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Abstract—The present paper aims to design an integrated
state/fault estimation and fault tolerant control issues for
switched systems affected by actuator fault and external dis-
turbances. A switched adaptive state/fault estimation observer
is proposed to simultaneously estimate the system state and
actuator fault. Based on this observer, we develop a fault tolerant
control law not only to stabilize the closed-loop system, but also
to compensate the faults effects. Then, by using the switched
Lyapunov function and Average Dwell Time (ADT) concept,
some sufficient conditions are derived and applied to build the
switched adaptive observer-based state feedback controller. The
observer and controller gain matrices are also obtained by solving
an optimization problem with Linear Matrix Inequality (LMI)
constraints. Finally, simulation results of a switched electrical
system are presented to illustrate the effectiveness of the proposed
design methods.

Index Terms—Switched systems, Fault Tolerant Control,
Switched Adaptive Observer, Average Dwell Time, LMIs Con-
straints

I. INTRODUCTION

In the last few decades, due to the increased demands for
maintaining required high system performance, safety, and
productivity in different conditions of operation, the realm of
Fault Tolerant Control (FTC) has attracted more and more
attention for both industry and academic communities. Gen-
erally speaking, the FTC system is a control system that is
able to maintain the system stability and can preserve such
performances in the presence of fault while correctly detected
in time [1-4].

On the other hand, switched systems have attracted many
scholars’ attention because of their large number of applica-
tions in practical engineering systems, such as flight control
systems, power systems, automotive systems, robotics sys-
tems, and biological systems [5-8]. The switched systems are
considered a special class of hybrid systems, which consist
of a family of subsystems described by continuous-time or
discrete-time dynamics, and these subsystems are governed
by a switching signal [9].

Recently, such important efforts have been focused on the
design of fault tolerant controllers for switched systems. For
instance, authors in [10] studied fault estimation and fault
tolerant control with time delay for switching systems subject
to actuator fault. An adaptive observer was developed for the
Fault Detection and Isolation (FDI) task to detect and estimate
the fault signal. Based on the fault estimation information an
observer-based fault-tolerant controller is proposed in order
to guarantee the closed loop system stability. Authors in [11]
have dealt with the problem of fault estimation and accommo-
dation for a class of discrete-time switched systems vulnerable
to a sensor fault. Based on the descriptor observer design
scheme, the sensor fault has to be detected and based on the
information about the fault, an online controller re-design took
place such that closed-loop stability with Lyapunov theory. In
[12], a reduced-order observer has been designed in order to
ensure fault detection for a class of uncertain switched systems
affected by both sensor and actuator faults. After this, a state
feedback robust controller is developed and the stability of
the observer- fault tolerant controller closed-loop system is
analysed in a sense of H∞ performance index.

During the last decade, literature shows a steady increase in
interest in using the Average Dwell Time (ADT) technique to
deal with fault tolerant control problems for switched systems
is developed. Authors in [13] proposed a robust fault detection
and fault tolerant control for switched systems with ADT. The
synthesis problem of the observer and controller is solved
by using multiple Lyapunov function and ADT techniques.
The proposed control system guaranteed the H∞ performance
and the asymptotic stability. Sufficient conditions for the
existence of the designed observer and controller have been
provided in terms of Linear Matrix Inequalities (LMI). In [14],
authors have dealt with the problem of fault-tolerant control
design for a class of switched time-delay linear systems with
structural uncertainties by using the ADT approach. Authors
in [15] developed an integrated sensor Fault Estimation (FE)
and FTC method for a class of continuous-time switched



systems. By mean the state/fault estimation observer, the fault
amplitude and system states were simultaneously estimated,
and then exploiting information provided by the observer,
a fault tolerant state feedback controller was designed. The
stability of the overall system was fully studied by applying
the ADT concept and the Lyapunov theory and the problem
was solved in terms of LMIs.

Motivated by the above observations, in the present paper
we are dedicated to the FE/FTC designs for a class of switched
systems with actuator faults and external disturbances. The
major contributions of this work can be summarized as the
following aspects:

(i) A Switched Adaptive Observer (SAO) is proposed by
using ADT method, such that the states and actuator
faults can be simultaneously estimated.

(ii) Based on the states and actuator faults estimation in-
formation, a SAO-based state feedback fault tolerant
controller is designed, under the average dwell time
switching to tolerate the faults, which can guarantee that
the closed-loop system is asymptotically stable.

