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ABSTRACT

Cracks propagating in elastomers consume the strain energy available in the body through viscoelastic
effects and the creation of new fracture surfaces. Determining the energy consumed by the dissipative
and the fracture processes explicitly helps understand the fracture mechanisms better and if they
are rate-dependent. In literature, crack propagation experiments are usually performed on thin
sheets of elastomers. The displacement fields in the body as the crack propagates through it during
the experiments can be accessed using the Digital Image Correlation (DIC) technique. These
displacement fields can then be used as boundary conditions in finite element analysis to compute the
energy evolution in the body. Using an appropriate material model to describe the bulk material, the
strain energy and the viscoelastic dissipation can be computed, thereby allowing to study the energy
evolution in the body as the crack passes through.

In the current study, the behavior of the elastomer material through which the crack passes has been
described by the finite viscoelastic (FV) model. In such models, the viscoelastic effects are described
by using some internal variables, whose evolution is prescribed through certain constitutive equations.
This article first discusses the implementation of the FV model for plane stress conditions and applies
it to study the dynamic fracture of elastomer membranes. The crack propagation through an elastomer
is simulated by imposing the displacement fields extracted from the experiments along the crack faces
onto the finite element model (thereby implicitly imposing the crack speed). The energy evolution in
the body is studied to compute the energy release rate and the dissipation in the body as a consequence
of viscoelastic effects. A significant portion of the energy has been observed to be consumed as the
viscoelastic dissipation in the bulk material as the crack propagated.

Keywords Plane stress, Finite viscoelasticity, Dynamic fracture, Elastomers
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1 Introduction

Investigation of fracture of elastomers has been carried out in multiple references in history [1, 2, 3, 4]. In those studies,
the crack propagation under different loading scenarios (tearing, cutting, peeling, etc.) in a specimen of elastomer
was studied. The maximum crack speeds observed in [1, 3] are about 1 m s−1, where the experiments were conducted
on the samples in tearing, cutting, and pealing configurations. In [2, 4, 5], experiments were conducted in pure shear
configuration and higher crack speeds of the order of 10 m s−1 to 100 m s−1 were observed at different stretches.
The inclusion of inertial effects is necessary while studying the latter cracks as the crack speeds in those cases are
comparable to the elastic shear wave speeds. The inclusion of inertial effects introduces the notion of limiting speeds on
the cracks (see [6] for an exhaustive review of dynamic fracture). In some fracture experiments performed on elastomers
in the pure shear configuration in [4, 7, 8, 9] (natural rubber samples were used in [4, 7], Polyurethane in [8], and
Carbon-black reinforced Styrene Butadiene Rubber (CB/SBR) was used in [9]), it was observed that the crack speeds
exceeded the elastic shear wave speed of the material. These experiments are performed on a sample whose geometry
is quite simple. Hence, the energy dissipated/ consumed by the cracks in the experiments is computed by simple
analytical expressions, often assuming (hyper-)elastic material behavior. The values obtained can hence be considered
approximate. Some studies, such as [10, 11], consider the material as viscoelastic and define an effective tearing energy
based on the viscoelastic properties of the material. The energy left over in the body after the crack propagation was
considered to compute the energy release rate in those studies. An exhaustive review of the viscoelastic fracture can be
found in [12]. In that reference, the crack propagation in viscoelastic solids has been studied and expressions for the
energy dissipated during the crack propagation have been obtained in terms of the intrinsic fracture energy and the
viscoelastic properties of the material. In cases where the displacement fields in the entire body are available from the
experiments, the energy consumed during the propagation of the crack can be estimated more accurately and that will
be the focus of the article.

Recently, the role played by the viscoelastic effects in the bulk material during the propagation of a dynamic crack
in an elastomer membrane has been investigated in [13]. Roughly, the inclusion of viscous effects introduces the
notion of rubbery and glassy wave speeds depending on the modulus of the material at lower and higher strain rates.
This results in a new limiting speed, allowing the crack speed to exceed the (rubbery) shear wave speed. The study
in [13], however, uses a finite linear viscoelastic (FLV) model [14] to describe the behavior of the material that the
crack propagates in. It is known [15] that the FLV model may not be thermodynamically consistent and also does not
have expressions for the strain energy density and the dissipation functional. Hence, it is not possible to perform an
energetic analysis when the FLV model is used. Also, the linearity of the evolution equations in the model restricts
its application to small perturbation conditions or for slow processes [16]. Hence, a nonlinear finite viscoelastic (FV)
model that is thermodynamically consistent has been proposed in [17, 18] and multiple other references. The FV model
makes the strain energy and the energy dissipation accessible. As a consequence of the non-linearity of the model, its
application is not restricted to infinitesimal perturbations - it can be applied to scenarios that are far from equilibrium.
Also, the relaxation times of the viscous branches in the FV model were observed to be a function of the strain level
[15]. Experiments performed on elastomers [19] also reveal the dependence of the relaxation times of the material on
the strain levels and so, the FV model can be used to predict these scenarios more closely.

The FV model proposed in [18] relies on the multiplicative decomposition of the deformation gradient into elastic
and viscous parts. The material was assumed to be slightly compressible and so, viscoelastic effects were included
in both the volumetric and deviatoric parts of the material behavior. The details of the algorithmic treatment of the
model using a mixed displacement-pressure FE method have been proposed in [20] (actually, the article describes the
Bergstrom-Boyce (BB) model [21] whose viscous evolution equations can be seen as a general case of the deviatoric
part of the viscous evolution equations of [18]). [22] proposes an alternative numerical treatment in the context of finite
viscoelasticity and applies it to the BB model using Padé approximation to expand the exponential term resulting from
using the exponential mapping technique. The numerical treatment in the case of anisotropic materials was established
in [23]. Ogden model was assumed in [18] to describe the elastic and viscous branches and has also been used in [20].

The higher computational costs associated with using the mixed FE analysis can be circumvented during the analysis of
thin membranes (such as the elastomer sheets used in the fracture experiments) by assuming plane stress conditions
prevail. However, to the author’s knowledge, the implementation of a plane stress version of the FV model does not
exist. Hence, this article aims to formulate the model of [18] for plane stress conditions for the fully incompressible
case and provide the details of its implementation into the UMAT subroutine of Abaqus [24]. It shall be noted that no
changes to the model will be made as such; the model will be reformulated so that the computations of all the quantities
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Figure 1: Generalized Maxwell model. Hyperelastic branch in parallel with multiple Maxwell viscoelastic branches.

of interest can be done by just using the in-plane component of the deformation gradient. The predictions of the FV
model will be compared to the FLV model under various loading scenarios. Once this is done, the model will then be
used to analyze the experiments of [8] to compute the evolution of strain energy and dissipation energy as the crack
propagates through the body and to better understand the notion of Transonic cracks in elastomers. HHT-α method
[25] will be used to integrate the momentum equation implicitly in time. Using the explicit time integration with the
FLV model resulted in a smaller time step (of about 10−9 s) and hence, the implicit time integration will be used. For
applications where the stable time step is not so small, the explicit time integration can be used to integrate the equations
of motion, while the evolution equations for the internal variables can still be integrated implicitly using the procedure
outlined in this article.

In short, the article aims to

• Establish a plane stress version of the FV model and discuss its implementation details into the UMAT subroutine
of Abaqus.

• Compare the predictions of the FV model with those of the FLV model.

• Perform energetic analysis of the fracture experiments performed on Polyurethane elastomers.

This article proceeds as follows: first, the thermodynamics of the FV model will be described together with the evolution
equations for the internal variables. Then, the plane stress formulation of the model will be presented, where the
expressions for the stresses and the tangents will be obtained. The predictions of the model will then be compared to
the FLV model. The model will then be used to analyze the fracture experiments performed on Polyurethane elastomer
membranes.

2 The finite viscoelastic model

In this section, the basic aspects of the FV model from [18, 21] and [20] will be reviewed. Later on, the specialization
of the relations between stresses and strains and the evolution equations for the plane stress scenario will be described.

2.1 Thermodynamics

Let φ : B → S denote the motion of the body, where B and S are the undeformed and the deformed configurations,
respectively. x = φ(X, t), where x ∈ S andX ∈ B denote the positions of a material particle in the deformed and
the undeformed configurations, respectively. The deformation gradient tensor is defined as the gradient of the motion,

F =
∂φ

∂X
. The determinant of the deformation gradient is denoted as J and defined as J = detF . The momentum

balance equation in strong form can be expressed as

div0P = ρ0a, ∀x ∈ S, (1)

where P denotes the nominal (PK1) stress tensor, a denotes the acceleration and ρ0, the density of the material in the
undeformed configuration.

3
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To describe the processes that are far from equilibrium, a viscoelastic model has been proposed in [18, 21] in a
thermodynamically consistent way. In this model, the strain energy density is taken to be a function of the deformation
as well as some internal variables that characterize the rate dependence of the material. The strain energy density can be
written as

ψ = ψ̂(C,Q1,Q2, ...,Qn), (2)

where C is the right Cauchy Green deformation tensor, defined as C := F TF andQi are the internal variables. The
evolution of internal variables is described by n equations of the form

Q̇k = f̂k(C,Q1,Q2, ...,Qn). (3)

The evolution equations and the expression for the internal energy shall satisfy the dissipation inequality [26]

D :=
1

2
S : Ċ − ψ̇ ≥ 0, (4)

where S denotes the PK2 stress tensor, related to the PK1 stress as P = FS.

