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Abstract: Currently, it remains unclear which specific peptides could be appropriate for applications
in different fields of dentistry. The aim of this scoping review was to scan the contemporary scientific
papers related to the types, uses and applications of peptides in dentistry at the moment. Literature
database searches were performed in the following databases: PubMed/MEDLINE, Scopus, Web of
Science, Embase, and Scielo. A total of 133 articles involving the use of peptides in dentistry-related
applications were included. The studies involved experimental designs in animals, microorganisms,
or cells; clinical trials were also identified within this review. Most of the applications of peptides
included caries management, implant osseointegration, guided tissue regeneration, vital pulp therapy,
antimicrobial activity, enamel remineralization, periodontal therapy, the surface modification of tooth
implants, and the modification of other restorative materials such as dental adhesives and denture
base resins. The in vitro and in vivo studies included in this review suggested that peptides may have
beneficial effects for treating early carious lesions, promoting cell adhesion, enhancing the adhesion
strength of dental implants, and in tissue engineering as healthy promotors of the periodontium and
antimicrobial agents. The lack of clinical trials should be highlighted, leaving a wide space available
for the investigation of peptides in dentistry.

Keywords: antimicrobial; osseointegration; surface modification; tissue engineering

1. Introduction

Dental plaques contain over 750 different bacterial species, which are the major reason
for dental caries, with streptococci being the most predominantly present. These bacteria,
due to the production of acids, can demineralize and affect mineralized tooth tissues [1].
Different additives and biomaterials were used in dental treatments in order to eliminate
and decrease the number of bacteria in the oral cavity and teeth tissues. Some dental mate-
rials, such as calcium silicate-based products, have been introduced in the dental market
due to their antibacterial, antioxidant and remineralization properties [2]. Other solutions
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that have antibacterial effects are used to clean the root canal and kill resistant bacteria in
the root canal system [3]. Even though they sometimes display high cytotoxicity [4,5], these
materials are still currently used in dentistry.

It should be remembered that a peptide is expressed as a short polymer of amino acids
(AA) [6]. According to the description of diverse authors in the literature, sizes of peptides
may vary from <20, <50, to <100 [7–10]. The use of peptides has been paid attention
to over the last two decades [6,11]. These peptides were used in various dental fields
such as in endodontic treatment, coronal restoration, caries management, bone and dental
tissue remineralization and in the modification of dental materials in order to promote the
biological effects of these materials in the oral environment [6,12].

In the last periods, over 7000 native peptides (NP) have been considered by means of
significant human physiological functions [13]. These peptides have functions by way of
cell-penetrating, cell adhesion motifs, tumor-homing peptides, neuropeptides, structural
peptides, peptide hormones, antimicrobial peptides, peptide tags, matrix metalloprotease
substrates, growth factors, amyloid peptides, and erstwhile diverse NPs [10].

Nevertheless, one should state that NPs are frequently not truthfully appropriate
for therapeutic usage since they have intrinsic drawbacks, including their poor physical
and chemical stability, low oral bioavailability, short flowing plasma half-life, and quick
removal from the circulation through the kidneys and the liver [9,13,14]. It is well described
that peptides such as insulin and adrenocorticotrophic hormone were used for human
therapeutic purposes in the first half of the 20th century [15]. Later on, synthetic oxytocin
and vasopressin arrived in clinical use in the 1950s with the chemical elucidation of the
sequences of these peptides [16].

Lately, pharmaceutical manufacturing has amplified the consideration of novel thera-
peutic peptides, persistently touching clinical claims [9,17]. By 2018, more than 60 peptides
were approved by the Food and Drug Administration (FDA), and more than 600 were
undergoing preclinical and clinical examinations [9,18]. With the current elaborations of
solid-phase peptide synthesis, the production of therapeutic synthetic peptides (SP) has
become achievable [9]. Accordingly, innovative synthetic approaches permit the modu-
lation of pharmacokinetic assets and focus on specificity through AAs, the integration of
non-natural AAs, backbone adjustments, and the peptide conjugates refining solubility or
prolonging the half-life [8,13,14].

It is recognized that human dental masses, once fashioned, cannot be biologically
replaced or repaired, and their multifaceted conformations require diverse approaches
for regeneration [6]. However, it is unclear in the literature which specific peptides could
be effective for applications in different fields of dentistry. Thus, the aim of this scoping
review was to map the contemporary scientific papers related to the use and applications
of peptides in dentistry at present.

2. Materials and Methods

The present scoping review has been described according to the PRISMA extension
for scoping reviews guideline [19]. The review protocol was registered at Open Science
Framework, and it is available at https://osf.io/up6ty (accessed on 18 December 2022).
The systematic search was performed according to the following parameters: (i) population:
peer-reviewed articles; (ii) intervention: use of natural or synthetic peptides; (iii) compari-
son: other substances or treatments; (iv) outcome: dental applications, (v) study design:
in vitro or in vivo articles. The general question of the review was as follows: what scientific
applications of products based on peptides are being used for dental applications?

2.1. Information Sources and Search

The literature database search was performed by two independent reviewers (RB
and CECS) until September 2022. The search was carried out in the following databases:
PubMed/MEDLINE, Scopus, Web of Science, Embase, and Scielo. The search strategy was
first defined for the MEDLINE database using a controlled vocabulary and free keywords

https://osf.io/up6ty
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(Table 1). The MEDLINE search strategy was then adapted to other electronic databases.
The reviewers also hand-searched the reference lists of the included articles to identify
additional manuscripts.

Table 1. Search strategy used in the MEDLINE database.

