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Abstract

To explain why, in scientific problem solving, a diagram can be “worth ten thou-
sand words,” Jill Larkin and Herbert Simon (1987) relied on a computer model:
two representations can be “informationally” equivalent but differ “compu-
tationally,” just as the same data can be encoded in a computer in multiple
ways, more or less suited to different kinds of processing. The roots of this pro-
posal lay in cognitive psychology, more precisely in the “imagery debate” of
the 1970s on whether there are image-like mental representations. Simon (1972,
1978) hoped to solve this debate by thoroughly reducing the differences be-
tween forms of mental representations (e.g., between images and sentences) to
differences in computational efficiency; to carry out this reduction, he borrowed
from computer science the concepts of data type and of data structure. I argue
that, in the end, his account amounted to nothing more than characterizing
representations by the fast operations on them. This analysis then allows me
to assess what Simon’s approach actually achieves when transported from psy-
chology to the study of scientific representations, as in Larkin and Simon (1987):
it allows comparing, not representations in and of themselves, but rather the
computational roles they play in particular problem-solving processes—that is,
representations together with a particular way of using them.

Introduction

It has become commonplace in contemporary philosophy of science to emphasize
that, in scientific practice, “representations matter” (Humphreys 2004: 98)—drawing
a well-chosen diagram or introducing a suitable symbolic notation, for instance, can
be of considerable help in problem solving. To make sense of this, Herbert Simon
suggested thinking of representations on the model of data storage in computers
(Simon 1978; Larkin and Simon 1987): just as the same data can be encoded in
different ways, making certain ways of processing them more or less efficient, so two
representations can be “informationally” equivalent but differ “computationally.”
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In our days of pervasive computing, such a picture of representational differences
seems quite natural and has proven popular, with or without explicit reference to
Simon,1 but it is rarely spelled out and its difficulties are not usually discussed. By
reconstructing and contextualizing Simon’s research program on representations,
this paper aims at clarifying what it does and does not achieve.

As we shall see, the original context of Simon’s work on representations was cog-
nitive psychology, more precisely a debate on whether there were image-like mental
representations (Section 1); to this debate, Simon brought a very specific methodol-
ogy, based on the study of human problem solving through computer simulations
(Section 2). This twofold context sheds light on Simon’s 1978 attempt to clarify what
it means to represent something in a certain form (e.g., “as an image”): he needed
an account of representational forms that could be operationalized in psychological
experiments, but would also be broadly applicable to the (not necessarily mental)
representations used in problem solving; to get there, he naturally turned to the
ways data are stored in computers.

Simon’s idea, which is introduced informally in Section 3, is roughly that (1) two
ways of storing data can be called informationally equivalent if they are algorith-
mically intertranslatable, and that (2) such informationally equivalent ways to store
data can differ in their computational properties, that is, in the kinds of processing
they facilitate. Further, he thought that on this basis, one could fully characterize
representational forms abstractly by their computational properties, and that this
would permit a full empirical solution to the imagery debate.

To buttress his computational account of representational differences, Simon
relied on concepts from computer science, in particular those of (abstract) data type
and of data structure. I present these concepts and argue that in the end, it amounts
to nothing more than characterizing representations by the fast operations on them
(Section 4), though Simon’s formulations and practice sometimes suggest a more
substantial account (Section 5).

Simon’s abstract, purely operations-based account stands in sharp contrast with
more standard understandings of representations, which see them as material enti-
ties that are individuated syntactically, and endowed with a semantics, by virtue of
their belonging to some kind of representational system (one might think of Good-
man’s notion of symbolic system,2 or of Haugeland’s notion of representational scheme,3
though details do not matter here).

1Larkin and Simon (1987) remains one the most cited papers ever published by the journal Cognitive
Science. For recent examples of references to their analysis in the philosophy of science, see Vorms
(2011; 2012) or Kulvicki (2010: 300). Humphreys (2004: 95–100) does not mention Simon explicitly, but
his discussion of representations is very much in Simon’s spirit: in fact, although Humphreys seems
to have learned of it indirectly, the most striking example he uses—a game that an appropriate change
of representation shows to be a variant of tic-tac-toe—was initially designed by Simon (1969: 76), who
called it “number scrabble” (see also the latest edition: Simon 1996: 131).

2Goodman (1968).
3Haugeland (1998).
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Jettisoning such standard conceptions in favor of Simon’s, which means study-
ing representations while ignoring matters of physical realization, can make sense
for mental representations—and indeed, this is now standard practice in cognitive
psychology. For the external representations used in scientific problem solving, how-
ever, such a move is not plausible. In this context, instead of fully reducing represen-
tational differences to computational differences, the effect of Simon’s computational
approach is rather to shift the topic: it only allows comparing representations rela-
tive to a particular way of using them. This shift becomes clear when examining Larkin
and Simon’s work on scientific representations in light of the preceding discussion
(Section 6). In the end, despite what Simon’s slogan might suggest, representational
differences in scientific practice cannot be accounted for in a purely computational
way.

1 The context (1): cognitive science and the imagery debate

Let us first survey the immediate context of Simon’s work on representations. It lies
in what we now call “cognitive science,” and specifically in the “mental imagery”
debate that shook the field in the 1970s (and beyond).

The “cognitive science” label is somewhat anachronistic here. Roughly, from the
1950s onward, there arose a number of new research programs on human behav-
ior that shared the following postulates, linked to their reliance on computers as a
model of cognition.4 First, “what goes on inside the individual” can be studied and
described not only at the physiological (and in particular neurophysiological) level,
but also at a more abstract level, in terms of information processing—just as a com-
puter can be described, not only at a material level, but also at the “informational”
level, that is, in terms of programs. (In the philosophy of mind, this first postulate
is known as functionalism.) Second, this “informational” description is phrased in
terms of representational mental states or “mental representations,” and of pro-
cesses operating on these representations. Many authors push the computer model
even further, and add a third postulate, namely that the mental representations just
discussed are systems of symbols—and the processes operating on them are effec-
tive—in the sense of computability theory. This strong thesis, henceforth called the
“symbolic view” of cognition, implies that human cognition can be fully simulated
on a computer; it was particularly important for artificial intelligence (AI), a field
which played a structuring role in the emergence of cognitive science. Herbert Si-
mon is one of the pioneers of AI, and—together with Allen Newell—authored its