Since elastomers are known to be nearly incompressible, the deformation gradient can be decomposed into volumetric
and deviatoric parts. The deviatoric part of the deformation gradient can be defined as F̄ := J−

1
3F . The viscous

response of the material is taken to be isochoric and hence, the deviatoric part of the deformation gradient is decomposed
into elastic and viscous parts (Sidoroff decomposition, see [27]), F̄ = F eF i, analogous to what is usually done in the
small strain setting, see Fig. 1, where the strain in each viscous branch is decomposed into elastic (strain the spring is
subjected to, εe) and viscous (strain the dashpot is subjected to, εi) parts, ε = εe + εi. The variableQk described earlier
in equation 2 can thus be identified with the viscous strain in the dashpot of the kth viscous branch, ε(k)

i . This leads to
the decomposition of the strain energy functional into volumetric and deviatoric parts as

ψ := U(J) + ψ̂(F̄ ,F e). (5)

In the above, U is the part of the strain energy functional that arises from the changes in the volume and ψ is the
contribution of the deviatoric part (from both elastic and viscous branches). In the case of perfect incompressibility,
J = 1, and the contribution of the volumetric part to the strain energy functional disappears. In such a case,

ψ = ψ̂(F̄ ,F e). (6)

Objectivity requirements lead the strain energy functional to depend on the right Cauchy deformation tensor. The
contribution from the deviatoric part of the deformation is assumed to be further split into the contributions from the
elastic (ψEQ) and viscous branches (ψNEQ) (analogous to what is usually done in small strain setting). Hence,

ψ̂ := ψEQ(C̄) + ψNEQ(Ce), (7)

where Ce is the elastic part of the deviatoric Cauchy Green tensor, Ce = F Te F e = F−Ti C̄F−1
i . Although the

subsequent sections describe the case with one viscous branch, the case with multiple viscous branches can be described
by simply writing the energy density functional as ψ := ψEQ(C̄) +

∑N
i=1 ψ

(i)
NEQ(C(i)

e ), whereC(i)
e denotes the elastic

strain in the ith viscous branch. This corresponds to the energy split between the hyperelastic and viscoelastic branches
as in Fig. 1. In this case, Qk in equation 2 can be identified with the inverse of the viscous strain in the kth viscous
branch, (C

(k)
i )−1 (more precisely, as −(C

(k)
i )−1/2, which in small strain setting becomes ε(k)

i ).

Using the above expressions in the internal dissipation inequality, equation 4, results in the expression for the stress as

S = −pJC−1 + J−2/3DEV
{
SEQ + SNEQ

}
. (8)

p is the Lagrange multiplier that enforces the incompressibility constraint. SEQ and SNEQ denote the elastic and

viscous contributions, respectively, to the total stress. DEV
{
•
}

represents the deviatoric projection. These stresses

are given by

SEQ := 2
∂ψEQ
∂C̄

, (9)

SNEQ := 2F−1
i

∂ψNEQ
∂Ce

F−Ti , (10)

4
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and the deviatoric projector by

DEV
{
•
}

= • − • : C

3
C−1. (11)

The Kirchhoff stress is then obtained as

τ = FSF T = −pJI + dev
{
τ
}

= −pJI + P : τ̄ , (12)

where dev
{
τ
}

is the deviatoric part of τ defined as P : τ̄ and I is the second order identity tensor. Here, τ̄ :=
τ̄EQ + τ̄NEQ and the equilibrium and the viscous stresses are defined as

τ̄EQ := 2
∂ψEQ(b̄)

∂b̄
b̄, (13)

τNEQ := 2
∂ψNEQ(be)

∂be
be. (14)

P is the deviatoric projector in the deformed configuration defined as

P = I− I ⊗ I
3

, (15)

where I is the fourth-order identity tensor. The remaining part of the dissipation inequality becomes

D = −τNEQ :
1

2
Lvbe · b−1

e ≥ 0, (16)

where Lvbe denotes the Lie derivative of be, defined as the push forward of the material time derivative of the pullback
of be:

Lvbe = F̄
˙

C−1
i F̄

T
. (17)

The expression 16 can be satisfied by specifying the evolution equation as

−1

2
Lvbe · b−1

e = γ0V−1 : τNEQ, (18)

where V is a fourth-order isotropic positive definite tensor possibly a function of be and γ0 > 0. A slightly different
equation has been proposed by [21]. In fact, the deviatoric part of the viscous evolution equations of [18] can be seen to
be a special case of that in [21]. The evolution equations for the viscous strains in [21] can be seen to be (equations 13,
17, and 24 of the reference)

−1

2
Lvbe.b

−1
e = C1(λBchain − 1)C2

(
τB
τ̂B

)m
1√
2τB

dev
{
τ

}
. (19)

Taking C2 = 0, and m = 1, equation 18 results if C1/(
√

2τ̂B) = 1/(2ηD) when V−1 = 1/(2ηD) times the deviatoric
projector.

2.2 Integration of the evolution equation

The integration of equation 18 is carried out by a predictor-corrector type algorithm as in plasticity and viscoplasticity
[28], [29]. In the elastic predictor step, the inelastic strains are taken to be fixed and so,

(C−1
i )tr = (C−1

i )tn−1
=⇒ btre = F̄ (C−1

i )tn−1
F̄
T
, (20)

where the superscript tr refers to the value at the trial state. In the inelastic corrector step, the total deformation is
assumed to be held fixed and so, Lvbe = ḃe. Using this in equation 18 gives

ḃeb
−1
e = −2γ0

[
V−1 : τNEQ

]
. (21)

The above equation can be integrated using the exponential mapping technique [29]. The resulting expression is

be = exp

[
−2γ0

∫ tn

tn−1

V−1 : τNEQ dt

]
btre , (22)

5
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(be)tn ≈ exp
[
−2γ0∆t(V−1 : τNEQ)t=tn

]
btre . (23)

In the above, ∆t = tn − tn−1. The above equation is first order accurate.

Taking V−1 := 1
2ηD

P, where P is the deviatoric projector defined in equation 15, equation 23 can be written as

(be)tn ≈ exp

[
−γ0∆t

ηD
dev
{

(τNEQ)t=tn

}]
btre . (24)

Since the material has been assumed to be isotropic, τNEQ and be share the same eigenvectors and hence commute. In
such a case, equation 24 can be written as [28]

btre =

3∑
A=1

(λAe)
2
tn exp

[
γ0∆t

ηD
(dev

{
τA
}

)t=tn

]
nA ⊗ nA, (25)

where τNEQ =
∑3
A=1 τAnA ⊗ nA and be =

∑3
A=1(λAe)

2nA ⊗ nA has been used. Comparing the above with the
spectral decomposition of btre , btre =

∑3
A=1(λAe)

2
trn

tr
A ⊗ ntrA , it can be observed that eigenvectors of btre are same as

that of τNEQ and be and hence, can be computed once and for all at the beginning of a given time step. Also,

(λ2
Ae)tr = exp

[
γ0∆t

ηD
dev(τA)

]
λ2
Ae, (26)

where the subscript t = tn has been dropped for convenience. Taking logarithm on both sides,

εAe = −γ0∆t

2ηD
dev(τA) + (εAe)tr, (27)

where εAe = lnλAe and (εAe)tr = ln(λAe)tr. The above equation is non-linear if τA is a non-linear function of εe.
Hence, Newton iterations are used to solve it as below.

Defining

rA := εAe +
γ0∆t

2ηD
dev(τA)− (εAe)tr = 0, (28)

it can be solved by linearizing around εAe = (εAe)k as

rA +
∂rA
∂εBe

∆εBe = 0 =⇒ KAB∆εBe = −rA. (29)

where KAB =
∂rA
∂εBe

. The above equation is solved to obtain ∆εe, which is then used to update the elastic strain as

(εe)k+1 = (εe)k + ∆εe.

3 Plane stress formulation

As already mentioned, to the authors’ knowledge, a plane stress implementation of the FV model has not been reported
in the literature. This and the further sections discuss this implementation. It shall be noted that no changes to the
model will be made. Rather, all the expressions for the stresses and the tangents will be rewritten so that they can be
computed using only the in-plane components of the deformation gradient (F ) and its elastic part (F e).

3.1 Stress computation

In plane stress scenario and for an incompressible material, the computation of stress can be simplified. The value of
p in equation 12 can be found by using the condition that τ33 = 0. This condition can be imposed separately for the
elastic and the viscous branches and the results can be combined. Since the material is assumed to be isotropic, the
strain energy functional depends on the invariants, I1 and I2, of the strain tensor. Beginning with the elastic branch, the
term (∂ψ/∂b̄)b̄ can be computed as

∂ψ

∂b̄
b̄ =

[
∂ψ

∂I1
I +

∂ψ

∂I2
(I1I − b)

]
b, (30)

6
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where the incompressibility of the material (J = 1) has been taken into account. The deviatoric projection of the above
term is

P :

(
∂ψ

∂b̄
b̄

)
=

[
∂ψ

∂I1
I +

∂ψ

∂I2
(I1I − b)

]
b− 1

3

[
∂ψ

∂I1
I1 + 2

∂ψ

∂I2
I2

]
I. (31)

The contribution of the elastic branch to p, denoted pe, can be written as (using τ33 = 0 and assuming F is of the form

F =

[
F 2d 0
0T F33

]
,

and F33 = 1/detF 2d)

pe = 2

[
∂ψ

∂I1
b33 +

∂ψ

∂I2
(I1b33 − b233)

]
− 2

3

[
∂ψ

∂I1
I1 + 2

∂ψ

∂I2
I2

]
. (32)

The total elastic part of the stress can then be found as

−peI + 2P :

(
∂ψ

∂b̄
b̄

)
= 2

∂ψ

∂I1
(b− b33I) + 2

∂ψ

∂I2

(
I1(b− b33I)− (b2 − b233I)

)
. (33)

The above equation, written with its components restricted to within the plane, can be seen to be

τ e = 2
∂ψ

∂I1
(b2d − b33I

2d) + 2
∂ψ

∂I2

(
I1(b2d − b33I

2d)− ((b2d)2 − b233I
2d)
)
. (34)

b2d is the restriction of b to within the plane. As a consequence of plane stress assumption, b has been assumed to be of
the form

b =

[
b2d 0
0T b33

]
,

where 0 represents the zero vector of size 2 × 1. Expressing the first and the second invariants in terms of in-plane
components as (realizing that b33 = 1/ det b2d)

I1 = tr(b2d) + 1/ det(b2d), (35)

I2 =
1

2

[
(I1(b2d))2 − (b2d : b2d + 1/det(b2d)2)

]
, (36)

the term b2d − b33I
2d in equation 34 can now be simply written as (∂I1/∂b

2d)b2d and the term I1(b2d − b33I
2d)−

((b2d)2 − b233I
2d) as (∂I2/∂b

2d)b2d. The total stress in equation 34 then simply becomes

τ e = 2

[
∂ψ

∂I1

∂I1

∂b2d
+
∂ψ

∂I2

∂I2

∂b2d

]
b2d = 2

∂ψ

∂b2d
b2d. (37)

By a similar exercise for the viscous branches, the viscous contribution to the total stress becomes

τ v = 2
∂ψ

∂b2d
e

b2d
e . (38)

Hence equations 8 and 12 become

τ = τ e + τ v, and (39)

S = F−1τF−T . (40)

The above equations are restricted to in-plane components and the superscript 2d has been dropped for convenience.
The total stress in equation 39 can be written for the case of multiple (say, N ) viscous branches simply as τ =
τ e +

∑N
i=1(τ v)(i), where each of the (τ v)(i) s now denote the viscous stress in the corresponding viscous branch,

defined as

(τ v)(i) := 2
∂ψ(i)

∂(b2d
e )(i)

(b2d
e )(i).

