Clément Aubert
email: caubert@augusta.edu

Peter Browning
email: pebrowning@augusta.edu

Implementation of Reversible Distributed Calculus (tool demonstration paper)

Keywords: Formal semantics, Process algebra and calculi, Reversible Computation, Concurrency, Tool implementation

Process calculi (π-calculus, CCS, ambient calculus, etc.) are an abstraction of concurrent systems useful to study, specify and verify distributed programs and protocols. This project, IRDC, is concerned with the implementation of such an abstraction for reversible process calculi. It is, to the best of our knowledge, the first such publicly available tool. We briefly present the current state of this tool, some of its features, and discuss its future developments.

1 Implementations of (Reversible) Concurrent Calculi Implementing a process calculus such as π-calculus, CCS or the ambient calculus serves four overlapping goals:

-It allows to machine-check theorems and definitions [START_REF] Despeyroux | A higher-order specification of the pi-calculus[END_REF][START_REF] Hirschkoff | A full formalisation of pi-calculus theory in the calculus of constructions[END_REF][START_REF] Maksimovic | Hocore in coq[END_REF] using proof assistants such as Coq [START_REF]The Coq Development Team: The coq proof assistant[END_REF], resulting sometimes in simplification [START_REF] Despeyroux | A higher-order specification of the pi-calculus[END_REF] or the finding of regrettable imprecision or errors [START_REF] Maksimovic | Hocore in coq[END_REF].

-Using it as an actual programming language, it enables the implementation of toy programs [START_REF] Affeldt | A coq library for verification of concurrent programs[END_REF] that exemplifies the purpose and expressivity of the calculus.

-It can also be used as a specification language: typically, the Proverif tool [START_REF] Blanchet | Modeling and verifying security protocols with the applied pi calculus and ProVerif[END_REF], which implements the applied π-calculus [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF], has been used to certify and model security protocols in a variety of areas [START_REF] Ryan | Applied pi calculus[END_REF].

-Last but not least, it serves a pedagogical purpose. Fleshing out the abstract theory lets users and programmers get acquainted with such systems, and showcases its interest. Simply for CCS, projects from the Sapienza Università di Roma, the Università di Bologna, the Università di Pisa or the Aalborg Universitet [START_REF] Gillet | Calculus of Communicating Systems: A web based tool in Scala[END_REF] demonstrate a vivid interest for implementations using a variety of languages (Standard ML, SWI-Prolog or Typescript) and approaches (ability to "play the bisimulation game", focus on program's correctness, etc.).

Reversible process calculi emerged almost 20 years ago with Reversible CCS (RCCS) [START_REF] Danos | Reversible communicating systems[END_REF] and CCS with keys (CCSK) [START_REF] Phillips | Reversing algebraic process calculi[END_REF]. Both calculi evolved over the time, and brought many interesting insights both on reversibility and on concurrency. However, aside from SimCCSK [START_REF] Cox | SimCCSK: simulation of the reversible process calculi CCSK[END_REF]-which is not publicly available and not maintained since 2008 to our knowledge-no implementation of concurrent, reversible calculus exists. This short paper intends to present the current status of an implementation of CCSK, called Implementation of Reversible Distributed Calculus (IRDC), we have been working on since February 2022. While it is still a work-in-progress, we believe that gathering early feedback and showcasing some of the challenges we faced and solved will be of interest to the community.

System Design

We chose to implement CCSK, a variation on CCS that attaches keys to past action instead of discarding them, and in which every derivation rule has an inverse. Our syntax is faithful to recent papers on the topic [START_REF] Lanese | Forward-reverse observational equivalences in CCSK[END_REF] Label keys Details can be found in our readme's "Syntax and Precedence of Operators". The operational semantics is standard, reminded in our documentation, and can be partially inferred from the following:

(((a+b)|'b)|'a)\{a} ------| A c t i o n a b l e Labels | ------ [0] b [1] 'b [2] Tau { 'b , b } [3] Tau { 'a , a }
After performing e.g., a synchronization on a (action [START_REF] Aubert | The Correctness of Concurrencies in (Reversible) Concurrent Calculi[END_REF]) and performing an output on 'b (action [START_REF] Abadi | The applied pi calculus: Mobile values, new names, and secure communication[END_REF]), this process would become

