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We address here the problem of regularity for weak solutions of the 3D Boussinesq equation. By introducing the new notion of partial suitable solutions, which imposes some conditions over the velocity field only, we show a local gain of regularity for the two variables u and θ.

Introduction

We consider in this article the 3D Boussinesq equation and for u : [0, +∞[×R 3 -→ R 3 a divergence free velocity field, p : [0, +∞[×R 3 -→ R a pressure and θ : [0, +∞[×R 3 -→ R the temperature, we have the system

         ∂ t u = ∆ u -( u • ∇) u -∇p + θe 3 , div( u) = 0, ∂ t θ = ∆θ -u • ∇θ, u(0, x) = u 0 (x), div( u 0 ) = 0, θ(0, x) = θ 0 (x), (1.1) 
where e 3 = (0, 0, 1) t . Note that if θ ≡ 0 we then recover the usual 3D Navier-Stokes system which contains many challenging open problems (see the book [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF] for a detailed and up to date treatment of the Navier-Stokes equations).

The Boussinesq system (in 2D or 3D) was extensively studied from many points of view, see [START_REF] Cannon | The initial problem for the Boussinesq equations with data in L p[END_REF], [START_REF] Chae | Global regularity for the 2D Boussinesq equations with partial viscosity terms[END_REF] and [START_REF] Danchin | Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] for existence results, [START_REF] Brandolese | Large time decay and growth for solutions of a viscous Boussinesq system[END_REF] for the large time behavior, [START_REF] Gancedo | Global regularity for 2D Boussinesq temperature patches with no diffusion[END_REF], [START_REF] Guo | On the suitable weak solutions for the Cauchy problem of the Boussinesq equations Nonlinear Analysis[END_REF] and [START_REF] Hu | Persistence of regularity for the viscous Boussinesq equations with zero diffusivity[END_REF] for some regularity properties. See also [START_REF] Hmidi | On the global well-posedness of the Euler-Boussinesq system with fractional dissipation[END_REF], [START_REF] Lazar | On the regularity of temperature fronts for the 3D viscous Boussinesq system[END_REF] and [START_REF] Ye | On the global regularity of the 2D Boussinesq equations with fractional dissipation[END_REF] and the references there in for other problems related to the Boussinesq equations.

In this work we will focus on the 3D case which, by its proximity to the Navier-Stokes problem, is slightly more delicate to handle (in terms of regularity issues) than the 2D case. The Boussinesq system is of course different than the Navier-Stokes equations: indeed, the presence of the temperature θ in the first equation of (1.1) and the coupling via the drift term u • ∇θ in the second equation induce some interesting modifications. For example, applying the divergence operator to the first equation in (1.1) we obtain the following relationship

-∆p = div div( u ⊗ u) -∂ x 3 θ, (1.2) 
which gives an equation for the pressure that is distinct than in the case of the Navier-Stokes problem since in order to recover the pressure p we need both variable u and θ. Another difference is related to the energy inequalities: from some initial data u 0 , θ 0 ∈ L 2 (R 3 ) and for some fixed time 0 < T * < +∞ we can construct weak solutions ( u, θ) ∈ L ∞ ([0, T * ], L 2 (R 3 )) ∩ L 2 ([0, T * ], Ḣ1 (R 3 )) that satisfy the following energy inequalities (valid for all 0 < t < T * )

u(t, •) 2 L 2 + 2 t 0 ∇ ⊗ u(s, •) 2 L 2 ds ≤ C( u 0 2 L 2 + t 2 θ 0 2 L 2 ) (1.3) θ(t, •) 2 L 2 + 2 t 0 ∇θ(s, •) 2 L 2 ds ≤ θ 0 2 L 2 , (1.4) 
but here the estimate (1.3) is not uniform in time and this fact can cause some problems when studying global solutions. See for example [START_REF] Brandolese | Large time decay and growth for solutions of a viscous Boussinesq system[END_REF], [START_REF] Cannon | The initial problem for the Boussinesq equations with data in L p[END_REF] and [START_REF] Danchin | Les théorèmes de Leray et de Fujita-Kato pour le système de Boussinesq partiellement visqueux[END_REF] for more details concerning existence issues.

Concerning regularity theories, the celebrated Caffarelli-Kohn-Nirenberg criterion for the Navier-Stokes system (see [START_REF] Caffarelli | Partial regularity of suitable weak solutions of the Navier-Stokes equations[END_REF]) was extended in [START_REF] Guo | On the suitable weak solutions for the Cauchy problem of the Boussinesq equations Nonlinear Analysis[END_REF] to the Boussinesq equation. This theory is based in the notion of suitable solutions which are, roughly speaking, weak solutions that satisfy a local energy inequality. Let us note that in the mentioned work [START_REF] Guo | On the suitable weak solutions for the Cauchy problem of the Boussinesq equations Nonlinear Analysis[END_REF], the suitability condition is imposed to the variables u and θ.

We will show here that this condition over the two variables is redundant and that it is enough to consider some behavior for the velocity field u only: this fact will lead us to the notion of partial suitable solutions and with the help of this concept we will see how to deduce a gain of regularity for both variables.

As we are interested in the behavior of the solutions on small neighborhood of points, we will consider parabolic balls which are defined in the following manner:

Q R (t, x) =]t -R 2 , t + R 2 [×B R (x), (1.5) 
for some radius 0 < R < 1 such that t -R 2 > 0 with 0 < t < T * , where T * is a fixed bounded time for which we have the estimates (1.3) and (1.4): we thus have ( u, θ) ∈ L ∞ ([0, T * ], L 2 (R 3 )) ∩ L 2 ([0, T * ], Ḣ1 (R 3 )) and also ( u, θ)

∈ L ∞ t L 2 x (Q R ) ∩ L 2 t Ḣ1 x (Q R ).
In this general framework, we have the following definition:

Definition 1.1 (Partial suitable solutions) Consider u, θ ∈ L ∞ t L 2 x (Q R ) ∩ L 2 t Ḣ1
x (Q R ) two functions that satisfy the equation (1.1) in the weak sense over the set Q R . Assume moreover that we have the following local information over the pressure: p ∈ L 3 2 t,x (Q R ). We will say that ( u, p, θ) is a partial suitable solution for the 3D Boussinesq equation (1.1) if the distribution µ given by the expression

µ = -∂ t | u| 2 + ∆| u| 2 -2| ∇ ⊗ u| 2 -div (| u| 2 + 2p) u + θe 3 • u, (1.6) 
is a non-negative locally finite measure on Q R .

The condition p ∈ L 3 2

t,x is rather classical (see [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF]Chapter 13]) and the contribution of the variable θ via the relationship (1.2) does not cause any interference as we have θ ∈

L ∞ t L 2 x (Q R ) ∩ L 2 t Ḣ1 x (Q R ).
This notion of partial suitable solution is useful to deduce some local energy inequalities for the velocity field u, but we do not need to impose a similar condition to the variable θ, which can be seen at this stage as a non-divergence free external force. Indeed, by a separate study of each of these variables we will obtain our main result: Theorem 1.1 Consider ( u, p, θ) a partial suitable solution for the 3D Boussinesq equation (1.1) in the sense of the Definition 1.1. There exists a small constant 0 < * 1 such that if for some point (t 0 , x 0 ) ∈ Q R we have lim sup r→0 1 r ]t 0 -r 2 ,t 0 +r 2 [×B(x 0 ,r)

| ∇ ⊗ u| 2 dxds < * , (1.7)

then, the solution ( u, θ) is Hölder continuous in time and space for some exponent 0 < α 1 in a small neighborhood of (t 0 , x 0 ). Some remarks are in order here. First note that besides the partial suitable condition we only need a mild behavior for the gradient of the velocity field u (stated in the hypothesis (1.7) above), and thus no particular constraint is asked for the variable θ. Next remark that in this context we can obtain a (local) gain of regularity for both variables u and θ: when dealing with regularity issues we can thus observe that the variable u dominates the variable θ, in the sense that we can deduce some regularity information on the variable θ from the behavior of the variable u. This fact seems (to the best of our knowledge) to be new in the study of the regularity properties for the 3D Boussinesq system.

Note also that the gain of regularity is stated in terms of Hölder spaces (in time and space) over a small neighborhood of points (t 0 , x 0 ) where we have (1.7), thus it will be quite natural to use parabolic Hölder spaces which are defined in the expression (2.1) below. Finally, let us mention that the points (t 0 , x 0 ) ∈ [0, T ] × R 3 for which we have (1.7) are called regular points and following [START_REF] Guo | On the suitable weak solutions for the Cauchy problem of the Boussinesq equations Nonlinear Analysis[END_REF] (or adapting the ideas of [START_REF] Scheffer | Hausdorff measure and the Navier-Stokes equation[END_REF] or [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF]Section 13.10]) it can be proven that the parabolic 1-Hausdorff measure of the set of singular points is null.

The outline of the article is the following. In Section 2 we recall the definition of the parabolic Hölder spaces as well as the notion of parabolic Morrey spaces. These spaces, although completely absent in the statement of Theorem 1.1, are a powerful tool when studying problems related to regularity in PDEs (see the key Lemma 5.1 below) and in this article we will use them in a systematic manner. In Section 3 we study the variable u considering the variable θ as an external force and we will obtain a gain of information for u in terms of Morrey spaces. Section 4 is devoted to the study of the variable θ and we will see how to obtain a gain of integrability (also stated in terms of Morrey spaces) for this variable. Finally, in Section 5, gathering all the information available on the variables u and θ we will prove Theorem 1.1.

Parabolic Hölder and Morrey spaces

We will consider the homogeneous space (R×R 3 , d, µ) where d is the parabolic distance given by d (t, x), (s, y) = |t -s| 1 2 + |x -y| and where µ is the usual Lebesgue measure dµ = dxdt. We then define the homogeneous (parabolic) Hölder spaces Ċα (R × R 3 , R 3 ) with 0 < α < 1 by the usual condition:

φ Ċα = sup (t,x) =(s,y) | φ(t, x) -φ(s, y)| |t -s| 1 2 + |x -y| α < +∞, (2.1)
and it is with respect to this functional space that we will obtain the regularity gain announced. Now, for 1 < p ≤ q < +∞, the (parabolic) Morrey spaces M p,q t,x (R × R 3 ) are defined as the set of measurable functions φ : R × R 3 -→ R 3 that belong to the space (L p t,x ) loc such that φ M p,q t,x < +∞ where φ M p,q t,x = sup

x 0 ∈R 3 ,t 0 ∈R,r>0 1 r 5(1-p q ) |t-t 0 |<r 2 B(x 0 ,r) | φ(t, x)| p dxdt 1 p . (2.2)
Morrey spaces appear to be very convenient functional spaces when dealing with regularity issues as it was pointed out in [START_REF] Kukavica | On partial regularity for the Navier-Stokes equations[END_REF], [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF] and [START_REF] Robinson | An introduction to the classical theory of the Navier-Stokes equations[END_REF].

We present now some well-known facts:

Lemma 2.1 (Hölder inequalities) 1) If f , g : R × R 3 -→ R 3 are two functions such that f ∈ M p,q t,x (R × R 3 ) and g ∈ L ∞ t,x (R × R 3 ), then for all 1 ≤ p ≤ q < +∞ we have f • g M p,q t,x ≤ C f M p,q t,x g L ∞ t,x . 2) Let 1 ≤ p 0 ≤ q 0 < +∞, 1 ≤ p 1 ≤ q 1 < +∞ and 1 ≤ p 2 ≤ q 2 < +∞. If 1 p 1 + 1 p 2 = 1 p 0 and 1 q 1 + 1 q 2 = 1 q 0 , then for two measurable functions f , g : R × R 3 -→ R 3 such that f ∈ M p 1 ,q 1 t,x (R × R 3 ) and g ∈ M p 2 ,q 2 t,x (R × R 3
), we have the following Hölder inequality in Morrey spaces

f • g M p 0 ,q 0 t,x ≤ f M p 1 ,q 1 t,x g M p 2 ,q 2 t,x . Lemma 2.2 (Localization) Let Ω be a bounded set of R × R 3 . If we have 1 ≤ p 0 ≤ q 0 , 1 ≤ p 1 ≤ q 1 with the condition q 0 ≤ q 1 < +∞ and if the function f : R × R 3 -→ R 3 belongs to the space M p 1 ,q 1 t,x (R × R 3
) then we have the following localization property

1 Ω f M p 0 ,q 0 t,x ≤ C 1 Ω f M p 1 ,q 1 t,x ≤ C f M p 1 ,q 1 t,x .
In our work, the notion of parabolic Riesz potential (and its properties) will be crucial and for some index 0 < a < 5 we define the parabolic Riesz potential L a of a locally integrable function f : R × R 3 → R 3 by

L a ( f )(t, x) = R R 3 1 (|t -s| 1 2 + |x -y|) 5-a f (s, y)dyds.
(2.3)

Then, we have the following property in Morrey spaces Lemma 2.3 (Adams-Hedberg inequality) If 0 < a < 5 q , 1 < p ≤ q < +∞ and f ∈ M p,q t,x (R × R 3 ), then for λ = 1 -aq 5 we have the following boundedness property in Morrey spaces:

L a ( f ) M p λ , q λ t,x ≤ C f M p,q t,x .
The three lemmas above constitute our main tools in Morrey spaces. For a more detailed study of these functional spaces we refer to [START_REF] Adams | Morrey spaces in harmonic analysis[END_REF] and [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF].