4It is common to speak of “cognitivism” (Haugeland 1978) or of a cognitive “paradigm” unifying
researchers from various disciplines. The best starting point to explore the field thus delimited is
probably Haugeland (1981). From a historical point of view, however, one should keep in mind that
the unity of what eventually became “cognitive science” was constructed progressively and did not
become fully apparent until the 1970s. In addition, the choice to isolate as essential the postulates that
I list here (following usual practice) is tied to a philosophically oriented vision of cognitive science
that gives theoretical pride of place to AI.
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Figure 1: Two pairs of drawings used by Shepard and Metzler (1971): on the left,
two figures that can be obtained one from the other by rotation; on the right, two
figures that cannot

most famous manifesto.5
In this context, in which the existence of “mental representations” is taken for

granted, the imagery debate is about the form of these representations: are they all
language-like or are some of them image-like, and what does the distinction even
mean? Here is Simon’s formulation of the problem:

The human brain encodes, modifies, and stores information that is re-
ceived through its various sense organs, transforms that information by
the processes that are called “thinking,” and produces motor and verbal
outputs of various kinds based on the stored information. So much is
noncontroversial [. . .]. What is highly controversial is how information is
stored in the brain—in the usual terminology, how it is “represented”—
or even how we can describe representations, and what we mean when
we say that information is represented in one way rather than another.6

More specifically, the debate was ignited by a number of results coming from
experimental psychology, the most famous of which is due to Roger Shepard and
Jacqueline Metzler (1971). They displayed pairs of drawings of three-dimensional
objects (Fig. 1) to experimental subjects, whom they asked in each case whether the
objects presented could be obtained one from the other by rotation. Shepard and
Metzler then measured the subjects’ response time, and that is where the important
result arose: they discovered that the amount of time necessary before getting an
affirmative answer was, on average, proportional to the angle of the rotation between
the two objects presented—as if the subjects were performing a mental rotation at
a fixed speed. A long and lively controversy ensued over how to interpret various
results that, like this one, seemed to suggest the existence of “mental images,” a
concept many critics thought was unnecessary, inconsistent and based on a confused

5Newell and Simon (1976), reprinted in Haugeland (1981).
6Simon (1978: 3).
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analogy with “external” images (like pictures and photographs).7
Simon’s position in this debate is nuanced. As the archetypal advocate of the

“symbolic” view of cognition, he is sometimes assumed to be an obvious oppo-
nent of mental imagery, but this is a misunderstanding. In fact, the main strand
of the imagery debate played out among researchers committed to the symbolic
view. Roughly, one side—most famously Steven Kosslyn—defended the existence
of image-like mental representations that were close to raw perception and could be
modeled (symbolically) by arrays of pixels. The other side, spearheaded by Zenon
Pylyshyn, thought the experimental data could and should be explained by mental
representations that were at a remove from raw perception, and instead were closer
to higher-level descriptions based on concepts (though they need not be expressible
in sentences of natural language).8 (Pylyshyn called such representations “abstract”;
Simon called them “semantic” or “conceptual.”) While sympathetic to Pylyshyn’s
view, Simon was never fully committed to it, and treated the matter as an open
question to be investigated experimentally.9

In any case, Simon (1978) addressed a somewhat different question: the deeper
and more interesting image–sentence contrast, for him, lay among representations
that would be considered “abstract” or “semantic” in the standard imagery debate.
To make sense of this, one should go back to his earlier AI programs, developed in
collaboration with Allen Newell. Newell and Simon’s programs were, essentially,
problem solvers; their first one was designed to find proofs for logical theorems.10
Yet even in logical contexts, the data stores of these programs (their “mental rep-
resentations,” so to speak) were not made of sentences of some natural or logical
language, but rather of something the authors eventually called list structures—
essentially, graphs.11 List structures could be used to encode sentences, but they
were much more general. As a simple example, think of a living-room scene. You
could describe it by a series of sentences (“There is a glass vase on the table,” etc.); in-
stead, you could represent the scene as a list structure whose nodes are objects (e.g.,
“glass vase,” “table”) and whose links are relations between these objects (e.g., a link
encoding the spatial relation “on” between the vase and the table). From the point
of view of the Kosslyn–Pylyshyn debate, the distinction is irrelevant: both represen-
tations are “abstract”—in our example, both refer to something conceptualized as
a “glass vase,” not to a detailed array of pixels. (Indeed, Pylyshyn explicitly argued

7For an introduction to this debate, see Thomas (2014: section 4.4).
8See, e.g., Pylyshyn (1973) and Kosslyn (1980). Thomas (2014) provides a full bibliography of the

debate.
9In Simon (1978: 16), for example, he explicitly allowed that a “specifically visual system” may

be needed to account for some of the mind’s geometrical capabilities—an open-minded position he
maintained consistently (see, e.g., Simon 1989: 384).

10This is their “Logic Theory Machine,” developed in late 1955 and published in 1956 (Newell and
Simon 1956; 1963). MacKenzie (2001: chap. 3) gives a readable and well-contextualized account of this
work; see also Dick (2015).

11See, e.g., Newell and Simon (1972).
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that, for his purposes, Simon’s list structures could be assimilated to sentences.)12
However, Simon’s insight, fully articulated as early as 1972, is that a list structure
that is “abstract” or “semantic,” like our living-room graph, can nevertheless be-
have like an image: one can have “pictorial-semantic” representations just as well
as “linguistic-semantic” ones.13 For him, the abstractness of a representation was
independent of whether it is image-like or sentence-like, making his contribution
orthogonal to the main line of the imagery debate.

The contrast between image-like and sentence-like list structures mattered greatly
to Simon also beyond the imagery debate. His preference for non-sentential struc-
tures positioned his work with respect to competing AI research programs; as he
put it in his autobiography:

An influential coterie of contemporary artificial intelligence researchers,
including Nils Nilsson, John McCarthy, and others, believe that formal
logic provides the appropriate language for A.I. programs, and that
problem solving is a process of proving theorems. They are horribly
wrong on both counts [. . .].14

Accordingly, defending the power of diagrams eventually amounted, for him, to
defending his entire approach to AI.15

Explicating the image–sentence contrast, then, was doubly important to Simon.
To understand the account he offered, a detour through his earlier work is in order.

2 The context (2): Simon, heuristics, and problem solving

To the imagery question, Simon brought an outlook and methodology that were
quite peculiar, even among AI researchers.16 Let us quickly survey his earlier work.