(iii) A sufficient condition is provided to guarantee the ex-
istence of the observer-based fault tolerant controller
by the feasibility of an optimization problem with LMI
constraint.

(iv) The obtained results are successfully illustrated to a
switched electrical system.

The remaining part of this paper is organized as follows.
Section II describes preliminaries and problem formulation.
Section III is dedicated to the design of an observer-based FTC
to robustly stabilize the closed-loop system in the presence of
actuator faults. In section IV, an example is given to illustrate
the effectiveness of the proposed approach. Finally, section V
draws some conclusions.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let’s consider a class of dynamical systems modeled as
switched linear systems with actuator faults and unknown
external disturbance described as follows:{

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + Fσ(t)f(t) +Rσ(t)d(t)
y(t) = Cσ(t)x(t)

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rp is the FTC
law vector to be designed, y(t) ∈ Rm represents the output
measurement vectors, f(t) ∈ Rq is the actuator fault vector
and d(t) ∈ Rr represents the unknown bounded disturbance
vector. The switching signal σ(t) : R+ → Θ is assumed
to be a piecewise constant function and continuous from
the right everywhere. Where Θ is a finite set described by
Θ = {1, 2, ..., N} and N denotes the number of subsystems.
When σ(t) = i, the i-th subsystem is activated for some i ∈ Θ.
In this case, the system (1) can be simplified in the form below:{

ẋ(t) = Aix(t) +Biu(t) + Fif(t) +Rid(t)
y(t) = Cix(t)

(2)

It should be indicated that the parameter matrices in the
abovementioned system are assumed to be constant real ma-
trices with appropriate dimensions.

Before starting the main results of the present paper, we will
make the following assumptions which are typically required
in the switched adaptive observer and fault tolerant control
design for switched systems.
Assumption 1. We assume that the actuator fault distribution
matrices Fi are of full column rank.

rank(CiFi) = rank(Fi) = q (3)

Assumption 2. The pair (Ai, Ci) is observable ∀i ∈ Θ.

rank


Ci

CiAi

...
CiA

n−1
i

 = n (4)

Assumption 3. The fault f(t) satisfies ∥f(t)∥ ⩽ α1, its
derivative is bounded such that

∥∥∥ḟ(t)∥∥∥ ⩽ α2 and the un-
known input vector verifies d(t) verifies ∥d(t)∥ ⩽ α3, where
α1, α2, α3 ⩾ 0.

The following definition and lemmas are added for the
convenes of later proof.
Definition 1. [16] For any switching signal σ(t) and any
τ2 ⩾ τ1 ⩾ 0, let Nσ(t)(τ1, τ2) denote the number of switchings
σ(t) on an interval (τ1, τ2). If

Nσ(t)(τ1, τ2) ⩽ N0 +
τ2 − τ1

τa
(5)

holds for a given two positive numbers N0 and τa, then the
constant τa is called the average dwell time and N0 is the
chattering bound.
Lemma 1. [17] Suppose that there exist C1 functions Vσ(t) :
Rn → R and two class K∞ functions κ1 and κ2 and two
positive numbers α > 0, µ > 1 such that we have

κ1(|x(t)|) ⩽ Vσ(t)(x(t)) ⩽ κ2(|x(t)|) (6)

V̇σ(t)(x(t)) ⩽ −αVσ(t)(x(t)) (7)

and ∀(σ(tl) = i, σ(tl
−) = j) ∈ N ×N, i ̸= j,

Vi(x(t)) ⩽ µVj(x(t)) (8)

then the switched linear system ẋ(t) = fσ(t)(x(t)) is Globally
Uniformly Asymptotically Stable (GUAS) for any switching
signal with average dwell time:

τa ⩾ τ∗a =
lnµ

α
(9)

Lemma 2. [18] For a positive definite matrix Q that is: Q =
QT > 0 and a positive scalar ε; the following inequality is
true:

2xT y ⩽
1

ε
xTQx+ εyTQ−1y; x, y ∈ Rn (10)



III. OBSERVER-BASED FTC DESIGN

In order to study the state feedback fault tolerant control
design problem, we have developed a robust FTC law for
switched systems in presence of actuator faults. Thus, we
require to estimate simultaneously system states and actuator
faults. To do this, we have designed the following switched
adaptive observer:

ż(t) = Niz(t) +Giuf (t) + Liy(t) +Hif̂(t)
x̂(t) = z(t) + T2y(t)