A partial gain of information for the variable u

In this section we will only focus our study in the variable u and its equation:

∂ t u = ∆ u -( u • ∇) u -∇p + θe 3 , div( u) = 0.
Here, the variable θ can be seen as an external force for which we have the information

θ ∈ L ∞ ([0, T ], L 2 (R 3 ))∩ L 2 ([0, T ], Ḣ1 (R 3 
)), note that by interpolation we also have

θ ∈ L 10 3 t,x ([0, T ] × R 3 ). (3.1)
In order to obtain a gain of information in the variable u, we will first consider some estimates for the pressure and then we will deduce inequalities for the velocity field u.

Study of the Pressure

Since the pressure p satisfies the equation (1.2) and it depends on the velocity field u and on the temperature θ, we first need to establish some controls for it. Although the equation for the pressure is in the case of the 3D Boussinesq equation relatively similar to the equation of the pressure for the 3D Navier-Stokes one, there are some differences that must be treated carefully.

We introduce the following quantities: for a point (t, x) ∈ R × R 3 and for a real parameter r > 0 we write

A r (t, x) = sup t-r 2 <s<t+r 2 1 r B(x,r) | u(s, y)| 2 dy, α r (t, x) = 1 r Qr(t,x) | ∇ ⊗ u(s, y)| 2 dyds, B r (t, x) = 1 r 2 
Qr(t,x) | u(s, y)| 3 dyds, P r (t, x) = 1 r 2 
Qr(t,x) |p(s, y)| 3 2 dyds, (3.2) 
and when the context is clear we will simply write A r = A r (t, x). Note that the previous quantities correspond to the information

L ∞ t L 2 x , L 2 t Ḣ1 x , L 3 t,x and L 3 2
t,x , in particular we have the following relationships:

rA r = u 2 L ∞ t L 2 x (Qr) , rα r = ∇ ⊗ u 2 L 2 t,x (Qr) , r 2 P r = p 3 2 L 3 2 t,x (Qr) 
.

With these quantities above we will deduce now a useful estimate for the pressure.

Proposition 3.1 (Pressure estimate) Under the hypotheses of Theorem 1.1 and with the notations given in (3.2) for any 0 < r < ρ 2 < R we have the inequality

P 2 3 r ≤ C ρ r (A ρ α ρ ) 1 2 + r ρ 3 2 ρ 5 6 θ L ∞ t L 2 x (Qρ) + r ρ 2 3 P 2 3
ρ .

(3.4)

Proof. For proving the inequality above, we will start by the following estimate (where σ is a real number such that 0 < σ < 1 2 ):

p L 3 2 t,x (Qσ) ≤ C σ 1 3 u L ∞ t L 2 x (Q 1 ) ∇ ⊗ u L 2 t,x (Q 1 ) + σ 17 6 θ L ∞ t L 2 x (Q 1 ) + σ 2 p L 3 2 t,x (Q 1 ) , (3.5) 
here Q σ and Q 1 are parabolic balls of radius σ and 1 respectively (the definition of such balls is given in (1.5)).

To obtain this inequality (3.5) we introduce η : R 3 -→ [0, 1] a smooth function supported in the ball B 1 such that η ≡ 1 on the ball B 3 , note also that over the set Q σ we have the identity p = ηp. Thus, by a straightforward calculation we have

-∆(ηp) = -η∆p + (∆η)p -2 3 i=1 ∂ i ((∂ i η)p),
from which we deduce the inequality

p L 3 2 t,x (Qσ) = ηp L 3 2 t,x (Qσ) ≤ -η∆p (-∆) L 3 2 t,x (Qσ) + (∆η)p (-∆) L 3 2 t,x (Qσ) + 2 3 i=1 ∂ i ((∂ i η)p) (-∆) L 3 2 t,x (Qσ) 
.

For the first term above, since we have the equation (1.2) for the pressure we can write

p L 3 2 t,x (Qσ) ≤ C 1 (-∆) η 3 i,j=1 ∂ i ∂ j (u i u j ) L 3 2 t,x (Qσ) (p 1 ) + 1 (-∆) η∂ x 3 θ L 3 2 t,x (Qσ) (p 2 ) (3.6) + (∆η)p (-∆) L 3 2 t,x (Qσ) (p 3 ) +2 3 i=1 ∂ i ((∂ i η)p) (-∆) L 3 2 t,x (Qσ) (p 4 )
.

We will study each term above separately.

• For the term (p 1 ) in (3.6), if we denote by C i,j = u i (u j -(u j ) 1 ) where (u j ) 1 is the average of u j over the ball of radius 1, since u is divergence free, we have the formula

3 i,j=1 ∂ i ∂ j (u i u j ) = 3 i,j=1 ∂ i ∂ j C i,j and
thus we can write

(p 1 ) = 1 (-∆) η 3 i,j=1 ∂ i ∂ j C i,j L 3 2 t,x (Qσ) ≤ 3 i,j=1 1 (-∆) ∂ i ∂ j (ηC i,j ) -∂ i (∂ j η)C i,j -∂ j (∂ i η)C i,j + 2(∂ i ∂ j η)C i,j L 3 2 t,x (Qσ) 
.

Denoting by R i = ∂ i √ -∆ the usual Riesz transforms on R 3 , by the boundedness of these operators in Lebesgue spaces and using the support properties of the auxiliary function η, we have for the first term above (in the space variable):

∂ i ∂ j (-∆) ηC i,j (t, •) L 3 2 (Bσ) ≤ R i R j (ηC i,j )(t, •) L 3 2 (R 3 ) ≤ C ηC i,j (t, •) L 3 2 (B 1 ) ≤ C u i (t, •) L 2 (B 1 ) u j (t, •) -(u j ) 1 L 6 (B 1 ) ≤ C u(t, •) L 2 (B 1 ) ∇ ⊗ u(t, •) L 2 (B 1 ) ,
where we used Hölder and Poincaré inequalities in the last line. Now taking the L 3 2 -norm in the time variable of the previous inequality we obtain:

∂ i ∂ j (-∆) ηC i,j L 3 2 t,x (Qσ) ≤ Cσ 1 3 u L ∞ t L 2 x (Q 1 ) ∇ ⊗ u L 2 t,x (Q 1 ) . (3.8) 
For the other terms of (3.7) we note that ∂ i η vanishes on B 3 5

∪ B c 4 5
and since

B σ ⊂ B 1 2 ⊂ B 3 5
, using the integral representation for the operator ∂ i (-∆) we have for the second term of (3.7) the estimate

∂ i (-∆) (∂ j η)C i,j (t, •) L 3 2 (Bσ) ≤ Cσ 2 ∂ i (-∆) (∂ j η)C i,j (t, •) L ∞ (Bσ) ≤ C σ 2 { 3 5 <|y|< 4 5 } x i -y i |x -y| 3 (∂ j η)C i,j (t, y) dy L ∞ (Bσ) , (3.9) 
since this is a convolution with a bounded kernel (due to the support properties in the variables x and y), by the Young inequalities we have

≤ C σ 2 C i,j (t, •) L 1 (B 1 ) ≤ C σ 2 u i (t, •) L 2 (B 1 ) u j (t, •) -(u j ) 1 L 2 (B 1 ) ≤ C u(t, •) L 2 (B 1 ) ∇ ⊗ u(t, •) L 2 (B 1 ) ,
where we used the same ideas as in (3.8) before and the fact that 0 < σ < 1. Thus taking the L 3 2 -norm in the time variable, we obtain

∂ i (-∆) (∂ j η)C i,j L 3 2 t,x (Qσ) ≤ Cσ 1 3 u L ∞ t L 2 x (Q 1 ) ∇ ⊗ u L 2 t,x (Q 1 ) . (3.10) 
A symmetric argument gives

∂ j (-∆) (∂ i η)C i,j L 3 2 t,x (Qσ) ≤ Cσ 1 3 u L ∞ t L 2 x (Q 1 ) ∇ ⊗ u L 2 t,x (Q 1 ) , (3.11) 
and observing that the convolution kernel associated to the operator 1 (-∆) is C |x| , following the same ideas we have for the last term of (3.7) the inequality

(∂ i ∂ j η)C i,j (-∆) L 3 2 t,x (Qσ) ≤ Cσ 1 3 u L ∞ t L 2 x (Q 1 ) ∇ ⊗ u L 2 t,x (Q 1 ) . (3.12)
Therefore, combining the estimates (3.8), (3.10), (3.11) and (3.12) and getting back to (3.7) we finally have:

(p 1 ) = 1 (-∆) η 3 i,j=1 ∂ i ∂ j (u i u j ) L 3 2 t,x (Qσ) ≤ C σ 1 3 u L ∞ t L 2 x (Q 1 ) ∇ ⊗ u L 2 t,x (Q 1 ) . (3.13) 
• For the term (p 2 ) of (3.6) we write

(p 2 ) = 1 (-∆) η∂ x 3 θ L 3 2 t,x (Qσ) ≤ 1 (-∆) ∂ x 3 ηθ L 3 2 t,x (Qσ) (p 2a ) + 1 (-∆) ∂ x 3 η θ L 3 2 t,x (Qσ) (p 2b )
.

For the quantity (p 2a ) we start by considering the space variable and by the Hölder inequality with

2 3 = 1 2 + 1 6 we write 1 Bσ 1 (-∆) ∂ x 3 ηθ (t, •) L 3 2 (Bσ) ≤ C 1 Bσ L 2 (Bσ) 1 (-∆) ∂ x 3 ηθ (t, •) L 6 (Bσ) ≤ Cσ 3 2 ∂ x 3 (-∆) ηθ (t, •) L 6 (R 3 )
, and since the Riesz transforms are bounded in Lebesgue spaces we can write

∂ x 3 (-∆) ηθ (t, •) L 6 (R 3 ) ≤ Cσ 3 2 1 (-∆) ηθ (t, •) L 6 t,x (R 3 ) ≤ Cσ 3 2 (ηθ)(t, •) L 2 (R 3 ) ≤ Cσ 3 2 η(t, •) L ∞ θ(t, •) L 2 (B 1 ) ,
where we used the Hardy-Littlewood-Sobolev inequalities and the localizing properties of the function η. Now, we integrate with respect to the time variable, and with the previous controls we obtain

(p 2a ) = 1 (-∆) ∂ x 3 ηθ (t, •) L 3 2 t,x (Qσ) ≤ Cσ 3 2 σ 4 3 θ L ∞ t L 2 x (Q 1 ) = Cσ 17 6 θ L ∞ t L 2 x (Q 1 ) . (3.14) 
For the term (p 2b ) we proceed as in (3.9) and due to the properties of the localizing function η we write

1 (-∆) ∂ x 3 η θ (t, •) L 3 2 (Bσ) ≤ Cσ 2 1 (-∆) ∂ x 3 η θ (t, •) L ∞ (Bσ) ≤ Cσ 2 { 3 5 <|y|< 4 5 } 1 |x -y| ∂ x 3 η θ (t, •) L ∞ (Bσ)
, since the kernel of convolution above is bounded (as x ∈ B σ with 0 < σ < 1 2 and y ∈ { 3 5 < |y| < 4 5 }), we obtain 1 (-∆)

∂ x 3 η θ (t, •) L 3 2 (Bσ) ≤ Cσ 2 θ(t, •) L 1 (B 1 ) ≤ Cσ 2 θ(t, •) L 2 (B 1 ) .
Thus, taking the L 3 2 -norm in the time variable we have

(p 2b ) = 1 (-∆) ∂ x 3 η θ L 3 2 t,x (Qσ) ≤ Cσ 10 3 θ L ∞ t L 2 x (Q 1 ) ≤ Cσ 17 6 θ L ∞ t L 2 x (Q 1 ) , (3.15) 
(since 0 < σ < 1 and σ 

θ L ∞ y L 2 x (Q 1 ) . (3.16) 
• We continue our study of expression (3.6) and for the term (p 3 ) we first treat the space variable.

Recalling the support properties of the auxiliary function η and properties of the convolution kernel associated to the operator 1 (-∆) , we can write as before (see (3.9)):

(∆η)p(t, •) (-∆) L 3 2 (Bσ) ≤ Cσ 2 p(t, •) L 1 (B 1 ) ≤ Cσ 2 p(t, •) L 3 2 (B 1 )
, and thus, taking the L 3 2 -norm in the time variable we obtain:

(p 3 ) = (∆η)p (-∆) L 3 2 t,x (Qσ) ≤ Cσ 2 p L 3 2 t,x (Q 1 )
.

(3.17)

• For the last term of expression (3.6), following the same ideas displayed in (3.9) we can write

∂ i (-∆) (∂ i η)p(t, •) L 3 2 (Bσ) ≤ Cσ 2 p(t, •) L 1 (B 1 ) ≤ Cσ 2 p(t, •) L 3 2 (B 1 )
, and we obtain

(p 4 ) = ∂ i ((∂ i η)p) (-∆) L 3 2 t,x (Qσ) ≤ Cσ 2 p L 3 2 t,x (Q 1 ) . (3.18)
Now, gathering the estimates (3.13), (3.16), (3.17) and (3.18) we obtain the inequality

p L 3 2 t,x (Qσ) ≤ C σ 1 3 u L ∞ t L 2 x (Q 1 ) ∇ ⊗ u L 2 t,x (Q 1 ) + σ 17 6 θ L ∞ t L 2 x (Q 1 ) + σ 2 p L 3 2 t,x (Q 1 )
, which is (3.5).