(b2d
e )(i) is the left Cauchy Green tensor in the ith viscous branch.

The two invariants written in terms of principal stretches become

I1 = λ2
A + λ2

B + λ2
C = λ2

A + λ2
B + 1/λ2

Aλ
2
B , (41)

I2 = λ2
Aλ

2
B + λ2

Bλ
2
C + λ2

Cλ
2
A = λ2

Aλ
2
B + 1/λ2

A + 1/λ2
B , (42)

7
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where λ2
C = 1/λ2

Aλ
2
B has been used.

Using the above, the Kirchhoff stress can be written in principal basis to be

τA = 2λ2
A

∂ψ

∂λ2
A

= 2λ2
A

[
∂ψ

∂I1

∂I1
∂λ2

A

+
∂ψ

∂I2

∂I2
∂λ2

A

]
, (43)

τB = 2λ2
B

∂ψ

∂λ2
B

= 2λ2
B

[
∂ψ

∂I1

∂I1
∂λ2

B

+
∂ψ

∂I2

∂I2
∂λ2

B

]
, (44)

and τC = 0 as a consequence of the plane stress assumption. The partial derivatives of the invariants can be evaluated as

∂I1
∂λ2

A

= 1− 1/λ4
Aλ

2
B ,

∂I1
∂λ2

B

= 1− 1/λ2
Aλ

4
B , (45)

∂I2
∂λ2

A

= λ2
B − 1/λ4

A,
∂I2
∂λ2

B

= λ2
A − 1/λ4

B . (46)

The stresses can be expressed in global Cartesian basis by using

τ = τ1n1 ⊗ n1 + τ2n2 ⊗ n2, (47)

where n1 and n2 are the eigenvectors of b = FF T . As a recollection, the stresses obtained this way are the total
stresses, τ = −pJI + τ iso = −pJI + P : τ̄ .

Stresses can be similarly computed in viscous branches where λ is replaced by λe, which are the eigen values of
be = F eF

T
e , nis replaced by (ni)es, the eigenvectors of be and the ψ replaced by the strain energy of the corresponding

viscous branch.

3.2 Integration of evolution equation

For viscous branches, the evolution equations remain the same even in the plane stress scenario. The residual can be
written, similar to equation 28 as

rA = εAe +
γ0∆t

2ηD
dev(τA)− (εAe)tr = 0, (48)

Since plane stress condition is assumed to prevail, only the in-plane components of the above equation are considered.
Also, the deviatoric part of the Kirchhoff stress can be expressed as dev(τ ) = τ + pI , where p is the Lagrange
multiplier that enforces incompressibility, which is found by using the condition that τ3 = 0. τ can be evaluated by
using the procedure in the previous section. The expression for p can be seen to be

p = −τ1 + τ2
3

. (49)

The above equation can be obtained by taking the trace of equation 12 and realizing that τ3 = 0 as a consequence of
plane stress assumption and that trace of the deviatoric projector is 0. The in-plane evolution equations then become

r1 = ε1e +
γ0∆t

2ηD
(τ1 + p)− (ε1e)tr = 0, (50)

r2 = ε2e +
γ0∆t

2ηD
(τ2 + p)− (ε2e)tr = 0. (51)

In the third direction, the evolution equation becomes ε3e + γ0∆t
2ηD

p − (ε3e)tr = 0. It can be shown that solving the
first two equations will result in the third equation being satisfied automatically. Adding equations 50 and 51 will
result in ε1e + ε2e + γ0∆t

2ηD
(τ1 + τ2 + 2p) − [(ε1e)tr + (ε2e)tr] = 0. This, in conjunction with the assumption of

incompressibility and plane stress condition, results in ε3e + γ0∆t
2ηD

p− (ε3e)tr = 0, which is the third equation.

Equations 50 and 51 are solved iteratively using the Newton method.

r
(k+1)
A = r

(k)
A +

∂rA
∂εBe

∆εBe = 0. (52)

8
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This in turn requires the evaluation of KAB =
∂rA
∂εBe

. This can be evaluated as

KAB =
∂rA
∂εBe

= δAB +
γ0∆t

2ηD

(
∂τA
∂εBe

+
∂p

∂εBe

)
. (53)

The pressure derivative can be computed from equation 49 as

∂p

∂εAe
= −1

3

(
∂τ1
∂εAe

+
∂τ2
∂εAe

)
. (54)

The computation of derivative
∂τA
∂εBe

can be carried out as shown in the following sections.

3.3 Tangent computation

Integrating the momentum equations using implicit time integration schemes requires the calculation of the tangent.
The tangent for the elastic branch can be computed using the value of the current deformation gradient and in the case
of viscous branches, the tangent calculation is slightly more involved. The next section addresses the calculation of the
tangent for the elastic branch while the calculation for viscous branches will be carried out thereafter.

3.3.1 For elastic branch

The calculation of tangent proceeds in a similar way to that of the 3D case [30]. It first involves the calculation of

C = 2
∂S

∂C
. The derivative can be calculated by noting that [30, 31]

Ṡ =
∂S

∂C
: Ċ. (55)

Since C =
∑2
i=1 λ

2
iN i ⊗N i, Ċ =

∑2
i=1

[
∂λ2

i

∂t
N i ⊗N i + λ2

i Ṅ i ⊗N i + λ2
iN i ⊗ Ṅ i

]
. Ṅ i =

∑2
j=1WijN j ,

where Wij = −Wji are the components of a skew symmetric tensor. Hence

Ċ =

2∑
i=1

∂λ2
i

∂t
N i ⊗N i +

2∑
i,j=1,i6=j

Wij(λ
2
i − λ2

j )N i ⊗N j . (56)

As a consequence of isotropy, S and C share the eigenvectors. Hence, following the same procedure,

Ṡ =

2∑
i,j=1

2
∂2ψ

∂λ2
i ∂λ

2
j

∂λ2
j

∂t
N i ⊗N i +

2∑
i,j=1,i6=j

Wij(Si − Sj)N i ⊗N j . (57)

The tangent can hence be written as

C =

2∑
i,j=1

4
∂2ψ

∂λ2
i ∂λ

2
j

N i⊗N i⊗N j⊗N j+

2∑
i,j=1,i6=j

Si − Sj
λ2
i − λ2

j

(N i⊗N j⊗N i⊗N j+N i⊗N j⊗N j⊗N i). (58)

Its push forward to the spatial configuration, cijkl = 2FiIFjJFkKFlL
∂SIJ
∂CKL

, can be seen to be

c =

2∑
i,j=1

(Cij − 2σiδij)ni⊗ni⊗nj ⊗nj +

2∑
i,j=1,i6=j

σiλ
2
j − σjλ2

i

λ2
i − λ2

j

(ni⊗nj ⊗ni⊗nj +ni⊗nj ⊗nj ⊗ni),

(59)

where Cij =
∂2ψ

∂ lnλi∂ lnλj
=
∂τi
∂εj

and σi = τi, since the material is incompressible. The components of the above

fourth order tensor can be stored in a matrix as

[c] =

C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212


(n1,n2)

. (60)

9
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The components of the tangent can be converted to Cartesian basis by using the transformation [32]

[c](e1,e2) = [P ][c](n1,n2)[P ]T , (61)

where

[P ] =

 Q2
11 Q2

12 2Q11Q12

Q2
21 Q2

22 2Q21Q22

Q11Q21 Q12Q22 Q11Q22 +Q12Q21

 . (62)

Here, Qijs are the elements of [Q] matrix which is the transpose of [Q̃], [Q] = [Q̃]T . The columns of [Q̃] matrix are the
components of eigenvectors of b in cartesian basis.

The calculation of c requires the calculation of
∂τi
∂εj

, which can be carried out as follows

∂τi
∂εj

= 2λ2
j

∂τi
∂λ2

j

, i,j=1,2. (63)

∂τi
∂λ2

j

= 2

[
∂2ψ

∂λ2
j∂I1

λ2
i

∂I1
∂λ2

i

+
∂ψ

∂I1

∂

∂λ2
j

(
λ2
i

∂I1
∂λ2

i

)
+

∂2ψ

∂λ2
j∂I2

λ2
i

∂I2
∂λ2

i

+
∂ψ

∂I2

∂

∂λ2
j

(
λ2
i

∂I2
∂λ2

i

)]
. (64)

The partial derivatives can be further evaluated as
∂2ψ

∂λ2
i ∂Ij

=
∂2ψ

∂I1∂Ij

∂I1
∂λ2

i

+
∂2ψ

∂I2∂Ij

∂I2
∂λ2

i

(65)

∂

∂λ2
A

(
λ2
A

∂I1
∂λ2

A

)
= 1 + 1/λ4

Aλ
2
B ,

∂

∂λ2
B

(
λ2
A

∂I1
∂λ2

A

)
= 1/λ2

Aλ
4
B , (66)

∂

∂λ2
A

(
λ2
A

∂I2
∂λ2

A

)
= λ2

B + 1/λ4
A,

∂

∂λ2
B

(
λ2
A

∂I2
∂λ2

A

)
= λ2

A. (67)

Remark. The total stress and tangent calculation in the case of plane stress condition for incompressible materials
involves the calculation of derivatives after enforcing all the material (incompressibility) and geometric (plane stress)
constraints.

In case of equal eigen values λ1 = λ2, the second term of equation 59 takes a 0
0 form and so, L’Hospital’s rule is used

to compute it.

lim
λ2→λ1

σ1λ
2
2 − σ2λ

2
1

λ2
1 − λ2

2

=
1

2

[
∂2ψ

∂ε2∂ε2
− ∂2ψ

∂ε1∂ε2

]
− σ2 =

1

2

[
∂τ2
∂ε2
− ∂τ2
∂ε1

]
− τ2. (68)

Jaumann rate of Kirchhoff stress

Recalling equation 55,

Ṡ =
∂S

∂C
: Ċ. (55)

Now, using the relation between the stresses as τ = FSF T and its time derivative, τ̇ = F ṠF T + Ḟ SF T + FSḞ
T

,
equation 55 can be rewritten as

τ̇ − lτ − τ lT = F

(
∂S

∂C
: Ċ

)
F T , (69)

where l = Ḟ F−1 has been used. Now, using l = d+W , where d and W are the symmetric and skew-symmetric
parts of l, respectively, the above equation becomes

τ̇ −Wτ + τW = F

(
∂S

∂C
: Ċ

)
F T + dτ + τd, (70)

whereW T = −W and dT = d has been used.