(Peptide) OR (Polypeptides) OR (Polypeptide) AND (Materials, Dental) OR (Dental Material) OR
(Material, Dental)

2.2. Selection Process and Data Collection Process

After running the search strategy, a reference management program was used (End-
Note X9, Clarivate Analytics, Philadelphia, PA, USA) to store the files of all databases. Then,
duplicate articles were removed, followed by manual removal after the organization of
titles in alphabetical order. All studies were initially scanned for relevance by title followed
by abstract using an online software program (Rayyan, Qatar Computing Research Institute,
HBKU, Doha, Qatar). The titles and abstracts of the articles were screened according to the
following inclusion criterium: in vitro or in vivo studies that evaluated or reported the use
of peptides for dental applications. The search was carried out on documents published in
any language without restrictions on their date of publication. Reviews, case reports, case
series, pilot studies, and conference abstracts were excluded. If the review authors were
not sure about the eligibility of any study, it was kept for the next phase. All phases were
carried out by two independent reviewers (RB and CECS) to check whether they met the
inclusion criteria. The same two reviewers summarized and categorized the data using a
standardized form. The information collected included the type of study, the peptide used,
the application proposed and the main results.

3. Results

This scoping review is described according to the PRISMA extension for scoping re-
views guideline [19]. After database screening and duplicate removal, a total of 6450 articles
were recognized (Figure 1). After title and abstract screening, 156 articles remained for
full-text inspection. From the 156 articles assessed for eligibility, 23 articles were excluded
due to the following reasons: in 11 articles, the full text was not retrieved [20–30], 4 articles
were not related to the dentistry field [31–34], 4 studies were reviews [6,12,35,36], 3 studies
were not related to peptides [37–39], and 1 study was a pilot clinical trial [40]. Thus, a total
of 133 articles were included in the present review.

3.1. Characteristics of Studies

The main characteristics of the studies included in the present review are presented in
Table 2.

Table 2. Characteristics of the included studies.

Study and Year Type of Study Peptide Used Application Main Results

Bagno, 2007 [41] In vitro

Two adhesive peptides:
an RGD-containing
peptide and a peptide
recorded on human
vitronectin

Implant osseointegration

It was observed that there
was a capacity of the
peptides to promote
enhanced cell adhesion

Artzi, 2006 [42] Experimental study A synthetic peptide (P-15)

Guided tissue
regeneration and guided
bone regeneration
techniques

The use of a synthetic
peptide showed increased
osteoconductive and
biocompatible features

Bröseler, 2020 [43] Randomized clinical trial Self-assembling peptide
(SAP) P11-4

Early buccal carious
lesions

Self-assembling peptide
regenerated enamel
caries lesions
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Butz, 2011 [44] Prospective in vivo study

Synthetic Peptide in a
Sodium Hyaluronate
Carrier (PepGen
P-15 Putty)

Sinus grafting
The peptide evaluated was
successful for maxillary
sinus augmentation

Chung, 2013 [45] In vitro Asparagine–serine–serine
(NSS) peptide.

Remineralization of
eroded enamel.

Peptide increased the
nanohardness and elastic
modulus of eroded enamel

Altankhishig, 2021 [46] In vitro and in vivo Peptide Vital pulp therapy

The dentin
phosphophoryn-derived
arginine-glycine-aspartic
acid-containing peptide
showed adequate
properties as a bioactive
material for
dentin regeneration

Afami, 2021 [47] In vitro

Ultrashort peptide
hydrogel,
(naphthalene-2-ly)-acetyl-
diphenylalanine-dilysine-
OH
(NapFFεKεK-OH)

Antimicrobial activity and
angiogenic growth factor
release by dental pulp
stem/stromal cells

Peptide-containing
hydrogels have potential in
tissue engineering for
pulp regeneration

Babaji, 2019 [48] In vitro

SAP P11-4 and casein
phosphopeptides-
amorphous calcium
phosphate (CPP-ACP)

Enamel remineralization
The peptide was more
effective and efficient when
compared to CPP-ACP

Dettin, 2002 [49] In vitro Novel osteoblast-adhesive
peptides Osteoblast adhesion

The novel
peptide promotes
proteoglycan-mediated
osteoblast
adhesion efficiently

Cirera, 2019 [50] In vivo TGF-β1 inhibitor peptide:
P144

Osseointegration of
synthetic bone grafts

The healing period of
osseointegrated
biomaterials can be
shortened when peptide
biofunctionalization is used

Boda, 2020 [51] In vitro

Mineralized nanofiber
segments combined with
calcium-binding bone
morphogenetic protein 2
(BMP-2)-mimicking
peptides

Alveolar bone
regeneration

Mineralized nanofibers
functionalized with
peptides have the potential
to regenerate craniofacial
bone defects

Chen, 2017 [52] In vivo GL13K-peptide Osseointegration of
implants

This study showed that
titanium dental implants
with an antimicrobial
GL13K peptide coating
enables in vivo
implant osseointegration

Aref, 2022 [53] In vitro CPP-ACP White spot lesion

CPP-ACP could be a
promising approach to
manage WSLs efficiently,
with subsequent universal
adhesive resin infiltration

Aruna, 2015 [54] Clinical

Gingival crevicular fluid
(GCF) N-terminal
telopeptides of type I
collagen (NTx)

Periodontal therapy

Cross-linked NTx can be
successfully estimated in
the GCF of chronic
periodontitis subjects

Brunton, 2013 [55] A clinical trial Biomimetic SAP: P11-4 Early caries lesions

Treatment of early caries
lesions with P11-4 is safe,
and a single application of
this peptide is associated
with significant
enamel regeneration
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Fang, 2020 [56] In vitro Two hexapeptide coatings Dental implants

The novel hexapeptide
coating can inhibit the
attachment of
Porphyromonas gingivalis
and prevent the formation
of dental biofilm

Goldberg, 2009 [57] In vitro Polypeptide Occluding dentin tubules

Peptide catalysts that
mediate mineral formation
can retain functionality on
dentin, suggesting a wide
range of preventive and
treatment strategies

Amin, 2012 [58] In vitro Amelogenin Peptides Osteogenic differentiation

Amelogenin-derived
peptide could be a useful
tool for limiting
pathological bone
cell growth

Godoy-Gallardo, 2015
[59] In vitro hLf1-11 Peptide Antibacterial properties

on titanium surfaces

A greater amount of
peptide attached to the
surfaces functionalized via
atom transfer radical
polymerization than those
functionalized via silane

Dommisch, 2019 [60] In vivo and in vitro Antimicrobial peptides Gingival inflammation

