Alexandre Letard

Tassadit Amghar

Olivier Camp

Nicolas Gutowski

COM-MABs: From Users' Feedback to Recommendation

Introduction

Multi-Armed Bandit (MAB) approaches [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF] have been extensively applied in various fields of activities as finance, healthcare or recommendation systems (Bouneffouf and Rish 2019). Through an iterative process, MAB algorithms are designed, at each round, to choose from a set of actions the one that maximizes their expected gain. They obtain good performances from a global accuracy metric view point. However, in many applications, like recommender systems [START_REF] Chen | Combinatorial multiarmed bandit: General framework and applications[END_REF], several answers may be correct and thus, more than one item should be selected at each round. COMbinatorial Multi-Armed Bandits (COM-MAB) [START_REF] Anantharam | Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays-part i: I.i.d. rewards[END_REF] have been specifically designed to allow the selection of multiple arms and are thus well suited. Both MAB and COM-MAB approaches are reinforcement learning approaches in which an agent performs an action, observes a reward and changes its state [START_REF] Sutton | Reinforcement learning: An introduction[END_REF]. For recommender systems, the performed action is a recommendation and the reward is computed from the corresponding user feedback from which the MAB agent learns [START_REF] Gutowski | Context-aware recommendation systems for cultural events recommendation in Smart Cities[END_REF]. Hence, several feedback strategies have been implemented for the COM-MAB approaches [START_REF] Audibert | Minimax policies for combinatorial prediction games[END_REF]. Those strategies can be used with either the user's feedback for every arm composing the recommendation -herein, referred to as full feedback vector setup (FV) - [START_REF] Combes | Combinatorial bandits revisited[END_REF], a part of them -herein, referred to as partial feedback vector setup (P) - [START_REF] Saha | Combinatorial bandits with relative feedback[END_REF] or with implicitly deduced feedback values from sparse vectors [START_REF] Kveton | Combinatorial cascading bandits[END_REF]. From an industrial view point, those topics are particularly relevant and impactful for applications in direct interactions with users aiming at performing top-k recommendation with restricted feedback ψ ≤ k.

Without records of prior interactions between the recommender system and the users, a fitting feedback strategy becomes essential for the efficient learning of a COM-MAB algorithm. However, most previous works either employ the Bandit [START_REF] Ito | Improved regret bounds for bandit combinatorial optimization[END_REF], Semi-Bandit [START_REF] Combes | Combinatorial bandits revisited[END_REF] strategies, or partial variants considering the feedback given for the ψ arms with highest reward expectations from the initial recommendation [START_REF] Saha | Combinatorial bandits with relative feedback[END_REF]. Further investigation is needed to observe how those strategies can improve the performances of COM-MAB approaches.

Thus, inspired by Letard et al., we formally model a feedback strategy as the succession of three processes : a) "Feedback Identification"; b) "Feedback Retrieval"; and c) "Reward Computing". We argue that, there is no unique optimal feedback strategy and thus that, depending on the application settings and the chosen COM-MAB algorithm, those underlying processes can be worked on and combined to improve the performances of the learning agent. To confirm this assumption, we propose a new Reward Computing process, "Bandit Under Semi-Bandit Conditions" (BUSBC). Our approach is built-upon the combination of methods from the literature and aims at enhancing the accuracy of Upper Confidence Bounds (UCB) based COM-MAB algorithms. The impact of each process composing a feedback strategy on the global accuracy metric was evaluated under both full feedback vector and partial feedback vector setups. Our results confirm our hypothesis as BUSBC Reward Computing process significantly increases the performances of UCB-like algorithms. Depending on the application and method from the literature, the observed improvement range from 0.5% to 16.2%, with an average of 4.7%.

The paper is organized as follows. In section 2 we review works related to the COM-MAB problem and feedback strategies. Section 3 depicts our general model for a feedback strategy and our proposed method, BUSBC. Section 4 discusses our experimental evaluation. Finally, we conclude and open up new perspectives in Section 5.

