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The present paper aims to design an integrated state/fault estimation and fault tolerant control issues for switched systems affected by actuator fault and external disturbances. A switched adaptive state/fault estimation observer is proposed to simultaneously estimate the system state and actuator fault. Based on this observer, we develop a fault tolerant control law not only to stabilize the closed-loop system, but also to compensate the faults effects. Then, by using the switched Lyapunov function and Average Dwell Time (ADT) concept, some sufficient conditions are derived and applied to build the switched adaptive observer-based state feedback controller. The observer and controller gain matrices are also obtained by solving an optimization problem with Linear Matrix Inequality (LMI) constraints. Finally, simulation results of a switched electrical system are presented to illustrate the effectiveness of the proposed design methods.

I. INTRODUCTION

In the last few decades, due to the increased demands for maintaining required high system performance, safety, and productivity in different conditions of operation, the realm of Fault Tolerant Control (FTC) has attracted more and more attention for both industry and academic communities. Generally speaking, the FTC system is a control system that is able to maintain the system stability and can preserve such performances in the presence of fault while correctly detected in time [START_REF] Yang | Fault tolerant control and hybrid systems[END_REF][START_REF] Yu | A survey of fault-tolerant controllers based on safetyrelated issues[END_REF][START_REF] Amin | A review of fault tolerant control systems: advancements and applications[END_REF][START_REF] Abbaspour | A survey on active fault-tolerant control systems[END_REF].

On the other hand, switched systems have attracted many scholars' attention because of their large number of applications in practical engineering systems, such as flight control systems, power systems, automotive systems, robotics systems, and biological systems [START_REF] Sun | Analysis and synthesis of switched linear control systems[END_REF][START_REF] Eddoukali | Integrated fault detection and control design for continuous-time switched systems under asynchronous switching[END_REF][START_REF] Li | Robust fault diagnosis for switched systems based on sliding mode observer[END_REF][START_REF] Elouni | Robust sensor faults observer design for continuous-time switched systems using descriptor approach[END_REF]. The switched systems are considered a special class of hybrid systems, which consist of a family of subsystems described by continuous-time or discrete-time dynamics, and these subsystems are governed by a switching signal [START_REF] Goebel | Hybrid dynamical systems[END_REF].

Recently, such important efforts have been focused on the design of fault tolerant controllers for switched systems. For instance, authors in [START_REF] Du | Fault Estimation and Accommodation for Switched Systems with Time-Varying Delay[END_REF] studied fault estimation and fault tolerant control with time delay for switching systems subject to actuator fault. An adaptive observer was developed for the Fault Detection and Isolation (FDI) task to detect and estimate the fault signal. Based on the fault estimation information an observer-based fault-tolerant controller is proposed in order to guarantee the closed loop system stability. Authors in [START_REF] Du | Sensor fault estimation and compensation for time-delay switched systems[END_REF] have dealt with the problem of fault estimation and accommodation for a class of discrete-time switched systems vulnerable to a sensor fault. Based on the descriptor observer design scheme, the sensor fault has to be detected and based on the information about the fault, an online controller re-design took place such that closed-loop stability with Lyapunov theory. In [START_REF] Zhu | Observer-based fault reconstructions and fault-tolerant control designs for uncertain switched systems with both actuator and sensor faults[END_REF], a reduced-order observer has been designed in order to ensure fault detection for a class of uncertain switched systems affected by both sensor and actuator faults. After this, a state feedback robust controller is developed and the stability of the observer-fault tolerant controller closed-loop system is analysed in a sense of H ∞ performance index.