The study delivers
evidence on the role of
antimicrobial peptides as
guardians of a
healthy periodontium

Dommisch, 2015 [61] Experimental study Antimicrobial peptides Gingivitis

Differential temporal
expression for
antimicrobial peptides
could guarantee continuous
antimicrobial activity
alongside changes in the
bacterial composition of the
growing dental biofilm

Fernandez-Garcia, 2015
[62] In vitro Peptide-functionalized

zirconia Implant

Surface bioactivation of
zirconia-containing
constituents for dental
implant applications will
allow their perfected
clinical implementation by
incorporating signaling
oligopeptides to accelerate
osseointegration, improve
mucosal sealing, and/or
incorporate antimicrobial
properties to avoid
peri-implant infections

Fiorellini, 2016 [63] In vitro
Osteopontin-derived
synthetic peptide:
OC-1016

Osseointegration of
implants

OC-1016 was capable of
meaningfully accelerating
the initial stage of
osseointegration and bone
healing around implants

Goeke, 2018 [64] Clinical Antimicrobial peptides Caries risk

The incidence of
low-susceptible strains to
antimicrobial peptides
appears to relate to
individual caries status
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Galler, 2012 [65] In vitro SAP hydrogel Dental pulp tissue
engineering

The use of this innovative
biomaterial was considered
a highly favorable
candidate for upcoming
treatment hypotheses in
regenerative endodontics

Kirkham, 2007 [66] In situ SAP scaffolds Enamel remineralization SAP might be useful for
dental tissue engineering

Kämmerer, 2011 [67] In vitro RGD peptides Dental implants

Modifications of titanium
surfaces with c-RGD
peptides are an
encouraging way to
endorse endothelial
cell growth

Golland, 2017 [68] In vitro SAP Remineralization of white
spot lesions

The application of SAP on
demineralized bovine
enamel indicated an
irregular crystal or a lack
of remineralization

Hsu, 2010 [69] In vitro Aspartate-serine-serine
(8DSS) pep- tides

Nucleation of calcium
phosphate carbonate from
free ions

8DSS peptides reduced the
surface roughness of
demineralized enamel and
promoted the uniform
deposition of
nano-crystalline calcium
phosphate carbonate over
demineralized
enamel surfaces

Kwak, 2017 [70] In vitro Leucine-rich amelogenin
peptide (LRAP) Enamel regeneration

LRAP has the power to
enhance the linear growth
of mature enamel crystals

Kong, 2015 [71] In vivo Histatin-5 (Hst-5) Oral Candidiasis Hst-5 was able to clear
existing lesions

Koch, 2019 [72] In vitro SAP:
P11-4 and P11-28/29 Periodontal therapy

SAP hydrogels were
effective for
periodontal therapy

Hashimoto, 2011 [73] In vitro Peptide motif Zirconia
A peptide motif was
successful in
binding zirconia

Kind, 2017 [74] In vitro SAP: P11-4 Remineralization of
carious lesions

The application of P11-4
might facilitate the
subsurface regeneration of
the enamel lesion

Gonçalves, 2020 [75] In vitro
Casein phosphopeptide-
amorphous calcium
phosphate (MI Paste Plus)

Enamel demineralization
and dental caries

MI Paste Plus might be
effective in improving
oral health

Kim, 2019 [76] In vitro and in vivo A laminin-derived
functional peptide Implant Peptide DN3 promotes

bone healing

Kohgo, 2011 [77] In vitro SAP Implant
SAP could be useful for
bone regeneration around
dental implants

Gungormus, 2012 [78] Ex vivo Amelogenin-derived
peptides Periodontal tissues

Amelogenin-derived
peptide 5 promoted the
regeneration of
periodontal tissues
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Kakegawa, 2010 [79] In vitro Enamel sheath protein
peptides

Construction of the
enamel sheath during
tooth development

A specific peptide sequence
encourages the
cytodifferentiation and
mineralization activity of
human periodontal
ligaments

Kramer, 2009 [80] In vitro Integrin blocking peptide Titanium surfaces

Antibody and peptide
treatment reduced the
number of fibroblast cells
involved on the
implant surfaces

Hua, 2010 [81] In vitro Antimicrobial peptide Oral cavity
The antimicrobial peptide
was demonstrated as an
anti-Candida agent

Hua, 2010 [81] In vitro Antimicrobial peptide Oral cavity

The antimicrobial peptide
exhibits potent activity
against both A.
actinomycetemcomitans and
P. gingivalis biofilms

Kohlgraf, 2010 [82] In vitro
Human neutrophil
peptide α-defensins
(HNPs)

Cytokine responses

The ability of HNPs to
attenuate proinflammatory
cytokines was dependent
upon both the defensin and
antigen of P. gingivalis

Holmberg, 2013 [83] In vitro Antimicrobial peptide:
GL13K

Dental and orthopedic
implants

The antimicrobial activity
and cytocompatibility of
GL13K-biofunctionalized
titanium make it a
promising candidate for
sustained inhibition of
bacterial biofilm growth

Koidou, 2019 [84] In vitro Bioinspired peptide
coatings Peri-implant mucosal Seal

Peptide coatings were
considered a promising
candidate for inducing a
peri-mucosal seal around
dental implants

Knaup, 2021 [85] In vitro SAP: P11-4 Metal brackets

The application of the
caries-protective SAP P11-4
before the bonding of
brackets did not influence
the shear bond strength

Kihara, 2018 [86] In vitro Novel synthetic peptide
(A10) Titanium surface

The novel peptide has a
useful presentation that
might enhance advanced
clinical outcomes by means
of titanium implants and
abutments by preventing
or reducing
peri-implant disease

Jablonski-Momeni, 2020
[87] In vitro SAP P11-4

Early enamel lesions
adjacent to orthodontic
brackets

The application of p11-4
with fluoride varnish was
demonstrated to be
superior for the
remineralization of enamel
adjacent to brackets when
compared to the use of
fluorides alone