Preliminaries

Combinatorial Multi-Armed Bandits

A MAB problem [START_REF] Robbins | Some aspects of the sequential design of experiments[END_REF]) includes a set A = {a 1 , ..., a m } of m independent arms, where each arm a ∈ A is an item to recommend. As part of a recommendation system, at each iteration t ∈ [1, T], with T being a known horizon, a learning agent selects an arm a t ∈ A according to its policy π and recommends it to the user. Herein, we consider the COM-MAB problem [START_REF] Anantharam | Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays-part i: I.i.d. rewards[END_REF] which is a generalization of the MAB problem employed to recommend sets of arms

A k = {a 1 , ..., a k }, A k ⊆ A, with 1 ≤ k ≤ m, ∀t ∈ [1, T].
Among the existing COM-MAB approaches, we consider the "Multiple Plays" method [START_REF] Anantharam | Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays-part i: I.i.d. rewards[END_REF] which allows the sequential use of classical MAB algorithms in order to iteratively construct a "Super-Arm" as follows: while

|S t | < k, S t = ∪ k i=1 {a i }, where a i = argmax π a∈A\St E[R t,a]
. Super-Arm S t is thus the subset of k arms having the highest reward expectations according to the MAB algorithm's policy π. Hence, any single play algorithm of the literature can be used in a combinatorial setting.

In a stochastic setting, where the rewards are i.i.d random variables, a COM-MAB algorithm of policy π aims at minimizing the cumulative regret ρ π (T) = T µ * -T t=1 r t , where µ * is the reward expectation of the optimal superarm, without prior knowledge of the rewards probabilities distribution µ a ∈ [0, 1] over each arm a of A. Many realworld applications prefer to consider the maximization of the global accuracy metric Acc π (T) = T t=1 rt T . Traditionally, MAB algorithms update their policy by a summation of the observed rewards R t for each arms : SR t,a = SR t-1,a + R t,a . With R t being either a scalar value or a vector R t = {R t,1 , R t,2 , ..., R t,ψ }, with ψ being the number of arms for which feedback has been provided at iteration t. As works on feedback strategies impact those observed rewards, we consider r t = 1 if at least half of the suggested items in S t satisfy the user, and r t = 0 otherwise (See Subsection 4.1) as assessment variable for a fairer evaluation of the studied methods on the global accuracy metric.

Feedback Strategies

COM-MAB algorithms' learning is mainly led by the rewards observed at each round. Hence, the reward function of such algorithm is of utmost importance. Feedback strategies are reward functions specifically designed for agents in interaction with humans, such as in recommender systems. Several strategies have thus been implemented to consider the feedback at each iteration t in order to compute the reward R t observed by a COM-MAB algorithm (Audibert, Bubeck, and Lugosi 2011). Hence, we denote Y t = {Y t,1 , Y t,2 , ..., Y t,m }, the feedback vector associating a specific feedback to each arm a of A at round t. One should notice that Y t denotes an abstract concept, since feedback can not be acquired for not recommended arms in real-world applications. More realistically, Y t can represents the user's possibilities of feedback while we denote the actual feedback given by user u t as F t , with F t ⊆ Y t .

To the best of our knowledge, most traditional approaches are variants of the four following models: a) Full-Information [START_REF] Audibert | Minimax policies for combinatorial prediction games[END_REF], where an individual reward is observed for every arm a of A, whether they were in S t or not: R F I t = F t = Y t ; b) Semi-Bandit [START_REF] Combes | Combinatorial bandits revisited[END_REF], where the individual reward of each arm a of S t are revealed: R SB [START_REF] Ito | Improved regret bounds for bandit combinatorial optimization[END_REF], where only a cumulative reward1 associated to S t is observed by the agent: R B t = S ⊤ t R SB t ; d) Cascading Bandits models [START_REF] Li | Contextual combinatorial cascading bandits[END_REF], where the reward function is dependent of the application, and aims at deducing implicitly F t , considering a stopping criterion. One may know, from the literature [START_REF] Neu | First-order regret bounds for combinatorial semibandits[END_REF], that Semi-Bandit and Bandit depict both an application setting, modelling constraints on user feedback acquisition, and a method for computing the rewards from the provided user feedback. Herein, for clarity's sake, we only refer to them as rewards computing processes and express the feedback acquisition constraints by full or partial feedback vector setups.