ŷ(t) = Cix̂(t)

˙̂
f(t) = ΓΦi(ėy(t) + ηey(t))

ey(t) = y(t)− ŷ(t)

(11)

where z(t) ∈ Rn is the observer state vector, x̂(t) ∈ Rn

the estimated state vector, ŷ(t) ∈ Rm is the estimated output
vector, f̂(t) ∈ Rp is the estimated actuator faults and Ni ∈
Rn×n, Gi ∈ Rn×p, Li ∈ Rn×m, Φi ∈ Rp×m and T2 ∈ Rn×m

are the observer gain matrices to be determined. The matrix
Γ ∈ Rp×p is a symmetric positive definite learning rate matrix
and η is a positive scalar.

Based on both actuator fault and system states estimation,
we propose to conceive a robust controller as:

uFTC(t) = −Kix̂(t)− qif̂(t) (12)

where Ki ∈ Rp×n and qi ∈ Rp×q represent, respectively,
the state feedback control and fault compensation gains. We
assume that qi = B+

i Fi. Based on this observer, the fault
tolerant controller can compensate faults effects and guarantee
the stabilization of the closed-loop system.

Now, let us define the following state estimation error es(t)
from (2) and (11) such that:

es(t) = x(t)− x̂(t) = (In − T2Ci)x(t)− z(t) (13)

Since that for rank
[
In Ci

]T
= n, there exists nonsingular

matrices T1 ∈ Rn×n and T2 ∈ Rn×m such that:[
T1 T2

] [ In
Ci

]
= In (14)

Then, the state estimation error (13) is described by:

es(t) = T1x(t)− z(t) (15)

From (15), the dynamic of the state estimation error obey the
differential equation:

ės(t) = T1ẋ(t)− ż(t) (16)

Substituting the equations of ẋ(t) and ż(t) respectively from
(2) and (11), the equation (16) becomes after some calcula-
tions:
ės(t) = (T1Ai + EiCi −Ni)x(t) + (T1Bi −Gi)u(t)

+Nies(t) +Hief (t) + R̄id(t)
(17)

where
Ei = NiT2 − Li (18)

R̄i = T1Ri (19)

If the following conditions hold ∀i ∈ Θ:

Ni = T1Ai + EiCi (20)

Gi = T1Bi (21)

Hi = T1Fi (22)

The dynamic of the state estimation error reduces to:

ės(t) = Nies(t) +Hief (t) + R̄id(t) (23)

The dynamic of the closed-loop state system with the control
law (12) is defined as follows:

ẋ(t) = Πix(t) +BiKies(t) + Fief (t) +Rid(t) (24)

with Πi = Ai −BiKi.
Finally, the fault estimation error dynamic is defined as fol-
lows:

ėf (t) = ḟ(t)− ˙̂
f(t) (25)

Theorem 1. For given positive scalars η, ε, β, α, µ > 1
and a positive definite matrix Γ, if there exist symmetric and
positive definite matrices Xi = Pi

−1, Qi, Q1i, Q2i and Q3i

and matrices Si = QiEi, Wi = KiXi and Φi such that the
following LMIs are satisfied ∀(i, j) ∈ Θ×Θ, i ̸= j:

Ξ̄i BiWi Fi 0 0 Xi
T

∗ −2βXi 0 βI 0 0
∗ ∗ −2βI 0 βI 0

∗ ∗ ∗ Ω̃i Σi 0
∗ ∗ ∗ ∗ Υi 0
∗ ∗ ∗ ∗ ∗ −1

εQ1i

 < 0 (26)

Xj < µXi (27)

such that
Hi

TQi − ΦiCi = 0 (28)

where

Ξ̄i = AiXi +XiAi
T −BiWi −Wi

TBi
T + αXi (29)

Ω̃i = (T1Ai)
T
Qi+Qi (T1Ai)+SiCi+Ci

TSi
T +αQi+

1

ε
Q2i

(30)
Σi = −1

η
Ci

TSi
THi −

1

η
(T1Ai)

T
QiHi (31)

Υi = −1

η
(Hi

TQiHi +Hi
TQiHi + Γ−1) +

2

ηε
Q3i (32)

Then the state vector x(t), the state estimation error es(t)
and the fault estimation error ef (t) are bounded if the ADT
satisfies the following condition τa ⩾ τ∗a = lnµ

α . The matrix
gains of the switched adaptive observer (11) and the controller
(12) are given by Ei = Qi

−1Si and Ki = WiXi
−1.