Kamal, 2018 [88] In vitro SAP P11-4 Artificially induced
enamel lesions

SAP confers a higher
remineralizing efficacy

Mao, 2021 [89] In vitro CPP-ACP Dental caries
The use of 5% CPP-ACP
reduced 39% of
bacterial biofilm
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Makihira, 2011 [90] In vivo
Antimicrobial peptide
derived from histatin:
JH8194

Dental implant

JH8194 might deliver a
viable biological
modification of titanium
surfaces to amplify
trabecular bone formation
around dental implants

Li, 2014 [91] In vitro

Synthetic and
self-assembled
oligopeptide amphiphile
(OPA)

Mineralization of enamel
OPA was successful in the
biomimetic mineralization
of demineralized enamel

Liu, 2016 [92] Experimental

Chimeric peptides
comprising antimicrobial
and titanium-binding
motifs

Biofilm formation

Chimeric peptides provide
a promising alternative to
inhibit the formation of
biofilms on titanium
surfaces with the power to
prevent peri-implantitis

Min, 2013 [93] In vitro Laminin-derived
functional peptide, Ln2-P3 Implant

An Ln2-P3-coated implant
surface enhances bone
cell adhesion

Moore, 2015 [94] Ex vivo Multidomain peptide
hydrogels Dental pulp

Multidomain peptide
hydrogels offered centrally
and peripherally within
whole dental pulp tissue
are demonstrated to be
biocompatible and preserve
the architecture of the
local tissue

Muruve, 2017 [95] In vitro PEGylated metal-binding
peptide (D-K122-4-PEG) Titanium surface D-K122-4-PEG promotes

resistance to corrosion

Nguyen, 2018 [96] In vitro Dentinogenic peptide Dental
pulp stem cells

The SAP promised
guided dentinogenesis

Mardas, 2007 [97] An experimental study
in rats PepGen Bone regeneration

The anorganic
bovine-derived
hydroxyapatite matrix
coupled with a synthetic
cell-binding peptide failed
to promote new
bone formation

Mateescu, 2015 [98] In vitro Antimicrobial peptide
Cateslytin Peri-implant diseases

The new peptide could be
ideal in the prevention of
peri-implant diseases

Liu, 2021 [99] In vitro RADA16-I: (SAP) Pulp regeneration
The novel SAP could be
ideal in endodontic
tissue engineering

Li, 2020 [100] In vitro GH12: antimicrobial
peptide Root canal irrigant GH12 suppressed E. faecali

in dentinal tubules

Mancino, 2022 [101] In vitro Catestatin-derived
peptides Oral candidiasis

The catestatin-derived
peptides were considered
for the treatment of
oral candidiasis

Mai, 2016 [102] In vitro Antimicrobial peptides Caries and pulpal
infections

Antimicrobial peptide
mimics offer opportunities
for new therapeutics in
regenerative endodontics
and root canal treatments

Lv, 2015 [103] In vitro Amelogenin based
peptide

Remineralization of initial
enamel caries

The amelogenin-based
peptide enhances enamel
caries remineralization

Lee, 2007 [104] In vitro and in vivo Collagen-binding peptide Osteogenesis
Collagen-binding peptide
induced biomineralization
of bone
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Liang, 2018 [105] In vitro 8DSS peptide Dentinal tubule occlusion

8DSS peptide induced
strong dentinal tubule
occlusion and can be used
in dentin hypersensitivity

Lee, 2018 [106] In vitro and in vivo Bone formation peptide-1
(BFP1) Bone regeneration BFP1 was considered

promising for bone repair

Na, 2005 [107] Preformulation study Antimicrobial decapeptide
(KSL) Antiplaque agent

KSL served as a novel
antiplaque agent in the
oral cavity

Magalhães, 2022 [108] In vitro Self-assembly peptide:
P11-4 Bleached enamel

The use of P11-4 after
bleaching results in the
fastest recovery to baseline
enamel properties

Lallier, 2003 [109] In vitro Collagen-binding peptide
P-15 Periodontal treatment P-15 promoted fibroblast

attachment to root surfaces

Li, 2021 [110] In vitro Small-size peptide: RR9 Oral streptococci

RR9 might be considered a
possible antimicrobial
agent for
periodontal disease

Matsugishi, 2021 [111] In vitro Rice peptide Biofilm formation
Rice peptide hindered the
biofilm formation of F.
nucleatum and P. gingivalis

Li, 2022 [112] In vitro Amelogenin-based
peptide hydrogel Human dental pulp cells

The amelogenin peptide
hydrogel enhanced
mineralization and
encouraged odontogenic
differentiation

Mishra, 2019 [113] A randomized clinical trial
Anorganic bone
matrix/cell-binding
peptide (ABM/P-15)

Human infrabony
periodontal defects

The combination of
ABM/P-15 was established
to be a favorable material
for periodontal
regeneration

Padovano, 2015 [114] In vitro DMP1-derived peptides Remineralization of
human dentin

DMP1-derived peptides
could be useful in
modulating mineral
deposition

Park, 2020 [115] In vitro BMP-mimetic peptide Dental pulp stem cells
BMP-mimetic peptide
accelerated human dental
pulp stem cells

Pellissari, 2021 [116] In vitro Statherin-derived peptides Biofilm development

The natural peptides from
statherin are able to
decrease biofilm
proliferation and Candida
albicans colonization

Petzold, 2012 [117] In vivo Proline-rich synthetic
peptide Titanium implants

Proline-rich peptides have
a probable biocompatible
capacity for endorsing
osseointegration by
lessening bone resorption

Picker, 2014 [118] In vitro Binding peptides Calcium silicate hydrate

A new strong calcium
silicate hydrate-binding
additive influenced the
physical properties
of cement

Pihl, 2021 [119] In vivo Antimicrobial peptide:
RRP9W4N Titania implant

RRP9W4N was
demonstrated to be
successful in the control of
infection in
osseointegrating implants
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Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Ren, 2018 [120] In vitro

Chitosan hydrogel
containing
amelogenin-derived
peptide

Initial caries lesions

Chitosan hydrogel
containing
amelogenin-derived
peptide was demonstrated
to be effective in controlling
caries and promoting the
remineralization of the
initial enamel carious lesion

