 (ϕθ)︸ ︷︷ ︸

(g)

+ η
~∇

(−∆)
((∂x3ϕ)θ)︸ ︷︷ ︸
(h)

.

(5.14)

We study each term above separately.
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∗ For the term (a) in (5.14), since the Riesz transforms are bounded in Morrey spaces, we obtain∥∥∥∥∥η ~∇∂i∂j(−∆)
(ϕuiuj)

∥∥∥∥∥
Mp0,q0

t,x

≤ C
∥∥∥~∇(ϕuiuj)

∥∥∥
Mp0,q0

t,x

,

now, for 1 ≤ k ≤ 3, using all the information available over ~u (see (5.11)), by Lemma 2.2 (recall
that p0 ≤ 6

5 <
3
2 and q0 = 5

2−α < 155) and by the Hölder inequality in Morrey spaces, we have

‖(∂kϕ)uiuj‖Mp0,q0
t,x
≤ C

∥∥∥1QR̄2
uiuj

∥∥∥
M

3
2 ,155

t,x

≤ C‖1QR̄2
ui‖M3,310

t,x
‖1QR̄2

uj‖M3,310
t,x

< +∞.

By essentially the same arguments (recall the informations over ~u given in (5.11)) we have (note
that p0 ≤ 6

5 and q0 = 5
2−α <

120
47 since 0 < α� 1):

‖ϕ(∂kui)uj‖Mp0,q0
t,x
≤ C‖ϕ(∂kui)uj‖

M
6
5 ,

120
47

t,x

≤ C‖1QR1

~∇⊗ ~u‖
M

2, 3720
1445

t,x

‖1QR3
uj‖M3,310

t,x
,

since 5
6 = 1

2 + 1
3 and 47

120 = 1445
3720 + 1

310 . Recall now that we have τ1 = 5τ0
τ0+5 (see (5.11)) and since

5
1−α < τ0 < 6, the parameter τ0 can be chosen so that 3720

1445 < τ1 and we obtain

‖ϕ(∂kui)uj‖Mp0,q0
t,x
≤ C‖1QR1

~∇⊗ ~u‖M2,τ1
t,x
‖1QR3

uj‖M3,310
t,x

< +∞,

and a symmetric argument gives

‖ϕui(∂kuj)‖Mp0,q0
t,x

≤ C‖1QR3
ui‖M3,310

t,x
‖1QR1

~∇⊗ ~u‖M2,τ1
t,x

< +∞.

Thus we can deduce that we have the estimate∥∥∥∥∥η ~∇∂i∂j(−∆)
(ϕuiuj)

∥∥∥∥∥
Mp0,q0

t,x

< +∞.

Remark 5.2 Note that the condition q1 = 5
2−α < 120

47 is the most restrictive constraint over the

parameter α and it implies that 0 < α < 1
24 ∼ 0.04166.

∗ The terms (b) and (c) of (5.14) can be treated in a similar manner and using the information
available in (5.11) we have:∥∥∥∥∥ η~∇∂i(−∆)

(∂jϕ)uiuj

∥∥∥∥∥
Mp0,q0

t,x

≤

∥∥∥∥∥ η~∇∂i(−∆)
(∂jϕ)uiuj

∥∥∥∥∥
M

6
5 ,

120
47

t,x

≤ C ‖(∂jϕ)uiuj‖
M

6
5 ,

120
47

t,x

≤ C‖1QR̄2
uiuj‖

M
3
2 ,155

t,x

≤ C‖1QR̄2
ui‖M3,310

t,x
‖1QR̄2

uj‖M3,310
t,x

< +∞.

∗ The term (d) is treated as follows. By Lemma 2.2, since p0 ≤ 6
5 <

3
2 and q0 <

120
47 < 15

4 , we have∥∥∥∥∥η ~∇
(−∆)

(∂i∂jϕ)(uiuj)

∥∥∥∥∥
Mp0,q0

t,x

≤ C

∥∥∥∥∥η ~∇
(−∆)

(∂i∂jϕ)(uiuj)

∥∥∥∥∥
M

3
2 ,

15
4

t,x

.

Now, by the space inclusion L
3
2
t L
∞
x ⊂M

3
2
, 15

4
t,x we obtain∥∥∥∥∥η ~∇

(−∆)
(∂i∂jϕ)(uiuj)

∥∥∥∥∥
M

3
2 ,

15
4

t,x

≤ C

∥∥∥∥∥η ~∇
(−∆)

(∂i∂jϕ)(uiuj)

∥∥∥∥∥
L

3
2
t L
∞
x

.