Proof of Theorem 1. In this prof, we use the theory of
Lyapunov to demonstrate the stability of the closed loop
system. Then, the problem is turned into an optimization
problem through the use of LMI so as to determinate the
unknown matrices of both the proposed FTC controller and
the switched adaptive observer.



Thus, let us consider the following switched Lyapunov
function candidate as:

Vi(t) = xT (t)Pix(t) + es
T (t)Qies(t) +

1

η
ef

T (t)Γ−1ef (t)

(33)
where Pi, Qi and Γ are symmetric positive definite matri-
ces with appropriate dimensions. The time derivative of the
switched Lyapunov function (33) leads to:

V̇i(t) = ẋT (t)Pix(t) + xT (t)Piẋ(t) + ėTs (t)Qies(t)

+ es
T (t)Qiės(t) +

1

η
ėTf (t)Γ

−1ef (t)

+
1

η
ef

T (t)Γ−1ėf (t)

(34)

By considering the expressions (24) of ẋ(t), (23) of ės(t),
(25) of ėf (t) and by taking into account the fault estimation
of ˙̂

f(t) in (11), V̇i(t) becomes:

V̇i(t) = xT (t)Ξix(t) + 2xT (t)PiBiKies(t)

+ 2xT (t)PiBief (t) + 2xT (t)PiRid(t)

+ es
T (t)Ωies(t) + 2es

T (t)QiHief (t)

+ 2es
T (t)QiR̄id(t) +

2

η
ef

T (t)Γ−1ḟ(t)

− 2

η
ef

T (t)ΦiCiės(t)− 2es
T (t)CT

iΦ
T
ief (t)

(35)

where
Ξi = Πi

TPi + PiΠi (36)

Ωi = Ni
TQi +QiNi (37)

By using the equation (23) and the equality (28), it follows
that

V̇i(t) = xT (t)Ξix(t) + 2xT (t)PiBiKies(t) + 2xT (t)PiBief (t)

+2xT (t)PiRid(t) + es
T (t)Ωies(t) + 2es

T (t)QiR̄id(t)

+
2

η
ef

T (t)Γ−1ḟ(t)− 2

η
ef

T (t)Hi
TQiNies(t)

−2

η
ef

T (t)Hi
TQiHief (t)−

2

η
ef

T (t)Hi
TQiR̄id(t)

(38)
Under Assumption 3, we apply Lemma 2 so as to get the
following term inequalities from (38):

2xT (t)PiRid(t) ⩽
1

ε
xT (t)Q1ix(t) + η1i (39)

2es
T (t)QiR̄id(t) ⩽

1

ε
es

T (t)Q2ies
T (t) + η2i (40)

2

η
ef

T (t)Γ−1ḟ(t) ⩽
1

ηε
ef

T (t)Q3ief
T (t) + η3i (41)

−2

η
ef

T (t)Hi
TQiR̄id(t) ⩽

1

ηε
ef

T (t)Q3ief
T (t) + η4i (42)

where the scalars η1i, η2i, η3i and η4i are expressed as follows:

η1i = εα3
2λmax(Ri

TPiQ1i
−1PiRi) (43)

η2i = εα2
2λmax(R̄

T
i QiQ2i

−1QiR̄i) (44)

η3i =
ε

σ
α1

2λmax(Γ
−1Q3i

−1Γ−1) (45)

η4i =
ε

σ
α2

2λmax(Hi
TQiQ3i

−1QiHi) (46)

By taking into consideration the inequalities (43)-(46) and the
equation (38), V̇i(t) can be bounded as follows:

V̇i(t) ⩽ xT (t)(Ξi +
1

ε
Q1i)x(t) + 2xT (t)PiBiKies(t)

+ 2xT (t)PiBief (t) + es
T (t)(Ωi +

1

ε
Q2i)es(t)

− 2

η
ef

T (t)(Hi
TQiHi +

2

ηε
Q3i)ef (t)

− 2

η
es

T (t)Ni
TQiHief (t) + δ

(47)

where the scalar δ is the maximum value over i such that:

δ = max
i

(η1i + η2i + η3i + η4i) (48)

By Lemma 1, one can get that:

V̇i(t) + αVi(t) ⩽ x̃T (t)Λix̃(t) + δ (49)

where x̃T (t) =
[
xT (t) eTs (t) eTf (t)