Santarpia, 1991 [121] In vivo Histidine-rich
polypeptides Denture stomatitis

Histidine-rich polypeptides
were effective in the
treatment of
denture stomatitis

Schmidlin, 2015 [122] In vitro SAP Mineralization of artificial
caries lesions

SAP improved the
hardness profile of
deep demineralized
artificial lesions

Schmitt, 2016 [123] In vivo Synthetic peptide (P-15) Osseointegration

There is no advantage in
the early phase of
osseointegration for dental
implants with
P-15-containing surfaces

Schuler, 2006 [124] In vitro RGDSP-peptide sequence Titanium dental implant

There is no communication
between RGD-peptide
surface density and surface
topography for osteoblasts

Schuster, 2020 [125] In vitro Hydroxyapatite/BMP-2
mimetic peptide Bone tissue engineering

Biofunctionalization of
collagen-hydroxyapatite
composites with BMP-2
simulated peptides was
considered cost-effective
and fast for prolonged and
improved jaw periosteal
cell proliferation

Secchi, 2007 [126] In vitro Arginine-glycine-aspartic
acid (RGDS) peptides Implant

The modification of the
titanium surface with
RGDS peptides promoted
osseointegration

Segvich, 2009 [127] In vitro Binding peptide sequences Bone regeneration

The binding peptide
sequences can be used in
dentin and bone
tissue engineering

Sfeir, 2014 [128] In vitro Multiphosphorylated
peptides

Mineralized collagen
fibrils of bone and dentin

Using phosphopeptides,
there is progress in
biomimetic nanostructured
materials for mineralized
tissue regeneration
and repair

Shi, 2015 [129] In vitro Antimicrobial
peptide-loaded coatings Dental implant

The antimicrobial
peptide-loaded coatings
were demonstrated to be a
potential approach for
preventing peri-implantitis

Shinkai, 2010 [130] In vitro
Synthetic peptides derived
from dentin matrix protein
1 (pA and pB)

Direct pulp capping and
bonding agent

The primer containing
synthetic peptides derived
from dentin matrix protein
1 negatively affected the
bond strength to dentin



Bioengineering 2023, 10, 214 11 of 27

Table 2. Cont.

Study and Year Type of Study Peptide Used Application Main Results

Shinkai, 2010 [131] In vitro Synthetic peptides (pA
and pB) Bonding agent

A significant difference was
seen in bond strength
among CaCl2
concentrations in Primer-I
(comprising 10 wt.% CaCl2)
and pA/pB concentrations
in Primer-II comprising
10 wt.% pA/pB, and there
is a noteworthy interaction
between these two factors

Shuturminska, 2017 [132] In vitro Statherin-derived peptide Enamel biomineralization

The use of
statherin-derived peptide
was considered effective in
enamel therapy

Su, 2017 [133] In vitro Peptide nisin Dental adhesive

The cured nisin included in
the dental adhesive showed
a noteworthy inhibitory
effect on the growth of
S. mutans

Suaid, 2010 [134] Histologic and
histomorphometric study

Anorganic bone
matrix–synthetic
cell-binding peptide 15

Periodontal class III
furcation defects

The use of anorganic bone
matrix–synthetic
cell-binding peptide 15 was
effective in bone formation

Sugawara, 2016 [135] In vitro Platelet-activating peptide Titanium surface

An epithelial basement
membrane was formed on
the titanium surface when
platelet activating peptide
was used

Sun, 2016 [136] Clinical Peptidome Early childhood caries

The magnetic
bead-founded
matrix-assisted laser
desorption/ionization
time-of-flight mass
spectrometry was
considered an effective
technique for screening
distinctive peptides from
the saliva of junior patients
with early childhood caries

Takahashi, 2002 [137] In vitro
Dipeptide:
aspartylaspartate and
glutamylglutamate

Periodontal pathogens

Dipeptides can be
employed as growth
substrates for P. intermedia,
P. gingivalis, F. nucleatum,
and P. nigrescens

Tanhaieian, 2020 [138] In vitro Recombinant peptide Dental diseases

The recombinant peptide
was demonstrated effective
as an antimicrobial agent
against E. faecalis and
oral streptococci

Üstuün, 2019 [139] In vitro SAP: P11-4 Artificial enamel lesions
P11-4 was demonstrated to
have the best
remineralization efficacy

Wag, 2020 [140] In vivo Neural peptide
Angiogenesis and
osteogenesis around oral
implants

Alpha-calcitonin
gene-related peptide
up-regulated the
expression of Hippo-YAP
and downstream genes in
order to encourage
osteogenesis and
angiogenesis around
the implants
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Study and Year Type of Study Peptide Used Application Main Results

Wang, 2015 [141] In vitro Peptide DJK-5 Dentin canals

The peptide DJK-5 showed
an imperative antibacterial
property against mono-
and multispecies biofilms
in dentin canals

Warnke, 2013 [142] In vitro
Human beta-defensins
(HBDs), small cationic
antimicrobial peptides

Dental implants

HBD-2 is not only
biocompatible with but
further encourages the
proliferation of human
mesenchymal stem cells

Wener, 2009 [143] In vitro Laminin-derived peptide Dental implants

Laminin-derived peptide
improved and enhanced
the integration of soft tissue
on titanium implants used
in dentistry

Winfred, 2014 [144] In vitro Cationic peptides Endodontic procedures

Cationic peptides
prevented the spread of
endodontic infections

Wu, 2022 [145] In vitro TGF-β1 binding
peptide–modified bioglass Endodontic therapy

TGF-β1 binding
peptide–modified bioglass
was effective for
regeneration in
endodontic therapy

Xue Xie, 2019 [146] In vitro Antimicrobial peptide Dental adhesive system

Antimicrobial
peptide-hydrophilic
adhesive delivers an
advanced adhesive/dentin
interface

Xue Xie, 2020 [147] In vitro Antimicrobial peptide Dental adhesive system

Peptide-conjugated dentin
adhesives were effective in
secondary caries treatment
and improved the
durability of
dental composites