To deduce inequality (3.4), if we fix σ = r ρ ≤ 1 2 and if we introduce the functions p ρ (t, x) = p(ρ 2 t, ρx), θ ρ (t, x) = θ(ρ 2 t, ρx) and u ρ (t, x) = u(ρ 2 t, ρx), then from the control (3.5) we have

p ρ L 3 2 t,x (Q r ρ ) ≤ C r ρ 1 3 u ρ L ∞ t L 2 x (Q 1 ) ∇ ⊗ u ρ L 2 t,x (Q 1 ) + r ρ 17 6 θ ρ L ∞ t L 2 x (Q 1 ) + r ρ 2 p ρ L 3 2 t,x (Q 1 )
, and by a change of variable we can write

p L 3 2 t,x (Qr) ρ -10 3 ≤ C r ρ 1 3 ρ -3 2 u L ∞ t L 2 x (Qρ) ρ -3 2 ∇ ⊗ u L 2 t,x (Qρ) + r ρ 17 6 ρ -3 2 θ L ∞ t L 2 x (Qρ) + r ρ 2 ρ -10 3 p L 3 2 t,x (Qρ) 
. Now, recalling that by (3.2) and (3.3) we have the identities

r 4 3 P 2 3 r = p L 3 2 t,x (Qr) 
, ρ

1 2 A 1 2 ρ = u L ∞ t L 2
x (Qρ) and ρ

1 2 α 1 2 ρ = ∇ ⊗ u L 2 t,x (Qρ) ,
we finally obtain

P 2 3 r ≤ C ρ r (A ρ α ρ ) 1 2 + r ρ 3 2 ρ 5 6 θ L ∞ t L 2 x (Qρ) + r ρ 2 3 P 2 3
ρ , and this finishes the proof of Proposition 3.1.

Study of the velocity field

We continue our study with the treatment of the velocity field u and we start with a relationship between some of the quantities defined in (3.2) above:

Lemma 3.1 For 0 < r < 1 we have the relationship between B r , A r and α r :

B 1 3 r ≤ C(A r + α r ) 1 2 . (3.19) 
Proof. Indeed, using the definition of B r given in (3.2) above and by Hölder inequality we have

B 1 3 r = 1 r 2 3 u L 3 t,x (Qr) ≤ C r 1 2 u L 10 3 t,x (Qr) 
.

By interpolation we have u

L 10 3 t,x (Qr) ≤ u 2 5 L ∞ t L 2 x (Qr) u 3 5 L 2 t L 6
x (Qr) . Now, for the L 2 t L 6

x norm of u, we use the classical Gagliardo-Nirenberg inequality (see [START_REF] Brezis | Gagliardo-Nirenberg inequalities and non-inequalities: the full story[END_REF]) to obtain u L 2

t L 6 x (Qr) ≤ C ∇⊗ u L 2 t L 2 x (Qr) + u L ∞ t L 2 x (Qr)
and using Young's inequalities we have

u L 10 3 t,x (Qr) ≤ C u 2 5 L ∞ t L 2 x (Qr) ∇ ⊗ u 3 5 L 2 t L 2 x (Qr) + u 3 5 L ∞ t L 2 x (Qr) ≤ C u L ∞ t L 2 x (Qr) + ∇ ⊗ u L 2 t L 2 x (Qr) . Recalling that u L ∞ t L 2 x (Qr) = r 1 2 A 1 2 r and ∇ ⊗ u L 2 t L 2 x (Qr) = r 1 2 α 1 2
r , we finally obtain (3.19). Now, we will establish an estimate that relies in the energy estimate (1.3):

Proposition 3.2 Under the hypotheses of Theorem 1.1 and with the notations given in (3.2) we have for any radius 0 < r < ρ 2 < 1 the inequality

A r + α r ≤ C r 2 ρ 2 A ρ + ρ 2 r 2 α 1 2 ρ A ρ + C ρ 2 r 2 P 2 3 ρ (A ρ + α ρ ) 1 2 + C ρ 7 2 r θ L ∞ t L 2 x (Qρ) α 1 2 ρ . (3.20)
Proof. Following the idea of Scheffer [START_REF] Scheffer | Hausdorff measure and the Navier-Stokes equation[END_REF], we will consider the following test function:

Lemma 3.2 Let 0 < r < ρ 2 < R < 1. Let φ ∈ C ∞ 0 (R × R 3 ) be a function such that φ(s, y) = r 2 ω s -t ρ 2 , y -x ρ θ s -t r 2 g (4r 2 +t-s) (x -y), where ω ∈ C ∞ 0 (R × R 3 ) is positive function whose support is in Q 1 (0, 0) and equal to 1 in Q 1 2
(0, 0). In addition θ is a smooth function non negative such that θ = 1 over ] -∞, 1[ and θ = 0 over ]2, +∞[ and g t (•) is the usual heat kernel. Then, we have the following points.

1) the function φ is a bounded non-negative function, and its support is contained in the parabolic ball Q ρ , and for all (s, y) ∈ Q r (t, x) we have the lower bound φ(s, y)

≥ C r , 2) for all (s, y) ∈ Q ρ (t, x) with 0 < s < t + r 2 we have φ(s, y) ≤ C r , 3) for all (s, y) ∈ Q ρ (t, x) with 0 < s < t + r 2 we have ∇φ(s, y) ≤ C r 2 , 4) moreover, for all (s, y) ∈ Q ρ (t, x) with 0 < s < t + r 2 we have |(∂ s + ∆)φ(s, y)| ≤ C r 2 ρ 5 .
A detailed proof of this lemma can be found in [START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF]Chapter 13].

With the all the properties of this function φ, exploiting the fact that ( u, θ) is a partial suitable solution (it satisfies a local energy inequality) and using the notations (3.2) above, we can write:

A r + α r ≤ R 3 (∂ t φ + ∆φ)| u| 2 dxds (1) +2 R R 3 p( u • ∇φ)dxds (2) + R R 3 | u| 2 ( u • ∇)φdxds (3) +2 R R 3 θe 3 • (φ u)dxds (4) 
.

(

The terms of the right hand side above will be studied separately. Indeed,

• For the quantity (1) in (3.21), using the properties of the function φ given in Lemma 3.2 and by the definition of the quantity A ρ given in (3.2) we have

R 3 (∂ t φ + ∆φ)| u| 2 dxds ≤ C r 2 ρ 5 Qρ | u| 2 dxds = C r 2 ρ 5 t+ρ 2 t-ρ 2 Bρ | u| 2 dxds ≤ C r 2 ρ 2 A ρ .
• For the term (2) in (3.21), by the properties of the function φ given in Lemma 3.2 and by the Hölder inequality, we obtain

R R 3 p( u • ∇φ)dxds ≤ C r 2 t+ρ 2 t-ρ 2 Bρ |p|| u|dxds ≤ C r 2 p L 3 2 t,x (Qρ) u L 3 t,x (Qρ) ,
noting that by (3.2) we have p

L 3 2 t,x (Qρ) = ρ 4 3 P 2 3 ρ and u L 3 t,x (Qρ) = ρ 2 3 λ 1 3 ρ , we can thus write R R 3 p( u • ∇φ)dxds ≤ C r 2 ρ 4 3 P 2 3 ρ ρ 2 3 λ 1 3 ρ ≤ C ρ 2 r 2 P • For the term (3) in (3.21), let us first define the average (| u| 2 ) ρ = 1 |B(x, ρ)| B(x,ρ)
| u(t, y)| 2 dy and since u is divergence free we have

Bρ (| u| 2 ) ρ ( u • ∇)φdx = 0.
Then, we can write by the properties of the function φ given in Lemma 3.2 and by the Hölder inequality:

R R 3 | u| 2 ( u • ∇)φdxds = Qρ [| u| 2 -(| u| 2 ) ρ ]( u • ∇)φdxds ≤ C r 2 t+ρ 2 t-ρ 2 Bρ | u| 2 -(| u| 2 ) ρ | u|dxds ≤ C r 2 t+ρ 2 t-ρ 2 | u| 2 -(| u| 2 ) ρ L 3 2 (Bρ) u(s, •) L 3 (Bρ) ds. Now, Poincare's inequality implies ≤ C r 2 t+ρ 2 t-ρ 2 ∇(| u(s, •)| 2 ) L 1 (Bρ) u(s, •) L 3 (Bρ) ds ≤ C r 2 t+ρ 2 t-ρ 2 u(s, •) L 2 (Bρ) ∇ ⊗ u(s, •) L 2 (Bρ) u(s, •) L 3 (Bρ) ds ≤ C r 2 u L 6 t L 2 x (Qρ) ∇ ⊗ u L 2 t,x (Qρ) u L 3 t,x (Qρ) ,
where in the last inequality we used the Hölder inequality in the time variable. We observe now that by the notations given in (3.2) we can write

u L 6 t L 2 x (Qρ) ≤ Cρ 1 3 u L ∞ t L 2 x (Qρ) ≤ Cρ 5 6 A 1 2 ρ , ∇ ⊗ u L 2 t,x (Qρ) = ρ 1 2 α 1 2 ρ , u L 3 t,x (Qρ) = ρ 2 3 λ 1 3
ρ , and we obtain, by (3.19):

R R 3 | u| 2 ( u • ∇)φdxds ≤ C ρ 2 r 2 A 1 2 ρ α 1 2 ρ λ 1 3 ρ ≤ C ρ 2 r 2 A 1 2 ρ α 1 2 ρ (A ρ + α ρ ) 1 2 ≤ C ρ 2 r 2 α 1 2 ρ (A ρ + α ρ ).
• Finally, for the term (4) in (3.21), by the Hölder inequality and by the properties of the function φ given in Lemma 3.2, we write

R R 3 (θe 3 ) • (φ u)dxds ≤ t+ρ 2 t-ρ 2 φ(s, •) L 3 x (Bρ) θ(s, •) L 2 x (Bρ) u(s, •) L 6 x (Bρ) ds ≤ C ρ r t+ρ 2 t-ρ 2 θ(s, •) L 2 x (Bρ) u(s, •) Ḣ1 x (Bρ) ds ≤ C ρ r θ L 2 t,x (Qρ) u L 2 t Ḣ1 x (Qρ) ≤ C ρ 3 r θ L ∞ t L 2 x (Qρ) u L 2 t Ḣ1 x (Qρ) ,
where we applied the Sobolev inequalities (see Corollary 9.14 of [START_REF] Brezis | Functional Analysis, Sobolev Spaces and Partial Differential Equations[END_REF]) and the Cauchy-Schwartz inequality in the time variable. Since by (3.2) we have u

L 2 t Ḣ1 x (Qρ) = ρ 1 2 α 1 2 ρ , we conclude R R 3 (θe 3 ) • (φ u)dxds ≤ C ρ 7 2 r θ L ∞ t L 2 x (Qρ) α 1 2 ρ .
Gathering all these estimates we obtain the inequality (3.20) and this ends the proof of Proposition 3.2.

Iterative process

With the estimates (3.4) and (3.20) and given in Propositions 3.1 and 3.2, respectively, we will set up a general inequality that will help us to deduce a gain of integrability. For this, we introduce the notations

A r = 1 r 2(1-5 τ 0 ) (A r + α r ) , P r = 1 r 3 2 (1-5 τ 0 ) P r and O r = A r + r ρ 15 τ 0 -15 4 P r 4 3 , (3.22) 
for a fixed τ 0 such that 5 1-α < τ 0 < 6, which is possible since 0 < α < 1 10 . We have the following result:

Lemma 3.3 Under the hypotheses of Theorem 1.1, for 0 < r < ρ 2 < R < 1 there exists a constant > 0 such that O r (t 0 , x 0 ) ≤ 1 2 O ρ (t 0 , x 0 ) + , (3.23) 
where the point (t 0 , x 0 ) ∈ Q R is given by the hypothesis (1.7).

Proof. First, by the estimate (3.20) we can write

A r = 1 r 2(1-5 τ 0 ) (A r + α r ) ≤ C r 2(1-5 τ 0 ) r 2 ρ 2 A ρ + ρ 2 r 2 α 1 2 ρ A ρ + ρ 2 r 2 P 2 3 ρ (A ρ + α ρ ) 1 2 + ρ 7 2 r θ L ∞ t L 2 x (Qρ) α 1 2 ρ , (3.24) 
and we will treat each one of the previous terms separately. Indeed,

• For the first term of (3.24) we have 1

r 2(1-5 τ 0 ) r 2 ρ 2 A ρ ≤ 1 r 2(1-5 τ 0 ) r 2 ρ 2 ρ 2(1-5 τ 0 ) A ρ = r ρ 10 τ 0 A ρ .
• For the second term of (3.24), using the definition of A ρ given in (3.22), we obtain

1 r 2(1-5 τ 0 ) ρ 2 r 2 α 1 2 ρ A ρ ≤ 1 r 2(1-5 τ 0 ) ρ 2 r 2 α 1 2 ρ ρ 2(1-5 τ 0 ) A ρ = ρ r 4-10 τ 0 A ρ α 1 2
ρ .

• The third term of (3.24) follows essentially the same arguments as above and by the definition of the quantities A ρ and P ρ given in (3.22) we can write

1 r 2(1-5 τ 0 ) ρ 2 r 2 P 2 3 ρ (A ρ + α ρ ) 1 2 ≤ ρ r 4-10 τ 0 P 2 3 ρ A 1 2
ρ .