Simon’s career started not in AI, but in political science, and more precisely in
the theory of organizations. Even today, he remains quoted above all for his concept
of “bounded rationality,” which was designed to criticize the idealized models of
a fully rational agent with complete information that used to dominate economics.
As he put it in 1947:

It is impossible for the behavior of a single, isolated individual to reach
any high degree of rationality. The number of alternatives he must ex-

12Pylyshyn (1973: 14).
13See Simon (1972: 197–200).
14Simon (1991: 192, note).
15See Simon (1989: 383–384).
16For an overview of Simon’s broad and multidisciplinary career, see Crowther-Heyck (2005). On

his AI work, there are numerous sources, including his autobiography (Simon 1991), Pamela McCor-
duck’s collection of interviews (2004), and Crevier (1993). MacKenzie (2001: chap. 3) gives an excellent
introduction to Simon’s work on automated proof in the 1950s and 1960s. See also Mirowski (2002:
452–479, 529–533) for a stimulating reevaluation.
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plore is so great, the information he would need to evaluate them so vast
that even an approximation to objective rationality is hard to conceive.17

How can one orient oneself in this vast space of possibilities? In his early work, Simon
concluded that organizations have to constrain the agents’ environment by limiting
their possibilities and by only providing them with the most relevant information;
later, he concluded more generally that human rationality involves finding strategies
to orient oneself in a space of possibilities that would otherwise be too vast—
strategies that, while not optimal, can still be efficient.18

When Simon (in collaboration with Allen Newell) turned to AI—that is, for
starters, to the development of chess-playing and theorem-proving programs—he
employed strikingly similar turns of phrase:

In a fundamental sense, proving theorems and playing chess involve
the same problem: reasoning with heuristics that select fruitful paths of
exploration in a space of possibilities that grows exponentially.19

While the use of the word “heuristic” is new here (it seemingly comes from the
mathematician George Pólya, whose lectures Allen Newell had attended),20 the idea
remains similar: what matters is finding solutions that are accessible to us despite
the extreme limitation of our capabilities. Crucially, this led Simon to the idea of
simulating human heuristics and (more broadly) human problem-solving processes.
In his view, AI was not just about building machines capable of accomplishing
complex tasks, but also about doing this while respecting the kinds of limitations
that constrain human problem solving—and thus about imitating human strategies.
Accordingly, his AI programs were at least as much about shedding light on human
cognition as about artificially reproducing human cognitive achievements.

Now, as Donald MacKenzie (2001: chap. 3) compellingly shows, this conception
of AI was not widely shared among Simon’s colleagues, who thought that the best
way for a computer to solve a problem might be very different from the best way for
a human to do it. As Newell later put it, in an interview from the early 1990s:

In Herbert [Simon]’s and my stuff [. . .] the concern for artificial intelli-
gence [is always] right there with the concern for cognitive psychology.
Large parts of the rest of the AI field believe that is exactly the wrong
way to look at it: you ought to know whether you’re being a psychologist
or an engineer. Herb and I have always taken the view that maximal
confusion between those is the way to make progress.21

17Simon (1947: 79).
18On the genesis of the concept of “bounded rationality,” see Crowther-Heyck (2005) and Mirowski

(2002: 456 sq). Dick (2015) explores how it was inflected by Simon’s practice of computer simulations,
discussed below.

19Newell, Shaw and Simon (1963: 50).
20Simon (1991: 199).
21Crevier (1993: 258).
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This peculiarity of Simon’s approach brings us back to the problem of represen-
tations. Indeed, while his and Newell’s first success in AI is their well-known “Logic
Theory Machine,”22 it turns out that their initial project was to construct a theorem-
prover for geometry rather than logic, and that this had already led them to think
about the heuristic role of geometrical diagrams. (They switched to logic fairly late
in the process, because, as Simon put it, “[f]acing the question of how to do the dia-
grams, we saw that we still had to deal with some basic problems of perception.”)23
A few months after our authors left it aside, the question of geometrical theorem
proving popped up again during the so-called “Dartmouth conference,” a summer
meeting that brought together many pioneers of AI, including Newell and Simon
but also Marvin Minsky and John McCarthy.24 Minsky suggested a diagram-based
heuristic method to find proofs of geometrical theorems;25 his idea was taken up
by Herbert Gelernter (1963), who designed a fairly efficient program that relied on
diagrams (implemented as arrays of pixels).

Thus, already in the 1950s, Simon was mulling over the idea that appropriate
representations could provide efficient heuristics and thus offer a computational
advantage in problem solving. The design of efficient representations would remain
one of his most consistent concerns throughout his AI career—a concern he liked to
contrast with competing logic-based approaches to AI, which, rather than designing
tailor-made representations that allowed for efficient heuristics, systematically relied
on sentences of logical languages and on operations of logical deduction.

At first sight, the mental imagery debate, with its roots in psychology, seems
remote from problem solving. But a further consequence of the “maximal confusion”
mentioned by Newell is that Simon did not hesitate to conflate phenomena usually
seen as belonging to different realms. Take on the one hand the unconscious, fast
and automatic processes of perception and memory, and on the other, the deliberate
and (at least partially) conscious processes of mathematical problem solving. As
general problems of information processing, Simon treated them as analogous, and
tackled them through similar computer simulations.26

It is thus no surprise that, when tackling the imagery question, Simon (1978)
went back to the way diagrams can help solve geometrical problems. Here is one
of the examples he used to motivate his central insight. Let ABCD be a rectangle
with AB twice as long as BC, let E be the midpoint of AB and F that of CD. Do
the lines EF and AC intersect inside ABCD? For Simon, the sentence describing the
problem is a first representation of it, from which one could laboriously solve it (given

22See footnote 10 above.
23Simon (1991: 205).
24Retrospective narratives often describe this conference as the founding of AI. For accounts of it by

several participants, see McCorduck (2004: chap. 5).
25See McCorduck (2004: 126) and Simon (1991: 210).
26His overarching vision was broader still: he envisioned unified “sciences of the artificial” encom-

passing not just psychology and problem solving, but also, for instance, the study of organizations,
with computer simulation as their central method (Simon 1996).
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Figure 2: A geometric diagram which, according to Simon (1978: 6), allows solving
an elementary problem more easily than equivalent sentences

an axiomatization of plane geometry). Instead, one could represent the data of the
problem in other ways, say through cartesian equations, or more simply as Fig. 2.27
According to Simon, these various representations differ not in their content—he
called them “informationally equivalent”—but in the operations they facilitate. This
is the idea I focus on below.

3 Introducing Simon’s account

Before turning to the technical details, let me introduce Simon’s computer model
of representations informally, without presupposing familiarity with computer sci-
ence.