t = F t = {Y t,a | a ∈ S t } ; c) Bandit
Audibert, Bubeck, and Lugosi have proven that, among those approaches, the Semi-Bandit method is often the most efficient. This approach has thus been extensively studied in the literature [START_REF] Sankararaman | Semi-bandit feedback : A survey of results[END_REF]. However, for some real-world applications S t can be large [START_REF] Lagrée | Multiple-play bandits in the position-based model[END_REF]. To prevent the user from having to return an equally large feedback vector, partial variants have been proposed [START_REF] Luedtke | Asymptotically optimal algorithms for multiple play bandits with partial feedback[END_REF]. When partial feedback strategies are used, the observed feedback vector is only defined for a subset P t ⊆ S t . More formally, for non-partial approaches, the size of the observed feedback vector is |F t | = |S t |, while with partial methods |F t | = ψ with ψ < |S t |. Hence P t is a request vector for feedback while F t is its corresponding answer provided by user u t , both with same dimension ψ. Herein, in both cases, the goal of the agent is to perform top-k recommendation, while learning with ψ ≤ k user feedbacks at each iteration.

System Model

Feedback Strategy: A General Model

Let U = {u 1 , ..., u n } be a set of n users. At each iteration t ∈ [1, T], a user u t is pending for a recommendation S t of k items from A = {a 1 , ..., a m }, where A is the set of items known by a recommender system built-upon a COM-MAB algorithm of policy π. We argue that all the previously introduced feedback strategies, used by COM-MAB algorithms, conform to the following three-process general model:

Feedback Identification: where a set of arms P t ⊆ A, for which feedback will be requested to the user, is determined. with Cascading Bandits models, this step is used to define a stopping criterion while the user interacts with the system, e.g., the selection of a preferred item associated with arm a s . Under a partial-vector setup, this step defines how to construct P t from S t . Other approaches consider either P t = A or P t = S t . This process can be considered as problem dependant, to some extent. Indeed, the number ψ of obtained feedbacks at each iteration, is either specific to an application or restricted by user's fatigue. However, the choice of which arms for which feedback will be provided is problem free and can be decided by the recommender system. Besides, Active Learning [START_REF] Elahi | A survey of active learning in collaborative filtering recommender systems[END_REF], an emerging research area, focus on dealing with user's feedback scarcity leading to the cold-start problem. The objective is to identify the items for which feedback will be most useful to better estimate the arms' reward expectation. In most works, sub-optimal arms are thus recommended to users for a sign-up period. However, Feedback Identification process can be used to perform active learning among the determined optimal arms, leading to an improvement over feedback usefulness without sacrificing accuracy.

Feedback Retrieval: where an initial feedback vector F t is built. Except for cascading bandits models, the other methods presented in sub-section 2.2 require an explicit feedback from the user. In Cascading Bandits based feedback strategies, this step is used to infer F t by considering the relative distances of each arm a in S t from the arm a s triggering the defined stopping criterion. These methods, particularly used in applications where a great number of items are recommended simultaneously to users, allow a more flexible behavior from the recommender system and reduce users' fatigue. Hence, many works have shown the interest of the Feedback Retrieval process with Cascading Bandits variants [START_REF] Li | Contextual combinatorial cascading bandits[END_REF][START_REF] Kveton | Combinatorial cascading bandits[END_REF].

Reward Computing: where the final reward R t , observed by the agent, is computed from F t . Thus, R t can either be the feedback vector F t or the result of any processing on F t , i.e., the inner product between F t and P t . This process is usually not problem-dependant : as we show in our experiments (see section 4.2), the fittest method for this step is mostly dependant of the chosen COM-MAB algorithm. As even minute changes can lead to significant differences on performances, we consider this step as an easy and consistent way to improve recommender systems.

Bandit under Semi-Bandit Conditions: BUSBC

Following the previously exposed general model (section 3.1), we implemented a novel Reward Computing process, BUSBC. This method aims at enhancing the performances of UCB-based COM-MAB algorithms.

As in any feedback strategy, Feedback Identification and Feedback Retrieval are performed before the reward computing. Herein, we consider that Feedback Retrieval is processed by explicitly requesting feedback from user u t . Under the full feedback vector setup, ∀a i ∈ S t , a feedback is requested from the user, i.e., P t = S t . Under the partial feedback vector setup, feedback will only be given for ψ < k arms. The feedback vector is thus only defined for a subset P t ⊆ S t where P t is constructed incrementally such that: P t = P t,ψ with P t,0 = ∅ and ∀j ∈ [1, ψ]; P t,j = P t,j-1 ∪ {a i } where a i ∈ S t is selected according to the chosen Feedback Identification process (lines 1 to 4 of algorithm 1). In this article, we consider and further explore the following methods proposed by Letard et al.: Reinforce -RE: which depicts the most popular Feedback Identification process in the literature, and consists in a scale reduction of the full feedback vector setup. It selects the ψ arms from S t with the highest reward expectations E[R t,a]:

a i = argmax π a∈St\Pt,j-1 E[R t,a] (1)
Optimal-Exploration -OE: This approach aims at maximizing the agent's knowledge on the reward expectation distribution {µ 1 , ..., µ k }. It selects the ψ arms from S t for which the least feedbacks have been provided till t:

a i = argmin a∈St\Pt,j-1 obs a,t (2)
where obs a,t is the number of observed feedbacks for arm a up to iteration t.