• Finally, for the last term of (3.24), we have

1 r 2(1-5 τ 0 ) ρ 7 2 r θ L 2 t,x (Qρ) α 1 2 ρ ≤ ρ r 3-10 τ 0 ρ 1 2 + 10 τ 0 θ L ∞ t L 2 x (Qρ) α 1 2 ρ .
Thus, gathering all these estimates, we have

A r ≤ C r ρ 10 τ 0 A ρ + ρ r 4-10 τ 0 A ρ α 1 2 ρ + ρ r 4-10 τ 0 P 2 3 ρ A 1 2 ρ + ρ r 3-10 τ 0 ρ 1 2 + 10 τ 0 θ L ∞ t L 2 x (Qρ) α 1 2 ρ . (3.25)
Now, for the pressure, from the inequality (3.4) we can write

P r = 1 r 3 2 (1-5 τ 0 ) P r ≤ C r 3 2 (1-5 τ 0 ) ρ r 3 2 A 3 4 ρ α 3 4 ρ + r ρ 3 2 ρ 5 6 θ 3 2 L ∞ t L 2 x (Qρ) + r ρ P ρ . (3.26)
• Using the definition of A ρ given in (3.22) we obtain for the first term of the right-hand side above:

1

r 3 2 (1-5 τ 0 ) ρ r 3 2 A 3 4 ρ α 3 4 ρ ≤ 1 r 3 2 (1-5 τ 0 ) ρ r 3 2 ρ 3 2 (1-5 τ 0 ) (A ρ α ρ ) 3 4 = ρ r 3-15 2τ 0 (A ρ α ρ ) 3 4 .
• Now, for the second term of (3.26) we write

C r 3 2 (1-5 τ 0 ) r ρ 3 2 ρ 5 6 θ 3 2 L ∞ t L 2 x (Qρ) ≤ C r ρ 15 2τ 0 ρ 15 2τ 0 -2 3 θ 3 2 L ∞ t L 2
x (Qρ) .

• Finally we use the fact that 1 We thus conclude that 

r 3 2 (1-5 τ 0 ) r ρ P ρ = ρ r
P r ≤ C ρ r 3-15 2τ 0 (A ρ α ρ ) 3 4 + C r ρ 15 2τ 0 ρ 15 2τ 0 -2 3 θ 3 2 L ∞ t L 2 x (Qρ) + ρ r
O r = A r + κ 15 τ 0 -15 4 P r 4 3 ≤ C κ 10 τ 0 A ρ + κ 10 τ 0 -4 A ρ α 1 2 ρ (1) + κ 10 τ 0 -4 P 2 3 ρ A 1 2 ρ (2) + κ 10 τ 0 -3 ρ 1 2 + 10 τ 0 θ L ∞ t L 2 x (Qρ) α 1 2 ρ (3) +C κ 45 2τ 0 -27 4 (A ρ α ρ ) 3 4 + κ 45 2τ 0 -15 4 ρ 15 2τ 0 -2 3 θ 3 2 L ∞ t L 2 x (Qρ) + κ 45 2τ 0 -17 4 P ρ 4 3 (4) 
.

(3.28)

We will rewrite now each one of the previous terms:

• Since by (3.22) we have A ρ ≤ O ρ , it is then easy to see that the term (1) above can be controlled in the following manner:

κ 10 τ 0 A ρ + κ 10 τ 0 -4 A ρ α 1 2 ρ ≤ κ 10 τ 0 + κ 10 τ 0 -4 α 1 2
ρ O ρ . • For the quantity (2) in (3.28), using Young's inequality and the relationships given in (3.22), we observe that

κ 10 τ 0 -4 P 2 3 ρ A 1 2 ρ = κ 10 τ 0 -4 κ 5( 1 τ 0 -1 2 ) P 2 3 ρ × κ 5( 1 2 -1 τ 0 ) A 1 2 ρ ≤ κ 10 τ 0 -4 κ 10( 1 2 -1 τ 0 ) A ρ + κ 10( 1 τ 0 -1 2 ) P 4 3 ρ ≤ κ A ρ + κ 15 τ 0 -15 2 P ρ 4 3 ≤ κ O ρ .
• For the term (3) of (3.28), we just remark that the power of κ is 10 τ 0 -3 which is a negative number since 5 1-α < τ 0 < 6.

• For the last term of (3.28), since κ 

L ∞ t L 2 x (Qρ) + κ 45 2τ 0 -17 4 P ρ 4 3 ≤ C κ 30 τ 0 -9 A ρ α ρ + κ 30 τ 0 -5 ρ 10 τ 0 -8 9 θ 2 L ∞ t L 2 x (Qρ) + (κ 45 2τ 0 -17 4 P ρ ) 4 3 ≤ C κ 30 τ 0 -9 α ρ + κ 10 τ 0 -2 3 O ρ + Cκ 30 τ 0 -5 ρ 10 τ 0 -8 9 θ 2 L ∞ t L 2
x (Qρ) .

Gathering these estimates we finally obtain

O r ≤ C κ 10 τ 0 + κ 10 τ 0 -4 α 1 2 ρ + κ + κ 30 τ 0 -9 α ρ + κ 10 τ 0 -2 3 O ρ (3.29) +Cκ 10 τ 0 -3 ρ 1 2 + 10 τ 0 θ L ∞ t L 2 x (Qρ) α 1 2 ρ + Cκ 30 τ 0 -5 ρ 10 τ 0 -8 9 θ 2 L ∞ t L 2
x (Qρ) .

(3.30) Futhermore, we claim that we have

C κ 10 τ 0 + κ 10 τ 0 -4 α 1 2 ρ + κ + κ 30 τ 0 -9 α ρ + κ 10 τ 0 -2 3 ≤ 1 2 . (3.31) Indeed, since κ = r ρ 1
2 is a fixed small parameter and since 10 τ 0 -2 3 > 0 (recall again that 5 1-α < τ 0 < 6), then the quantities κ 10 τ 0 , κ and κ 10 τ 0 -2 3 in the previous formula are small. Now, using the fact that we have the control α ρ ≤ * which is given in the hypothesis (1.7) where * > 0 is small enough, then the terms

κ 10 τ 0 -4 α 1 2
ρ and κ 30 τ 0 -9 α ρ can be made small enough and thus we obtain the estimate (3.31).

To continue, we need to treat the two remaining terms given in (3.30). For the first one we note that the quantity θ

L ∞ t L 2 x (Qρ) is bounded since θ ∈ L ∞ t L 2 x (Q R ) ∩ L 2 t Ḣ1
x (Q R ), we can apply the same ideas used previously (i.e. the fact that α ρ ≤ * 1) to obtain

Cκ 10 τ 0 -3 ρ 1 2 + 10 τ 0 θ L ∞ t L 2 x (Qρ) α 1 2 ρ < 2 .
For the last term of (3.30), recalling that 5 1-α < τ < 6, we have 30 τ 0 -5 > 0 and 10 τ 0 -8 9 > 0. Thus, if 0 < ρ 1 and since κ 9 can be made small enough to absorb the term θ 2

L ∞ t L 2
x (Qρ) and we obtain κ

30 τ 0 -5 ρ 10 τ 0 -8 9 θ 2 L ∞ t L 2 x (Qρ) < 2 .
Then, with these estimates at hand and coming back to (3.29) we conclude that O r ≤ 1 2 O ρ + and Lemma 3.3 is proven. Proposition 3.3 Under the hypotheses of Theorem 1.1 consider ( u, p, θ) a partial suitable solution for the Boussinesq equations (1.1) over the set Q R given in (1.5). Then there exists a radius 0 < R 1 < R 2 and an index τ 0 such that 5 1-α < τ 0 < 6 such that we have the following local Morrey information:

1 Q R 1 (t 0 ,x 0 ) u ∈ M 3,τ 0 t,x (R × R 3 ), (3.32) 
where the point (t 0 , x 0 ) ∈ Q R is given by the hypothesis (1.7).

Proof of the Proposition 3.3. Lemma 3.3 paved the way to obtain the wished Morrey information for the velocity u. Indeed, from the definition of Morrey spaces given in (2.2) we only need to prove that for all radius r > 0 such that r < R 1 ≤ R 2 and (t, x) ∈ Q R 1 (t 0 , x 0 ), we have

Qr(t,x) | u| 3 dyds ≤ Cr 5(1-3 τ 0 ) , (3.33) 
and this will imply that 

1 Q R 1 u ∈ M 3,τ 0 (R × R 3
| u| 3 dyds = r 2 B r (t, x) ≤ r 2 (A r (t, x) + α r (t, x)) 3 2 .
Hence, it is then enough to prove for all 0

< r < R 1 < R 2 < R < 1 and (t, x) ∈ Q R 1 that one has the control A r (t, x) + α r (t, x) ≤ Cr 2(1-5 τ 0
) .

Recalling the definition of the quantity A r given in (3.22), we easily see that the condition (3.33) above is equivalent to prove that there exists some R 1 and 0 < κ 1 2 such that for all n ∈ N and (t, x) ∈ Q R 1 (t 0 , x 0 ), we have estimates:

A κ n R 1 (t, x) ≤ C. (3.34)
Note that, for any radius r such that 0 < r < R 1 < min{ R 2 , dist(∂Q R , (t 0 , x 0 ))} (and since we have Q R 1 (t 0 , x 0 ) ⊂ Q R ) by the hypotheses of the Theorem 1.1, we have the bounds

u L ∞ t L 2 x (Qr(t 0 ,x 0 )) ≤ u L ∞ t L 2 x (Q R ) < +∞, ∇ ⊗ u L 2 t,x (Qr(t 0 ,x 0 )) ≤ ∇ ⊗ u L 2 t,x (Q R ) < +∞,
and p ) P r (t 0 , x 0 ) < +∞.

L 3 2 t,x (Qr(t 0 ,x 0 )) ≤ p L 3 2 t,x (Q R ) < +∞.
Thus, there exists a radius 0 < r 0 < R small such that, by the estimates above, the quantities A r 0 and P r 0 are bounded: indeed, recall that we have τ 0 > 5 1-α > 5 (where 0 < α < 1 10 ) and this implies that all the powers of r in the expression above are positive. As a consequence of this fact, by (3.22) the quantity O r 0 is itself bounded. Remark also that, if r 0 is small enough, then the inequality (3.23) holds true and we can write O κr 0 (t 0 , x 0 ) ≤ 1 2 O r 0 (t 0 , x 0 ) + . We can iterate this process and we obtain for all n > 1,

O κ n r 0 (t 0 , x 0 ) ≤ 1 2 n O r 0 (t 0 , x 0 ) + n-1 j=0 2 -j ,
and therefore there exists N ≥ 1 such that for all n ≥ N we have O κ n r 0 (t 0 , x 0 ) ≤ 4 from which we obtain (using the definition of O r given in (3.22)) that

A κ N r 0 (t 0 , x 0 ) ≤ 1 8 C and P κ N r 0 (t 0 , x 0 ) ≤ 1 32 C.
This information is centered at the point (t 0 , x 0 ), in order to treat the uncentered bound, we can let 1 2 κ N r 0 to be the radius R 1 we want to find, thus for all points (t,

x) ∈ Q R 1 (t 0 , x 0 ) we have that Q R 1 ⊂ Q 2R 1 (t 0 , x 0 ), which implies A R 1 (t, x) ≤ 2 3-10 τ 0 A 2R 1 (t 0 , x 0 ) ≤ 8A 2R 1 (t 0 , x 0 ) ≤ 8A κ N ρ (t 0 , x 0 ) < C, and P R 1 (t, x) ≤ 2 5-3 2 (1+ 5 τ 0 ) P 2R 1 (t 0 , x 0 ) ≤ 32P 2R 1 (t 0 , x 0 ) ≤ 8P κ N r (t 0 , x 0 ) < C.
Having obtained these bounds, by the definition of O R 1 , we thus get O R 1 (t, x) ≤ C. Applying the Lemma 3.3 and iterating once more, we find that the same will be true for κR 1 and then, for all κ n R 1 , n ∈ N. Since by definition we have

A κ n R 1 (t, x) ≤ O κ n R 1 (t, x)
we have finally obtained the estimate A κ n R 1 (t, x) ≤ C and the inequality (3.34) is proven which implies the Proposition 3.3.

Corollary 3.1 Under the hypotheses of Proposition 3.3, we also have the following local control:

1 Q R 1 (t 0 ,x 0 ) ∇ ⊗ u ∈ M 2,τ 1 t,x (R × R 3 ), with 1 τ 1 = 1 τ 0 + 1 5 . ( 3 

.35)

Proof. In the previous results we have proved the estimate (3.34). Let us recall now that, by the definition of the quantity A r given in (3.22), we can easily deduce for all 0 < r ≤ R 1 and (t,

x) ∈ Q R 1 the control α r ≤ Cr 2(1-5 τ 0
) which can we rewritten as 1 r

Qr(t,x) | ∇ ⊗ u| 2 dyds ≤ Cr 2(1-5 τ 0
) .

Thus, since 1 τ 1 = 1 τ 0 + 1 5 , for all 0 < r ≤ R 1 and (t, x) ∈ Q R 1 (t 0 , x 0 ), we have the estimate

Qr | ∇ ⊗ u| 2 dyds ≤ Cr 3-10 τ 0 = Cr 5(1-2 τ 1
) ,

and by the definition of Morrey spaces given in (2.2), we obtain that

1 Q R 1 (t 0 ,x 0 ) ∇ ⊗ u ∈ M 2,τ 1 t,x (R × R 3 ).

A partial gain of information for the variable u

Proposition 3.4 Under the hypotheses of Theorem 1.1 and within the framework of Proposition 3.3, there exists a radius

R 2 with 0 < R 2 < R 1 < R < 1 such that 1 Q R 2 (t 0 ,x 0 ) u ∈ M 3,σ t,x (R × R 3 ),
for some σ close to 5 1-α < τ 0 < 6 such that τ 0 < σ.