Let us start with a concrete example that, though simple, suffices to illustrate
Simon’s main ideas. (This example is mine, not Simon’s.) Imagine a university that
lacks IT systems and keeps its full student files on paper in a basement. Each
student receives an identification number when first enrolling, and student files are
shelved in the basement ordered by student number. When a student enrolls, a new
file is created and stored at the end of the last shelf in use. Later, whenever the
student needs to deal with the university, they state their student number, allowing
archivists to quickly locate and bring up their file from the basement. Everything
runs smoothly in this imaginary university, save when a forgetful student loses their
identification number: the archivists then have to go through all files one by one
until they find the right one—an exceedingly tedious task.

One day, a new team takes the helm of our fictional university. To solve the issue
of forgetful students, they decide to switch to a new system. From then on, the
files are to be alphabetized by student name; whenever dealing with the university,
students are simply to state their name. Few students being careless enough to forget
their own name, this will spare archivists the chore of going through all files just to
locate one. The main drawback of the new system is that it makes shelving a new

27Note that Simon is not worried, as mathematicians would be, about whether drawing the conclu-
sion on the sole basis of a diagram is legitimate.
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file more onerous: it is no longer enough to just add it at the end; one has to insert
it at the right place according to the alphabetical order, which forces archivists to
reorganize their shelves from time to time in order to make space.

With this example in mind, let us return to Simon. His first idea is that represen-
tations can be compared without having to deal with the question of what they are
ultimately about:

It is impossible to find an entirely neutral language in which to describe
representations of information, for a language is itself a form of repre-
sentation. We can avoid this difficulty, at least in part, by not attempting
to describe representations directly, but by talking instead in terms of
the equivalence of representations. [. . .] Specifically, I shall talk about
informational equivalence and computational equivalence. [. . .] Two repre-
sentations are informationally equivalent if the transformation from one
to the other entails no loss of information, i.e., if each can be constructed
from the other. [. . .] Two representations are computationally equivalent
if the same information can be extracted from each (the same inferences
drawn) with about the same amount of computation.28

In other words, any way we might devise to express what a representation means
(for instance, by explaining it in natural language) would at bottom be nothing
more than a translation into another form of representation; nevertheless, one can
bypass this issue and talk of one representation containing the same, less or more
information than another by focusing on whether one can be reconstructed from
the other.29

For instance, our university’s successive filing systems are informationally equiv-
alent because one can convert the numerical system into the alphabetical one and
vice-versa. On the other hand, they are patently not computationally equivalent in Si-
mon’s sense: some tasks that are slow in the old, number-based system (like finding
a file from a student name) are quick in the new, alphabetical one, and conversely.

Of course, I am relying here on a vague conception of the amount of effort a
task requires. But if we follow Simon and stay within a computer setting, this idea
can be made rigorous: there is an area of computer science devoted to measuring
the amount of computation that operations require, namely computational complexity
theory. Its starting point is that in practice, what matters most is to know how the
speed of a certain operation depends on the size of the data. Our fictional university

28Simon (1978: 4–5); his emphasis.
29This use of “information” is in the spirit of Shannon’s “mathematical theory of communication”

(which, indeed, is often called “information theory”): “The fundamental problem of communication
is that of reproducing at one point either exactly or approximately a message selected at another point.
Frequently the messages have meaning; that is they refer to or are correlated according to some system
with certain physical or conceptual entities. The semantic aspects of communication are irrelevant to
the engineering problem.” (Shannon 1948: 379, his emphasis). For a clear introduction, see Markowsky
(2017).
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reflects this well: in a university with just three students, any filing system would do;
only when enrollment increases does it become necessary to distinguish between
different systems. Computational complexity is meant to quantify such distinctions.
Say our university uses a numerical filing scheme. Obtaining a file from a given
number is then basically just as fast whether there are three students or thousands;
accordingly, we say that this operation has a “constant” time complexity. On the
other hand, obtaining a file by name might require going through every file to
locate the right one, a task whose length is proportional to the number of students;
the operation is thus said to have a “linear” time complexity. Notice that, as this
constant-versus-linear contrast does not measure processing times directly but only
up to a multiplicative factor, it is robust with respect to changes in the material
implementation of the two systems (it will persist even if, e.g., archivists were
replaced by robots doing the same tasks much faster).

Simon’s second essential idea is that a representation can be described abstractly,
independently of its physical realization. Let us go back once more to our fictional
university. The administration, located on the university’s upper floors, does not
need to know precisely how student files are shelved in the basement. In fact, they
only need to know whether student files should be requested by student number
(as in the first system), or by name (as in the second)—in other words, what matters
to them is knowing which requests will be fulfilled quickly. In fact, one could well
imagine that the archiving service, disheartened by the idea of reorganizing tens
of thousands of student files on a whim of upper management, would choose a
trick. Instead of physically moving their files, they could keep relying on student
numbers internally by creating a kind of alphabetical index that would list the
number corresponding to each name. Indeed, the administration upstairs need not
know whether, when they ask for Jane Doe’s file (by name), the archivists go straight
to the shelves, or whether they first look up Jane in their index; it does not matter to
them as long as the file is on their desk a few minutes later (which the old system
did not allow). In this scenario, one could say that the archivists are implementing
an alphabetical system on the physical basis of a numerical one—while the powers
that be are none the wiser.

In other words, for Simon, a “representation,” thought of as a way of storing
data, is not characterized by the details of its implementation but, more abstractly,
by the requests it permits fulfilling quickly. Simon takes computers to have shown
this decisively.30

How does this tie in with the imagery debate? If representational forms are
defined by the fast operations they allow, then one can determine the forms of
mental representations experimentally, by studying which tasks are slow or fast for
experimental subjects. In a sense, this merely makes explicit the idea underlying
psychological experiments like Shepard and Metzler’s (see Section 1). They had

30“Modern computers,” he writes, “have freed our thinking about representations.” (Simon 1978:
9).
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estimated the difficulty of a certain task (that of checking whether two drawings
represented the same object) by measuring their experimental subjects’ response
time. Why should anything follow from this about the existence of mental images?
The implicit justification is that only a mental representation “as images” can explain
the specific distribution of response times observed—more precisely, the fact that the
difficulty of the task depends on the angle between the two drawings. The relative
difficulty of a certain operation is thus used as an operational criterion for recognizing
mental images. In claiming that representational forms can be defined—and not
merely recognized—operationally, Simon is just going a step further.