Yakufu, 2020 [147] In vitro Osteogenic growth
peptide (OGP) Osteogenesis activity

OGP was promising in
dental and orthopedic
applications

Yamamoto, 2012 [148] In vivo
Peptide including
Arg-Gly-Asp (RGD)
sequence

Periodontal ligament cells

Glial cell line-derived
neurotrophic factor, which
was hindered by
pre-treatment with the
peptide-embracing
Arg-Gly-Asp (RGD)
sequence, enhanced the
appearance of bone
sialoprotein and fibronectin
on human periodontal
ligament cells

Yamashita, 2010 [149] In vitro Anabolic peptide Periodontal regeneration
Anabolic peptide has a
positive influence on
bone cells

Yang, 2017 [150] In vitro Peptide-modified
tannic acid Hydroxyapatite surface

Peptide-modified tannic
acid inhibited the adhesion
of bacteria

Yang, 2018 [151] In vitro
Salivary acquired pellicle
(SAPe)-inspired peptide
DDDEEK

Biofilms

SAPe-inspired peptide
DDDEEK has a great
advantage in the field of
implant materials
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Yang, 2017 [152] In vitro and in vivo
Bioinspired
peptide-decorated tannic
acid

Remineralization of
tooth enamel

Bioinspired
peptide-decorated tannic
acid has a good influence
on the remineralization of
tooth enamel

Yang, 2019 [153] In vitro
Dual-functional
polypeptide Implant materials

Dual-functional
polypeptide has a potential
application in the treatment
of hard tissue-related
diseases

Yang, 2019 (b) [154] In vitro and in vivo Immunomodulatory
peptide 1018 Plaque biofilms

Immunomodulatory
peptide 1018 was effective
as an anti-biofilm agent

Yang, 2017 (b) [155] In vitro DpSpSEEKC peptide Demineralized tooth
enamel

DpSpSEEKC restored
demineralized
tooth enamel

Yang, 2020 [156] In vitro
Cell-adhesion peptides via
polydopamine
crosslinking

Zirconia abutment
surfaces

Cell-adhesion peptides
improved soft tissue
integration around zirconia
abutments via
polydopamine crosslinking

Yazici, 2013 [157] In vitro Modular peptides Titanium implant

Modular peptides on
titanium surfaces improved
the bioactivity of fibroblast
and osteoblast cells on
implant-grade materials

Ye, 2017 [158] In vitro Peptide-based approach Adhesive-dentin interface

The peptide-based
remineralization approach
was effective in designing
integrated
tissue-biomaterial
interfaces

Ye, 2019 [159] In vitro
D-enantiomeric and
L-enantiomeric
antimicrobial peptides

Root canal wall biofilms

D-enantiomeric peptides
exhibited more
antimicrobial potent
activity than L-enantiomeric
peptides against E. faecalis
biofilms on the canal space

Yonehara, 1986 [160] In vivo Opioids and opioid
peptides Tooth pulp stimulation

There is an interaction
between substance P and
enkephalin systems in the
superficial layer of the
brain-stem trigeminal
sensory nuclear complex
for the regulation of dental
pain transmission. In
addition, the native
application of naloxone
(5 × 10−7 M) partly
antagonized the inhibitory
effects of locally applied
morphine and the
opioid peptide

Yoshinari, 2005 [161] In vitro Antimicrobial peptide
histatin 5

Poly (methyl
methacrylate) denture
base

C. albicans colonization on
histatin-adsorbed PMMA
was knowingly less than
the control
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Yoshinari, 2010 [162] In vitro
Antimicrobial and
titanium-binding
peptides

Titanium
surfaces

Antimicrobial and
titanium-binding peptides
were encouraging for the
reduction of biofilm
formation on
titanium surfaces

Yuca, 2021 [163] In vitro Dual-peptide tethered
polymer system Dental adhesives

The adhesive system
formed of co-tethered
peptides revealed both
localized calcium
phosphate remineralization
and strong metabolic
inhibition of S. mutans

Zhang, 2022 [164] In-vitro Dual-sensitive
antibacterial peptide Dental caries

This peptide prevented
damage from bacteria and,
thus, from dental caries

Zhang, 2016 [165] In vitro D-Enantiomeric peptide Oral biofilms
D-enantiomeric peptide
was effective against
oral biofilms

Zhao, 2020 [166] In vitro Antimicrobial peptide
nisin Dental adhesive

3% (w/v)
nisin-incorporated Single
Bond Universal
substantially inhibited the
development of both
saliva-derived multispecies
biofilms and monospecific
S. mutans biofilms without
hindering the bonding
performance

Zhou, 2008 [167] In vitro Genetically engineered
peptides for inorganics Tooth repair

Genetically engineered
peptides for inorganics
were effective in
tooth repair

Zhou, 2015 [168] In vitro Antimicrobial peptide Titanium surfaces
Antimicrobial peptide
provided a promising
bifunctional surface

Gungormus, 2021 [169] In vitro Peptide-assisted
pre-bonding Remineralization of dentin

Pre-bonding
remineralization of dentin
using peptide during
10 min notably enhanced
the stiffness of dentin and
the resistance to hydrolysis.
In addition, it can reduce
shrinkage due to drying

Koidou, 2018 [84] In vitro
Laminin 332- and
ameloblastin-derived
peptides (Lam, Ambn)

Peri-implant mucosal seal

Laminin 332- and
ameloblastin-derived
peptides were
demonstrated to be
effective in producing a
peri-mucosal seal around
dental implants

Gug, 2022 [170] In vivo CPNE7-derived functional
peptide

Dentin regeneration of
dental caries

CPNE7-derived functional
peptide repaired caries by
dentin regeneration
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The studies included experiments in animals and/or using bacteria or cells; also,
several clinical trials were found. Most of the applications of the peptides included caries
management, implant osseointegration, guided tissue regeneration, vital pulp therapy,
antimicrobial activity, enamel remineralization, occlusion of dentin tubules, periodon-
tal therapy, the surface modification of dental implants, and the modification of dental
materials such as dental adhesives and denture base resins.