Proof of the Proposition 3.4. In order to obtain this small additional gain of integrability we will first localize the variable u in a suitable manner and then we will study its evolution: the wished result will then be deduced from the Duhamel formula and from all the available information over u. Let us start fixing the parameters

R c , R b , R a such that 0 < R 2 < R c < R b < R a < R 1 ,
with the associated parabolic balls

Q R 2 ⊂ Q Rc ⊂ Q R b ⊂ Q Ra ⊂ Q R 1 (
all centered in the point (t 0 , x 0 )). Consider now φ, ψ : R × R 3 -→ R two non-negative functions such that φ, ψ ∈ C ∞ 0 (R × R 3 ) and such that

φ ≡ 1 over Q Rc , supp(φ) ⊂ Q R b and ψ ≡ 1 over Q Ra , supp(ψ) ⊂ Q R 1 . (3.36) 
Using these auxiliar functions we will study the evolution of the variable v = φ u given by the system

   ∂ t v = ∆ v + V , v(0, x) = 0, (3.37) 
where we have

V = (∂ t φ -∆φ) u -2 3 i=1 (∂ i φ)(∂ i u) -φ( u • ∇) u -2φ ∇p + φ(θe 3 ). ( 3 

.38)

We will now rewrite the term φ ∇p above in order to avoid a direct derivative over the pressure. Indeed, as we have the identity p = ψp over Q Ra , then over the smaller ball

Q R 2 (recalling that ψ = 1 over Q R 2 by (3.36) since Q R 2 ⊂ Q Ra ), we can write -∆(ψp) = -ψ∆p + (∆ψ)p -2 3 i=1 ∂ i ((∂ i ψ)p
) from which we deduce the identity

φ ∇p = φ ∇(-ψ∆p) (-∆) + φ ∇((∆ψ)p) (-∆) -2 3 i=1 φ ∇(∂ i ((∂ i ψ)p)) (-∆) . ( 3 

.39)

At this point we recall that we have by (1.2) the following equation for the pressure ∆p = -

3 i,j=1 ∂ i ∂ j (u i u j ) + ∂ x 3 θ,
and thus, the first term of the right-hand side of the previous formula can be written in the following manner:

φ ∇(-ψ∆p) (-∆) = φ ∇ (-∆)   3 i,j=1 ψ ∂ i ∂ j u i u j   -φ ∇ (-∆) (ψ∂ x 3 θ) = 3 i,j=1 φ ∇ (-∆) ∂ i ∂ j (ψu i u j ) - 3 i,j=1 φ ∇ (-∆) ∂ i ((∂ j ψ)u i u j ) + ∂ j ((∂ i ψ)u i u j ) -(∂ i ∂ j ψ)(u i u j ) -φ ∇ (-∆) ∂ x 3 (ψθ) + φ ∇ (-∆) ((∂ x 3 ψ)θ) ,
Recalling that by construction of the auxiliar functions φ, ψ given in (3.36) we have the identity φψ = φ, we can write for the first term above:

φ ∇ (-∆) ∂ i ∂ j (ψu i u j ) = φ, ∇∂ i ∂ j (-∆) (ψu i u j ) + ∇∂ i ∂ j (-∆) (φu i u j ),
and we finally obtain the following expression for (3.39):

φ ∇p = 3 i,j=1 φ, ∇∂ i ∂ j (-∆) (ψu i u j ) + 3 i,j=1 ∇∂ i ∂ j (-∆) (φu i u j ) - 3 i,j=1 φ ∇ (-∆) ∂ i ((∂ j ψ)u i u j ) + ∂ j ((∂ i ψ)u i u j ) -(∂ i ∂ j ψ)(u i u j ) -φ ∇ (-∆) ∂ x 3 (ψθ) + φ ∇ (-∆) ((∂ x 3 ψ)θ) + φ ∇((∆ψ)p) (-∆) -2 3 i=1 φ ∇(∂ i ((∂ i ψ)p)) (-∆) .
With this expression for the term that contains the pressure p, we obtain the (lengthy) formula for (3.38):

V = (∂ t φ -∆φ) u (1) 
-2

3 i=1 (∂ i φ)(∂ i u) (2) -φ( u • ∇) u 3 - 3 i,j=1 φ, ∇∂ i ∂ j (-∆) (ψu i u j ) (4) 
+ 3 i,j=1 ∇∂ i ∂ j (-∆) (φu i u j ) (5) 
-

3 i,j=1 φ ∇ (-∆) ∂ i ((∂ j ψ)u i u j ) (6) 
+ ∂ j ((∂ i ψ)u i u j ) (7) 
-

(∂ i ∂ j ψ)(u i u j ) (8) -φ ∇ (-∆) ∂ x 3 (ψθ) (9) 
(3.40)

+ φ ∇ (-∆) ((∂ x 3 ψ)θ) (10) +2 φ ∇((∆ψ)p) (-∆) (11) 
-2

3 i=1 φ ∇(∂ i ((∂ i ψ)p)) (-∆) (12) 
+ φ(θe 3 )

.

Thus, by the Duhamel formula, the solution v of the equation (3.37) is given by

v = t 0 e (t-s)∆ V (s, •)ds = 13 k=1 t 0 e (t-s)∆ V k (s, •)ds = 13 k=1 V k .
Since v = φ u, and due to the support properties of φ (see (3.36)), we have

1 Q R 2 v = 1 Q R 2 u and to conclude that 1 Q R 2 u ∈ M 3,σ t,x (R × R 3 ) we will study 1 Q R 2 V k for all 1 ≤ k ≤ 13.
• For V 1 , by the term (1) in (3.40) we have

|1 Q R 2 V 1 (t, x)| = 1 Q R 2 t 0 e (t-s)∆ [(∂ t φ -∆φ) u](s, x)ds , (3.41) 
since the convolution kernel of the semi-group e (t-s)∆ is the usual 3D heat kernel g t , we can write by the decay properties of the heat kernel as well as the properties of the test function φ (see (3.36)), the estimate

|1 Q R 2 V 1 (t, x)| ≤ C1 Q R 2 R R 3 1 (|t -s| 1 2 + |x -y|) 3 1 Q R b u(s, y) dy ds,
Now, recalling the definition of the parabolic Riesz potential given in (2.3) and since Q R 2 ⊂ Q R b we obtain the pointwise estimate

|1 Q R 2 V 1 (t, x)| ≤ C1 Q R b L 2 (|1 Q R b u|)(t, x), (3.42) 
and taking the Morrey M 3,σ t,x -norm we obtain

1 Q R 2 V 1 (t, x) M 3,σ t,x ≤ C 1 Q R b L 2 (|1 Q R b u|) M 3,σ t,x
. Now, for some 2 < q < 5 2 we set λ = 1 -2q 5 . Then, we have 3 ≤ 3 λ and σ ≤ q λ . Thus, by Lemma 2.2 and by Lemma 2.3 we can write:

1 Q R b L 2 (|1 Q R b u|) M 3,σ t,x ≤ C L 2 (|1 Q R b u|) M 3 λ , q λ t,x ≤ C 1 Q R b u M 3,q t,x ≤ C 1 Q R 1 u M 3,τ 0 t,x < +∞,
where in the last estimate we applied again Lemma 2.2 (noting that q < τ 0 < 6) and we used the estimates over u available in (3.32).

• For V 2 , using the expression (2) in (3.40) we write

(∂ i φ)(∂ i u) = ∂ i ((∂ i φ) u) -(∂ 2
i φ) u and we have

|1 Q R 2 V 2 (t, x)| ≤ 3 i=1 1 Q R 2 t 0 e (t-s)∆ ∂ i (∂ i φ) u ds + 1 Q R 2 t 0 e (t-s)∆ [(∂ 2 i φ) u]ds . (3.43)
Remark that the second term of the right-hand side of (3.43) can be treated in the same manner as the term V 1 so we will only study the first term: by the properties of the heat kernel and by the definition of the Riesz potential L 1 (see (2.3)), we obtain

A 2 := 1 Q R 2 t 0 e (t-s)∆ ∂ i (∂ i φ) u ds = 1 Q R 2 t 0 R 3 ∂ i g t-s (x -y)(∂ i φ) u(s, y)dyds ≤ C1 Q R 2 R R 3 |1 Q R b u(s, y)| (|t -s| 1 2 + |x -y|) 4 dyds ≤ C1 Q R 2 (L 1 (|1 Q R b u|))(t, x). (3.44)
Taking the Morrey M 3,σ t,x norm we obtain

A 2 M 3,σ t,x ≤ C 1 Q R 2 (L 1 (|1 Q R b u|)) M 3,σ t,x
. Now, for some 4 ≤ q < 5 < 5 1-α < τ 0 < 6 we define λ = 1 -q 5 , noting that 3 ≤ 3 λ and σ ≤ q λ , by Lemma 2.3, we can write

1 Q R 2 (L 1 (|1 Q R b u|)) M 3,σ t,x ≤ C L 1 (|1 Q R b u|) M 3 λ , q λ t,x ≤ C 1 Q R b u M 3,q t,x ≤ C 1 Q R 1 u M 3,τ 0 t,x < +∞, from which we deduce that 1 Q R 2 V 2 M 3,σ t,x < +∞.
• For the term V 3 , by the same arguments given to obtain the pointwise estimate (3.42), we have

|1 Q R 2 V 3 (t, x)| = 1 Q R 2 t 0 R 3 g t-s (x -y) φ ( u • ∇) u (s, y)dyds ≤ C1 Q R 2 L 2 1 Q R b ( u • ∇) u (t, x),
(recall (3.36)) from which we deduce

1 Q R 2 V 3 M 3,σ t,x ≤ C 1 Q R 2 L 2 |1 Q R b ( u • ∇) u| M 3,σ t,x . 
(3.45)

We set now 5 3-α < q < 5 2 and λ = 1 -2q 5 . Since 3 ≤ 6 5λ and τ 0 < 6 < σ ≤ q λ , applying Lemma 2.2 and Lemma 2.3 we have

1 Q R 2 L 2 |1 Q R b ( u • ∇) u| M 3,σ t,x ≤ C 1 Q R 2 L 2 |1 Q R b ( u • ∇) u| M 6 5λ , q λ t,x ≤ C 1 Q R b ( u • ∇) u M 6 5 ,q t,x
.

Recall that we have τ 0 < 6 < σ and by the Hölder inequality in Morrey spaces (see Lemma 2.1) we obtain

1 Q R b ( u • ∇) u M 6 5 ,q t,x ≤ 1 Q R 1 u M 3,τ 0 t,x 1 Q R 1 ∇ ⊗ u M 2,τ 1 t,x < +∞,
where

1 q = 1 τ 0 + 1 τ 1 = 2 τ 0 + 1 5 .
These two last quantities are bounded by (3.32) and (3.35). Note that the condition τ 0 < 6 < σ and the relationship 1 q = 2 τ 0 + 1 5 are compatible with the fact that 5 3-α < q < 5 2 (recall that 0 < α

). • The term V 4 is the most technical one. Indeed, by the expression of V 4 given in (3.40), we write

|1 Q R 2 V 4 | ≤ 3 i,j=1 1 Q R 2 R R 3 φ, ∇∂ i ∂ j (-∆) (ψu i u j )(s, y) (|t -s| 1 2 + |x -y|) 3 dyds ≤ 3 i,j=1 1 Q R 2 L 2 φ, ∇∂ i ∂ j (-∆) (ψu i u j ) ,
and taking the M 3,σ t,x -norm we have

1 Q R 2 V 4 M 3,σ t,x ≤ 3 i,j=1 1 Q R 2 L 2 φ, ∇∂ i ∂ j (-∆) (ψu i u j ) M 3,σ t,x
. If we set 1 q = 2 τ 0 + 1 5 and λ = 1 -2q 5 then we have 3 ≤ 3 2λ and for

σ ≤ q λ = 5τ 0 10 -τ 0 , (3.46) 
by Lemmas 2.2 and 2.3 we obtain:

1 Q R 2 L 2 φ, ∇∂ i ∂ j (-∆) (ψu i u j ) M 3,σ t,x ≤ C 1 Q R 2 L 2 φ, ∇∂ i ∂ j (-∆) (ψu i u j ) M 3 2λ , q λ t,x ≤ C φ, ∇∂ i ∂ j (-∆) (ψu i u j ) M 3 2 ,q t,x ,
We will study this norm and by the definition of Morrey spaces (2.2), if we introduce a threshold

r = R b -R 2 2
, we have

φ, ∇∂ i ∂ j (-∆) (ψu i u j ) 3 2 M 3 2 ,q t,x ≤ sup (t,x) 0<r<r 1 r 5(1-3 2q ) Qr(t,x) φ, ∇∂ i ∂ j (-∆) (ψu i u j ) 3 2 dxdt + sup (t,x) r<r 1 r 5(1-3 2q ) Qr(t,x) φ, ∇∂ i ∂ j (-∆) (ψu i u j ) 3 2
dxdt.

(3.47)

Now, we study the second term of the right-hand side above, which is easy to handle as we have r < r and we can write sup

(t,x)∈R×R 3 r<r 1 r 5(1-3 2q ) Qr(t,x) φ, ∇∂ i ∂ j (-∆) (ψu i u j ) 3 2 dxdt ≤ C r φ, ∇∂ i ∂ j (-∆) (ψu i u j ) 3 2 L 3 2 t,x
, and since φ is a regular function and ∆) is a Calderón-Zydmund operator, by the Calderón commutator theorem (see the book [START_REF] Lemarié-Rieusset | Recent Developments in the Navier-Stokes problem[END_REF]), we have that the operator φ,

∇∂ i ∂ j (-
∇∂ i ∂ j (-∆) is bounded in the space L 3 2
t,x and we can write (using the support properties of ψ given in (3.36) and the information given in (3.32)):

φ, ∇∂ i ∂ j (-∆) (ψu i u j ) L 3 2 t,x ≤ C ψu i u j L 3 2 t,x ≤ C 1 Q R 1 u i u j M 3 2 , 3 2 t,x ≤ C 1 Q R 1 u M 3,3 t,x 1 Q R 1 u M 3,3 t,x ≤ C 1 Q R 1 u M 3,τ 0 t,x 1 Q R 1 u M 3,τ 0 t,x < +∞,
where in the last line we used Hölder inequalities in Morrey spaces and we applied Lemma 2.2.