One question remains, and this is where Simon’s work on problem solving comes
in: if mental images are recognized or defined by certain operations, which oper-
ations should these be? It is probably fair to say, with critics of mental imagery,
that the psychological literature often relied on a vague analogy with “external”
images. Simon’s peculiar methodology allowed him to make this analogy more pre-
cise. Remember that, at the “information-processing” level, Simon conflated mental
processes and deliberate problem solving (possibly using diagrams), and simulated
both using computer programs. Now take human problem-solving processes that
rely on diagrams, and design adequate simulations of them. For Simon, the fast
operations that define the data storage of such simulations will be constitutive of
images in general, including mental ones.

This, then, is Simon’s vision: introducing an abstract, computational definition
of representational forms that applies equally to representations in the mind, in
computers, or indeed on paper31—a definition which, among other things, would
allow for a full empirical solution to the imagery debate.

4 “Data types”: defining representations by an interface of
operations

For Simon, different forms of representation are like different ways of storing data in
a computer. This is more than an analogy: at the right level of analysis, he sees mental
representations, diagrams on paper, and data stored in a computer as instances of
one and the same abstract, computationally defined notion of representation. In this
section and the next, I examine Simon’s technical definitions of this notion, and
argue that they basically amount to defining representations by the fast operations
available on them.

Here is how Simon (1978) initially defined his notion of representation:

Defining a representation means (1) specifying one or more data types,

31“Since we are concerned with representation at the symbolic or information-processing level, it
will matter little whether the memory we are talking about resides in a human head or in a computer.”
(Simon 1978: 4)
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and (2) specifying the primitive (i.e., “fast”) operations that can be per-
formed on information in those data types.32

By the 1970s, in most programming languages, the pieces of data that could be
manipulated by programs were separated into categories or “(data) types” (integers,
floating-point numbers, characters, strings, arrays of integers, etc.). Accordingly, the
most straightforward reading of clause (1) is as a requirement to specify the nature of
the information being represented (e.g., in the case of our fictional archiving service,
the specification that the data are made up of student files, each of which is made up
of a name—i.e., a string of characters—a student number—i.e., an integer—a date of
birth, grades, etc.). Clause (2) is less usual, and brings to mind the more sophisticated
notion of an “abstract data type,” which was being pioneered by computer scientists
at the time. Simon may have had some awareness of their work, or may have been
pursuing a similar train of thought independently.

Histories of computer science usually trace “abstract data types” back to the
early 1970s, more precisely to papers by Tony Hoare and David Parnas, the latter a
colleague of Simon at Carnegie Mellon.33 The motivation of their work was to keep
the growing complexity of software in check; to do this, their plan was to decompose
complex programs into simpler components whose behavior could be specified in-
dependently of each other.34 (Simon himself frequently discussed the advantages,
for complex systems, of being composed of largely independent subsystems orga-
nized hierarchically.)35 In the case of data, the important issue was to isolate the
details of their storage from the rest of the program, and thus to codify explicitly
and in advance the ways in which the program could interact with the data. Let us
apply this idea to our university example: what matters then is to cleanly separate
the administration from the archiving service, the latter being free to organize its
shelves as it sees fit as long as it is able to fulfill the requests it receives—requests
which, for this very reason, must be codified in advance. The first explicit definition
of an abstract data type along such lines is in a 1974 paper by Barbara Liskov and
Stephen Zilles:

An abstract data type defines a class of abstract objects which is completely
characterized by the operations available on those objects. This means
that an abstract data type can be defined by defining the characterizing
operations for that type.36

32Simon (1978: 7–8).
33In particular Parnas (1972a), Parnas (1972b) and Hoare (1972). See, e.g., Kutzler and Lichtenberger

(1983: 1) and, for recent historical scholarship, Priestley (2011: chap. 10).
34The paradigmatic example of such a methodology is Edsjer Dĳkstra’s “structured programming.”

MacKenzie (2001: chap. 2) situates Dĳktsra’s and related research programs in a wider context; for a
history richer in technical detail, see Priestley (2011: chap. 9–11). Parnas (2002) gives a clear retrospec-
tive statement of his motivations.

35See especially Simon (1962), reprinted in Simon (1969) and later editions (with revisions).
36Liskov and Zilles (1974: 51).
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The “operations available” on an abstract data type are usually called its interface.
Note that Simon adds (inside parentheses and quotation marks) that the prim-

itive operations making up the interface should be fast. The idea is that, because
they are primitive, the operations in question will automatically be faster compar-
atively than other data operations: indeed, since other operations will have to be
programmed out of the primitives, they will be slower than them. Think again of
the archiving service of our university as if it was an abstract data type. In the spirit
of a numerical filing scheme, assume we take as primitive operations that of access-
ing a file by student number and that of inserting a new file with a new student
number. The operation of accessing a file by name, for instance, will then have to be
programmed out of these, and hence will be much slower: presumably, one would
examine the files corresponding to each student number one by one, calling the
access-by-number primitive each time, until one finds a file having the right name.

This reading of Simon leads to a purely operations-based definition of repre-
sentations, one that abstracts away completely from the physical organization of
data. Such an account was made fully explicit by Simon’s colleague John Anderson
(1982), again with reference to (abstract) data types as used in computer science,37
and is widespread today in cognitive psychology—a discipline which, thanks to its
information-processing paradigm, is perhaps the truest contemporary heir to the
original “cognitive science” research program (Núñez et al. 2019: 788). Simon’s actual
account, however, is somewhat less clear-cut than suggested so far—a complication
we now need to clear up.

5 “Data structures”: representations as abstract schemes of
data organization?

Abstract data types, as presented in the previous section, offer a workable account of
representations at the information-processing level. Simon himself, however, often
seemed to conflate it with a different, more concrete account, based on what we
would now call “data structures”—a phrase that Larkin and Simon (1987) used
instead of “data types.” I now present this other account and argue that, in the end,
it fails as a viable alternative.

Recall that, in 1978, Simon defined representations as data types plus primitive
operations. As discussed above, one could read the data types mentioned there
as specifications of the nature of the data. In computer science terms, adding an
interface of operations to such data types would yield an abstract data type. This
would lead to a two-dimensional account of representations: they have a content
that is shareable by other, “informationally equivalent” ones; their having a specific

37“It is possible [. . .] to define representations in terms of the processes that operate on them rather
than the notations that express them. This is the point of view I want to adopt in this paper. It is the
same idea as underlies the concept of data types in computer science.” (Anderson 1982: 3).
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“form” means nothing else than their having certain computational properties that
can be captured as interfaces of primitive operations.