3.2. Synthesis of Results and Summary of Evidence

The in vitro and in vivo studies included in the present review stated that peptides
may have beneficial effects for treating early carious lesions. Additionally, the use of
peptides seems to be beneficial for promoting cell adhesion and enhancing the adhesion
strength of dental implants. In addition, peptides were useful for tissue engineering for
cell-based pulp regeneration. Peptides were also successfully used as healthy promotors of
the periodontium, acting as inflammatory mediators. Finally, most peptides were used as
effective antimicrobial agents.

4. Discussion

A scoping review was performed regarding the use and applications of peptides
in the dental field at present. Appropriately, most of the applications of the peptides
included caries management, implant osseointegration, guided tissue regeneration, vital
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pulp therapy, antimicrobial activity, enamel remineralization, occlusion of dentin tubules,
periodontal therapy, the surface modification of dental implants, and the modification of
dental materials such as dental adhesives and denture base resins.

One should keep in mind that dental caries is considered the most common disease
worldwide [171], and it can lead to the destruction of dental surfaces by means of acidogenic
bacteria changing sugars to acids [43]. Dissolution of the mineral tooth structure begins with
caries formation, therefore generating a demineralized subsurface lesion body, similar to
white spots [172], followed by the development of irreversible cavitation of the mineralized
surface layer [173,174]. Treatment of manifested caries involves an oral hygiene regulation
and a follow-up visit to identify whether the caries has been prevented or has advanced
into a cavity, which is subsequently treated by means of restoration [173]. The use of
fluoride varnish can prevent caries formation by reinforcing the inorganic surface layer,
consequently inhibiting the progression of caries [175–177]. Fluoride ions are preserved
within the inorganic surface layer covering the demineralized carious lesion due to the
high correspondence to hydroxyapatite [178]. Subsequently, the demineralized subsurface
zone is not penetrated by fluoride; yet this is where remineralization would be essential in
an attempt to regenerate decayed enamel tissue [43]. For this reason, novel methods for the
treatment of caries have been introduced to mimic the structure of the enamel matrix, such
as guided enamel regeneration (GER) [179].

It should be noted that self-assembling peptide (SAP) technology was designated
on the reasonable design of a short hydrophilic peptide in combination with GER that
builds into fibers, establishing a three-dimensional (3D) scaffold [180–182]. The surface
features of the fibers might fluctuate, concurring with the physiological desires of the
treated tissue [66,183]. This could be explained by the rational design criteria [183]. When
treating early caries lesions, SAP P11-4 fibers have been adjusted to suitably bind ionic
calcium and template hydroxyapatite formation, thus, accompanying remineralization in a
comparable approach of amelogenin that supports the construction of the enamel. From
this analysis, the SAP P11-4 fibers might be known as a biomimetic agent [66,74]. This
could be in agreement with the finding of this review that demonstrated the potential effect
of peptide P11-4 in caries management.

With regards to implant osseointegration, pure titanium is commercially used for
implants in the dental field due to its possible resistance to corrosion, biocompatibility, and
suitable mechanical properties [184–186]. Researchers have detected peri-implant bone
resorption produced by peri-implantitis, which is considered the key reason for the failure
of osseointegrated dental implants [187,188]. In this manner, surface modification of dental
implants has been a topic of interest for researchers since titanium is an inert material that
decreases the aptitude for remedial tissue therapy to succeed and resists bacterial settle-
ment [189–191]. To counteract peri-implantitis and advance osseointegration, different type
of coatings have been investigated [192]. Surfaces incorporating chlorhexidine, antimicro-
bial agents and antibiotics such as gentamicin, and surfaces incorporating chlorhexidine,
poly-lysine, sliver, and chitosan have all been established for coating the titanium surface
of implants [52]. However, some drawbacks could be noted with antibiotic-coated titanium,
such as the controversial opinion about their bacterial resistance and host cytotoxicity [193].
In 2015, Zhou et al. demonstrated that antimicrobial peptides provided a promising bifunc-
tional titanium surface and enhanced its bactericidal activity and cytocompatibility [168].
Likewise, a previous report suggested that after 6 weeks of implantation in rabbit fe-
murs, titanium dental implants with an antimicrobial peptide GL13K coating allowed
in vivo dental implant osseointegration at similar bone growth rates to gold-standard
non-coated dental implants [52]. This could be explained by the fact that GL13K is bacteri-
cidal in solution against Escherichia coli, Pseudomonas aeruginosa, Porphyromonas gingivalis
and Streptococcus gordonii [83,194,195]. Similarly, Yoshinari et al. proved that the antimicro-
bial and titanium-binding peptides were favorable for the diminution of biofilm formation
on titanium surfaces [162]. In addition, a laminin-derived peptide was demonstrated
to improve and enhance the integration of soft tissue on dental titanium implants [143].
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Furthermore, an epithelial basement membrane was formed on a titanium surface when
platelet-activating peptide was used [135]. All in all, this could clearly support the result of
this review that the use of peptides seems to be beneficial for promoting cell adhesion and
enhancing the adhesion strength of dental implants.

In addition, this analysis determined that peptides were useful for guided tissue
regeneration [42]. This could be achieved when a combination of a synthetic peptide
named P-15 (analog of collagen) and an anorganic bovine bone mineral (ABM) was used.
ABM enhanced cell attachment by differentiation and cell binding, thus enhancing osseous
formation and ensuing an accelerated periodontal ligament fibroblast attachment [109,196].
Adding to P-15, biocompatible and osteoconductive filler material was thus detected [42].

A major task in the use of tissue engineering for therapy in dentistry involves the initi-
ation of tooth and bone regeneration. The dentin phosphophoryn-derived arginine-glycine-
aspartic acid-containing peptide was demonstrated as a biodegradable, biocompatible, and
bioactive material for dentin regeneration. These results could be clarified by the short
AA sequences of the peptide used and by its 3D conformation essential for acquiring this
function [46]. Accordingly, the peptide can be used in vital pulp therapy when a specific
sequence is used.