In the Feedback Retrieval process, we construct the feedback vector F t from Y t by requesting feedback from user u t for each arm a in P t (line 5 of algorithm 1):

F t = {Y t,a | a ∈ P t } (3)
As the Reward Computing process, BUSBC firstly calculates a cumulative reward R B t from this feedback on the current recommendation (line 6 of algorithm 1), such that :

R B t = P ⊤ t F t (4)
Then the COM-MAB algortihm observes this reward and updates its policy only for the arms in P t for which a positive feedback has been provided (lines 7 to 11 of algorithm 1) :

∀a ∈ P t , if F t,a > 0 : SR t,a = SR t-1,a + R B t (5)
where SR t,a is the sum of observed rewards for arm a until iteration t.

Algorithm 1 depicts the BUSBC approach when used under a partial feedback vector setup with OE as the Feedback Identification process. To change the identification process to RE, line 3 should be replaced by the corresponding selection mechanism defined by equation 1. Similarly, to consider the full-vector application of BUSBC, lines 2 to 4 should be removed and replaced by P t = S t . The Bandit approach can be inefficient in some cases. This can be explained both by unrealistically high rewards and by rewards provided to unsatisfying arms in S t . The second issue can be addressed by only providing successful arms in S t with the cumulative reward as in a Semi-Bandit strategy with Bernoulli rewards. Concerning the first issue, we believe that for optimistic COM-MAB approaches, a cumulative reward may, in actual fact, be an advantage. Thus, BUSBC is mainly designed to enhance UCB-based COM-MAB algorithms. 1). For each dataset and for each arm, we consider user feedback as Bernoulli variables i.e., for each arm, F t,a = 1 if the user considers the recommended item (arm) as relevant or 0 otherwise. For Jester and MovieLens datasets, where feedbacks are a rating between 0 and 5, arms are considered relevant if their rating is greater than or equal to 4. Algorithms & Baselines: Our goal is to observe the impact of the studied feedback strategies on the performances of a COM-MAB algorithm, with regards to its policy π. Thus, in our experiments, we applied the multiple plays method [START_REF] Anantharam | Asymptotically efficient allocation rules for the multiarmed bandit problem with multiple plays-part i: I.i.d. rewards[END_REF] to the following popular MAB approaches :

• ε-greedy [START_REF] Sutton | Reinforcement learning: An introduction[END_REF], with ε = 0.0009 • Thompson Sampling (TS) [START_REF] Agrawal | Analysis of thompson sampling for the multi-armed bandit problem[END_REF] • Upper Confidence Bounds (UCB) 1 & 2 [START_REF] Auer | Using confidence bounds for exploitationexploration trade-offs[END_REF] We chose those algorithms because they are the background methods of a number of state of the art algorithms and do not take advantage of any problem dependant optimisation. Therefore, we believe that the improvements observed on those algorithms would also be observed on their more specific derived methods. Nevertheless, in this work, the COM-MAB algorithms are mainly the required support to allow an evaluation of feedback strategies. We compare our proposed BUSBC Rewards Computing process with the following baselines, still used in the literature:

• Bandit (B) [START_REF] Ito | Improved regret bounds for bandit combinatorial optimization[END_REF] • Semi-Bandit (SB) [START_REF] Combes | Combinatorial bandits revisited[END_REF] • Bandit and Semi-Bandit (BSB) [START_REF] Letard | Partial bandit and semi-bandit: Making the most out of scarce users' feedback[END_REF] Evaluation Metric: We consider the global accuracy (Acc) metric [START_REF] Gutowski | Context-aware recommendation systems for cultural events recommendation in Smart Cities[END_REF] as defined by the following equation:

Acc(T) = T t=1 r t T (6)
As explained in sub-section 2.1, r t ∈ {0, 1}, is an unknown evaluation reward modeling user u t 's overall opinion of recommendation S t . Its only purpose is to be used in the computation of the global accuracy and thus remains unknown to the agent. The reward r t is computed using the feedback provided for each arm a of S t as follows:

r t = 1 if k a=0 Y t,a ≥ k 2 , with Y t,a ∈ {0, 1} 0 otherwise (7)
The rewards observed by a COM-MAB algorithm (R t) are built following the considered feedback strategy and based on the acquired feedback. Therefore, such an independent assessment variable (r t) is essential for a fair evaluation of the competitive approaches.