It seems, however, that Simon meant something different:

A data type is some particular way of organizing information in memory.
For example, among the data types that are commonly used in comput-
ing are lists and arrays. [. . .] The declaration that information will be
represented in lists or in arrays does not say anything about the physical
location of the information in memory.38

In our fictional university, a “data type” in this sense would not be merely about the
contents of student files nor about the kinds of requests accepted by the archivists,
but also about the archiving service’s internal filing system—though without spec-
ifying it in all its physical details. Simon thus seems to be using the phrase in a
sense closer to what computer scientists now call “data structures,” of which the
“lists” and “arrays” mentioned in the quote are simple examples; indeed, Larkin
and Simon (1987) define representations as data structures (rather than data types)
plus primitive operations. Representations would then be defined, not only by their
interface of primitive operations, but also by some kind of abstract scheme of data
organization.

To understand what Simon had in mind here, a detour through the practice of
computer programming is helpful. Let us go through a simple example of data stor-
age in a computer program, discussed by Donald Knuth in his classic programming
textbook (which Simon referred to).39 Imagine we need to work with an ordered
list of elements (say student files or email messages). One may need to perform
various operations on this list: access the first element, the last element, or in full
generality the kth element; insert or delete an element at the beginning, at the end, or
in full generality at the kth position; etc. Any way of organizing our list in computer
memory will involve trade-offs, making some of these operations faster but others
slower. However, most programs can be made to rely on some operations only, so
that one can choose an organization in memory that optimizes these at the expense
of the others.

For example, an ordered list can be used to implement a “queue,” say a queue
of emails to be sent. In this case, two operations are enough: adding a message at
the end (behind the queue), and removing the message at the front to send it. For
these operations to be performed efficiently, we need two things: a way to quickly
find the first and last elements of the queue (that is, the message at the front—the
next to be sent—and the one at the back, behind which new messages have to be
inserted); and a way, for each element of the queue, to quickly locate the next one,
so that whenever we send a message, we know which one will take its place at the
front, that is, which one will become the next to be sent and deleted. In other words,

38Simon (1978: 8).
39See Knuth (1997: section 2.2.1). (Simon referred to the first, 1968 edition.)
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Front Second Third Rear

InsertDelete

Figure 3: Representation of a queue structure, from Knuth (1997: 241)

the only relations between elements of the queue that need to be quickly accessed
are those displayed on Fig. 3.

Importantly, a diagram like Fig. 3, while specifying what Knuth sometimes
calls the “structural relationships”40 relevant for our program, does not precisely
lay out how the elements should be organized in memory: they can be arranged
consecutively and in order, or far from one another and in disorder. For example,
here is a common programming strategy that allows scattering the elements of a
queue all over the computer memory. The idea is to supplement each element, say
each email to be sent, with an additional piece of data, usually called a “pointer,”
indicating the address in memory of the next element in line (we also need to store
pointers to the first and last elements). Whenever new emails come in, this setup
allows storing them in any free space of the computer memory; it also makes it
possible, as soon as an email has been sent further, to immediately free up its
memory space.41 There are other ways to implement a queue, however: a scheme
in which emails are stored consecutively in a contiguous memory range would do
just as well, as long as we have an efficient way of finding both ends of it. This is
why Simon can speak of organizations in memory that do not specify “the physical
location of the information.” Such reasoning about the various ways to write an
efficient program is common in the practice of computer programming, and Simon
has even been a pioneer of it to some extent.42

The “queues” I have just described, like the “lists” and “arrays” that Simon
mentions, are examples of what Knuth calls “information structures,” usually named
“data structures” today. These are less abstract than data types (which only specify
the allowable operations) but are still an abstraction from the details of the program,
which would lay out more precisely how data are to be organized in memory. This
seems to be what Simon had in mind. Yet, as we shall see, it cannot provide him

40Knuth (1997: 232); he also speaks of “structural information” (see below, footnote 43).
41What we have just described is usually called a “chained list” (see Knuth 1997: §2.2.1).
42In the 1950s already, Newell, Shaw, and Simon had designed—for their Logic Theory Machine—

the first programming language having data manipulation primitives, based on lists, that were far
removed from the physical organization of the underlying computers. Their work had a significant
impact on the later history of programming languages, especially on what we now call “functional”
programming (see Priestley 2017).
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with the abstract account of representation he needs.
The fundamental problem with this new account is that the “form” of a repre-

sentation is split into two levels whose relationship is unclear. There is a data struc-
ture, which seemingly provides an abstract data-organization scheme, and there are
primitive operations; Simon cannot abandon the latter altogether, since only through
them can a given form of mental representation (say mental images) be recognized
experimentally. The difficulty consists in clarifying how these two levels are related.
Anderson (1978) famously argued that it is precisely the pervasiveness of two-level
accounts of representations, together with a lack of clarity as to how one level could
constrain the other, that made the imagery debate so intractable. Indeed, if the two
levels were unrelated, there would be no hope of recognizing mental images merely
by the operations experimental subjects can perform quickly. Generally, if one were
free to postulate any fast operation independently of the way data are organized,
then it would be impossible to fully distinguish forms of representation just from
the fast operations on them.

Accordingly, while Simon initially presented the two levels as separate ingredi-
ents making up a representation, he immediately added:

[T]he declaration of a data type means that certain primitive operations are
available for accessing, storing, and modifying data. A list representation
requires a primitive operation of find.next, which, given a particular
symbol as its argument, will access the succeeding symbol in the list
to which the first belongs.43

This seems to suggest that a data-organization scheme would determine the relevant
primitive operations.

Unfortunately, there seems to be no way to make sense of such an intrinsic link
between data organization and fast operations without abandoning Simon’s initial
ambitions. At the heart of the issue is the interpretation of diagrams such as Fig. 3,
which Simon (1978) uses to explain what his “data types” (our “data structures”)
are. Following Knuth, I wrote above, in vague terms, that the arrows of Fig. 3 indicate
those “structural relationships” that are relevant for a computer program using a
queue. What exactly does this mean?

A straightforward way to interpret the arrows, suggested by Simon’s remark
about find.next, is as operations that any implementation of a queue should make
efficient. A queue would then be characterized merely by the fact that one can
quickly access the queue’s first and last elements, as well as the successor of any
particular element. But then, Simon’s abstract models of data organization would
be nothing more than a roundabout way of stipulating which operations should be
fast: his data-organization account would collapse back onto a fast-operations one.