(((Tau { 'a , a }[k1].0+ b) | 'b [k3].0) | Tau { 'a , a }[k1].0) \{ a}
from which the actions with keys k1 and k3 could both be undone, in any order. Note that we decided to omit the nil process when preceded by an actionable prefix, 1 and that we label the Tau silent action with the name of the complementary channels that synchronized. The user can then decide on which channel name (for forward transition) or label key (for backward transition) they want to act by selecting the corresponding number and hitting . As of now, the program needs to be killed manually (for instance using ctrl + c on Unix systems) to be exited. Many flags can be used to tweak the program's behavior or its output. They can be accessed using the --help flag or by consulting our readme. We present some of them below.

Features

As of now, our tool's primary goal is pedagogical, to raise interest and train in distributed, reversible computation. The user can interact with a process to get a better understanding of the operators' mechanisms and semantics. They can for instance try to answer the question Can the process (a.b.c|('a.'c+'a.'b))\{a,c} synchronize on c, and if yes, using which reduction sequence? Our program can also be used to exhibit the difference between temporal and causal orders in reversible systems. For instance, the following execution: makes it clear that even if the action on c (to which the key k0 was given) was triggered first when performing forward transitions, it can be undone first.

Traditional (e.g., forward-only) simulation was also implemented, but cannot be accessed interactively. Our SimulationTest class, however, asserts, e.g., -that a.(b+c) can simulate a.b + a.c but cannot be simulated by it, -that (a|'a)\{a} and (b|'b)\{b} are equivalent, -that a|b can simulate a.b but cannot be simulated by it, etc.

Inner Flow

Our program works in three stages. The CCSParser class initially traverses the input and tokenizes each node (i.e., operand) of a process. Each node is then instantiated as an object internally. Then, the program recursively links the nodes together using the appropriate order of binding power of the operators. After the nodes are all linked, only one process is expected to remain: this process is the "ancestor" that can then be acted on.

Internally, the program does not de-allocate keys when they are freed, so that a process going constantly back-and-forth will always receive different keys. However, our NodeIDGenerator class and its .nextAvailableKey() method are modular enough that alternative formalisms could be easily implemented.

Software Engineering Best Practices

Our implementation strives to use state-of-the-art technologies and to promote best practices. We decided to use to use the Java Development Kit (17.0.2) for its flexibility, portability and popularity. 4 We use the software project management and comprehension tool Maven (3.6.3) to ease adoption and dependency management, but also to enforce stylistic constraints: our implementation enforces the google_checks.xml checkstyle guideline for uniformity and best practises. Our code is versioned using git, publicly available, open source and uses semantic versioning to ease collaboration and adoption.

We also leveraged github's Continuous integration (CI) / Continuous deployment (CD) to remotely compile our source code and automatically offer pre-compiled releases that can be executed directly. Last but not least, our extensive testing suite makes sure that our implementations of action, enumeration (that lists all possible actions) and restriction, but also our parser and simulation implementations, behave as expected.

Road Map

Our list of issues highlights some of our challenges and goals. Among them, developing a graphical user interface is the focus of a capstone project currently taking place at Augusta University. Some of the other milestones include:

-Accepting processes that already started their execution, so that one could use as an input process e.g., ((a.b|'b)|c[k4].0), -as a follow-up, our implementation could decide if a process that already started their execution is "reachable", that is, can be accessed using forwardonly transitions,

and, of course, performing additional tests.

Our most exciting, but also longer-term, challenges, would be to implement one of the "reversible" bisimulation [START_REF] Aubert | How reversibility can solve traditional questions: The example of hereditary history-preserving bisimulation[END_REF][START_REF] Lanese | Forward-reverse observational equivalences in CCSK[END_REF], a mechanism to distribute the generation of keys [5], or to formally verify the correctness of our definition of concurrency [START_REF] Aubert | The Correctness of Concurrencies in (Reversible) Concurrent Calculi[END_REF].

Conclusion

The creation of this tool highlighted some interesting components of CCSK as a whole. Acting much like a calculator, our tool had to create multiple algorithms for manipulating and equivocating different processes. One of the most interesting problems raised by the construction of this tool-and that is not solved yet-is to design, for the first time to our knowledge, an algorithm to determine whether two reversible processes are in an history-preserving bisimulation [START_REF] Aubert | How reversibility can solve traditional questions: The example of hereditary history-preserving bisimulation[END_REF][START_REF] Bednarczyk | Hereditary history preserving bisimulations or what is the power of the future perfect in program logics[END_REF][START_REF] Rabinovich | Behavior structures and nets[END_REF].