]
and Λi is a matrix

defined as follows:

Λi =

 Ξ̃i PiBiKi PiHi

∗ Ω̃i − 1
σNi

TQiHi

∗ ∗ Υi

 (50)

with
Ξ̃i = Ξi + αPi +

1

ε
Q1i (51)

Ω̃i = Ωi + αQi +
1

ε
Q2i (52)

Υi = −1

η
(Hi

TQiHi +Hi
TQiHi + Γ−1) +

2

ηε
Q3i (53)

If the following inequality holds:

Λi < 0 (54)

We can obtain that:

V̇i(x̃(t)) + αVi(x̃(t)) ⩽ −ζ∥x̃(t)∥2 + δ (55)

where ζ > 0 is given by

ζ = min λmin (−Λi) < 0 (56)

To complete the prof by considering the constraint (54), we
define a matrix:

∆i =

(
Ξ̃i Zi

Zi
T Ψi

)
< 0 (57)

with
Zi =

(
PiBiKi PiHi

)
(58)

Ψi =

(
Ω̃i − 1

σNi
TQiHi

∗ Υi

)
(59)

Consider a symmetric matrix χ defined as

χ =

(
Pi

−1 0
0 χ1

)
(60)



with

χ1 =

(
Pi

−1 0
0 I

)
(61)

Then, by post and pre-multiplying the inequality (57) by χ,
we can obtain that(

Pi
−1Ξ̃iPi

−1 Pi
−1Ziχ1

∗ χ1Ψiχ1

)
< 0 (62)

The term χ1Ψiχ1 can be replaced by considering the following
inequality which holds any scalar β such that(

χ1 + βΨi
−1

)T
Ψi

(
χ1 + βΨi

−1
)
⩽ 0

⇔ χ1Ψiχ1 ⩽ −2βχ1 − β2Ψi
−1

(63)

Considering (63) and with the Schur Complement, the inequal-
ity (62) becomes Pi

−1Ξ̃iPi
−1 Pi

−1Ziχ1 0
∗ −2βχ1 βI
∗ ∗ Ψi

 < 0 (64)

Using the definition of matrices Ξ̃i, Zi and Ψi and considering
the change of variable Xi = Pi

−1 we can obtain that
Ξ̂i BiKiXi Fi 0 0
∗ −2βXi 0 βI 0
∗ ∗ −2βI 0 βI

∗ ∗ ∗ Ω̃i − 1
σNi

TQiHi

∗ ∗ ∗ ∗ Υi

 < 0 (65)

with

Ξ̂i = XiΠi
T +ΠiXi + αXi +

1

ε
XiQ1iXi (66)

Now, we dissociate the term 1
εXiQ1iXi from the inequality

(65) in order to reformulate it as follows
Ξ̄i BiKiXi Fi 0 0
∗ −2βXi 0 βI 0
∗ ∗ −2βI 0 βI

∗ ∗ ∗ Ω̃i − 1
σNi

TQiHi

∗ ∗ ∗ ∗ Υi


−X̄T

i

(
−1

ε
Q1i

)
X̄i < 0

(67)

where
Ξ̄i = XiΠi

T +ΠiXi + αXi (68)

and
X̄i =

(
Xi 0 0 0 0

)
(69)

Now, we apply the modified Schur Lemma in the above
inequality (67), changing Πi and Ni by their expressions
and taking into account the following change of variables
Wi = KiXi and Si = QiEi the inequality (67) becomes
reformulated as a Linear Matriciel Inequality which can be
rewritten as in the Theorem 1. This one ends the proof of the
theorem.

IV. ILLUSTRATIVE EXAMPLE

In this section, the proposed example considers a switched
electrical circuit model borrowed from [19]. In the system
shown in Fig. 1, Sw1 is a bipolar transistor and Sw2 is a
diode. This circuit has two switching modes, that is, N = 2,
σ(t) : [0,∞) → {1, 2}: mode 1, Sw1 is closed and Sw2 is
off; mode 2, Sw1 is off and Sw2 is closed. Selecting the state
variable

[
x1(t) x2(t)

]T
where x1(t) is the inductance

current iL(t), x2(t) is the capacitor voltage Vc(t) and Vs(t)
is the power supply voltage. Under the different modes, the
system matrices of the switched electrical system are given
by:

Fig. 1. A switched electrical circuit

Subsystem 1:

A1 =

[
−0.54 1.02
0.17 −0.31

]
, B1 =

[
0.1
0.2

]
, F1 =

[
0.1
0.2

]
C1 =

[
0.1 0.2

]
, R1 =

[
0.01
0.03

]
Subsystem 2:

A2 =

[
−0.01 0.1
0.01 0.04

]
, B2 =

[
0.2
0.4

]
, F2 =

[
0.2
0.4

]
,

C2 =
[
0.2 0.3

]
, R2 =

[
0.01
0.03

]
By solving the LMIs condition of Theorem 1 for the
following choice of parameters: η = 1, ε = 1, β = 0.5 and
Γ = 200. The designed observer and controller gains are
obtained as:
For i=1

N1 =

[
−1.2280 −0.3637
0.5481 0.2509

]
, G1 =

[
0.0952
0.1905

]
L1 =

[
6.7131
−2.7512

]
, Φ1 = [17.0262]

K1 =
[
1.8570 2.9636

]
For i=2

N2 =

[
0.2349 0.5883
−0.1575 −0.2980

]
, G2 =

[
0.1905
0.3810

]



L2 =

[
−2.3156
1.6010

]
, Φ2 = [ 34.0524]

K2 =
[
1.2992 1.2949

]
For the switching signal, choose the parameter value as
µ = 2.5 and α = 0.8, to calculate average dwell time as
τ∗a = lnµ

α = 1.1454. Hence, the switching interval from one
mode to the other is greater than 1.1454. For simulation
purposes, we apply the switching signal presented in Fig. 2
specifies the switching between the two subsystems.

Fig. 2. Switching signal evolution

For the simulation, the external disturbance d(t) is chosen
as the band-limited white noise, which is shown in Fig. 3.

Fig. 3. The external disturbance d(t)

In order to show the performance and capability of actuator
fault estimation effect by using the switched adaptive observer,
two cases of actuators faults are considered.
If the actuator faults type is a constant value described as:

f1(t) =

{
0, 0s ⩽ t < 5s

1, 5s ⩽ t ⩽ 20s
(70)

In this case, the simulation result is shown in Fig. 4.

If the actuator fault is a time-varying function as follows:

f2(t) =

{
0, 0s ⩽ t < 5s

1.8 cos(1.6t+ 3.25), 5s ⩽ t ⩽ 20s
(71)

In this case, the simulation result is described in Fig. 5.

Fig. 4. Actuator fault f1(t) and its estimate f̂1(t)

Fig. 5. Actuator fault f2(t) and its estimate f̂2(t)

Form the simulation results shown in Figs. 4 and 5, one
can conclude that the technique proposed in this paper has a
good actuator fault estimation performance with accuracy and
rapidly for both constant faults and time-varying faults by use
of the switched adaptive observer despite an additive noise.

Fig. 6. The state x1(t) and its estimate x̂1(t)

In simulation, the initial state value of original switched
system (2) and the initial estimated switched system states
(11) are set as x(0) =

[
0.3 −0.2

]T
and x̂(0) =[

0.2 −0.1
]T

respectively.



Fig. 7. The state x2(t) and its estimate x̂2(t)

The evolution of states trajectories are plotted in Figs. 6
and 7, showing that the system is stabibized and that actuator
faults are comletely compensated even in the presence of the
disturbance signal d(t).

The state estimation errors are shown in the Fig. 8, from
which we can seen that the proposed Switched Adaptive
Observer can estimate the states very accurately, even after
the occurrence of an actuator fault.

Fig. 8. State estimation errors es(t)

The example studied shows that the integrated FE/FTC
design scheme can accurately estimate the actuator fault and
ensure the stability of the closed-loop system.

V. CONCLUSION

This paper has studied the problem of fault estimation and
fault tolerant control for continuous-time switched according
to the ADT concept. By using switched adaptive observer a
state/fault estimation algorithm is achieved rapidly and accu-
rately. Then based on the obtained online fault estimation in-
formation, a switched state feedback fault tolerant controller is
employed to compensate the effect of faults by stabilizing the
closed-loop systems. Sufficient stability conditions, in terms of
linear matrix inequalities, for the existence of both switched
adaptive observer and robust active fault tolerant control law
are given in an integrated way. Finally, the developed scheme
has been applied to an electrical circuit system with two types
of actuator faults so as to illustrate the effectiveness of the
proposed approach. As future work, we will focus on FTC
design problem for switched nonlinear systems.
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