The tangent to be supplied to Abaqus corresponds to the Jaumann rate of the Kirchhoff stress (C(JK)) written as [33]
∇
τ

(JK)

= τ̇ + τW −Wτ = C(JK) : d. (71)

C(JK) can hence be seen to be related to c as (by writing equation 70 in component form)

C
(JK)
ijkl = cijkl +

1

2
(σijδkl + σklδij + σilδjk + σjkδil). (72)

10
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3.3.2 For viscous branches

For the viscous branches, the following procedure will be used to calculate the tangent similar to the case of plasticity
as in [28, 34] and to the case of viscoelasticity as in [18]. All the stress and strain components are now restricted to the
plane.

Beginning as in the case of the elastic branch, the calculation of tangent involves the calculation of the derivative of PK-2
stress with respect to the Cauchy Green tensor (see equation 55). The stresses in the viscous branches are a function of
the corresponding be and hence, εe. Equation 27 defines an implicit relation between εe and the (εe)tr and hence, the
stresses in the viscous branches can be seen to depend implicitly on (εe)tr. The trial state of elastic strain is computed
from the current state of total deformation and the inelastic strain at the previous step (btre = F n(Cn−1

i )−1(F n)T ) and
hence, does not change during a given time step when equation 27 is being solved. Hence, the trial elastic state can be
seen as a function of the total deformation (only). The tangent can hence be computed by the repeated use of the chain
rule.

As a first step, since in the elastic trial state, the inelastic strain is held fixed, F n = F tre F
n−1
i . Hence, Cn =

(F n−1
i )TCtr

e F
n−1
i . In this step, the chain rule can be used to convert the derivative from with respect to C to with

respect to Ctr
e .

∂SIJ
∂CKL

=
∂SIJ

∂(Ctre )αβ

∂(Ctre )αβ
∂CKL

=
(
(F n−1

i )−1
)
Kα

(
(F n−1

i )−1
)
Lβ

∂SIJ
∂(Ctre )αβ

, (73)

where the symmetry of Ctr
e has been used. F n−1

i is a constant at the current time step.

Since in viscous branches,

S = F−1τF−T = (F n−1
i )−1. (F tre )−1τ (F tre )−T︸ ︷︷ ︸

˜S

.(F n−1
i )−T , (74)

the stress derivative can be further refined as
∂SIJ

∂(Ctre )αβ
=
(
(F n−1

i )−1
)
Iγ

(
(F n−1

i )−1
)
Jδ

∂S̃γδ
∂(Ctre )αβ

. (75)

Hence,

2
∂SIJ
∂CKL

= 2
(
(F n−1

i )−1
)
Iγ

(
(F n−1

i )−1
)
Jδ

(
(F n−1

i )−1
)
Kα

(
(F n−1

i )−1
)
Lβ

∂S̃γδ
∂(Ctre )αβ

. (76)

The push-forward of above by F results in

cijkl = 2FiIFjJFkKFlL
∂SIJ
∂CKL

= 2(F tre )iγ(F tre )jδ(F
tr
e )kα(F tre )lβ

∂S̃γδ
∂(Ctre )αβ

. (77)

Expressing F tre as F tre =
∑3
A=1(λAe)trnA ⊗ ÑA, (F tre )−1 =

∑3
A=1

1
(λAe)tr

ÑA ⊗ nA and (F tre )−T =∑3
A=1

1
(λAe)tr

nA ⊗ ÑA. S̃ can hence be written as

S̃ =

2∑
A=1

τA
(λAe)2

tr

ÑA ⊗ ÑA. (78)

Also, Ctr
e =

∑3
A=1(λAe)

2
trÑA ⊗ ÑA. It is to be noted that the τA in the above equation is a function of εe. The

development from here is similar to that used to arrive at equation 59 except that Cij in that equation will be replaced
by Calgij , which will be defined below. Using the fact that F tre ÑA = (λAe)trnA, the expression for the tangent can be
seen to be

c =

2∑
i,j=1

(Calgij −2σiδij)ni⊗ni⊗nj⊗nj+
2∑

i,j=1,i6=j

σi(λj)
2
tr − σj(λi)2

tr

(λi)2
tr − (λj)2

tr

(ni⊗nj⊗ni⊗nj+ni⊗nj⊗nj⊗ni).

(79)

In the above, CalgAC =
∂τA

∂(εCe)tr
. Since τAs are a function of εes, the derivative is computed using the chain rule.

∂τA
∂(εCe)tr

=
∂τA
∂εBe

∂εBe
∂(εCe)tr

. (80)

11



A PREPRINT - MARCH 17, 2023

The derivative
∂εBe

∂(εCe)tr
can be computed by realizing that equations rB = 0 are satisfied at the end of local Newton

iterations and hence are valid at all the times during the global Newton iterations. Hence, during the global Newton

iterations,
∂rB

∂(εCe)tr
= 0 as well. Hence,

∂εBe
∂(εCe)tr

= K−1
BC , (81)

where KBC is defined in equation 53.

The expression for dissipation becomes

D =
1

2ηD
dev{τNEQ} : dev{τNEQ} =

1

2ηD

[
(τ + pI) : (τ + pI) + p2

]
, (82)

which can be seen to be positive since ηD > 0. In the above equation, τ is as evaluated in equation 47.

4 Description of the implementation

The plane stress version of the model described above has been implemented into the UMAT subroutine of Abaqus.
The subroutine computes the stress and tangent for a given time step and also updates the internal variables. The
implementation details will be discussed in this section.

Algorithm 1: Steps followed in UMAT for the plane stress FV model

Data: F n, Cn−1
i , ∆t

Result: τn, Cn
i , C(JK), ψn, Dn

1 (be)tr = F n(Cn−1
i )−1(F n)T ;

2 Compute (λe)tr and nA so that (be)tr =
∑2
A=1(λAe)

2
trnA ⊗ nA;

3 Compute (εAe)tr = ln((λAe)tr);
4 k = 0, εAe ← (εAe)tr;
5 do
6 Compute τ and p from εAe;
7 rA :− εAe + ∆t

2η (τA + p)− (εAe)tr = 0;

8 Compute
∂τA
∂εBe

,
∂p

∂εBe
;

9 KAB = δAB + ∆t
22.η

(
∂τA
∂εBe

+
∂p

∂εBe

)
;

10 ∆εkAe = −K−1
ABrA;

11 εk+1
Ae ← εkAe + ∆εkAe;

12 k ← k + 1

13 while ||rA|| > TOL;
14 Update τn, p, λAe = exp(εAe), and KAB ;
15 be =

∑2
A=1 λ

2
AenA ⊗ nA, b−1

e =
∑2
A=1 λ

−2
AenA ⊗ nA;

16 Cn
i = (F n)T b−1

e F
n;

17 Compute C(JK)using Calg , τA, and λAe;
18 Compute ψnand Dn;

The working of the subroutine can be seen in algorithm 1. The superscript n indicates the quantity at the current time
and n− 1 indicates the quantity at the previous time. ∆t is defined as the time increment size, tn − tn−1. As can be
seen, the internal variables are updated and the strain energy density and dissipation are computed with the updated
values of be and τ . The value of TOL has been chosen to be 10−5. The C++ implementation of the model can be found
at [35]. The list of arrays that contain the inputs to the subroutine and the arrays into which the outputs will be written
can be found in table 1.
void FOR_NAME( umat ) ( double∗ STRESS , double∗ STATEV, double∗ DDSDDE , . . . , double∗
TIME , double∗ DTIME , . . . , double∗ DFGRD0, double∗ DFGRD1 , . . . )

12
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Table 1: Variables and arrays that provide the input and obtain the outputs from the subroutine.

Variable Name of the array Description

F DFGRD1 Deformation gradient Fxx, Fyx, Fxy, Fyy

τ STRESS Cauchy stress τxx, τyy, τxy

C(JK) DDSDDE Jaumann rate of Kirchhoff stress

(Ci)a − I STATEV #(5a− 4) to Inelastic Cauchy Green tensor (difference the Identity tensor) in the ath

STATEV #(5a− 1) viscous branch. (Ci)axx − 1 in STATEV #(5a− 4), (Ci)axy in
STATEV #(5a− 3), (Ci)axy in STATEV #(5a− 2), (Ci)ayy − 1 in
STATEV #(5a− 1)

ψa/ψ∞ STATEV #5a Ratio of the strain energy in the ath viscous branch to the strain energy in the
hyperelastic branch

ψ∞ +
∑N
i=1 ψi SSE Total strain energy

D SCD Energy dissipated

A rough flow of control in the subroutine can be seen in Fig. 2. The implementation has been distributed between
the two classes, s p r i n g and d a s h p o t . The two classes are precompiled to create a static library l i b u s u b l i b . a,
which is then linked to Abaqus. The model for the spring in the viscous branch can be chosen arbitrarily. Currently, a
Polynomial model has been used.

The deformation gradient (in the DFGRD1 array) and the internal variables (Ci) at the beginning of the step (in the
STATEV array) are obtained as an input to the subroutine from Abaqus. The values of the Ci at the previous time step
can be used to compute btre using equation 20 as in line 1 of the algorithm. The Eigenvalues and the Eigenvectors of btre
are then computed (line 2 of the algorithm). The components of the Eigenvectors are then used to compute the matrix
(see equation 62) that is used to change the basis (of the tangent matrix computed later) from Eigen to Cartesian basis.

Equations 50 and 51 are then solved to obtain the updated values of be. This involves the calculation of the residual and
the tangent matrix as in equation 53 in the viscous branches for the local Newton loops. This corresponds to lines 5 to
13 of the algorithm. This corresponds to the line iVar in Fig. 2. The corresponding methods can be seen below. The
calculation of residual in turn requires the calculation of the stresses in the viscous branch.