32



Following the same ideas displayed in formulas (3.49)-(3.51), due to the support properties of the
auxiliary functions we obtain∥∥∥∥∥η ~∇

(−∆)
(∂i∂jϕ)(uiuj)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ C‖1QR̄2
uiuj‖

L
3
2
t,x

≤ C‖1QR̄2
~u‖M3,310

t,x
‖1QR̄2

~u‖M3,310
t,x

< +∞.

∗ The term (e) of (5.14) follows the same ideas as before, indeed we have∥∥∥∥∥η ~∇
(
(∆ϕ)p

)
(−∆)

∥∥∥∥∥
Mp0,q0

t,x

≤ C

∥∥∥∥∥η ~∇
(
(∆ϕ)p

)
(−∆)

∥∥∥∥∥
M

3
2 ,

15
4

t,x

≤ C

∥∥∥∥∥η ~∇
(
(∆ϕ)p

)
(−∆)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ C‖1QRp‖
L

3
2
t,x

< +∞,

since we have by hypothesis that 1QRp ∈ L
3
2
t,x(R× R3).

∗ The term (f) of (5.14) is estimated in a very similar manner:∥∥∥∥∥η ~∇
(
∂i((∂iϕ)p)

)
(−∆)

∥∥∥∥∥
Mp0,q0

t,x

≤ C

∥∥∥∥∥η ~∇
(
∂i((∂iϕ)p)

)
(−∆)

∥∥∥∥∥
M

6
5 ,

120
47

t,x

≤ C

∥∥∥∥∥η ~∇
(
∂i((∂iϕ)p)

)
(−∆)

∥∥∥∥∥
M

3
2 ,

15
4

t,x

≤ C

∥∥∥∥∥η ~∇
(
∂i((∂iϕ)p)

)
(−∆)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ C‖1QRp‖
L

3
2
t,x

< +∞.

∗ For the quantity (g) of (5.14), since p0 ≤ 6
5 < 10

3 and q0 <
120
47 < 10

3 , we have (since the Riesz
transforms are bounded in Lebesgue spaces)∥∥∥∥∥η ~∇∂x3

(−∆)
(ϕθ)

∥∥∥∥∥
Mp0,q0

t,x

≤ C

∥∥∥∥∥ ~∇∂x3

(−∆)
(ϕθ)

∥∥∥∥∥
L

10
3
t,x

≤ C ‖ϕθ‖
L

10
3
t,x

< +∞.

∗ Finally, the term (h) of (5.14), is treated as follows∥∥∥∥∥η ~∇
(−∆)

((∂x3ϕ)θ)

∥∥∥∥∥
Mp0,q0

t,x

≤ C

∥∥∥∥∥η ~∇
(−∆)

((∂x3ϕ)θ)

∥∥∥∥∥
M

3
2 ,

15
4

t,x

≤ C

∥∥∥∥∥η ~∇
(−∆)

((∂x3ϕ)θ)

∥∥∥∥∥
L

3
2
t L
∞
x

≤ C‖1QRθ‖
L

10
3
t,x

< +∞.

Gathering all these estimates, we finally obtain that ‖ ~E‖Mp0,q0
t,x

< +∞.

• The term ~F given in (5.8) is treated as follows:

‖~F‖Mp0,q0
t,x

=

∥∥∥∥[ηθe3

0

]∥∥∥∥
Mp0,q0

t,x

≤ ‖ηθ‖Mp0,q0
t,x
≤ ‖1QR3

θ‖
M

12
5 , 50

9
t,x

< +∞,

where we used the Lemma 2.2 and p0 ≤ 6
5 < 12

5 , q0 = 5
2−α < 50

9 as well as the controls (5.11). We

finally obtain that ‖~F‖Mp0,q0
t,x

< +∞.

With all the previous computations we have proven all the information stated in (5.10), which applied in
the integral representation formula (5.9) allows us, with Lemma 5.1, to conclude that ~V ∈ Ċα(R×R3) with
0 < α� 1, and since we have

~V =

[
η~u

ηθ

]
,
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we deduce that ~u and θ are also Hölder regular over a small neighborhood of the point (t0, x0) and this
finishes the proof of Theorem 1.1. �
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