Experimental Protocol: We compare each Reward Computing process by experimenting them for each algorithm and dataset, under both the full-vector and partial-vector setups. In the partial-vector setup, we consider Optimal-Exploration (OE) and Reinforce (RE) as Feedback Identification processes. For each experiment, we simulate 10 cyclical iterations with a finite horizon of T = 10 000 rounds. The studied feedback strategies are identified by their parameters and named S-C-I, with : S: Feedback Setup (FV or P). C: Reward Computing process (B, SB, BSB or BUSBC). I: Feedback Identification process (OE, RE or "/" if FV).

Real-world applications are rarely equiprobabilistic, which can lead to biased performances when evaluating models. For example, only a third of the feedbacks stored in RSASM are positive. In other words, on this dataset, each user consider on average 6 arms as relevant. 2 Hence for each dataset, a more in-depth study of optimal values for k, the number of items to recommend at each iteration, should be done. However, as our purpose is to observe feedback strategies' impact on COM-MAB algorithms' global accuracy, we avoid those biaises by performing experiments with k = 6 for every chosen dataset (RSASM being the worst case scenario). Concerning the ψ number of feedback observed at each iteration, this study focus on worst case scenario to ensure benefits for any real-world application. Saha and Gopalan have shown that, under partial feedback setup, ψ = 2 gave worst performances, which is thus the chosen value for our experiments. In Tables 2 and3 we observe each algorithm's global accuracy when applied with a specific feedback strategy. Finally, in subsection 4.2 we analyse our results. We performed Kruskal-Wallis and Wilcoxon signed rank tests over the global accuracy to ensure the observed differences are significant.

Results Analysis

RSASM Jester MovieLens Algorithm Strategy Acc(T) Acc(T) Acc(T) ε-greedy
FV-B-/ 0,490 ±0, 044 0,402 ±0, 003 0,879 ±0, 006 FV-BSB-/ 0,551 ±0, 008 0,416 ±0, 007 0,907 ±0, 007 FV-BUSBC-/ 0,557 ±0, 008 0,436 ±0, 005 0,919 ±0, 004

FV-SB-/ 0,555 ±0, 008 0,453 ±0, 006 0,928 ±0, 003 TS FV-B-/ 0,351 ±0, 071 0,193 ±0, 017 0,853 ±0, 005 FV-BSB-/ 0,390 ±0, 051 0,395 ±0, 018 0,855 ±0, 005 FV-BUSBC-/ 0,528 ±0, 027 0,415 ±0, 009 0,883 ±0, 010

FV-SB-/ 0,564 ±0, 004 0,446 ±0, 005 0,923 ±0, 003 UCB FV-B-/ 0,488 ±0, 004 0,402 ±0, 004 0,853 ±0, 004 FV-BSB-/ 0,557 ±0, 005 0,407 ±0, 004 0,873 ±0, 004 FV-BUSBC-/ 0,563 ±0, 004 0,431 ±0, 005 0,921 ±0, 004

FV-SB-/ 0,555 ±0, 004 0,404 ±0, 006 0,759 ±0, 004

UCB2

FV-B-/ 0,488 ±0, 004 0,173 ±0, 005 0,871 ±0, 012 FV-BSB-/ 0,545 ±0, 011 0,177 ±0, 004 0,874 ±0, 005 FV-BUSBC-/ 0,559 ±0, 005 0,183 ±0, 003 0,915 ±0, 005