∗ ( i v a r + i ) = ( ( v i s c o u s + i )−> d a s h _ p o t ) . u p d a t e _ i n t e r v a r _ N e w t o n _ p r i n c i p a l
( F , & ( ( v i s c o u s + i )−> s p r i n g ) ) ;
c o m p u t e _ r e s i d u a l _ p r i n c i p a l ( m a t e r i a l ) ;
c o m p u t e _ t a n g e n t _ n r _ p r i n c i p a l ( m a t e r i a l ) ;

The stresses and tangents are then computed from the updated be (lines 14 and 17 of the algorithm, and steps Compute
stress and Compute tangent in Fig. 2).

∗ ( t a u + i ) = ( ( v i s c o u s + i )−> d a s h _ p o t ) . c o m p u t e _ s t r e s s _ t a u ( ) ;
∗ ( t a n g e n t + i ) = ( ( v i s c o u s + i )−> d a s h _ p o t ) . r o t a t e _ m a t _ t a n ( ) ;

The updated values of the stress and the tangent are written into the arrays STRESS and DDSDDE, respectively. Using the
updated value of be, the viscous strains, Ci is computed. The updated values are written back into the STATEV array.
The strain energy and the dissipation are also computed and updated (steps 15,17 and 18 of the algorithm).

∗ (STATEV+5∗ i +4) = ∗ ( _SSE+ i ) = ( ( v i s c o u s + i )−> s p r i n g ) . c o m p u t e _ s t r a i n _ e n e r g y ( ) ;
∗ (_SCD+ i ) = ( ( v i s c o u s + i )−> d a s h _ p o t ) . c o m p u t e _ d i s s i p a t i o n ( ) ;

The material subroutines provide the invariants I1 and I2 (equations 41 and 42) and the derivatives of strain energy with
respect to the invariants, which are then used to compute the stresses and the tangent (as in equation 65).

To obtain the eigenvalue decomposition of be and other matrix operations, Eigen library [36] has been used. The
expressions in [28] could have as well been used instead. It is also possible to perform the computations in the viscous

13
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USUBLIB.cpp

dashpot class

spring class

void FOR_NAME(umat)(STRESS, 
STATEV, DDSDDE, SSE,...
DFGRD1,i...)

compute_mat_tan(material)

update_intervar_newton_principal
              (F,&((viscous+i)->spring))

compute_residual_principal(material)

compute_stress_tau_principal(dW_d)

compute_stress_tau_principal(dW_d)

compute_dissipation()

compute_tangent_nr_principal(material)

compute_derivative(eigs)

compute_invar(lambda)

compute_stiff_principal(eigs)

compute_derivative(eigs)

compute_invar(lambda)

compute_stiff_principal(eigs)

compute_strain_energy()

compute_be_tr(F)

iVar

Compute stress

Compute tangent

Compute Strain energy

Compute dissipation

libUsublib.a

Figure 2: Figure describing a rough flow of control in the user subroutine.

branches in parallel as the computations are independent of each other. This speeds up the computations and the stresses
and tangents obtained from different branches can be summed directly.

5 Comparisons with various other cases/models

In this section, the predictions of the FV model will be compared to that of the FLV model in [14]. Then, the
computational times taken by the simulations performed using the plane stress version of the FV model will be
compared with that of the times taken for the 3D simulations. The results of the two simulations will also be compared.

5.1 Comparison with the FLV model

The predictions of the model when the relaxation times are smaller are expected to coincide with the hyperelastic case.
This will be checked in the A. The predictions of the FLV and FV models in small strains with small perturbations and
large strains with small perturbations can also be seen in A. Here, the case of large strains and large perturbations will
be considered as they will help with the interpretation of the results presented in the later sections.

The geometry used for this purpose is similar to what will be used to analyze the fracture experiments in the later
sections. A rectangular specimen that is 40 mm tall and 200 mm long was used in the fracture experiments. To compare
the predictions of the FV and the FLV models, a loading similar to that in [15] will be used. The loading is as follows
(see Fig. 3):

• Holding the bottom boundary of the body stationary, the top boundary will be subjected to a vertical displace-
ment of 2δ in 0.1 sec.

• The stress in the specimen will then be monitored for a span of 30 sec while the applied displacements are
held fixed.

Currently, only the top half of the specimen has been modeled taking advantage of the symmetry of the geometry and
the loading. The body has been meshed with plane stress quadrilateral (CPS4) elements. An element size of 1 mm has
been used. This results in a total of 4000 elements. The geometry and the mesh used can be seen in Fig. 3. The stress

14
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Results comparison element

Figure 3: Geometry and the mesh used to compare the results of the FV model with the FLV model. The geometry is
20 mm× 200 mm (only the top half of the test specimen). A vertical displacement of δ is applied on the top part (in
blue) of the boundary, while restraining any horizontal movement. The bottom part (in red) is constrained from moving
on the vertical direction, while free to move horizontally.

10−1 100 101
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107.2

107.3

107.4

λ = 3.5, FV
λ = 3.5, FLV
λ = 2.5, FV
λ = 2.5, FLV

λ = 1.5, FV
λ = 1.5, FLV
λ = 1.01, FV
λ = 1.01, FLV

time (s)

E
(P

a)

Figure 4: Evolution of modulus predicted by FLV and FV models for various stretch levels. Differences in predictions
between the two models can be seen at higher stretches.

values in the element shaded in brown (which is almost at the center of the specimen) will be extracted and compared
for the two models. An implementation of the FLV model is already present in Abaqus.

The hyperelastic and the viscoelastic branches of the model have been represented by the Polynomial model presented
in A. The model parameters can be seen in table 6. Only one viscous branch has been used and model parameters for
the viscous branch have been taken to be equal to that of the hyperelastic branch. The relaxation time has been chosen
to be 1 s.

The evolution of the yy−component of the Cauchy stress tensor has been monitored. The relaxation function is defined as
E(t) := σ(t)/ ln(1 + δ/L), where L = 20 mm. The results of the predictions for δ = [2 mm, 10 mm, 30 mm, 50 mm]
from FLV and FV models can be seen in Fig. 4.

It can be seen that at small stretches (1.01), the predictions of FLV and the FV models remain very close to each other.
However, as the stretch levels increase, differences between the two models increase. The FV model predicts a faster
decay compared to the FLV model, with the speed of decay increasing with the applied stretch. It can be interpreted that
the relaxation times in the FV model move towards smaller values with increasing strains. In the case of the FLV model,
the curves can be seen to merely translate upwards at different strain levels. These predictions are in line with what has
been observed in Fig. 4.3 of [15], where the analysis has been performed assuming plane strain conditions prevail.
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Figure 5: Evolution of modulus predicted by 2D and 3D simulations.

5.2 Comparison of the plane stress FV model with 3D simulations

The simulations from the previous section have been run this time in 3D to compare the times taken in each case and
the closeness of results in both cases. For this purpose, a specimen similar to that in Fig. 3 has been considered, with
the thickness taken to be 3 mm like in the experiments. It is then meshed by C3D8H hybrid brick elements with linear
displacement and constant pressure within the element. The element size is 1 mm× 1 mm× 0.75 mm (0.75 mm is
along the thickness direction). This results in a total of 16 000 elements. The loading conditions are the same as earlier,
except that the top face is constrained from moving along the thickness direction as well (uz = 0).

The deviatoric part of the evolution equations for the viscous strains in the FV model of [18] can be seen to be a special
case of [21]. By setting C2 = 0, m = 1, and C1/(

√
2τ̂B) = 1/(2ηD) in equations 17 and 24 of [21], the deviatoric

part of equation 25 of [18] can be recovered. These parameters have been used in the Bergstorm-Boyce model of
Abaqus to perform the simulations in the 3D case. In the documentation of Abaqus (Nonlinear viscoelasticity - Parallel
Rheological Framework), the flow rule of the BB model can be seen to be (choosing m = 1, C = 0).

−1

2
Lvbe.b

−1
e =

3A

2
τ̄ . (83)

The parameter A in the BB model can hence be identified as A = 1/(3ηD) (compare the above with equation 24). One
viscous branch has been used like in the earlier simulations.

The simulations have been performed on an Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz. The results of the
simulations (the variation of E with time as in the previous section), together with the results from the 2D simulations
can be seen in Fig. 5. It can be seen that the results from both simulations are quite close to each other for the cases
presented. The maximum difference in the results together with the times taken for the simulations can be seen in table
2. The maximum difference in E between both cases can be seen to be 4.6%. Refining the meshes and reducing the
specimen thickness might bring the results even closer. A significant speedup can be noticed between the 2D and 3D
simulations. The 3D simulations can be seen to take about 20 times more time than the 2D simulations.

The case where λ = 2.5 has been run again in the 2D and 3D cases, but this time with 7 viscous branches with properties
as in table 4. This increases the number of local Newton loops performed. For this case, the maximum difference in the
value of E was found to be 3.2%. The 2D simulation took a CPU time of 786.67 sec and the 3D simulation took a CPU
time of 24 865.0 sec. The observed speedup is thus significant.
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Table 2: Maximum difference in the relaxation modulus and simulation times for the 2D and 3D simulations.

Stretch ratio maxt
|E3d(t)−E2d(t)|

E3d(t) CPU time (sec) for 2D CPU time (sec) for 3D

1.5 4.2% 367.56 8483.9

2.5 4.1% 526.05 9034.8

3.5 4.6% 285.62 7032.6

6 Application to viscoelastodynamic fracture

Energy is dissipated during the propagation of a crack in an elastomer membrane typically through two sources: first, as
fracture energy by the creation of new fracture surfaces (also called the intrinsic fracture energy - see Section 5 of [12])
and second, through the viscoelastic effects of the bulk material. Earlier studies on crack propagation in elastomers such
as in [1, 2, 5] used analytical expressions obtained by making simple assumptions on the geometry of the specimen to
compute the energy consumed during the fracture processes. For instance, when a crack propagates in an infinitely long
specimen (also called a pure shear configuration) under steady-state conditions (when the fields do not change for an
observer moving with the crack tip), the energy release rate is computed as Wh0, where W is the strain energy density
in the material far in front of the crack and h0 is the initial specimen height. The material is, however, assumed to be
elastic and the strains in the material behind the tip are assumed to be zero.

In viscoelastic solids, the material behind the tip may not completely relax to a strain-free state, particularly when the
specimen is of finite length. In such a case, the strain energy locked in the material behind the tip is to be accounted for
when computing the total energy dissipated during the crack propagation. A brief discussion in this regard can be found
in [37] in the case of plasticity and [11] for viscoelastic materials. In [11], an effective tearing energy has been defined
based on the strains leftover in the material once the crack passes through.