The first term of the right-hand side of (3.47) requires some extra computations: indeed, as we are interested to obtain information over the parabolic ball Q r (t, x) we can write for some 0 < r < r:

1 Qr φ, ∇∂ i ∂ j (-∆) (ψu i u j )) = 1 Qr φ, ∇∂ i ∂ j (-∆) (1 Q 2r ψu i u j ) + 1 Qr φ, ∇∂ i ∂ j (-∆) ((I -1 Q 2r )ψu i u j ), (3.48) 
and as before we will study the L 3 2

t,x norm of these two terms. For the first quantity in the right-hand side of (3.48), by the Calderón commutator theorem, by the definition of Morrey spaces and by the Hölder inequalities we have

1 Qr φ, ∇∂ i ∂ j (-∆) (1 Q 2r ψu i u j ) 3 2 L 3 2 t,x ≤ C 1 Q 2r ψu i u j 3 2 L 3 2 t,x ≤ Cr 5(1-3 τ 0 ) 1 Q R 1 u i u j 3 2 M 3 2 , τ 0 2 t,x ≤ Cr 5(1-3 τ 0 ) 1 Q R 1 u 3 2 M 3,τ 0 t,x 1 Q R 1 u 3 2 M 3,τ 0 t,x
, for all 0 < r < r, from which we deduce that sup

(t,x) 0<r<r 1 r 5(1-3 2q ) Qr(t,x) 1 Qr φ, ∇∂ i ∂ j (-∆) (1 Q 2r ψu i u j ) 3 2 dxdt ≤ C 1 Q R 1 u 3 2 M 3,τ 0 t,x 1 Q R 1 u 3 2 M 3,τ 0 t,x < +∞.
We study now the second term of the right-hand side of (3.48) and for this we consider the following operator:

T : f → 1 Qr φ, ∇∂ i ∂ j -∆ (I -1 Q 2r )ψ f,
and by the properties of the convolution kernel of the operator 1 (-∆) we obtain

|T (f )(x)| ≤ C1 Qr (x) R 3 (I -1 Q 2r )(y)1 Q R 1 (y)|f (y)||φ(x) -φ(y)| |x -y| 4 dy. Recalling that 0 < r < r = R b -R 2 2
, by the support properties of the test function φ (see (3.36)), the integral above is meaningful if |x -y| > r and thus we can write

1 Qr φ, ∇∂ i ∂ j (-∆) ((I -1 Q 2r )ψu i u j ) 3 2 L 3 2 t,x ≤ C 1 Qr R 3 1 |x-y|>r |x -y| 4 (I -1 Q 2r )(y)1 Q R 1 (y)|u i u j |dy 3 2 L 3 2 t,x ≤ C |y|>r 1 |y| 4 1 Q R 1 |u i u j |(• -y) L 3 2 t,x (Qr) dy 3 2 ≤ Cr -3 2 1 Q R 1 u i u j 3 2 L 3 2 t,x (Qr) 
, with this estimate at hand and using the definition of Morrey spaces, we can write

Qr(t,x) 1 Qr φ, ∇∂ i ∂ j (-∆) ((I -1 Q 2r )ψu i u j ) 3 2 dxdt ≤ Cr -3 2 r 5(1-3 τ 0 ) 1 Q R 1 u i u j 3 2 M 3 2 , τ 0 2 t,x ≤ Cr 5(1-3 2q ) 1 Q R 1 u i u j 3 2 M 3 2 , τ 0 2 t,x
, where in the last inequality we used the fact that 1 q = 2 τ 0 + 1 5 , which implies r -3 2 r

5(1-3 τ 0 ) = r 5(1-3 2q
) . Thus we finally obtain sup

(t,x) 0<r<r 1 r 5(1-3 2q ) Qr(t,x) 1 Qr φ, ∇∂ i ∂ j (-∆) ((I -1 Q 2r )ψu i u j ) 3 2 dxdt ≤ C 1 Q R 1 u 3 2 M 3,τ 0 t,x 1 Q R 1 u 3 2 M 3,τ 0 t,x < +∞.
We have proven that all the term in (3.47) are bounded and we can conclude that

1 Q R 2 V 4 M 3,σ t,x < +∞.
Remark 3.1 The condition (3.46) implies an upper bound for σ depending on the current Morrey information of u, which a priori is close to τ 0 with 5 1-α < τ 0 < 6. Nevertheless it is clear that whether we obtain a better Morrey information on integrability for u, the value of σ can increase.

• For the quantity V 5 , based in the expression (3.40) we write

|1 Q R 2 V 5 (t, x)| ≤ C 3 i,j=1 1 Q R 2 R R 3 |R i R j (φu i u j )(s, y)| (|t -s| 1 2 + |x -y|) 4 dyds ≤ C 3 i,j=1 1 Q R 2 L 1 (|R i R j (φu i u j )|) (t, x),
where we used the decaying properties of the heat kernel (recall that R i = ∂ i √ -∆ are the Riesz transforms). Now taking the Morrey M 3,σ t,x norm and by Lemma 2.2 (with ν = 4τ 0 +5 5τ 0 , p = 3, q = τ 0 such that p ν > 3 and q ν > σ which is compatible with the condition τ 0 < σ) we have

1 Q R 2 V 5 M 3,σ t,x ≤ C 3 i,j=1 1 Q R 2 L 1 (|R i R j (φu i u j )|) M p ν , q ν t,x
Then by Lemma 2.3 with λ = 1 -τ 0 /2 5 (recall τ 0 < 6 < 10 so that ν > 2λ) and by the boundedness of Riesz transforms in Morrey spaces we obtain:

1 Q R 2 L 1 (|R i R j (φu i u j )|) M p ν , q ν t,x ≤ C L 1 (|R i R j (φu i u j )|) M p 2λ , q 2λ t,x ≤ C R i R j (φu i u j ) M 3 2 , τ 0 2 t,x ≤ 1 Q R 1 u i u j M 3 2 , τ 0 2 t,x ≤ C 1 Q R 1 u M 3,τ 0 t,x 1 Q R 1 u M 3,τ 0 t,x
< +∞, and we obtain

1 Q R 2 V 5 M 3,σ t,x < +∞.
• For the term V 6 and following the same ideas we have

|1 Q R 2 V 6 | ≤ C 3 i,j=1 1 Q R 2 R R 3 φ ∇∂ i (-∆) (∂ j ψ)u i u j (s, y) (|t -s| 1 2 + |x -y|) 3 dyds = C 3 i,j=1 1 Q R 2 L 2 φ ∇∂ i (-∆) (∂ j ψ)u i u j .
For 2 < q < 5 2 , define λ = 1 -2q 5 , we thus have 3 ≤ 3 2λ and σ ≤ q λ . Then, by Lemma 2.2 and Lemma 2.3 we can write

1 Q R 2 L 2 φ ∇∂ i (-∆) (∂ j ψ)u i u j M 3,σ t,x ≤ C 1 Q R 2 L 2 φ ∇∂ i (-∆) (∂ j ψ)u i u j M 3 2λ , q λ t,x ≤ C φ ∇∂ i (-∆) (∂ j ψ)u i u j M 3 2 ,q t,x
, but since the operator φ ∇∂ i (-∆) is bounded in Morrey spaces and since 2 < q < 5 2 < τ 0 2 < 3 (since τ 0 < 6), one has by Lemma 2.2 and by the Hölder inequalities

φ ∇∂ i (-∆) (∂ j ψ)u i u j M 3 2 ,q t,x ≤ C 1 Q R 1 u i u j M 3 2 ,q t,x ≤ C 1 Q R 1 u i u j M 3 2 , τ 0 2 t,x ≤ C 1 Q R 1 u M 3,τ 0 t,x 1 Q R 1 u M 3,τ 0 t,x , from which we deduce 1 Q R 2 V 6 M 3,σ t,x
< +∞. Note that the same computations can be performed to

obtain that 1 Q R 2 V 7 M 3,σ t,x < +∞.
• The quantity V 8 based in the term (8) of (3.40) is treated in the following manner: we first write

1 Q R 2 V 8 M 3,σ t,x ≤ C 3 i,j=1 1 Q R 2 L 2 φ ∇ (-∆) (∂ i ∂ j ψ)(u i u j ) M 3,σ t,x 
.

We set 1 < ν < 3 2 , 2ν < q < 5ν 2 and λ = 1 -2q 5ν , thus we have 3 ≤ ν λ and σ ≤ q λ , then, by Lemma 2.2 and by Lemma 2.3 we can write

1 Q R 2 L 2 φ ∇ (-∆) (∂ i ∂ j ψ)(u i u j ) M 3,σ t,x ≤ C 1 Q R 2 L 2 φ ∇ (-∆) (∂ i ∂ j ψ)(u i u j ) M ν λ , q λ t,x ≤ C φ ∇ (-∆) (∂ i ∂ j ψ)(u i u j ) M ν,q t,x ≤ C φ ∇ (-∆) (∂ i ∂ j ψ)(u i u j ) M ν, 5ν 2 t,x ≤ C φ ∇ (-∆) (∂ i ∂ j ψ)(u i u j ) L ν t L ∞ x (3.49)
where in the last estimate we used the space inclusion

L ν t L ∞ x ⊂ M ν, 5ν 2 t,x .
Remark 3.2 Note that if the parameter q above is close to the value 5ν 2 , then λ = 1 -2q 5ν is close to 0 and thus the value q λ can be made very big: in the estimates (3.49) we can consider a Morrey space M 3,σ t,x with σ 1.

Let us focus now in the L ∞ norm above (i.e. without considering the time variable). Remark that due to the support properties of the auxiliary function ψ given in (3.36) we have supp

(∂ i ∂ j ψ) ⊂ Q R 1 \ Q Ra and recall by (3.36) we have supp φ = Q R b where R b < R a < R 1 ,
thus by the properties of the kernel of the operator ∇ (-∆) we can write

φ ∇ (-∆) (∂ i ∂ j ψ)(u i u j ) ≤ C R 3 1 |x -y| 2 1 Q R b (x)1 Q R 1 \Q Ra (y)(∂ i ∂ j ψ)(u i u j )(•, y)dy ≤ C R 3 1 |x-y|>(Ra-R b ) |x -y| 2 1 Q R b (x)1 Q R 1 \Q Ra (y)(∂ i ∂ j ψ)(u i u j )(•, y)dy , (3.50) 
and the previous expression is nothing but the convolution between the function (∂ i ∂ j ψ)(u i u j ) and a L ∞ -function, thus we have

φ ∇ (-∆) (∂ i ∂ j ψ)(u i u j )(t, •) L ∞ ≤ C (∂ i ∂ j ψ)(u i u j )(t, •) L 1 ≤ C 1 Q R 1 (u i u j )(t, •) L ν , (3.51) 
and taking the L ν -norm in the time variable we obtain

φ ∇ (-∆) (∂ i ∂ j ψ)(u i u j ) L ν t L ∞ x ≤ C 1 Q R 1 u i u j L ν t,x ≤ C 1 Q R 1 u M 3,τ 0 t,x 1 Q R 1 u M 3,τ 0 t,x < +∞,
where we used the fact that 1 < ν < 3 2 < τ 0 2 and we applied Hölder's inequality. Gathering together all these estimates we obtain

1 Q R 2 V 8 M 3,σ t,x < +∞.
• For the quantity V 9 based in the term ( 9) of (3.40) we have

1 Q R 2 V 9 M 3,σ t,x = 1 Q R 2 t 0 e (t-s)∆ φ ∇ (-∆) ∂ x 3 (ψθ) (s, •)ds M 3,σ t,x
, and following the same ideas as before we can write

1 Q R 2 V 9 M 3,σ t,x ≤ 1 Q R 2 L 2 φ ∇∂ x 3 (-∆) (ψθ) M 3,σ t,x ≤ L 2 φ ∇∂ x 3 (-∆) (ψθ) 
M 310,310

, if we set q = 62 25 , we have 2 < q 5 = 125 62 , λ = 1 -2q 5 = 1 125 and q λ = 310, so we can write

L 2 φ ∇∂ x 3 (-∆) (ψθ) M 310,310 t,x = L 2 φ ∇∂ x 3 (-∆) (ψθ) M q λ , q λ t,x ≤ C φ ∇∂ x 3 (-∆) (ψθ) M q,q t,x ≤ C ψθ M q,q t,x (3.52) 
where we used the Lemma 2.3 as well as the fact that Riesz transforms are bounded in Lebesgue spaces. Since q = 62 25 < 10 3 (and due to the support properties of the function ψ) we obtain (recall (3.1)):

ψθ M q,q t,x ≤ C ψθ M 10 3 , 10 3 t,x = C ψθ L 10 3 t,x ≤ C θ L 10 3 t,x < +∞.
• The quantity V 10 based in the term (10) of (3.40) and by the same arguments displayed to deduce (3.49), we can write (recall that 1 < ν < 3 2 ):

1 Q R 2 V 10 M 3,σ t,x ≤ C φ ∇ (-∆) ((∂ x 3 ψ)θ) L ν t L ∞ x .
If we study the L ∞ -norm in the space variable of this term, by the same ideas used in (3.50)-(3.51) we obtain φ ∇ (-∆) ((∂

x 3 ψ)θ) (t, •) L ∞ ≤ C (∂ x 3 ψ)θ(t, •) L 1 ≤ C 1 Q R 1 θ(t, •) L ν .
Thus, taking the L ν -norm in the time variable we have