FV-SB-/ 0,545 ±0, 005 0,178 ±0, 002 0,837 ±0, 002 ε-greedy P-B-OE 0,504 ±0, 037 0,418 ±0, 016 0,875 ±0, 006 P-B-RE 0,448 ±0, 042 0,397 ±0, 014 0,860 ±0, 007 P-BSB-OE 0,480 ±0, 042 0,429 ±0, 009 0,871 ±0, 008 P-BSB-RE 0,483 ±0, 036 0,411 ±0, 009 0,877 ±0, 005 P-BUSBC-OE 0,511 ±0, 025 0,423 ±0, 008 0,878 ±0, 009 P-BUSBC-RE 0,527 ±0, 020 0,421 ±0, 007 0,882 ±0, 006 P-SB-OE 0,523 ±0, 012 0,424 ±0, 008 0,881 ±0, 004 P-SB-RE 0,529 ±0, 008 0,425 ±0, 005 0,893 ±0, 003 TS P-B-OE 0,469 ±0, 053 0,407 ±0, 016 0,843 ±0, 008 P-B-RE 0,361 ±0, 042 0,424 ±0, 009 0,847 ±0, 018 P-BSB-OE 0,520 ±0, 030 0,427 ±0, 012 0,882 ±0, 006 P-BSB-RE 0,498 ±0, 025 0,422 ±0, 006 0,872 ±0, 005 P-BUSBC-OE 0,533 ±0, 023 0,427 ±0, 011 0,865 ±0, 008 P-BUSBC-RE 0,507 ±0, 030 0,443 ±0, 005 0,878 ±0, 011 P-SB-OE 0,531 ±0, 007 0,420 ±0, 005 0,843 ±0, 006 P-SB-RE 0,548 ±0, 007 0,424 ±0, 002 0,888 ±0, 003 UCB P-B-OE 0,547 ±0, 007 0,433 ±0, 007 0,858 ±0, 008 P-B-RE 0,491 ±0, 021 0,395 ±0, 005 0,777 ±0, 005 P-BSB-OE 0,534 ±0, 018 0,422 ±0, 005 0,821 ±0, 007 P-BSB-RE 0,500 ±0, 015 0,398 ±0, 003 0,784 ±0, 003 P-BUSBC-OE 0,545 ±0, 008 0,421 ±0, 006 0,846 ±0, 006 P-BUSBC-RE 0,505 ±0, 018 0,404 ±0, 005 0,826 ±0, 005 P-SB-OE 0,510 ±0, 008 0,401 ±0, 006 0,754 ±0, 004 P-SB-RE 0,503 ±0, 005 0,384 ±0, 004 0,714 ±0, 003 UCB2 P-B-OE 0,517 ±0, 033 0,174 ±0, 007 0,867 ±0, 006 P-B-RE 0,344 ±0, 054 0,173 ±0, 007 0,849 ±0, 010 P-BSB-OE 0,512 ±0, 014 0,170 ±0, 005 0,842 ±0, 011 P-BSB-RE 0,431 ±0, 048 0,178 ±0, 004 0,852 ±0, 006 P-BUSBC-OE 0,508 ±0, 023 0,175 ±0, 003 0,863 ±0, 014 P-BUSBC-RE 0,466 ±0, 031 0,176 ±0, 006 0,875 ±0, 003 P-SB-OE 0,467 ±0, 034 0,174 ±0, 002 0,805 ±0, 016 P-SB-RE 0,473 ±0, 005 0,178 ±0, 004 0,857 ±0, 005

Table 3: Results under Partial-vector setup, best in bold, second in italic

Summary of Experimental Results

Full feedback vector: Table 2 presents the global accuracy obtained by each algorithm on each dataset, depending on the Reward Computing process employed. Almost all of those results are significantly different (p-value < 0.05).

Most of the non-significant differences are observed between the FV-BSB-/ and FV-B-/ feedback strategies, extracted from the literature. We can see that UCB1 and UCB2 algorithms reach higher global accuracy when using the proposed BUSBC Reward Computing process. Figure 1 confirms that BUSBC outperforms the concurring approaches after a few iterations till end of the horizon. Another point of interest it that while BUSBC has not been designed to enhanced the performances of greedy or bayesian algorithms, it still allows their second best results on each dataset.