The energy consumed by a moving crack in a viscoelastic solid has been studied analytically in [38, 39, 12] and
the references therein. Using the extended correspondence principle, the stress fields in the vicinity of a crack in a
viscoelastic solid are calculated in terms of the stresses in an equivalent elastic solid. The energy dissipated is thus
computed. The energy dissipated was seen to be the product of the intrinsic fracture energy of the solid multiplied by a
factor that depends on the viscoelastic properties of the body and the crack speed. The problem of crack propagation in
inelastic materials has been studied using the material forces in [40]. In that reference, the energy dissipation for crack
growth in an elastoplastic and a viscoelastic solid has been studied. The material in the vicinity of the crack tip was
found to dissipate energy along with the energy dissipation in the material undergoing failure at the crack tip. In [41],
crack propagation in an infinitely long viscoelastic strip has been studied using a cohesive zone model. The energy
dissipated by the crack and the development of viscoelastic zone was studied as a function of various non-dimensional
parameters. It was observed that the region where the energy is dissipated in the bulk material moved further from the
tip with an increase in crack speed and was completely detached from the tip after some crack speed. The fracture
energy was observed to increase with an increase in the crack speed similar to what will be presented later in the article
and what has been observed in [42].

In cases where the deformation fields in the (almost) entire body are accessible (through the DIC technique, for instance),
the energy dissipated through viscoelastic effects can be computed more accurately using the procedure detailed in
the following. The methodology followed in this study is similar to what has been done in [13] and will be described
briefly in the following. The propagation of a crack in Polyurethane elastomers has been studied in [8]. In that study,
sheets of Polyurethane elastomers (in pure shear configuration) are first stretched to a target level and a crack is then
introduced (see Fig. 6). The crack then propagates through the specimen at speeds that depend on the stretch level. DIC
technique [43] has been used to obtain the displacement fields in the body during the propagation of the crack. The
displacement fields along the region near the crack face are extracted throughout the duration of the experiment.

A FE model that represents the top half of the specimen has been considered in this study. The displacement history of
the points that are along the crack path that was extracted earlier are imposed on the FE model as time-varying Dirichlet
boundary conditions (see Fig. 7). This way, the crack speed is implicitly imposed on the FE model. It shall be noted
that the displacements have not been extracted exactly along the crack face, but rather at some distance from it. This is
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Figure 6: Experimental setup to study the fracture of Polyurethane samples. In the first figure, the specimen is held
between the jaws of tensile machine. It is then stretched to the target level as in the middle figure and a small crack is
then introduced using a razor blade. The crack propagates through the specimen breaking it into two parts as in the
figure on the right. Displacements are extracted along the red line in the figure on the right as the crack propagated
through.

Crack path

Data extraction

Comparison

1 
m

m

5 
m

m

40
 m

m

200 mm

Figure 7: Geometry used in the current study. Only the top half is modeled as a consequence of symmetry. The
prospective crack path in the undeformed configuration has been represented as dashed line, which is also the line
of symmetry. The dotted line is about 1 mm away from the dashed line in the undeformed configuration and the
displacement boundary conditions are applied along this line. The fields of interest will be extracted along the solid line
which is about 5 mm away from the crack path and compared between the simulations and the experiments.

a consequence of the limitations of the DIC technique as a result of which the displacements are unavailable in the near
tip region exactly along the crack faces. The images on which the DIC was performed can be found at [44].

The applied boundary conditions are:

• Constraining the bottom part of the specimen (in red in Fig. 8) from moving in the vertical direction, the top
part (in blue) is moved to achieve the target stretch level. The top part is constrained from moving horizontally.

• The top part is then held fixed. The displacements extracted from the experiments as described in Figs. 6 and 7
are imposed on the nodes in the red region as Dirichlet boundary conditions.

The applied boundary conditions are similar to what the specimen will experience during the course of the experiment.

6.1 With same relaxation times and stiffness ratios as that of the FLV model

In the fracture experiments performed in [8], the cracks propagated at speeds of about 40 m s−1 and 56 m s−1 for initial
stretch levels of 2.5 and 3.5, respectively. The elastic shear wave speed for Polyurethane elastomer was found to be
about 40 m s−1. Hence, the cracks are said to propagate in the r−Transonic regime [13] at these stretch levels. An
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Displacements extracted from the experiments applied here

Figure 8: Mesh used for the analysis. The displacements extracted using the DIC technique have been applied on the
nodes along the red line, while the nodes at the top in blue are held fixed at the target level.

0 21.26 42.52 63.77 85.02 106.3 127.5

Figure 9: Particle velocity (in m s−1) profile for λ = 3.5, plotted on the deformed configuration.

energetic analysis will be performed for these two cases in this article. The 4-node bi-linear plane stress element (CPS4
in Abaqus) will be used for this purpose. An element size of 0.3 mm has been used along the crack path with the size
increasing gradually to about 5 mm in regions far from the crack path. The mesh used for this study can be seen in Fig.
8. HHT-α method [25] has been used to integrate the momentum equations in time implicitly. The parameters of the
algorithm have been chosen to be α = −5× 10−2, γ = 0.55, and β = γ/2 .

The analysis

The analysis will be first performed by assigning γ0 = 1 and choosing the same stiffness ratios (gi) and relaxation times
(τi) as that in the FLV model calibrated in [13] (repeated in table 3 for convenience). It shall be noted that the stiffness
ratios of the FLV model in [13] are with respect to the glassy modulus and hence, they are to be scaled using the relation
(gi)rubbery =

(gi)glassy

1−∑N
i=1(gi)glassy

to obtain the stiffness ratios with respect to the rubbery modulus. Also, only 8 branches
have been used in the current study (this will be justified later on). The results of this analysis are however expected to
be different from what has been observed in the aforementioned article, as the predictions of both the models differ
for configurations that are far from equilibrium as seen in section 5.1. For instance, the velocity fields for the case of
λ = 3.5 can be seen in Fig. 9. The velocity profile observed during the experiments can be found in Fig. 2c of [13].

Table 3: Relaxation times and stiffness ratios for γ0 = 1.

Branch 1 2 3 4 5 6 7 8

Stiffness ratio (glassy) 0.0005 0.0012 0.0011 0.0014 0.005 0.01 0.2 0.02

Stiffness ratio (rubbery) 0.0529 0.128 0.121 0.157 0.5298 1.0589 21.178 2.11

Relaxation time (s) 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8

The velocity distribution when the crack is about at the center of the specimen has been extracted along the solid line in
Fig. 7 for the current simulations and from the experiments, along with simulations using a polynomial hyperelastic
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Figure 10: Particle velocity comparison at about 5 mm above the crack path for different models. Results for the FLV
model were obtained from [13].
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when the crack is at about the center of the specimen.
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when the crack is at about the center of the specimen.

Figure 11: βi for the second and the eighth viscous branches. The position of the crack tip is indicated by small circles.

model from [13]. The velocity distribution for all three cases can be seen in Fig. 10. It can be seen that the predictions
of the FV model are far from the experimental results and are close to the predictions of the hyperelastic model, but
without exhibiting any jumps. Also, the maximum value of velocity is closer to the hyperelastic case.

As can be seen in section 5.1, the FV model shifts the relaxation times to smaller values at larger strains. Since
viscoelastic effects are responsible for the absence of the shock-front-like feature in the simulations using the FLV
model, it can be seen that the shift in the relaxation times in the FV model results in ‘not enough’ viscous effects. Hence,
the results tend to be closer to the hyperelastic case.

6.1.1 Activity of viscous branches

The contribution of the ith viscous branch to the stiffness of the material can be obtained by examining the ratio
βi := ψi

ψ∞
, where ψi denotes the strain energy in the ith viscous branch computed from the corresponding elastic strain

(bie) and ψ∞ is the strain energy in the hyperelastic branch computed from the overall deformation. A value of 0 for the
ratio indicates that the branch is inactive, bie = I . If bie = b, the ratio, βi, will equal the corresponding stiffness ratio,
gi, of the branch. βi can take values greater than gi in cases where the hyperelastic branch is relatively unloaded while
the viscous branch is still active. The ratio for the 2nd and the 8th viscous branches with relaxation times of 10−2 s and
10−8 s, respectively, plotted on the undeformed configuration can be seen in Fig. 11.
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Figure 12: Distribution of β when γ0 = 1.

It can be seen that the maximum value of β8 is about 9× 10−8, which is negligible when compared to the corresponding
stiffness ratio, g8 = 2.11, while for the second viscous branch, the maximum value is about 0.92. This indicates that
the second viscous branch is ‘more active’ than the eighth and that the activity of the viscous branches decreases with a
decrease in the corresponding relaxation times. It can hence be concluded that the contribution of viscous branches with
smaller relaxation times will be even smaller. Hence, including them in the analysis will not result in an improvement
in the results, despite the additional computational costs involved.

6.1.2 Overall viscous indicator

Also, the departure of the body from its long term elastic behavior can be studied by examining the overall viscous
indicator parameter, β, defined as

β :=
ψ∞ +

∑N
i=1 ψi

ψ∞
= 1 +

N∑
i=1

ψi
ψ∞

= 1 +

N∑
i=1

βi. (84)

A value of 1 for β indicates a purely long-term elastic behavior, while any departure from 1 indicates the presence of
viscoelastic effects. The distribution of β when the crack is at about the center of the specimen can be seen in Fig. 12.

It can be seen that corresponding to the velocity profile, the value of viscous indicator is seen to raise above 1 behind a
sharp front-like feature. The scale has been truncated at 1.3 to bring out the features of the distribution.

6.2 With different stiffness ratio and relaxation times from the FLV model

To bring the predictions of the model closer to the experiments, it is necessary to change either the relaxation times
and/or the stiffness ratios of the model. This has been achieved by first changing the value of γ0 to 1

60 . It shall be noted
that doing this is equivalent to multiplying the relaxation times of all the viscous branches by a factor of 60. Also, by
examining the βis defined in the previous section, it was found that including the eighth viscous branch in the analysis
does not affect the results despite the additional computational cost and hence has been removed. The stiffness ratios of
the sixth and seventh branches were also adjusted to bring the observed velocity results closer to the experiments. The
new parameters can be seen in the table 4.

Table 4: Relaxation times and stiffness ratios for γ0 = 1
60 .