1 Q R 2 V 10 M 3,σ t,x ≤ C φ ∇ (-∆) ((∂ x 3 ψ)θ) L ν t L ∞ x ≤ C 1 Q R 1 θ L ν t,x ≤ C 1 Q R 1 θ L ∞ t L 2
x < +∞.

• The quantity V 11 , givin in the term (11) of (3.40), can be treated in a similar manner. Indeed, by the same arguments displayed to deduce (3.49), we can write (recall that 1 < ν < 3 2 ):

1 Q R 2 V 9 M 3,σ t,x ≤ C φ ∇ (-∆) ((∆ψ)p) L ν t L ∞ x ,
and if we study the L ∞ -norm in the space variable of this term, by the same ideas used in (3.50)-(3.51) we obtain φ ∇ (-∆) ((∆ψ)p)(t, •)

L ∞ ≤ C (∆ψ)p(t, •) L 1 ≤ C 1 Q R 1 p(t,
•) L ν . Thus, taking the L ν -norm in the time variable we have

1 Q R 2 V 9 M 3,σ t,x ≤ C φ ∇ (-∆) ((∆ψ)p) L ν t L ∞ x ≤ C 1 Q R 1 p L ν t,x ≤ C 1 Q R 1 p L 3 2 t,x
< +∞.

• The study of the quantity V 12 follows almost the same lines as the terms V 8 and V 11 . However instead of (3.50) we have

φ ∇∂ i (-∆) ((∂ i ψ)p) ≤ C R 3 1 |x-y|>(Ra-R b ) |x -y| 3 1 Q R b (x)1 Q R 1 \Q Ra (y)(∂ i ψ)p(t, y)dy ,
and thus we can write:

1 Q R 2 V 10 M 3,σ t,x ≤ φ ∇∂ i (-∆) ((∂ i ψ)p) L ν t L ∞ x ≤ C 1 Q R 1 p L ν t,x ≤ C 1 Q R 1 p L 3 2 t,x
< +∞.

• Finally, for the term V 13 based in the term (13) of (3.40) we write:

|1 Q R 2 V 13 | = 1 Q R 2
t 0 e (t-s)∆ φ(θe 3 )(s, x)ds .

Using the same ideas as in (3.41)-(3.42) and applying again the Lemma 2.2, we obtain

1 Q R 2 V 13 M 3,σ t,x ≤ C 1 Q R 2 (L 2 (|1 Q R b θ|)) M 3,σ t,x ≤ C 1 Q R 2 (L 2 (|1 Q R b θ|)) M 310,310 t,x (3.53) 
≤ C L 2 (|1 Q R b θ|) M q λ , q λ t,x
, where we used the same parameters as in (3.52) and we can write (recall (3.1)):

L 2 (|1 Q R b θ|) M q λ , q λ t,x ≤ C 1 Q R b θ M q,q t,x = C 1 Q R b θ M 10 3 , 10 3 t,x = 1 Q R b θ L 10 3 t,x < +∞.
We can thus conclude that

1 Q R 2 V 13 M 3,σ t,x < +∞.
With all these estimates Proposition 3.4 is now proven.

Remark 3.3 Note that the value of the index σ of the Morrey space M 3,σ t,x (R × R 3 ) is potentially bounded by the information available over the variable θ (recall (3.1)) and the maximal possible value for this parameter is close to σ = 310 (see the expression (3.53) above).

This result gives a small gain of integrability as we pass from an information on the Morrey space M 3,τ 0 t,x to a control over the space M 3,σ t,x with τ 0 < σ with σ close to τ 0 . This is of course not enough and we need to repeat the arguments above in order to obtain a better control. In this sense we have the following proposition: Proposition 3.5 Under the hypotheses of Theorem 1.1 and within the framework of Proposition 3.3, there exists a radius R2 with 0 < R2 < R 2 such that

1 Q R2 (t 0 ,x 0 ) u ∈ M 3,310 t,x (R × R 3 ), (3.54) 
Proof. By the Proposition 3.4 above it follows that

1 Q R 2 u ∈ M 3,σ t,x (R × R 3
) with σ very close to τ 0 (say σ = τ 0 + ). Hence, with the information

1 Q R 2 u ∈ M 3,τ 0 + t,x (R × R 3
) at hand, we can reapply the Proposition 3.4 to obtain for some smaller radius R2

< R 2 that 1 Q R2 u ∈ M 3,σ 1 t,x (R × R 3 )
where σ 1 = σ + = τ 0 + 2 . Iterating these arguments as long as necessary, we obtain the information

1 Q R 2 u ∈ M 3,60 t,x (R × R 3
) where the value σ = 60 is fixed by the information available for the quantity ω which is the only term that is fixed: see the computation leading to the estimate (3.53) and Remark 3.3. Let us note that a slight abuse of language has been used for the radius R2 : at each iteration this radius is smaller and smaller, but in order to maintain the notations we still denote the final radius by R2 .

A gain of information for the variable θ

Note that the Proposition 3.5 and the Corollary 3.1 give interesting control (on a small neighborhood of a point (t 0 , x 0 )) for the variable u. Indeed, we have obtained so far the information

1 Q R2 (t 0 ,x 0 ) u ∈ M 3,310 t,x (R × R 3 ), and 
1 Q R 1 (t 0 ,x 0 ) ∇ ⊗ u ∈ M 2,τ 1 t,x (R × R 3 ), (4.1) 
where 0

< R2 < R 1 < R < 1, (4.2) 
with 5 1-α < τ 0 < 6 and τ 1 is given by the condition 1 τ 1 = 1 τ 0 + 1 5 (see the Corollary 3.1). Now we will exploit all this information in order to derive some Morrey control for the variable θ, indeed, we have: Proposition 4.1 Under the general hypotheses of Theorem 1.1, if we have the controls (4.1) over u then we have, for some radius 0 < R 3 < R2 , we have

1 Q R 3 (t 0 ,x 0 ) θ ∈ M 12 5 , 50 9 t,x (R × R 3 ). Proof. Consider φ : R × R 3 -→ R a non-negative function such that φ ∈ C ∞ 0 (R × R 3 ) and such that φ ≡ 1 over Q ρ b (t 0 , x 0 ), supp( φ) ⊂ Q ρa (t 0 , x 0 ), (4.3) 
where we have

0 < R 3 < ρ b < ρ a < R2 , (4.4) 
where the radius R2 is fixed in (4.2). With the help of this auxiliar function we define the variable Θ by Θ = φθ, note that, due to the support properties of the function φ we have

1 Q R 3 Θ = 1 Q R 3 θ.
Thus, if we study the evolution of Θ we obtain (by (1.1))

∂ t Θ = (∂ t φ)θ + φ ∆θ -u • ∇θ = ∆Θ + (∂ t φ + ∆ φ)θ -2 3 i=1 ∂ i (∂ i φ)θ -div( φ uθ) + ( ∇ φ) • ( uθ), (4.5) 
where we used the identities φ∆θ = ∆( φθ) + ∆ φθ -2

3 i=1 ∂ i (∂ i φ)θ and the fact that φ( u • ∇θ) = φdiv( uθ) = div( φ uθ) -∇ φ • ( uθ),
since div( u) = 0. As we have Θ(0, •) = 0 (by the properties of the localizing function φ given in (4.3)), applying the Duhamel formula we can write:

Θ(t, x) = t 0 e (t-s)∆ (∂ t φ + ∆ φ)θds Θ 1 -2 3 i=1 t 0 e (t-s)∆ ∂ i (∂ i φ)θ ds Θ 2 - t 0 e (t-s)∆ div φ uθ ds Θ 3 (4.6) + t 0 e (t-s)∆ ( ∇ φ) • ( uθ)ds Θ 4
, and we will estimate each one of the terms above to prove that we have the wished Morrey control over the set Q R 3 .

• For the first term Θ 1 we write, 

|1 Q R 3 Θ 1 | = 1 Q R 3 t 0 e (t-
|1 Q R 3 Θ 1 | ≤ C1 Q R 3 R R 3 |1 Qρ a θ(s, y)| (|t -s| 1 2 + |x -y|) 3 dyds ≤ C1 Q R 3 (L 2 (|1 Qρ a θ|))(t, x). (4.8) 
If we fix p = 12 5 , q = 62 25 and λ = 1 125 , by applying Lemma 2.2 and Lemma 2.3 we obtain

1 Q R 3 (L 2 (|1 Qρ a θ|)) M 12 5 , 50 9 t,x ≤ C L 2 (|1 Qρ a θ|) M 12 λ5 , q λ t,x ≤ C 1 Qρ a θ M 12 5 , 62 25 t,x ≤ C 1 Qρ a θ M 10 3 , 10 3 t,x ≤ C 1 Qρ a θ L 10 3 t,x < +∞,
where we used the information (3.1).

• For the term Θ 2 of (4.6) we need to study, for all 1 ≤ i ≤ 3, the quantities

O i = 1 Q R 3 t 0 e (t-s)∆ ∂ i (∂ i φ)θ ds . t,x ≤ C L 1 φ uθ M p λ , q λ t,x ≤ C φ uθ M 30 19 , 310 94 t,x ≤ C 1 Q u M 3,310 t,x 1 Q θ M 10 3 , 10 3 t,x < +∞,
where in the last estimate we used the Hölder inequalities in Morrey spaces with 19 30 = 3 10 + 1 3 and 94 310 = 3 10 + 1 310 . We conclude that

1 Q R 3 Θ 3 M 12 5 , 50 9 t,x < +∞.
• For the term Θ 4 given in (4.6), by the same arguments as before we obtain the estimates

1 Q R 3 Θ 4 M 12 5 , 50 9 t,x ≤ C 1 Q R 3 (L 2 (|1 Qρ a uθ|)) M 12 5 , 50 9 t,x .
Setting p = 30 19 , q = 62 25 and λ = 1 125 , since 12 5 < p λ and 50 9 < q λ , applying Lemma 2.3 and Lemma 2.2 we have

1 Q R 3 (L 2 (|1 Qρ a uθ|)) M 12 5 , 50 9 t,x ≤ L 2 (|1 Qρ a uθ|) M p λ , q λ t,x ≤ C 1 Qρ a uθ M 30 19 , 62 25 t,x ≤ C 1 Qρ a uθ M 30 19 , 310 94 t,x ≤ C 1 Q u M 3,310 t,x 1 Q θ M 10 3 , 10 3 t,x < +∞,
where we used the Hölder inequalities with 19 30 = 3 10 + 1 3 and 94 310 = 3 10 + 1 310 . We finally obtain

1 Q R 3 Θ 4 M 12 5 , 50 9 t,x < +∞.
With all these controls, Proposition 4.1 is proven.

5 The end of the proof of Theorem 1.1

The key result for obtaining a gain of regularity is the following lemma coming from the theory of parabolic equations (see [START_REF] Ladyzhenskaya | Linear and quasilinear equations of parabolic type[END_REF][START_REF] Lemarié-Rieusset | The Navier-Stokes problem in the 21st century[END_REF]). Lemma 5.1 Let σ be a smooth homogeneous function over R 3 \ {0}, of exponent 1 with σ(D) the Fourier multiplier associated. Consider the functions Φ ∈ M p 0 ,q 0 t,x (R × R 3 ) and h ∈ M p 0 ,q 1 t,x (R × R 3 ) such that 1 ≤ p 0 ≤ q 0 , with 1 q 0 = 2-α 5 , 1 q 1 = 1-α 5 , for 0 < α < 1. Then, the function v equal to 0 for t ≤ 0 and

v(t, x) = t 0 e (t-s)∆ (Φ(s, •) + σ(D)h(s, •))ds,
for t > 0, is Hölder continuous of exponent α with respect to the parabolic distance.

In order to apply this lemma to the proof of Theorem 1.1, we will first localize each one of the equations of the Boussinesq system (1.1) and then we will show the terms of the corresponding Duhamel formula belongs either to the space M p 0 ,q 0 t,x (R × R 3 ) or to the space M p 0 ,q 1 t,x (R × R 3 ).

We start by localizing the problem and for this we consider φ : R × R 3 -→ R a test function such that supp(φ) ⊂] - ). We consider next a radius R > 0 such that

4R < R 3 < R2 < R 1 < R < 1, (5.1) 
where R 3 is the radius of Proposition 4.1, R2 is the radius of Proposition 3.5 and R 1 is the radius obtained in Proposition 3.3. We then define

η(t, x) = φ t -t 0 R 2 , x -x 0 R . (5.2) 
We start with the equation over the velocity field and we consider the variable U defined by the formula

U = η u, (5.3) 
then, by the properties of the auxiliar function η, we have the identity U = u over a small neighborhood of the point (t 0 , x 0 ), the support of the variable U is contained in the parabolic ball Q R and moreover we also have U(0, x) = 0. Thus, if we study the evolution of this variable, following the system (1.1), we have

∂ t U = (∂ t η) u + η∆ u -η(( u • ∇) u) -η ∇p + ηθe 3 .
We use now the identity η∆ u

= ∆ U + (∆η) u -2 3 i=1 ∂ i ((∂ i η)( u)) to obtain the equation ∂ t U = ∆ U + (∂ t η + ∆η)( u + ω) -2 3 i=1 ∂ i ((∂ i η)( u)) -η(( u • ∇) u) -η ∇p + ηθe 3 .
Noting that we have (since div( u) = 0) the identity

η(( u • ∇) u) = ηdiv( u ⊗ u) = div(η u ⊗ u) -u ⊗ u • ∇η,
we finally deduce the following equation for the variable U:

∂ t U = ∆ U + (∂ t η + ∆η) u -2 3 i=1 ∂ i ((∂ i η)( u)) -div(η u ⊗ u) + u ⊗ u • ∇η -η ∇p + ηθe 3 .
(5.4) t,x is not enough and we need the sharper control • For the quantity C defined in (5.8) we have

1 Q R 3 θ ∈ M
C M p 0 ,q 1 t,x = η u ⊗ u η uθ M p 0 ,q 1 t,x ≤ C 1 Q R u ⊗ u M p 0 ,q 1 t,x + C 1 Q R uθ M p 0 ,q 1 t,x . 
(5.12)

For the first term in the right-hand side above we write, since p 0 ≤ 6 5 < 3 2 and q 1 = 5 1-α < 6 as 0 < α 1:

1 Q R u ⊗ u M p 0 ,q 1 t,x ≤ C 1 Q R u ⊗ u M 3 2 ,155 t,x ≤ C 1 Q2 u ⊗ u M 3,310 t,x 1 Q2 u ⊗ u M 3,310 t,x < +∞,
where we used the Hölder inequalities in Morrey spaces and the information given in (5.11).

