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Abstract

Recently, the COMbinatorial Multi-Armed Bandits
(COM-MAB) problem has arisen as an active research
field. In systems interacting with humans, those rein-
forcement learning approaches use a feedback strategy
as their reward function. On the study of those strate-
gies, this paper present three contributions: 1) We model
a feedback strategy as a three-step process, where each
step influences the performances of an agent ; 2) Based
on this model, we propose a novel Reward Comput-
ing process, BUSBC, which significantly increases the
global accuracy reached by optimistic COM-MAB algo-
rithms – up to 16.2% – ; 3) We conduct an empirical
analysis of our approach and several feedback strate-
gies from the literature on three real-world application
datasets, confirming our propositions.

1 Introduction
Multi-Armed Bandit (MAB) approaches (Robbins 1952)
have been extensively applied in various fields of activities
as finance, healthcare or recommendation systems (Bounef-
fouf and Rish 2019). Through an iterative process, MAB al-
gorithms are designed, at each round, to choose from a set of
actions the one that maximizes their expected gain. They ob-
tain good performances from a global accuracy metric view
point. However, in many applications, like recommender
systems (Chen, Wang, and Yuan 2013), several answers may
be correct and thus, more than one item should be selected
at each round. COMbinatorial Multi-Armed Bandits (COM-
MAB) (Anantharam, Varaiya, and Walrand 1987) have been
specifically designed to allow the selection of multiple arms
and are thus well suited. Both MAB and COM-MAB ap-
proaches are reinforcement learning approaches in which an
agent performs an action, observes a reward and changes its
state (Sutton and Barto 1998). For recommender systems,
the performed action is a recommendation and the reward is
computed from the corresponding user feedback from which
the MAB agent learns (Gutowski 2019). Hence, several feed-
back strategies have been implemented for the COM-MAB
approaches (Audibert, Bubeck, and Lugosi 2011). Those
strategies can be used with either the user’s feedback for
every arm composing the recommendation — herein, re-
ferred to as full feedback vector setup (FV) — (Combes et
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al. 2015), a part of them — herein, referred to as partial
feedback vector setup (P) — (Saha and Gopalan 2019) or
with implicitly deduced feedback values from sparse vectors
(Kveton et al. 2015). From an industrial view point, those
topics are particularly relevant and impactful for applica-
tions in direct interactions with users aiming at performing
top-k recommendation with restricted feedback ψ ≤ k.

Without records of prior interactions between the recom-
mender system and the users, a fitting feedback strategy be-
comes essential for the efficient learning of a COM-MAB
algorithm. However, most previous works either employ the
Bandit (Ito et al. 2019), Semi-Bandit (Combes et al. 2015)
strategies, or partial variants considering the feedback given
for the ψ arms with highest reward expectations from the
initial recommendation (Saha and Gopalan 2019). Further
investigation is needed to observe how those strategies can
improve the performances of COM-MAB approaches.

Thus, inspired by Letard et al., we formally model a feed-
back strategy as the succession of three processes : a) ”Feed-
back Identification”; b) ”Feedback Retrieval”; and c) ”Re-
ward Computing”. We argue that, there is no unique opti-
mal feedback strategy and thus that, depending on the appli-
cation settings and the chosen COM-MAB algorithm, those
underlying processes can be worked on and combined to
improve the performances of the learning agent. To con-
firm this assumption, we propose a new Reward Computing
process, ”Bandit Under Semi-Bandit Conditions” (BUSBC).
Our approach is built-upon the combination of methods
from the literature and aims at enhancing the accuracy of
Upper Confidence Bounds (UCB) based COM-MAB algo-
rithms. The impact of each process composing a feedback
strategy on the global accuracy metric was evaluated un-
der both full feedback vector and partial feedback vector se-
tups. Our results confirm our hypothesis as BUSBC Reward
Computing process significantly increases the performances
of UCB-like algorithms. Depending on the application and
method from the literature, the observed improvement range
from 0.5% to 16.2%, with an average of 4.7%.