Branch 1 2 3 4 5 6 7

Stiffness ratio (rubbery) 0.0529 0.128 0.121 0.157 0.5298 1.1589 1.9

Relaxation time (s) 10−1 10−2 10−3 10−4 10−5 10−6 10−7

The results of the velocity profile plotted on the deformed configuration, can be seen in Fig. 13. The velocity field, in
this case, is closer to the experiments than it was when γ0 = 1. The velocity variation at about 5 mm from the crack
path can be seen in Fig. 14. The velocity distribution can be seen closer to the experiments.

The distribution of β for this case can be seen in Fig. 15. It can be seen that the values of β in this case are higher than
what has been observed in Fig. 12 when γ0 = 1.
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Figure 13: Particle velocity (in m s−1) profile for λ = 3.5, plotted on the deformed configuration.
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Figure 14: Particle velocity comparison at about 5 mm above the crack path for different models. Results for the FLV
model obtained from [13].

6.3 Energy budget

Since the particle velocity predictions from the model are closer to the experiments, the energy evolution in the body
during the propagation of a crack in the material can be examined. In the experiments performed on the fracture of
elastomers such as in [2, 8, 45, 9], the body is first stretched to a target level. The external work done on the system
during the stretching process is stored as the internal strain energy (SE) in the body. When a crack is then imparted in
the body, it propagates through the body thereby releasing the stored strain energy, consuming a part of it during the
fracture process. If the body is viscoelastic, a part of the strain energy is also consumed as viscoelastic dissipation (D)
and some portion of the SE is also converted into kinetic energy (KE).

The evolution of strain energy (SE), kinetic energy (KE), and viscoelastic dissipation (D) energy of the body with time
can be monitored as the crack passes through it and their rates can be computed. The release rates of the corresponding
energy quantities can then be calculated using their rates of evolution. Denoting the work done by the external forces
when the crack passes through the body as W, the strain energy (SER), kinetic energy (KER), dissipation (DR), and

1 1.05 1.1 1.15 1.2 1.25 1.3

Figure 15: Distribution of β when γ0 = 1
60 .
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Figure 16: Evolution of different energies with time for λ = 3.5. Experiments performed in [8].

the external work (WR) release rates can be defined as

SER = − 1

w0

dSE

dt
, (85)

KER =
1

w0

dKE

dt
, (86)

DR =
1

w0

dD

dt
, (87)

WR =
1

w0

dW

dt
. (88)

In the above, w0 is the crack speed. The power of external forces can be computed as

dW

dt
=

dSE

dt
+

dKE

dt
+

dD

dt
. (89)

As the crack passes through the body, its top surface is stationary (held using the grips in the tensile machine as in [8]).
Hence, the external forces acting on this part of the body do no work during this time. The lateral surfaces of the body
are traction free and hence do not contribute to the external work as well. Along the bottom surface, however, as the
crack propagates through, the cohesive tractions acting near the crack tip, together with non-zero particle speeds, extract
work from the body. Also, in the current scenario, the portion of the body that is about 1 mm from the crack path is not
included in the analysis (the area shaded in green in Fig. 7). Hence, the work done by the external forces in the current
case also includes the viscoelastic energy dissipation in the material that is not included, along with the work done by
the cohesive forces.

The evolution of energies can be observed in Fig. 16 for the case when λ = 3.5. A similar procedure can be performed
for other experiments (when λ = 2.5, for instance) as well. Once done, the corresponding slopes can be computed,
using which the release rates can be obtained. The results thus obtained can be seen in the table 5. It shall be noted
that a factor of 2 has been added to the definitions of energy release rate since only the top half of the model has been
considered for the current study. Pext has been used in place of dW/dt. Also can be seen are the quantities ψh0 and
JψKh0, which are typically used to compute the energy release rates from experiments [1]. h0 is the initial specimen
height and ψ denotes the strain energy density in the material in front of and far from the tip when the tip is about at the
center of the specimen (since the body is finite in the current scenario, far in front of the tip refers to about 50 mm in
front of the current tip location). JψK denotes the jump in strain energy density, which is the difference in the strain
energy densities in the material between far in front of and behind the tip (behind the tip refers to about 50 mm behind
the current tip location).

The results in table 5 warrant some observations. As expected, the strain energy decreases as the crack passes through
(as can be seen by the negative sign in front of the expression for the release rate). The viscoelastic dissipation is
positive, and the kinetic energy rate is an order or two smaller than the strain energy release rate. The majority of
the strain energy is consumed as viscous dissipation (in the bulk and the material not included in the analysis) and
the fracture processes. Between the two cases presented, it can be observed that the viscoelastic energy dissipation
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Table 5: Energy release rates for the experiments in kJ/m2.

λ − 2
w0

dSE

dt
2
w0

dD

dt
2
w0

dKE

dt
− 2
w0
Pext ψh0 JψKh0

2.5 130 49 8.5 76 166 120

3.5 260 129 2.0 127 348 268

0 0.17 0.33 0.5 0.67 0.83 1

·107
Figure 17: Viscoelastic energy dissipation density (in J/m3) for λ = 3.5. The approximate position of crack tip is
indicated by a small black circle.

(quantified by the term 2
w0
dD/dt in the table 5) increases with an increase in crack speed. The external work can be

seen to increase as well. However, it shall be noted that the external work (− 2
w0
Pext) in this case also includes the

dissipation in the region shaded in green in Fig. 7. A more accurate decomposition of the energy consumption requires
the data to be extracted much closer to the crack path, which was not possible since the data in the pixels close to the
crack faces are lost when using the DIC technique.

In [13], it was observed that the strains in the material behind the tip do not go to zero after the crack tip passes through.
This is a consequence of the presence of relaxation times larger than the experimental duration (about 1 ms). This
results in some strain energy being locked in the material behind the tip even after the crack tip passed through. Hence,
it can be seen that the strain energy release rate equals the quantity JψKh0 rather than ψh0. This stresses the importance
of including the viscoelastic effects in the analysis of the problem. It shall be noted that a somewhat similar analysis has
been performed experimentally in [11].

Also, the region in the body where the energy is dissipated can be seen in Figs. 17 and 18 for the case of λ = 3.5 when
the crack is at about the center of the body. The quantity that has been plotted in Fig. 17 is

∫ t
0
D dt (energy dissipated)

and the quantity plotted in Fig. 18 is D (energy dissipation rate), where the expression for D can be seen in equation
82. It can be seen that there is a significant viscoelastic energy dissipation rate in the material in the vicinity of the
crack tip. The region of dissipation observed in Fig. 18 can be seen to be similar to that in [41] (Figs. 8,11, and 13
of the reference) - in the vicinity of the tip. The dissipation rate takes a maximum value near the tip, while gradually
reducing when moving further away. Also, the dissipated energy is confined to the regions behind the tip, extending to
the boundary while there is no dissipation in the region ahead of the tip. This is consistent with the observations made
earlier that the material ahead of the tip behaves in an elastic manner.

0 0.83 1.67 2.5 3.33 4.17 5

·1010
Figure 18: Viscoelastic energy dissipation density rate (in J/ sec /m3) for λ = 3.5. The approximate position of crack
tip is indicated by a small black circle.

24



A PREPRINT - MARCH 17, 2023

7 Conclusions

A plane stress version of the FV model has been presented in this article together with its implementation into the UMAT
subroutine of Abaqus [24]. The plane stress version of the model significantly reduces the computational costs as a pure
displacement (u) based 2D FE simulations can be performed as opposed to using mixed (such as displacement/pressure)
methods (in 3D) as in [20]. Also, enforcing F33 = 1/ detF 2d in elastic and viscous branches reduces the size of the
system being solved while determining the eigenvalues of btre and during the Newton iterations while solving equations
28 from 3× 3 to 2× 2. The numerical integration procedure is similar to that in the 3D case. The only difference is that
the expressions for stresses and the tangents are obtained after enforcing the incompressibility (F33 = 1/ detF 2d) and
plane stress (τ33 = 0) conditions. The HHT-α method [25] has been used in the current study to implicitly integrate the
momentum equations in time as the stable time step with an explicit scheme was found to be small.

The plane stress version of the FV model has been used to perform an energetic analysis of the viscoelastodynamic
fracture of Polyurethane elastomers tested in [8]. The region in the body where the viscoelastic effects are active could
be determined as a consequence of the availability of strain energy density functional. Viscoelastic effects can be seen
to become active in the region behind the tip - once the crack has passed through the material and the material begins to
move upward toward the boundaries. Comparing the results from the analyses with different relaxation times, it can be
seen that the viscoelastic effects prevent the formation of the shock-front-like feature in the Transonic regime. The
velocity predictions of the FV model have been observed to be closer to the experiments. The energy dissipated in the
body as a consequence of viscoelastic dissipation has been computed. It was observed that a significant portion of the
energy consumed is dissipated through viscoelastic effects. It shall be noted that the presented methodology allows for
determining the energy dissipated in the bulk and the energy consumed by the fracture processes for cases where the
data is available up to the crack faces.

It shall be noted that instead of extracting the displacement fields near the crack faces and imposing them on the
FE model, the displacement fields in the entire body (obtained by using the DIC technique) can be used directly to
evaluate energy evolution. The strain fields and their evolution in time can be evaluated from the displacement fields
and the strain energy and the dissipation can be evaluated from them. This procedure can also be used to calibrate the
constitutive model by minimizing the residuals on the equilibrium equations using the stresses computed from strains
using the constitutive model [46].
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A Comparison with hyperelastic and the FLV models

A.1 Model predictions for Hyperelastic case

The correctness of the implementation of the material model in the UMAT subroutine will be checked first starting with
the hyperelastic part. The polynomial strain energy functional will be used. The results of the predictions from UMAT

will be compared with that from the internal implementation of Abaqus to check the sanity of the implementation.

The strain energy functional for polynomial model can be seen to be [47]

ψ =

i+j=N∑
i,j=1

Cij(I1 − 3)i(I2 − 3)j , (90)

where Cijs are the model parameters, I1 and I2 are the two invariants of C̄ = J−1/3C. The computation of stresses
and tangent requires the computation of ∂ψ/∂Ii and ∂2ψ/∂Ii∂Ij , i, j = 1, 2 (equations 43, 44, 65). For the polynomial
model with N=3, these quantities can be seen to be

∂ψ

∂I1
= C10 + 2C20(I1 − 3) + C11(I2 − 3) + 3C30(I1 − 3)2 + 2C21(I1 − 3)(I2 − 3) + C12(I2 − 3)2, (91)

∂ψ

∂I2
= C01 + 2C02(I2 − 3) + C11(I1 − 3) + 3C03(I2 − 3)2 + 2C12(I1 − 3)(I2− 3) + C21(I1 − 3)2, (92)

∂2ψ

∂I1∂I1
= 2C20 + 6C30(I1 − 3) + 2C21(I2 − 3), (93)

∂2ψ

∂I1∂I2
= C11 + 2C21(I1 − 3) + 2C12(I2 − 3), (94)

∂2ψ

∂I2∂I2
= 2C02 + 6C03(I2 − 3) + 2C12(I1 − 3). (95)
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Figure 19: Geometry and mesh to test the implementation of UMAT.