Further, most peptides were used as effective antimicrobial agents. Peptide hydrogels
have shown that ultrashort peptides (<8 amino acids) might self-assemble into hydrogels.
These ultrashort peptides might be intended to integrate antimicrobial motifs, such as posi-
tively charged lysine residues; thus, the peptides have integral antimicrobial features [47].
The scheme and synthesis of biocompatible hydrogels with antimicrobial activity are of
numerous interests for tissue engineering drives comprising the replacement of tissue in
infected root canals [65,197,198]. Moreover, antimicrobial peptides were used in coated
titanium surfaces [168], dental adhesives [147], caries infection [102], and plaque biofilm
inhibition [36].

Peptides were also successful for enamel remineralization. It is imperative to note that
the acidic nature of dental cavities created by a massive amount of sugar intake leads to
bacterial colonization and a reduction in the pH. Accordingly, the demineralization of the
enamel surface begins [48]. In order to prevent this issue, numerous remineralizing agents
were presented [48]. A perfect agent should be free of toxicity and qualified to initiate
remineralization without any harm to the dental surface. Matrix-facilitated mineralization
equal to a natural process should be carried out, though this ability is absent in almost all
these agents [199]. The arrival of SAP P11-4 has overwhelmed this restriction. It has the
ability to regenerate enamel. In addition, these agents initiate remineralization by making
3D constructions mimic the extracellular matrix of the dental surface [200]. Therefore, when
talking about enamel remineralization, clinicians should focus on SAP due to its efficient
and effective outcomes obtained in this review.

The occlusion of dentin tubules is considered possible with the help of peptides. This
theory became conceivable when mineral particles were observed on dentinal tubules, thus
reducing dentinal permeability and enhancing the seal of the material-tooth interfaces [57].
Bonding agents and desensitizers have been demonstrated to be effective for occluding
tubules by mineral precipitation; however, these techniques are sensitive, and the long-
term performance of the resin is doubtful [201,202]. As a balancing method for the protein
mediation of hydroxyapatite mineralization, streamlined synthetic cationic macromolecules
comprising poly(L-lysine) (PLL) that cover primary and secondary amine groups are
organizationally comparable to the functional areas of the natural proteins and have further
been presented to encourage silicification [203]. This review implies that this peptide-
catalyst-mediated method of mineral formation for occluding tubules and/or reinforcing
dentin-bonding resins might retain function on the dentin surface, advising a wide range
of protective and treatment plans.

Peptides have also been successfully used as healthy promotors of the periodontium,
acting as inflammatory mediators. Periodontitis is a chronic inflammatory and tissue-
destructive illness. Meanwhile, the oral cavity with its polymicrobial effect makes it
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problematic to treat; thus, new healing approaches are mandatory. In a minimally invasive
way, SAP delivers the benefit of being functional at a defect site without creating a toxic
area [204]. Furthermore, their tunable mechanical characteristics and reasonably designed
physicochemical features permit a high variety of encapsulated drugs [205]. Some peptides
called P11-4 and P11-28/29 were considered SAP-applicable for periodontal therapy, due
to their biocompatibility, injectability, tunable mechanical and physicochemical properties,
and cargo-loading capacity [72].

Finally, peptides were used in the modification of dental materials such as dental
adhesives and denture base resins. Recurrent decay that grows at the composite-tooth
interface was demonstrated to be a disadvantage when using resin-based composite [163].
Primarily, the composite-tooth interface becomes coated by a low-viscosity adhesive sys-
tem; however, when a fragile seal to the dentin is obtained, damage from enzymes, acids,
and oral fluids will be achieved. This impairment is chief in crevices that are occupied
by cariogenic bacteria such as Streptococcus mutans [206–209]. Various bacterial-inhibition
strategies have been incorporated into adhesive systems, but none of these strategies ad-
dress the multifaceted interplay of the mechanical and physicochemical influences of the
durability of the adhesive seal at the composite-tooth interface. Antimicrobial peptides
have been coupled into the adhesive system using non-bonded interactions [146], and
subsequently, antimicrobial peptides were conjugated into the network of the adhesive
system in order to improve the antimicrobials’ effectiveness [147]. An antimicrobial peptide
AMP2-derivative (AMPM7) sequence using a functional spacer was used for integration
into a monomer site. This adhesive system formed of co-tethered peptides demonstrated
both localized calcium phosphate remineralization and strong metabolic inhibition of
S. mutans [163]. An adhesive system incorporated with an antimicrobial peptide inhibited
bacterial attack, and a hydroxyapatite-binding peptide promoted the remineralization of
damaged tooth structures [146,163]. In 2017, Su et al. demonstrated that a cured antimi-
crobial peptide with nisin-incorporated dental adhesive showed a significant inhibitory
effect on the growth of S. mutans [133], and recently, a paper showed that 3% (w/v) of
nisin-incorporated universal adhesive system substantially inhibited the growth of both
saliva-derived multispecies biofilms and S. mutans monospecific biofilms without hindering
the bonding performance [166].

Moreover, it was demonstrated that C. albicans colonization on the denture’s base was
significantly less than the control when histatin-adsorbed PMMA (poly methyl methacry-
late), an antimicrobial peptide, was used [161]. Another report suggested that histidine-rich
polypeptides were effective in the treatment of denture stomatitis [121], thus evidencing
the important use of peptides in removable prostheses.

Some limitations relative to the applications of peptides in the dental field can be cited.
One restriction is the absence of homogeneity of the type and obtention of the peptides
used in the different applications described in the present review. Another limitation that
can be highlighted is that due to the heterogeneity of the analytical techniques used for
distinguishing the peptides, analyzing data using any statistical analysis was avoided.

5. Conclusions

The use of peptides has been gaining increasing attention in contemporary dentistry.
Dental research evidence suggests that peptides have several applications, including os-
seointegration, guided tissue regeneration, vital pulp therapy, antimicrobial activity, enamel
remineralization, and the surface modification of dental implants. The lack of clinical trials
should be highlighted, leaving a wide space available for the investigation of peptides
in dentistry.
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