The paper is organized as follows. In section 2 we re-
view works related to the COM-MAB problem and feedback
strategies. Section 3 depicts our general model for a feed-
back strategy and our proposed method, BUSBC. Section 4
discusses our experimental evaluation. Finally, we conclude
and open up new perspectives in Section 5.



2 Preliminaries
2.1 Combinatorial Multi-Armed Bandits
A MAB problem (Robbins 1952) includes a set A =
{a1, ..., am} of m independent arms, where each arm a ∈ A
is an item to recommend. As part of a recommendation sys-
tem, at each iteration t ∈ [1, T ], with T being a known hori-
zon, a learning agent selects an arm at ∈ A according to its
policy π and recommends it to the user. Herein, we consider
the COM-MAB problem (Anantharam, Varaiya, and Wal-
rand 1987) which is a generalization of the MAB problem
employed to recommend sets of arms Ak = {a1, ..., ak},
Ak ⊆ A, with 1 ≤ k ≤ m, ∀t ∈ [1, T ]. Among the
existing COM-MAB approaches, we consider the ”Multiple
Plays” method (Anantharam, Varaiya, and Walrand 1987)
which allows the sequential use of classical MAB algo-
rithms in order to iteratively construct a ”Super-Arm” as
follows: while |St| < k, St = ∪ki=1{ai}, where ai =
argmaxπa∈A\St

E[Rt,a]. Super-Arm St is thus the subset of
k arms having the highest reward expectations according to
the MAB algorithm’s policy π. Hence, any single play algo-
rithm of the literature can be used in a combinatorial setting.

In a stochastic setting, where the rewards are i.i.d random
variables, a COM-MAB algorithm of policy π aims at min-
imizing the cumulative regret ρπ(T ) = Tµ∗ −

∑T
t=1 rt,

where µ∗ is the reward expectation of the optimal super-
arm, without prior knowledge of the rewards probabilities
distribution µa ∈ [0, 1] over each arm a of A. Many real-
world applications prefer to consider the maximization of
the global accuracy metric Accπ(T ) =

∑T
t=1 rt
T . Tradi-

tionally, MAB algorithms update their policy by a summa-
tion of the observed rewards Rt for each arms : SRt,a =
SRt−1,a + Rt,a. With Rt being either a scalar value or a
vectorRt = {Rt,1, Rt,2, ..., Rt,ψ}, with ψ being the number
of arms for which feedback has been provided at iteration t.
As works on feedback strategies impact those observed re-
wards, we consider rt = 1 if at least half of the suggested
items in St satisfy the user, and rt = 0 otherwise (See Sub-
section 4.1) as assessment variable for a fairer evaluation of
the studied methods on the global accuracy metric.

2.2 Feedback Strategies
COM-MAB algorithms’ learning is mainly led by the re-
wards observed at each round. Hence, the reward function
of such algorithm is of utmost importance. Feedback strate-
gies are reward functions specifically designed for agents
in interaction with humans, such as in recommender sys-
tems. Several strategies have thus been implemented to con-
sider the feedback at each iteration t in order to compute
the reward Rt observed by a COM-MAB algorithm (Au-
dibert, Bubeck, and Lugosi 2011). Hence, we denote Yt =
{Yt,1, Yt,2, ..., Yt,m}, the feedback vector associating a spe-
cific feedback to each arm a of A at round t. One should
notice that Yt denotes an abstract concept, since feedback
can not be acquired for not recommended arms in real-world
applications. More realistically, Yt can represents the user’s
possibilities of feedback while we denote the actual feed-
back given by user ut as Ft, with Ft ⊆ Yt.