Since ψ is smooth in I1 and I2, ∂2ψ/∂I1∂I2 = ∂2ψ/∂I2∂I1.

The model has been calibrated in [13] and the parameters Cijs can be seen in the table 6. The rest of the parameters
from table 6 are taken to be 0.

Table 6: Model Co-efficients

Parameter C10 C20 C30 C21

Value (Pa) 1.044E6 -0.02273E6 336.0 124.0

Geometry and mesh

A rectangular-shaped body has been taken to compare the predictions of UMAT with the implementation in Abaqus.
The geometry along with the mesh can be seen in Fig. 19. The top end of the sample is first subjected to displacement
ux = 0 mm, and uy = 50 mm, while the bottom end is held fixed. The top edge is then moved horizontally by 40 mm
so that the final displacement of the top edge is ux = 40 mm, and uy = 50 mm. This loading was chosen as it results
in a combination of tension and shear.

Results

In the simulations performed with UMAT subroutine, the first step using 21 incremenets and the second step using
254 increments. The internal implementation of Abaqus takes 21 increments for the first step and 338 increments
for the second. The 11, 12, 22 components of Cauchy stress, σ, predicted by the UMAT and the internal Abaqus
implementation can be seen in Figs. 20, 21 and 22, respectively. From the three figures, it can be seen that the stress
distributions are identical. The maximum and minimum values of σ11, σ12, σ22 for both the cases were observed to be
identical as well.

A.2 Comparison with finite linear viscoelasticity

The predictions of the model presented above will be compared with that of FLV model of [14] for some simple cases.
In this and the following sections, the deviations from equilibrium are indicated by the strain levels in the viscous
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Figure 20: σ11 (in Pa) predicted by UMAT and the polynomial model from Abaqus.

branches. For instance, the case where the strains in the elastic branch are large and the strains in the viscous branches
are small is indicated as large strains and small perturbations, while the case where the strains are large in both the
elastic and the viscous branches is indicated as large strains and large perturbations.

The PK2 stresses in the model of [14] can be seen to be

S = −JpC−1 + J−2/3DEVt

{
H

}
, where (96)

H :=

∫ t

0

g(t− s) ∂
∂s

[
DEVs

{
2
∂ψ0

∂C̄
(s)

}]
ds, (97)

DEVα

{
•
}

:= • − 1

3
[• : Cα]C−1

α , (98)

g(s) = g∞ +

N∑
i=1

gi exp(−s/τi). (99)

The plane stress expression for this case can be developed by finding the value of p imposing the constraint S33 = 0.
The final expression can be seen to be

S2d =

∫ t

−∞
g(t− s) ∂

∂s

[
DEV2D

s

{
Ŝ
s
}]

+
Ct33

3
(Ct

2d)
−1

∫ t

−∞
g(t− s) ∂

∂s

[
tr(Ŝ

s
Cs

2d)(C
s
33)−1

]
. (100)

In the above, the superscript s ot t indicates the time at which the quantity is computed and Ŝ = 2
∂ψ

∂C2d
.

DEV2D
s

{
Ŝ
s
}

= Ŝ
s
− 1

3 tr(Ŝ
s
Cs

2d)(C
s
2d)
−1. All this has already been implemented into Abaqus internally.

A.3 Small strains and small perturbations

Under small strain conditions, the deformation gradient can be approximated by F ≈ I + ε and hence, C ≈ I + 2ε.
The principal stretches can be approximated as λ2

1 ≈ 1 + 2ε1 and λ2
2 ≈ 1 + 2ε2, where the εis are the eigen values of

ε, the small strain tensor. The small perturbation assumption allows similar approximations for the viscous branches
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Figure 21: σ12 (in Pa) predicted by UMAT and the polynomial model from Abaqus.

as well. F e ≈ I + εe and Ce ≈ I + 2εe. Similarly, λ2
1e ≈ 1 + 2ε1e and λ2

2e ≈ 1 + 2ε2e. Plane stress conditions are
assumed to prevail. Material is taken to be incompressible. In such a case, the stresses in the principal directions in
equations 43 and 44 become

τA ≈ 2C10 (4εA + 2εB) , (101)
τB ≈ 2C10 (2εA + 4εB) . (102)

∂ψ

∂I1
has been approximated by C10 for polynomial model. Equation 49 becomes

p ≈ −4C10 (εA + εB) . (103)

Then τA + p = 4C10εA and τB + p = 4C10εB . The evolution equations 50 and 51 become, with γ0 = 1,

r1 = ε1e +
∆t

2ηD
4C10ε1e − (ε1e)tr = 0 =⇒ ε1e =

(ε1e)tr

1 + ∆t
τ

, (104)

r2 = ε2e +
∆t

2ηD
4C10ε2e − (ε2e)tr = 0 =⇒ ε2e =

(ε2e)tr

1 + ∆t
τ

, (105)

where ηD := 2C10τ has been used. The above equations can be seen to be the backward Euler discretization in time of
the PDE

ε̇Ae +
εAe
τ

= ε̇A. (106)

This can be proved by using ε̇Ae =
εnAe−εn−1

Ae

∆t and ε̇A =
εnA−εn−1

A

∆t . Equation 106 then becomes

εnAe − ε
n−1
Ae

∆t
+
εnAe
τ

=
εnA − ε

n−1
A

∆t
=⇒ εnAe =

(εAe)tr

1 + ∆t
τ

, (107)

which is equation 105. In the above equation, (εAe)tr = εnA − ε
n−1
Av = εnA −

(
εn−1
A − εn−1

Ae

)
.

30



A PREPRINT - MARCH 17, 2023

Factor: +1.000e+00

qus/Standard 6.14−2 Fri Sep 10 23:39:39 CEST 2021

(internal implementation)

7.64 7.9 8.17 8.44 8.71 8.97 9.24

·106
Figure 22: σ22 (in Pa) predicted by UMAT and the polynomial model from Abaqus.

The FLV model in [14] can be written in the case of small strains and small perturbations by realizing that

Cs33 =
1

detCs
2d

≈ 1, ∀ 0 ≤ s ≤ t, (108)

(Cs
2d)
−1 ≈ I − 2εs, ∀ 0 ≤ s ≤ t, (109)

tr(Ŝ
s
Cs

2d) = tr(τ s), ∀ 0 ≤ s ≤ t, (110)

Ŝ
s
≈ τ s ∀ 0 ≤ s ≤ t. (111)

Using all the above, the 22 component of Kirchhoff stress can be written as

τ2 =

∫ t

−∞
g(t− s)∂τ

s
2

∂s
ds = τ∞2 + τ2e, (112)

where τ∞2 is the stress in the elastic branch and τ2e = 2C10(4ε2e + 2ε1e) is the stress in the viscous branch, ε2e =∫ t
−∞ exp(− t−sτ )

∂ε2
∂s

ds. This, in turn, can be seen to be the analytical solution of equation 106. Hence, both FLV and

FV models can be seen to give the exactly same result in the limit ∆t/τ → 0. However, when ∆t/τ does not tend to 0,
the two models can result in slightly different result as the FLV model uses the semi-group property of the exponent to
integrate the equations while FV model uses backward Euler method.

The predictions of FLV and FV models are examined for the geometry in Fig. 19. The top portion of the model is
fixed in the x-direction, ux = 0 and is displaced in y-direction as follows. It is subjected to a displacement of 5 mm
in 5× 106 sec to make sure that the viscoelastic effects can be neglected in this step. It is then subjected to a cyclic
displacement A+B sin(2πωt), where A = 5 mm, B = 2 mm, and ω = 1000 s−1. The stiffness ratios, g1 and g2, for
FLV model (with respect to the glassy modulus) have been taken to be 0.3 and 0.4, respectively, while τ1 and τ2 to be
1× 103 s and 1× 104 s, respectively. The stiffness ratios (g1 = ψ1

ψ∞
and g2 = ψ2

ψ∞
) of FV model (with respect to the

rubbery modulus) hence become 1 and 1.33, respectively and the ηDs are computed as 2C10τ . Time step size has been
set to 1× 10−4 s. Hence, ∆t

τ is about 10−7. The evolution of σ22 and ε22 with time for the two models along with the
difference between them at the centroid of the element shaded in brown in Fig. 19 can be seen in Fig. 23.

As can be seen, the two models predict the same result to within plotting accuracy. The difference between the stresses
predicted by them lies within 3% of the maximum value and the difference between the strains lies within 0.2% of the
maximum value. This demonstrates the accuracy of implementation of the FV model into the UMAT subroutine.
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Figure 23: σ22 and ε22 vs time for FLV and FV models. The FLV model has already been implemented within Abaqus
while the FV model in the UMAT.
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Figure 24: σ22 and ε22 vs time for FLV and FV models.

A.4 Large strains and small perturbations

In this case, the approximations of F e and Ce in the previous section still hold. However, the background strains are
taken to be finite and so, they cannot be approximated using small strain measures. In this case, the evolution equations
for FV model for viscous branches remain similar to equation 105, except that the total strains used for the computation
of trial strains, εA, are now logarithmic, ε = 1

2 lnC. The evolution equations in this case can be shown to be exactly
that of [48].

The model in Fig. 19 is again used to test this scenario. The top edge of the model is fixed in the x-direction, ux = 0
and is displaced first vertically by 40 mm in a span of 5× 107 sec. It is then subjected to a cyclic displacement
A+B sin(2πωt), where A = 40 mm, B = 2 mm, and ω = 1000 s−1. The model coefficients are as in the previous
section and the time step has been set to 1× 10−4 s as well.

It can be seen from Fig. 24 that the two models predict slightly different values of stresses at the same strain level. The
FV model predicts slightly smaller stress levels than the FLV model. Under large strains and small perturbations, the
FV model condenses to the model of Lubliner [48], while the FLV model slightly differs from it (see remark 1.6 of
[14]). The slight differences in the predictions between the two models can be attributed to this.
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