2

 2

3

 Running and Installing IRDC Downloading the latest release can done by browsing to https://github.com/CinRC/IRDC-CCSK/releases or by executing this simple one-liner 3 : curl -s https :// api . github . com / repos / CinRC / IRDC -CCSK / releases / latest \ | grep b r o w s e r _ d o w n l o a d _ u r l | cut -d : -f 2 ,3 | tr -d \" | wget -qi -Listing 3.1. Fetching the latest release in one command The process presented in Sect. 2 can then be executed using java -jar IRDC -*. jar "(((a + b) | 'b) | ' a) \{ a }" Listing 3.2. Launching the command-line interface with a demo process

Listing 4 . 1 .Listing 4 . 2 .

 4142 using a command such as java -jar IRDC -*. jar --dL "(a . b . c |(' a . ' c + ' a . ' b)) \{ a , c }" Process example to understand restriction and prefixing where the --dL flag helps by numbering the occurrences of channel names.It is also possible to check one's answer using the --enumerate flag, that lists all possible (forward-only) execution sequences: java -jar IRDC -*. jar --e n u m e r a t e "(a .b . c |(' a . ' c + ' a . ' b)) \{ a , c }" (a . b . c |(' a . ' c + ' a . ' b)) \{ a , c } Tau { 'a , a } (Tau { 'a , a }[k0]. b . c |(Tau { 'a , a }[k0]. ' c + ' a . ' b)) \{ a , c } b (Tau { 'a , a }[k0]. b [k2]. c |(Tau { 'a , a }[k0]. ' c + ' a . ' b)) \{ a , c } Tau { 'c , c } (Tau { 'a , a }[k0]. b [k2]. Tau { 'c , c }[k3].0|(Tau { 'a , a }[k0]. Tau { 'c , ֒→ c }[k3].0+ ' a . ' b)) \{ a , c } Tau { 'a , a } (Tau { 'a , a }[k1]. b . c |(' a . ' c + Tau { 'a , a }[k1]. ' b)) \{ a , c } b (Tau { 'a , a }[k1]. b [k5]. c |(' a . ' c + Tau { 'a , a }[k1]. ' b)) \{ a , c } 'b (Tau { 'a , a }[k1]. b [k5]. c |(' a . ' c + Tau { 'a , a }[k1]. ' b [k7].0)) \{ a ,c } 'b (Tau { 'a , a }[k1]. b . c |(' a . ' c + Tau { 'a , a }[k1]. ' b [k6].0)) \{ a , c } b (Tau { 'a , a }[k1]. b [k8]. c |(' a . ' c + Tau { 'a , a }[k1]. ' b [k6].0)) \{ a , c } Tau { 'b , b } (Tau { 'a , a }[k1]. Tau { 'b , b }[k4]. c |(' a . ' c + Tau { 'a , a }[k1]. Tau { 'b , ֒→ b }[k4].0)) \{ a , c } Demonstrating the--enumerate flag

Listing 4 . 3 .

 43 java -jar IRDC -*. jar " a . b | 'b | c " ((a . b | ' b) | c) -c -> ((a . b | ' b) | c [k0].0) -a -> ((a [k1]. b | ' b) | c [k0].0) -Tau { 'b , b } -> ((a [k1]. Tau { 'b , b }[k3].0| Tau { 'b , b }[k3].0) | c [k0].0) ~[k0]~> ((a [k1]. Tau { 'b , b }[k3].0| Tau { 'b , b }[k3].0) | c) Illustrating the difference between temporal and causal orders

It should be noted that most existing implementations uses declarative programming languages, and that with that respect our implementation is quite original.

Acknowledgments

The authors would like to thank Brett Williams and John Yalch for their contribution to this project, and Jason Orlosky for his comments on this submission. This material is based upon work supported by the National Science Foundation under Grant No. 2242786 (SHF:Small:Concurrency In Reversible Computations).

https://archive.softwareheritage.org/browse/origin/directory/?origin_ur