To the best of our knowledge, most traditional ap-
proaches are variants of the four following models: a) Full-
Information (Audibert, Bubeck, and Lugosi 2011), where an
individual reward is observed for every arm a of A, whether
they were in St or not: RFIt = Ft = Yt; b) Semi-Bandit
(Combes et al. 2015), where the individual reward of each
arm a of St are revealed: RSBt = Ft = {Yt,a | a ∈ St} ;
c) Bandit (Ito et al. 2019), where only a cumulative reward1

associated to St is observed by the agent: RBt = S⊤
t R

SB
t ;

d) Cascading Bandits models (Li et al. 2016), where the
reward function is dependent of the application, and aims
at deducing implicitly Ft, considering a stopping criterion.
One may know, from the literature (Neu 2015), that Semi-
Bandit and Bandit depict both an application setting, mod-
elling constraints on user feedback acquisition, and a method
for computing the rewards from the provided user feedback.
Herein, for clarity’s sake, we only refer to them as rewards
computing processes and express the feedback acquisition
constraints by full or partial feedback vector setups.

Audibert, Bubeck, and Lugosi have proven that, among
those approaches, the Semi-Bandit method is often the most
efficient. This approach has thus been extensively studied
in the literature (Sankararaman 2016). However, for some
real-world applications St can be large (Lagrée, Vernade,
and Cappé 2016). To prevent the user from having to return
an equally large feedback vector, partial variants have been
proposed (Luedtke, Kaufmann, and Chambaz 2016). When
partial feedback strategies are used, the observed feedback
vector is only defined for a subset Pt ⊆ St. More for-
mally, for non-partial approaches, the size of the observed
feedback vector is |Ft| = |St|, while with partial methods
|Ft| = ψ with ψ < |St|. Hence Pt is a request vector for
feedback while Ft is its corresponding answer provided by
user ut, both with same dimension ψ. Herein, in both cases,
the goal of the agent is to perform top-k recommendation,
while learning with ψ ≤ k user feedbacks at each iteration.

3 System Model
3.1 Feedback Strategy: A General Model
Let U = {u1, ..., un} be a set of n users. At each iteration
t ∈ [1, T ], a user ut is pending for a recommendation St of
k items from A = {a1, ..., am}, where A is the set of items
known by a recommender system built-upon a COM-MAB
algorithm of policy π. We argue that all the previously intro-
duced feedback strategies, used by COM-MAB algorithms,
conform to the following three-process general model:

Feedback Identification: where a set of arms Pt ⊆ A,
for which feedback will be requested to the user, is deter-
mined. with Cascading Bandits models, this step is used
to define a stopping criterion while the user interacts with
the system, e.g., the selection of a preferred item associated
with arm as. Under a partial-vector setup, this step defines
how to construct Pt from St. Other approaches consider ei-
ther Pt = A or Pt = St. This process can be considered

1To internally compute a cumulative reward, the Bandit strategy
needs a reward vector equivalent to the one used with Semi-Bandit.



as problem dependant, to some extent. Indeed, the number
ψ of obtained feedbacks at each iteration, is either specific
to an application or restricted by user’s fatigue. However,
the choice of which arms for which feedback will be pro-
vided is problem free and can be decided by the recom-
mender system. Besides, Active Learning (Elahi, Ricci, and
Rubens 2016), an emerging research area, focus on dealing
with user’s feedback scarcity leading to the cold-start prob-
lem. The objective is to identify the items for which feed-
back will be most useful to better estimate the arms’ reward
expectation. In most works, sub-optimal arms are thus rec-
ommended to users for a sign-up period. However, Feedback
Identification process can be used to perform active learning
among the determined optimal arms, leading to an improve-
ment over feedback usefulness without sacrificing accuracy.

Feedback Retrieval: where an initial feedback vector Ft is
built. Except for cascading bandits models, the other meth-
ods presented in sub-section 2.2 require an explicit feedback
from the user. In Cascading Bandits based feedback strate-
gies, this step is used to infer Ft by considering the relative
distances of each arm a in St from the arm as triggering
the defined stopping criterion. These methods, particularly
used in applications where a great number of items are rec-
ommended simultaneously to users, allow a more flexible
behavior from the recommender system and reduce users’
fatigue. Hence, many works have shown the interest of the
Feedback Retrieval process with Cascading Bandits variants
(Li et al. 2016; Kveton et al. 2015).