Alternatively, it is tempting to say that the queue diagram indicates those pieces

43Simon (1978: 8); his emphases.
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of information that should be encoded “explicitly.”44 But what does it mean for a
piece of information to be “explicitly” represented? Kirsh (1990) convincingly argued
that this is not clear at all; in fact, in a standard computer setting, his explication of
explicitness basically reduces it to accessibility in constant time.45 Once again, we
fall back on a fast-operations account.

There are other, perhaps more plausible ways of understanding Simon’s expla-
nation of data structures, but crucially, they end up tying his account of represen-
tational forms to a particular computational architecture, thus making it impossible to
treat minds, diagrams on paper, and computers simultaneously. For instance, one
could interpret the arrows of Fig. 3 concretely as indicating that the source of the
arrow should contain a pointer to the memory address of the target of the arrow. But
this presupposes that each piece of data has a memory address and that accessing it
from its address is fast, which is only true in specific material architectures. Switch-
ing to computers with a different architecture, for instance with memory slots that
are accessed by content rather than by address (“content-addressable memory”),
would change the relationship between data organization and fast operations. In
other words, making the definition of a data structure concrete (as textbooks usu-
ally do)46 robs it of the independence from physical realization that Simon needs.

In sum, an account based on data structures either falls back on the abstract,
purely operations-based account presented in the previous section, or is too concrete
to accomplish Simon’s goals. However that may be, carefully distinguishing both
accounts did not, in practice, matter much to Simon. In his simulations, he constantly
used data structures built on top of list structures, which were easily implemented on
a standard computer architecture, and which he believed to be plausibly realizable
by neurons;47 and he apparently thought that for all intents and purposes, any repre-
sentation in the abstract sense—any set of primitive operations—could be modeled
well enough using such (concrete) data structures and suitable operations on them.
In other words, even if he viewed representations, at the information-processing
level, as nothing but abstract data types, he saw no problem with systematically
using list-based data structures as serviceable stand-ins for them. This is how he
proceeded, together with Jill Larkin, in his work on the use of diagrams in scientific
problem solving, which we are now in a position to assess.

44Larkin and Simon (1987) sometimes use this word (e.g., p. 67); similarly, Knuth (1997: 238) uses
the word “directly”: “Data usually has much more structural information than we actually want to
represent directly in a computer [. . .]” (my emphasis).

45See also Clark (1992).
46For instance, Knuth (1997) locates his entire discussion in the context of computers with memory

addresses, going so far as to introduce a particular machine language from the outset.
47See, e.g., Simon (1989: 383–384).
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6 External representations in scientific practice

Let us finally turn to Larkin and Simon (1987). Their paper is about external rep-
resentations used in scientific problem solving (especially diagrams), rather than
mental representations. For Simon, who systematically equated the two cases, this
made no difference; moreover, mental images were still his main target, as he later
explained:48

In order to deal with the difficulties one by one, [Jill Larkin and I] fudged
a bit, alleging that we were talking about diagrams on paper rather than
mental pictures; but most of our argument carries over in a straightfor-
ward way.49

Jill Larkin, however, was a psychologist specialized in science education. She was
primarily interested, not in mental images, but in scientific reasoning with external
representations,50 and this is what the paper is actually about.

So, what does the operations-based account of representations presented above
amount to in this new context? As hinted at in the introduction, external represen-
tations as used in scientific practice would normally be conceived as artifacts that
are individuated, and made meaningful, by their belonging to some kind of repre-
sentational system. But as we shall see, representations in this usual sense cannot,
in and of themselves, be compared computationally à la Simon; this is only possible
relative to a particular way of using them, which determines the role they play in
a broader problem-solving process—a role which, as explained in the two previous
sections, should be understood as an “abstract data type.” A diagram and a table, for
instance, are obviously different representations in the usual sense. Depending on
how they are used, however, Simon’s computational perspective can actually treat
them as if they were the same. A close reading of Larkin and Simon’s examples will
make this clear.

Larkin and Simon’s first example is a statics problem about weights and pulleys,
which they first state sententially:

We have three pulleys, two weights, and some ropes, arranged as follows:
The first weight is suspended from the left end of a rope over Pulley A.
The right end of this rope is attached to, and partially supports, the
second weight. Pulley A is suspended from the left end of a rope that
runs over Pulley B, and under Pulley C. [. . .]51

Our authors formalize these sentences in a Lisp-like programming language to get
a first data structure, which looks like this:

48Simon kept working on visual reasoning throughout the 1990s; for representative samples, see
Qin and Simon (1995) and Tabachneck-Shĳf, Leonardo and Simon (1997).

49Simon (1989: 383).
50See for example Larkin (1983; 1989).
51Larkin and Simon (1987: 72).
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Figure 4: Diagrams of: a statics problem (left); the data structure Larkin and Simon
use to simulate a diagram-based method to solve it (right) (from Larkin and Simon
1987: 73, 79)

(Weight W1) (Rope Rp) (Rope Rq) (Pulley Pa)
(hangs W1 from Rp)
(pulley-system Rp Pa Rq) [...]

They also state, and formalize, a number of rules with which one can derive new
information (e.g., a rule encoding the fact that the two sides of a rope running over
a pulley have equal tension).52 Given this setup, here is a naive solution method: for
each rule, systematically try applying it to all possible sentences in the data structure,
and do this over and over again. The issue with this method is its inefficiency: at
each stage, one may need to go through everything one knows multiple times before
finding sentences to which a rule can be applied.

Larkin and Simon’s idea is that a diagram (as on the left-hand side of Fig. 4)
allows for a more efficient solution because it can guide one to the right applications
of the rules, avoiding a costly exhaustive search. For instance, if one knows the value
of weight W1, one can deduce the tension of rope p, then that of rope q, and so on,
always moving from an element to another that is connected to it in the diagram.
This, according to our authors, is how human problem solvers would normally
proceed.

52Larkin and Simon (1987: 74).
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To simulate this human, diagram-based method, Larkin and Simon use a data
structure that is organized by localization (rather than sequentially). Here is how it
works. Everything known about, say, pulley A is gathered in a single slot in memory;
this slot is connected to three other memory slots, those containing everything
known about the elements that have a direct physical connection to A, namely ropes
p, q and x. To clarify the organization of their data structure, Larkin and Simon
represent it as on the right-hand side of Fig. 4. (Note that this diagram merely
displays the underlying data structure, which is not itself a diagram on paper.) The
solution algorithm then works as follows: whenever one has used a rule to deduce
something new at a given memory slot, one searches the slots linked to it for further
opportunities to apply rules.