For the second term in the right-hand side of (5.12) we have (since p 0 ≤ 6 5 < 4 3 and q 1 = 5 1-α < 775 142 , which is possible if 0 < α 1)

1 Q R uθ M p 0 ,q 1 t,x ≤ 1 Q R uθ M 4 3 , 775 142 t,x ≤ C 1 Q R2 u M 3,310 t,x 1 Q R 3 θ M 12 5 , 50 9 t,x < +∞,
where we used the Hölder inequalities in the Morrey space setting with 3 4 = 1 3 + 5 12 and 142 775 = 1 310 + 9 50 .

We thus obtain C M p 0 ,q 1 t,x < +∞.

• The term D given in (5.8) we write

D M p 0 ,q 0 t,x = u ⊗ u • ∇η ( ∇η) • ( uθ) M p 0 ,q 0 t,x ≤ C 1 Q R u ⊗ u M p 0 ,q 0 t,x + C 1 Q R uθ M p 0 ,q 0 t,x . 
(5.13)

For the first term of the right-hand side above we write, by Lemma 2.2, since 1 ≤ p 0 ≤ 6 5 ≤ 3 2 and since q 0 = 5 2-α < 155:

1 Q R u ⊗ u M p 0 ,q 0 t,x ≤ C 1 Q R u ⊗ u M 3 2 ,q 0 t,x ≤ C 1 Q R u M 3,2q 0 t,x 1 Q R u M 3,2q 0 t,x ≤ C 1 Q R2 u M 3,310 t,x 1 Q R2 u M 3,310 t,x
< +∞, as we have the controls (5.11). For the second term of (5.13), by the Hölder inequalities we have (since 5 6 = 8 15 + 3 10 and 1 q 0 = 1-2α 10 + 3 10 as q 0 = 5 2-α )

1 Q R uθ M p 0 ,q 0 t,x ≤ C 1 Q R uθ M 6 5 ,q 0 t,x ≤ C 1 Q R u M 15 8 , 10 1-2α t,x 1 Q R θ M 10 3 , 10 3 t,x
, since 15 8 < 3 and 10 1-2α < 310 (recall that 0 < α 1, see Remark 5.2 below), we have

1 Q R uθ M p 0 ,q 0 t,x ≤ C 1 Q R2 u M 3,310 t,x 1 Q R 3 θ M 10 3 , 10 3 t,x
< +∞, since we have the controls (5.11).

We deduce that D M p 0 ,q 0 t,x < +∞.

• The term E defined in (5.8) is treated as follows. Recall that by the equation (1.2) over the pressure we have the expression

p = 3 i,j=1 ∂ i ∂ j (-∆) (u i u j ) - ∂ x 3 (-∆) θ.
We consider now a positive test function ϕ such that ϕ ≡ 1 over Q ra (t 0 , x 0 ) and supp(ϕ) ⊂ Q R 3 (t 0 , x 0 ), where 4R < r a < R 3 . Note in particular that by definition of the auxiliary functions φ and η (see (5.2)) we have the identities η = ηϕ and η ∇ϕ = 0. Thus for the term η ∇p we have

η ∇p = ηϕ ∇p = η ∇(ϕp) = η ∇   3 i,j=1 ϕ ∂ i ∂ j (-∆) (u i u j ) -ϕ ∂ x 3 (-∆) θ   ,
and this expression can be rewritten in the following manner

η ∇p = 3 i,j=1 η ∇∂ i ∂ j (-∆) (ϕu i u j ) (a) - 3 i,j=1 η ∇∂ i (-∆) (∂ j ϕ)u i u j (b) - 3 i,j=1 η ∇∂ j (-∆) (∂ i ϕ)u i u j (c) + 2 3 i,j=1 η ∇ (-∆) (∂ i ∂ j ϕ)(u i u j ) (d) + η ∇ (∆ϕ)p (-∆) (e) - 2 
3 i=1 η ∇ ∂ i ((∂ i ϕ)p) (-∆) (f ) -η ∇ (-∆) ∂ x 3 (ϕθ) (g) + η ∇ (-∆) ((∂ x 3 ϕ)θ) (h) 
.

(5.14)

We study each term above separately. * For the term (a) in (5.14), since the Riesz transforms are bounded in Morrey spaces, we obtain η ∇∂ i ∂ j (-∆) (ϕu i u j ) M p 0 ,q 0 t,x ≤ C ∇(ϕu i u j ) M p 0 ,q 0 t,x , now, for 1 ≤ k ≤ 3, using all the information available over u (see (5.11)), by Lemma 2.2 (recall that p 0 ≤ 6 5 < 3 2 and q 0 = 5 2-α < 155) and by the Hölder inequality in Morrey spaces, we have

(∂ k ϕ)u i u j M p 0 ,q 0 t,x ≤ C 1 Q R2 u i u j M 3 2 ,155 t,x ≤ C 1 Q R2 u i M 3,310 t,x 1 Q R2 u j M 3,310 t,x < +∞.
By essentially the same arguments (recall the informations over u given in (5.11)) we have (note that p 0 ≤ 6 5 and q 0 = 5 2-α < 120 47 since 0 < α 1):

ϕ(∂ k u i )u j M p 0 ,q 0 t,x ≤ C ϕ(∂ k u i )u j M 6 5 , 120 47 t,x ≤ C 1 Q R 1 ∇ ⊗ u M 2, 3720 1445 t,x 1 Q R 3 u j M 3,310 t,x
, since 5 6 = 1 2 + 1 3 and 47 120 = 1445 3720 + 1 310 . Recall now that we have τ 1 = 5τ 0 τ 0 +5 (see (5.11)) and since 5 1-α < τ 0 < 6, the parameter τ 0 can be chosen so that 3720 1445 < τ 1 and we obtain ϕ(∂ k u i )u j M p 0 ,q 0 t,x

≤ C 1 Q R 1 ∇ ⊗ u M 2,τ 1 t,x 1 Q R 3 u j M 3,310 t,x
< +∞, and a symmetric argument gives

ϕu i (∂ k u j ) M p 0 ,q 0 t,x ≤ C 1 Q R 3 u i M 3,310 t,x 1 Q R 1 ∇ ⊗ u M 2,τ 1 t,x
< +∞.

Thus we can deduce that we have the estimate η ∇∂ i ∂ j (-∆) (ϕu i u j ) M p 0 ,q 0 t,x < +∞.

Remark 5.2 Note that the condition q 1 = 5 2-α < 120 47 is the most restrictive constraint over the parameter α and it implies that 0 < α < 1 24 ∼ 0.04166. * The terms (b) and (c) of (5.14) can be treated in a similar manner and using the information available in (5.11) we have:

η ∇∂ i (-∆) (∂ j ϕ)u i u j M p 0 ,q 0 t,x ≤ η ∇∂ i (-∆) (∂ j ϕ)u i u j M 6 5 , 120 47 t,x ≤ C (∂ j ϕ)u i u j M 6 5 , 120 47 t,x ≤ C 1 Q R2 u i u j M 3 2 ,155 t,x ≤ C 1 Q R2 u i M 3,310 t,x 1 Q R2 u j M 3,310 t,x
< +∞. * The term (d) is treated as follows. By Lemma 2.2, since p 0 ≤ 6 5 < 3 2 and q 0 < 120 47 < 15 4 , we have 

η ∇ (-∆) (∂ i ∂ j ϕ)(u i u j ) M p 0 ,q 0 t,x ≤ C η ∇ (-∆) (∂ i ∂ j ϕ)(u i u j ) M 3 
L 3 2 t L ∞ x ≤ C 1 Q R p L 3 2 t,x
< +∞, since we have by hypothesis that

1 Q R p ∈ L 3 2
t,x (R × R 3 ). * The term (f) of (5.14) is estimated in a very similar manner:

η ∇ ∂ i ((∂ i ϕ)p) (-∆) M p 0 ,q 0 t,x ≤ C η ∇ ∂ i ((∂ i ϕ)p) (-∆) M 6 5 , 120 47 t,x ≤ C η ∇ ∂ i ((∂ i ϕ)p) (-∆) M 3 2 , 15 4 t,x ≤ C η ∇ ∂ i ((∂ i ϕ)p) (-∆) L 3 2 t L ∞ x ≤ C 1 Q R p L 3 2 t,x
< +∞. * For the quantity (g) of (5.14), since p 0 ≤ 6 5 < 10 3 and q 0 < 120 47 < 10 3 , we have (since the Riesz transforms are bounded in Lebesgue spaces) 

η ∇∂ x 3 (-∆) (ϕθ) M p 0 ,q 0 t,x ≤ C ∇∂ x 3 (-∆) (ϕθ) 
L 3 2 t L ∞ x ≤ C 1 Q R θ L 10 3 t,x < +∞.
Gathering all these estimates, we finally obtain that E M p 0 ,q 0 t,x < +∞.

• The term F given in (5.8) is treated as follows:

F M p 0 ,q 0 t,x = ηθe 3 0 M p 0 ,q 0 t,x ≤ ηθ M p 0 ,q 0 t,x ≤ 1 Q R 3 θ M 12 5 , 50 9 t,x
< +∞, where we used the Lemma 2.2 and p 0 ≤ 6 5 < 12 5 , q 0 = 5 2-α < 50 9 as well as the controls (5.11). We finally obtain that F M p 0 ,q 0 t,x < +∞. With all the previous computations we have proven all the information stated in (5.10), which applied in the integral representation formula (5.9) allows us, with Lemma 5.1, to conclude that V ∈ Ċα (R × R 3 ) with 0 < α 1, and since we have

V = η u ηθ ,
we deduce that u and θ are also Hölder regular over a small neighborhood of the point (t 0 , x 0 ) and this finishes the proof of Theorem 1.1.
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  and η ≡ 0 outside the ball B 4 5

1 2 - 15 2τ 0

 2150 P ρ (by the definition of P ρ given in (3.22)).

1 2 - 15 2τ 0

 2150 P ρ . (3.27) With the estimates (3.25) and (3.27) at hand, we will now introduce a relationship between the parameters r and ρ: indeed, let us fix 0 < κ 1 2 a real number and consider r = κρ, then, by the definition of the quantity O r given in (3.22) we obtain:

3 ≤

 3 O ρ and A ρ ≤ O ρ , we have κ

r 3 - 10 τ

 310 Then, by the notations introduced in (3.2), we have the uniform bounds sup 0<r<R rA r , rα r , r 2 P r < +∞ from which we can deduce by the definition of the quantities A ρ (t 0 , x 0 ) and P ρ (t 0 , x 0 ) given in(3.22), the uniform bounds sup 0<r<R 0 A r (t 0 , x 0 ) < +∞, and sup

<

  +∞. * Finally, the term (h) of (5.14), is treated as follows x 3 ϕ)θ)

  Following the same ideas displayed in formulas (3.49)-(3.51), due to the support properties of the auxiliary functions we obtainη ∇ (-∆) (∂ i ∂ j ϕ)(u i u j )< +∞. * The term (e) of (5.14) follows the same ideas as before, indeed we have
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ρ (A ρ + α ρ ) 1 2 ,where in the last estimate we used the control(3.19).
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We consider now the equation for the variable θ and we consider the variable O defined by the formula O = ηθ.

(5.5) Thus, following the same ideas used to deduce the equation (4.5) we can write

At this point, we define the (3 + 1)D vector

, thus with the equations (5.4) and (5.6) we

(5.7)

where the (3 + 1)D vectors A, ..., H are defined by

note that the term C is not exactly a (3 + 1)D vector (the first bloc is a tensor) and the quantity div(C) must be understood in the following sense:

. This slight abuse of notation can be easily understood if we work component by component.

Thus, by the Duhamel formula, the solution of the equation (5.7) can be written in the following manner:

thus, in order to apply the Lemma 5.1 to this system and obtain a parabolic gain of regularity, we only need to prove that the quantities A, ..., F , defined in (5.8) satisfy:

where we will assume 1 ≤ p 0 ≤ 6 5 ≤ q 0 , with 1 q 0 = 2-α 5 , 1 q 1 = 1-α 5 , for some 0 < α 1 10 .

To prove (5.10) we recall that we have the following controls (R × R 3 ), (5.11) where we have 4R < R 3 < R2 < R 1 < R and 5 1-α < τ 0 < 6 and τ 1 is given by the condition 1 τ 1 = 1 τ 0 + 1 5 .