During the last decade, literature shows a steady increase in interest in using the Average Dwell Time (ADT) technique to deal with fault tolerant control problems for switched systems is developed. Authors in [START_REF] Benzaouia | Robust fault detection and control for continuous-time switched systems with Average Dwell Time[END_REF] proposed a robust fault detection and fault tolerant control for switched systems with ADT. The synthesis problem of the observer and controller is solved by using multiple Lyapunov function and ADT techniques. The proposed control system guaranteed the H ∞ performance and the asymptotic stability. Sufficient conditions for the existence of the designed observer and controller have been provided in terms of Linear Matrix Inequalities (LMI). In [START_REF] Jin | An Average Dwell-Time Method for Fault-Tolerant Control of Switched Time-Delay Systems and Its Application[END_REF], authors have dealt with the problem of fault-tolerant control design for a class of switched time-delay linear systems with structural uncertainties by using the ADT approach. Authors in [START_REF] Ladel | Integrated sensor fault estimation and control for continuous-time switched systems: A new separation principle[END_REF] developed an integrated sensor Fault Estimation (FE) and FTC method for a class of continuous-time switched systems. By mean the state/fault estimation observer, the fault amplitude and system states were simultaneously estimated, and then exploiting information provided by the observer, a fault tolerant state feedback controller was designed. The stability of the overall system was fully studied by applying the ADT concept and the Lyapunov theory and the problem was solved in terms of LMIs.

Motivated by the above observations, in the present paper we are dedicated to the FE/FTC designs for a class of switched systems with actuator faults and external disturbances. The major contributions of this work can be summarized as the following aspects:

(i) A Switched Adaptive Observer (SAO) is proposed by using ADT method, such that the states and actuator faults can be simultaneously estimated. (ii) Based on the states and actuator faults estimation information, a SAO-based state feedback fault tolerant controller is designed, under the average dwell time switching to tolerate the faults, which can guarantee that the closed-loop system is asymptotically stable. (iii) A sufficient condition is provided to guarantee the existence of the observer-based fault tolerant controller by the feasibility of an optimization problem with LMI constraint. (iv) The obtained results are successfully illustrated to a switched electrical system.

The remaining part of this paper is organized as follows. Section II describes preliminaries and problem formulation. Section III is dedicated to the design of an observer-based FTC to robustly stabilize the closed-loop system in the presence of actuator faults. In section IV, an example is given to illustrate the effectiveness of the proposed approach. Finally, section V draws some conclusions.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let's consider a class of dynamical systems modeled as switched linear systems with actuator faults and unknown external disturbance described as follows:

ẋ(t) = A σ(t) x(t) + B σ(t) u(t) + F σ(t) f (t) + R σ(t) d(t) y(t) = C σ(t) x(t) (1) 
where x(t) ∈ R n is the state vector, u(t) ∈ R p is the FTC law vector to be designed, y(t) ∈ R m represents the output measurement vectors, f (t) ∈ R q is the actuator fault vector and d(t) ∈ R r represents the unknown bounded disturbance vector. The switching signal σ(t) : R + → Θ is assumed to be a piecewise constant function and continuous from the right everywhere. Where Θ is a finite set described by Θ = {1, 2, ..., N } and N denotes the number of subsystems. When σ(t) = i, the i-th subsystem is activated for some i ∈ Θ.

In this case, the system (1) can be simplified in the form below:

ẋ(t) = A i x(t) + B i u(t) + F i f (t) + R i d(t) y(t) = C i x(t) (2) 
It should be indicated that the parameter matrices in the abovementioned system are assumed to be constant real matrices with appropriate dimensions.

Before starting the main results of the present paper, we will make the following assumptions which are typically required in the switched adaptive observer and fault tolerant control design for switched systems. Assumption 1. We assume that the actuator fault distribution matrices F i are of full column rank.

rank(C i F i ) = rank(F i ) = q (3) Assumption 2. The pair (A i , C i ) is observable ∀i ∈ Θ. rank      C i C i A i . . . C i A n-1 i      = n (4) Assumption 3. The fault f (t) satisfies ∥f (t)∥ ⩽ α 1 , its
derivative is bounded such that ḟ (t) ⩽ α 2 and the unknown input vector verifies d(t) verifies ∥d(t)∥ ⩽ α 3 , where

α 1 , α 2 , α 3 ⩾ 0.
The following definition and lemmas are added for the convenes of later proof. Definition 1. [START_REF] Gahinet | An linear matrix inequality approach to H∞ control[END_REF] For any switching signal σ(t) and any