Partial feedback vector: Table 3 presents the global accuracy obtained by each algorithm on each dataset, depending on the Reward Computing and Feedback Identification processes applied. The differences between the studied Reward Computing are smaller but still significant (p-value < 0.05). This can be explained by the feedback reduction leading to a closer behavior between the studied approaches. Concerning Feedback Identification process, we also observe an impact on the global accuracy of the COM-MAB algorithm with OE outperforming RE most of the time. Note that the Bandit Rewards Computing (B) process is more competitive under a partial-vector setup than under the full-vector setup, becoming the best choice for UCB1 when applied with OE. This is mainly explained by the decrease of the number of unexpected rewarded arms. However, from the global accuracy evolution, we observed that, for both UCB1 and UCB2 algorithms and for each dataset, P-BUSBC-OE was becoming increasingly equivalent to P-B-OE . Hence, P-BUSBC-OE may, in fact, be a better choice when considering a greater horizon or when more feedback are allowed at each round. To top it all, an important point to note is that on this setting, the evaluation of the Rewards Computing processes is 1) restricted by the small number of feedbacks provided; 2) influenced by the Feedback Identification process employed. When averaging the results obtained with each Reward Computing process, that is, indepently from the Feedback Identification process employed, BUSBC actually still performs better than the Bandit (B) strategy with UCB1 and UCB2 for all datasets.

Discussion: The general feedback strategy model proposed in this article is defined as the application of three processes: a) Feedback Identification ; b) Feedback Retrieval ; c) Reward Computing. Based on our results, we observe that both the Feedback Identification and Reward Computing processes have a significant impact on the global accuracy. As the interest of the Feedback Retrieval process has previously been highlighted in the literature with Cascading Bandits models, we can conclude that any step of our general model can be used to significantly enhance the performances of a COM-MAB algorithm. A limitation of this study is the number of feedback employed under a partialsetup. The behaviors of the considered Reward Computing processes become increasingly closer as the number of perceived feedback become smaller. Similarly, with less feedback to identify, the impact observed from different Feedback Identification processes will also be smaller. In this study, since the number of feedback employed would be dependant of the application, we considered the worst case enabling differences between those approaches to ensure that the observed differences between each of the Reward Computing and Feedback Identification processes studied will be greater in real-world applications.

Conclusion

In this paper, we have formally defined a three-process model for feedback strategy and have empirically shown that for any COM-MAB algorithm, global accuracy can be improved by tuning any of those three processes. We proposed the BUSBC approach for the Reward Computing process, which gives significantly better results for UCB-based algorithms, without adding any constraint compared to previous methods. Opposing most of recents works, this paper only considers background algorithms and feedback strategies without considering any problem-dependant settings or optimizations (e.g. context availability). Our motivations were two-fold : 1) Showing that feedbacks strategies could be used to improve COM-MAB alorithms performances even on worst case scenario, i.e. when only items index and users' feedbacks can be used and thus only minute changes are possible ; 2) Illustrating benefits that can be extended to state of the art approaches built-upon the underlying COM-MAB algorithms studied. Hence, we believe that any recommender system, built-upon COM-MAB algorithms can benefit from this work. We also observed that the optimal feedback strategy for a COM-MAB algorithm may change over time, one of the promising perspectives would thus be to implement a portfolio-based algorithm to dynamically select different processes during the exploitation step.

Figure 1 :

 1 Figure 1: Global accuracy's evolution on MovieLens dataset under full-vector setup

 Algorithm 1 P-BUSBC-OE Require: S t , Recommended Super arm. Y t , Feedback vector associated to A or user u t . π, Agent's policy. ψ, Number of feedback allowed.

	3:	Construct P t with
		P t = P t ∪ {argmin a∈St\Pt obs a,t }
		(according to Equation 2)
	4: end while
	5: Feedback Retrieval: F t = {Y t,a | a ∈ P t }
	6: Compute cumulative reward: R B t = P ⊤ t F t
	7: for a ∈ P t do
	8:	if F t,a > 0 then
	9:	Update policy π with SR t,a = SR t-1,a + R B t
	10:	end if
	11: end for
		4 Experiments
	4.1 Experiment Settings

1: P t ← ∅ 2: while |P t | < ψ do Datasets: Experiments are performed on several real-life datasets: RSASM, Jester and MovieLens (See Table

Table 1 :

 1 Datasets

	Datasets	Users Arms Interactions	Source
	RSASM	2 152	18	> 38K	Kaggle
	Jester	59 132	150	> 1.7M	Kaggle
	MovieLens	942	1682	> 100K	Groupelens.org

Table 2 :

 2 Results under Full-vector setup, best in bold, second in italic

To internally compute a cumulative reward, the Bandit strategy needs a reward vector equivalent to the one used with Semi-Bandit.

Note that it is a characteristic of the original dataset.