We now get to the crucial points. First, in what sense do the “data structure”
and operations of our authors’ program correspond to the diagram on paper and
to the operations performed with it by human problem solvers? Simon would pre-
sumably say that, at the information-processing level, they play the same role: as
abstract representations, they are the same. Our analysis above of Simon’s abstract
concept of representation allows us to clarify what this amounts to. It merely means
that they make the same (comparatively) fast operations available to the rest of the
problem-solving process; whatever our authors might appear to suggest, there is
no theoretical justification for taking the data structure to correspond to the dia-
gram in any deeper way. In other words, the core of Larkin and Simon’s method
is to speculate on what the diagram allows a human being engaged in a particular
problem-solving process to do quickly, then design a data structure that allows the
corresponding operations to be performed efficiently.

Second, it then becomes clear that Larkin and Simon’s method can only capture
particular uses of representations. In the preceding example, their “diagrammatic”
data structure is designed to make it quick, given some element (say a pulley), to
locate the elements immediately connected to it (say various ropes)—but nothing
more. However, this limited computational role could be played by other sorts of
representations, like a graph or a table. Conversely, human beings might use the
diagram itself for various other purposes: to quickly recognize symmetries, to locate
the bottommost weight, and so on. In other words, when Larkin and Simon speak
of modeling “the diagram,” they are only modeling a particular computational role
of it—one that could be played by other representations and is only incidentally
connected, in the limited context of a particular problem-solving process, to the
diagram as we usually understand it.

Larkin and Simon’s second example is a geometrical problem that is easily solved
using a few elementary theorems. They initially phrase the problem sententially
in terms of points and lines. However, the theorems one needs for a solution—
among others, that alternate interior angles are equal—are standardly phrased in
terms of segments, angles, and triangles. So, to solve the problem from its sentential
formulation, one first needs to identify the segments, angles, and triangles present
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in the configuration. This is precisely, Larkin and Simon claim, what the diagram
makes easy: these elements, they write, “are perceptually obvious to any educated
person looking at [the] diagram.”53

This second example reinforces the two points made above. First, their purport-
edly diagrammatic data structure only corresponds to the diagram on paper in a
shallow way—namely, in that both have similar fast operations available on them.
A peculiar feature of their treatment of this case makes this particularly clear. One
would expect Larkin and Simon to construct some kind of list structure correspond-
ing to the diagram’s points and lines, structured in such a way that it lends itself to,
say, a fast angle-recognition operation—like the diagram apparently does for the hu-
man visual system. But they fail to do this. Instead, they set up a computationally costly
search process that produces, from their initial data structure made up of points and
lines, a “perceptually enhanced” one containing angles and the like—and then take
this perceptually enhanced data structure to directly correspond to the diagram as
used by human problem solvers, assuming that the relevant perceptual elements
are produced “for free” by “the eye and the diagram.”54 This strategy might look
like cheating, but it makes sense if one defines the representation as a black box (i.e.,
as an abstract data type), the inner workings of which are implemented inefficiently
by Larkin and Simon’s simulation, but presumably very efficiently by the diagram
on paper together with a human visual system.

Second, as Larkin and Simon freely admit, while angles are immediately avail-
able in the “enhanced data structure” meant to capture the diagram’s advantages,
alternate interior angles are not—even though agents with significant training in ge-
ometry see them easily. “Although we could add patterns like alternate interior
angles,” they write, “it is not clear that such patterns are obvious to everyone, and
we will develop our program to reason about them explicitly.”55 This shows how
sensitive their account is to the way a representation is used: even when using the
same geometrical diagram to solve the same problem, different agents, depending
on their expertise, might actually be using it in different ways that would be best
captured using different “data structures.”

In sum, strictly speaking, one cannot say that the diagram and the equivalent
sentences, in and of themselves, are “computationally different”—such a compar-
ison is only meaningful relative to a particular way of using them. Nevertheless,
one might still be tempted to compare them computationally in a broader sense: is
it not true that, given the visual abilities of human beings, the diagram lends itself
to various advantageous uses in a way the sentences do not? Perhaps, but the link
between representational form and potential efficient uses is not straightforward.
One would need something like a high-level account of the sorts of patterns the
human visual system may be trained to recognize efficiently, a tall order; and such

53Larkin and Simon (1987: 88).
54Larkin and Simon (1987: 92).
55Larkin and Simon (1987: 88).
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efficient recognition would still require appropriate training. One should thus be
wary of seeing computational advantages as intrinsic to representations in the usual
sense of the word; use plays an irreducible role.

Conclusion

Simon started from a computer model, that of data storage in a computer, in which
the concepts of informational and computational equivalence made clear sense; he
then undertook to treat mental as well as “external” representations (in particular
scientific representations such as diagrams drawn on paper) through this computer
model (Sections 1–2). His move from the computer setting to representations in
general could be justified in two ways. First, it relied on a broad postulate which
grounded all of Simon’s work, namely that at the right level of analysis—the “func-
tional” or “information-processing” level—every problem-solving process could be
identified with a computer program. Second and more specifically, Simon articu-
lated an abstract notion of representation that made sense at this level of analysis.
This abstract notion was meant to legitimize his approach by showing that at the
information-processing level, external representations, mental representations and
data storage in a computer could indeed be identified.

As we have seen, Simon’s abstract account amounts to nothing more than defin-
ing representations by an interface of fast operations available on them, disregarding
any question of physical realization (Section 4)—although his systematic use of list-
based data structures in his problem-solving simulations sometimes muddies the
waters (Section 5).

In experimental psychology, this is a plausible—and now widespread—move, as
long as representations are only studied by measuring response times or otherwise
observing behavior. But in the case of external representations, as studied by Larkin
and Simon (Section 6), Simon’s abstract account clashes with more standard ap-
proaches that see representations as meaningful artifacts, to the point that Simon’s
approach ends up shifting the topic.

In the end, instead of fully reducing representational differences (in the standard
sense) to computational differences, Simon’s computational approach is only able
to compare representations relative to a particular way of using them. One and the
same representation in the standard sense can correspond to different representa-
tions in Simon’s abstract sense, if they are used in different ways; for example, Larkin
and Simon’s geometrical diagram when used by a novice, and the same diagram
when used by an expert, will correspond to different representations in Simon’s
sense. Conversely, two representations that are patently different in the usual sense,
say a diagram and a table, can be used in computationally equivalent ways and
hence be the same representation in Simon’s sense. This means that, despite what
Simon initially meant to do—and despite what his slogan might still suggest—
representational differences cannot be accounted for in a purely computational way.
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