τ 2 ⩾ τ 1 ⩾ 0, let N σ(t) (τ 1 , τ 2 ) denote the number of switchings σ(t) on an interval (τ 1 , τ 2 ). If N σ(t) (τ 1 , τ 2 ) ⩽ N 0 + τ 2 -τ 1 τ a (5) 
holds for a given two positive numbers N 0 and τ a , then the constant τ a is called the average dwell time and N 0 is the chattering bound. Lemma 1. [START_REF] Zhou | Stability analysis of switched linear singular systems[END_REF] Suppose that there exist C 1 functions V σ(t) : R n → R and two class K ∞ functions κ 1 and κ 2 and two positive numbers α > 0, µ > 1 such that we have

κ 1 (|x(t)|) ⩽ V σ(t) (x(t)) ⩽ κ 2 (|x(t)|) (6) 
Vσ(t) (x(t)) ⩽ -αV σ(t) (x(t)) (7) 
and

∀(σ(t l ) = i, σ(t l -) = j) ∈ N × N, i ̸ = j, V i (x(t)) ⩽ µV j (x(t)) (8) 
then the switched linear system ẋ(t) = f σ(t) (x(t)) is Globally Uniformly Asymptotically Stable (GUAS) for any switching signal with average dwell time:

τ a ⩾ τ * a = ln µ α (9) 
Lemma 2. [START_REF] Jiang | An adaptive technique for robust diagnosis of faults with independent effects on system outputs[END_REF] For a positive definite matrix Q that is: Q = Q T > 0 and a positive scalar ε; the following inequality is true:

2x T y ⩽ 1 ε x T Qx + εy T Q -1 y; x, y ∈ R n (10) 

III. OBSERVER-BASED FTC DESIGN

In order to study the state feedback fault tolerant control design problem, we have developed a robust FTC law for switched systems in presence of actuator faults. Thus, we require to estimate simultaneously system states and actuator faults. To do this, we have designed the following switched adaptive observer:

               ż(t) = N i z(t) + G i u f (t) + L i y(t) + H i f (t) x(t) = z(t) + T 2 y(t) ŷ(t) = C i x(t) ḟ (t) = ΓΦ i ( ėy (t) + ηe y (t)) e y (t) = y(t) -ŷ(t) (11) 
where z(t) ∈ R n is the observer state vector, x(t) ∈ R n the estimated state vector, ŷ(t) ∈ R m is the estimated output vector, f (t) ∈ R p is the estimated actuator faults and

N i ∈ R n×n , G i ∈ R n×p , L i ∈ R n×m , Φ i ∈ R p×m and T 2 ∈ R n×m
are the observer gain matrices to be determined. The matrix Γ ∈ R p×p is a symmetric positive definite learning rate matrix and η is a positive scalar.

Based on both actuator fault and system states estimation, we propose to conceive a robust controller as:

u F T C (t) = -K i x(t) -q i f (t) (12) 
where K i ∈ R p×n and q i ∈ R p×q represent, respectively, the state feedback control and fault compensation gains. We assume that q i = B + i F i . Based on this observer, the fault tolerant controller can compensate faults effects and guarantee the stabilization of the closed-loop system. Now, let us define the following state estimation error e s (t) from ( 2) and [START_REF] Du | Sensor fault estimation and compensation for time-delay switched systems[END_REF] such that:

e s (t) = x(t) -x(t) = (I n -T 2 C i )x(t) -z(t) (13) 
Since that for rank I n C i T = n, there exists nonsingular matrices T 1 ∈ R n×n and T 2 ∈ R n×m such that:

T 1 T 2 I n C i = I n (14) 
Then, the state estimation error ( 13) is described by:

e s (t) = T 1 x(t) -z(t) (15) 
From [START_REF] Ladel | Integrated sensor fault estimation and control for continuous-time switched systems: A new separation principle[END_REF], the dynamic of the state estimation error obey the differential equation:

ės (t) = T 1 ẋ(t) -ż(t) (16) 
Substituting the equations of ẋ(t) and ż(t) respectively from ( 2) and ( 11), the equation ( 16) becomes after some calculations:

ės (t) = (T 1 A i + E i C i -N i ) x(t) + (T 1 B i -G i ) u(t) + N i e s (t) + H i e f (t) + Ri d(t) (17) 
where

E i = N i T 2 -L i (18) Ri = T 1 R i (19) 
If the following conditions hold ∀i ∈ Θ:

N i = T 1 A i + E i C i (20) 
G i = T 1 B i (21) 
H i = T 1 F i (22)
The dynamic of the state estimation error reduces to:

ės (t) = N i e s (t) + H i e f (t) + Ri d(t) (23) 
The dynamic of the closed-loop state system with the control law ( 12) is defined as follows:

ẋ(t) = Π i x(t) + B i K i e s (t) + F i e f (t) + R i d(t) (24) 
with

Π i = A i -B i K i .
Finally, the fault estimation error dynamic is defined as follows:

ėf (t) = ḟ (t) -ḟ (t) (25) 
Theorem 1. For given positive scalars η, ε, β, α, µ > 1 and a positive definite matrix Γ, if there exist symmetric and positive definite matrices

X i = P i -1 , Q i , Q 1i , Q 2i and Q 3i and matrices S i = Q i E i , W i = K i X i and Φ i such that the following LMIs are satisfied ∀(i, j) ∈ Θ × Θ, i ̸ = j:         Ξi B i W i F i 0 0 X i T * -2βX i 0 βI 0 0 * * -2βI 0 βI 0 * * * Ωi Σ i 0 * * * * Υ i 0 * * * * * -1 ε Q 1i         < 0 (26) X j < µX i (27) 
such that

H i T Q i -Φ i C i = 0 (28) 
where

Ξi = A i X i + X i A i T -B i W i -W i T B i T + αX i (29) Ωi = (T 1 A i ) T Q i +Q i (T 1 A i )+S i C i +C i T S i T +αQ i + 1 ε Q 2i (30) Σ i = - 1 η C i T S i T H i - 1 η (T 1 A i ) T Q i H i (31) 
Υ i = - 1 η (H i T Q i H i + H i T Q i H i + Γ -1 ) + 2 ηε Q 3i (32)
Then the state vector x(t), the state estimation error e s (t) and the fault estimation error e f (t) are bounded if the ADT satisfies the following condition τ a ⩾ τ * a = ln µ α . The matrix gains of the switched adaptive observer [START_REF] Du | Sensor fault estimation and compensation for time-delay switched systems[END_REF] and the controller [START_REF] Zhu | Observer-based fault reconstructions and fault-tolerant control designs for uncertain switched systems with both actuator and sensor faults[END_REF] are given by

E i = Q i -1 S i and K i = W i X i -1 . Proof of Theorem 1.
In this prof, we use the theory of Lyapunov to demonstrate the stability of the closed loop system. Then, the problem is turned into an optimization problem through the use of LMI so as to determinate the unknown matrices of both the proposed FTC controller and the switched adaptive observer.

Thus, let us consider the following switched Lyapunov function candidate as:

V i (t) = x T (t)P i x(t) + e s T (t)Q i e s (t) + 1 η e f T (t)Γ -1 e f (t) (33 
) where P i , Q i and Γ are symmetric positive definite matrices with appropriate dimensions. The time derivative of the switched Lyapunov function (33) leads to:

Vi (t) = ẋT (t)P i x(t) + x T (t)P i ẋ(t) + ėT s (t)Q i e s (t) + e s T (t)Q i ės (t) + 1 η ėT f (t)Γ -1 e f (t) + 1 η e f T (t)Γ -1 ėf (t) (34) 
By considering the expressions (24) of ẋ(t), (23) of ės (t), (25) of ėf (t) and by taking into account the fault estimation of ḟ (t) in [START_REF] Du | Sensor fault estimation and compensation for time-delay switched systems[END_REF], Vi (t) becomes:

Vi (t) = x T (t)Ξ i x(t) + 2x T (t)P i B i K i e s (t) + 2x T (t)P i B i e f (t) + 2x T (t)P i R i d(t) + e s T (t)Ω i e s (t) + 2e s T (t)Q i H i e f (t) + 2e s T (t)Q i Ri d(t) + 2 η e f T (t)Γ -1 ḟ (t) - 2 η e f T (t)Φ i C i ės (t) -2e s T (t)C T i Φ T i e f (t) (35) 
where

Ξ i = Π i T P i + P i Π i (36) 
Ω i = N i T Q i + Q i N i (37) 
By using the equation ( 23) and the equality (28), it follows that Vi (t) = x T (t)Ξ i x(t) + 2x 

+ 2 η e f T (t)Γ -1 ḟ (t) - 2 η e f T (t)H i T Q i N i e s (t) - 2 η e f T (t)H i T Q i H i e f (t) - 2 η e f T (t)H i T Q i Ri d(t)
(38) Under Assumption 3, we apply Lemma 2 so as to get the following term inequalities from (38):

2x T (t)P i R i d(t) ⩽ 1 ε x T (t)Q 1i x(t) + η 1i (39) 2e s T (t)Q i Ri d(t) ⩽ 1 ε e s T (t)Q 2i e s T (t) + η 2i (40) 2 η e f T (t)Γ -1 ḟ (t) ⩽ 1 ηε e f T (t)Q 3i e f T (t) + η 3i (41) - 2 η e f T (t)H i T Q i Ri d(t) ⩽ 1 ηε e f T (t)Q 3i e f T (t) + η 4i (42)
where the scalars η 1i , η 2i , η 3i and η 4i are expressed as follows:

η 1i = εα 3 2 λ max (R i T P i Q 1i -1 P i R i ) (43) 
η 2i = εα 2 2 λ max ( RT i Q i Q 2i -1 Q i Ri ) (44) 
η 3i = ε σ α 1 2 λ max (Γ -1 Q 3i -1 Γ -1 ) (45) 
η 4i = ε σ α 2 2 λ max (H i T Q i Q 3i -1 Q i H i ) (46) 
By taking into consideration the inequalities ( 43)-( 46) and the equation (38), Vi (t) can be bounded as follows:

Vi (t) ⩽ x T (t)(Ξ i + 1 ε Q 1i )x(t) + 2x T (t)P i B i K i e s (t) + 2x T (t)P i B i e f (t) + e s T (t)(Ω i + 1 ε Q 2i )e s (t) - 2 η e f T (t)(H i T Q i H i + 2 ηε Q 3i )e f (t) - 2 η e s T (t)N i T Q i H i e f (t) + δ (47)
where the scalar δ is the maximum value over i such that:

δ = max i (η 1i + η 2i + η 3i + η 4i ) (48) 
By Lemma 1, one can get that:

Vi (t) + αV i (t) ⩽ xT (t)Λ i x(t) + δ (49) 
where xT (t) = x T (t) e T s (t) e T f (t) and Λ i is a matrix defined as follows:

Λ i =   Ξi P i B i K i P i H i * Ωi -1 σ N i T Q i H i * * Υ i   (50) 
with

Ξi = Ξ i + αP i + 1 ε Q 1i (51) 
Ωi = Ω i + αQ i + 1 ε Q 2i (52) 
Υ i = - 1 η (H i T Q i H i + H i T Q i H i + Γ -1 ) + 2 ηε Q 3i (53)
If the following inequality holds:

Λ i < 0 (54) 
We can obtain that:

Vi (x(t)) + αV i (x(t)) ⩽ -ζ∥x(t)∥ 2 + δ (55) 
where ζ > 0 is given by

ζ = min λ min (-Λ i ) < 0 (56) 
To complete the prof by considering the constraint (54), we define a matrix:

∆ i = Ξi Z i Z i T Ψ i < 0 (57) 
with

Z i = P i B i K i P i H i (58) 
Ψ i = Ωi -1 σ N i T Q i H i * Υ i (59) 
Consider a symmetric matrix χ defined as

χ = P i -1 0 0 χ 1 (60) 
with

χ 1 = P i -1 0 0 I (61) 
Then, by post and pre-multiplying the inequality (57) by χ, we can obtain that

P i -1 Ξi P i -1 P i -1 Z i χ 1 * χ 1 Ψ i χ 1 < 0 (62)
The term χ 1 Ψ i χ 1 can be replaced by considering the following inequality which holds any scalar β such that

χ 1 + βΨ i -1 T Ψ i χ 1 + βΨ i -1 ⩽ 0 ⇔ χ 1 Ψ i χ 1 ⩽ -2βχ 1 -β 2 Ψ i -1 (63) 
Considering ( 63) and with the Schur Complement, the inequality (62) becomes

  P i -1 Ξi P i -1 P i -1 Z i χ 1 0 * -2βχ 1 βI * * Ψ i   < 0 (64)
Using the definition of matrices Ξi , Z i and Ψ i and considering the change of variable X i = P i -1 we can obtain that

      Ξi B i K i X i F i 0 0 * -2βX i 0 βI 0 * * -2βI 0 βI * * * Ωi -1 σ N i T Q i H i * * * * Υ i       < 0 (65) with Ξi = X i Π i T + Π i X i + αX i + 1 ε X i Q 1i X i (66) 
Now, we dissociate the term 1 ε X i Q 1i X i from the inequality (65) in order to reformulate it as follows

      Ξi B i K i X i F i 0 0 * -2βX i 0 βI 0 * * -2βI 0 βI * * * Ωi -1 σ N i T Q i H i * * * * Υ i       -XT i - 1 ε Q 1i Xi < 0 (67) 
where

Ξi = X i Π i T + Π i X i + αX i (68) 
and Xi = X i 0 0 0 0 (69) Now, we apply the modified Schur Lemma in the above inequality (67), changing Π i and N i by their expressions and taking into account the following change of variables W i = K i X i and S i = Q i E i the inequality (67) becomes reformulated as a Linear Matriciel Inequality which can be rewritten as in the Theorem 1. This one ends the proof of the theorem.

IV. ILLUSTRATIVE EXAMPLE

In this section, the proposed example considers a switched electrical circuit model borrowed from [START_REF] Telbissi | Actuator fault estimation based on proportional-integral observer for delayed continuous-time switched systems[END_REF]. In the system shown in Fig. 1, Sw1 is a bipolar transistor and Sw2 is a diode. This circuit has two switching modes, that is, N = 2, σ(t) : [0, ∞) → {1, 2}: mode 1, Sw1 is closed and Sw2 is off; mode 2, Sw1 is off and Sw2 is closed. Selecting the state variable x 1 (t) x 2 (t)

T where x 1 (t) is the inductance current i L (t), x 2 (t) is the capacitor voltage V c (t) and V s (t) is the power supply voltage. Under the different modes, the system matrices of the switched electrical system are given by: For the switching signal, choose the parameter value as µ = 2.5 and α = 0.8, to calculate average dwell time as τ * a = ln µ α = 1.1454. Hence, the switching interval from one mode to the other is greater than 1.1454. For simulation purposes, we apply the switching signal presented in Fig. 2 specifies the switching between the two subsystems. For the simulation, the external disturbance d(t) is chosen as the band-limited white noise, which is shown in Fig. 3. In order to show the performance and capability of actuator fault estimation effect by using the switched adaptive observer, two cases of actuators faults are considered. If the actuator faults type is a constant value described as:

f 1 (t) = 0, 0s ⩽ t < 5s 1, 5s ⩽ t ⩽ 20s (70) 
In this case, the simulation result is shown in Fig. 4.

If the actuator fault is a time-varying function as follows:

f 2 (t) = 0, 0s ⩽ t < 5s 1.8 cos(1.6t + 3.25), 5s ⩽ t ⩽ 20s (71) 
In this case, the simulation result is described in Fig. 5. The evolution of states trajectories are plotted in Figs. 6 and7, showing that the system is stabibized and that actuator faults are comletely compensated even in the presence of the disturbance signal d(t).

The state estimation errors are shown in the Fig. 8, from which we can seen that the proposed Switched Adaptive Observer can estimate the states very accurately, even after the occurrence of an actuator fault. The example studied shows that the integrated FE/FTC design scheme can accurately estimate the actuator fault and ensure the stability of the closed-loop system.

V. CONCLUSION This paper has studied the problem of fault estimation and fault tolerant control for continuous-time switched according to the ADT concept. By using switched adaptive observer a state/fault estimation algorithm is achieved rapidly and accurately. Then based on the obtained online fault estimation information, a switched state feedback fault tolerant controller is employed to compensate the effect of faults by stabilizing the closed-loop systems. Sufficient stability conditions, in terms of linear matrix inequalities, for the existence of both switched adaptive observer and robust active fault tolerant control law are given in an integrated way. Finally, the developed scheme has been applied to an electrical circuit system with two types of actuator faults so as to illustrate the effectiveness of the proposed approach. As future work, we will focus on FTC design problem for switched nonlinear systems.
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