Reward Computing: where the final reward Rt, observed
by the agent, is computed from Ft. Thus, Rt can either be
the feedback vector Ft or the result of any processing on Ft,
i.e., the inner product between Ft and Pt. This process is
usually not problem-dependant : as we show in our exper-
iments (see section 4.2), the fittest method for this step is
mostly dependant of the chosen COM-MAB algorithm. As
even minute changes can lead to significant differences on
performances, we consider this step as an easy and consis-
tent way to improve recommender systems.

3.2 Bandit under Semi-Bandit Conditions:
BUSBC

Following the previously exposed general model (sec-
tion 3.1), we implemented a novel Reward Computing pro-
cess, BUSBC. This method aims at enhancing the perfor-
mances of UCB-based COM-MAB algorithms.

As in any feedback strategy, Feedback Identification and
Feedback Retrieval are performed before the reward com-
puting. Herein, we consider that Feedback Retrieval is pro-
cessed by explicitly requesting feedback from user ut. Un-
der the full feedback vector setup, ∀ai ∈ St, a feedback
is requested from the user, i.e., Pt = St. Under the par-
tial feedback vector setup, feedback will only be given for
ψ < k arms. The feedback vector is thus only defined for a
subset Pt ⊆ St where Pt is constructed incrementally such
that: Pt = Pt,ψ with Pt,0 = ∅ and ∀j ∈ [1, ψ];Pt,j =

Pt,j−1 ∪ {ai} where ai ∈ St is selected according to the
chosen Feedback Identification process (lines 1 to 4 of al-
gorithm 1). In this article, we consider and further explore
the following methods proposed by Letard et al.:

Reinforce - RE: which depicts the most popular Feedback
Identification process in the literature, and consists in a
scale reduction of the full feedback vector setup. It selects
the ψ arms from St with the highest reward expectations
E[Rt,a]:

ai = argmaxπa∈St\Pt,j−1
E[Rt,a] (1)

Optimal-Exploration - OE: This approach aims at maxi-
mizing the agent’s knowledge on the reward expectation
distribution {µ1, ..., µk}. It selects the ψ arms from St for
which the least feedbacks have been provided till t:

ai = argmina∈St\Pt,j−1
obsa,t (2)

where obsa,t is the number of observed feedbacks for arm
a up to iteration t.

In the Feedback Retrieval process, we construct the feed-
back vector Ft from Yt by requesting feedback from user ut
for each arm a in Pt (line 5 of algorithm 1):

Ft = {Yt,a | a ∈ Pt} (3)

As the Reward Computing process, BUSBC firstly calcu-
lates a cumulative rewardRBt from this feedback on the cur-
rent recommendation (line 6 of algorithm 1), such that :

RBt = P⊤
t Ft (4)

Then the COM-MAB algortihm observes this reward and
updates its policy only for the arms in Pt for which a positive
feedback has been provided (lines 7 to 11 of algorithm 1) :

∀a ∈ Pt, if Ft,a > 0 :

SRt,a = SRt−1,a +RBt (5)

where SRt,a is the sum of observed rewards for arm a
until iteration t.

Algorithm 1 depicts the BUSBC approach when used un-
der a partial feedback vector setup with OE as the Feedback
Identification process. To change the identification process
to RE, line 3 should be replaced by the corresponding selec-
tion mechanism defined by equation 1. Similarly, to consider
the full-vector application of BUSBC, lines 2 to 4 should be
removed and replaced by Pt = St. The Bandit approach
can be inefficient in some cases. This can be explained both
by unrealistically high rewards and by rewards provided to
unsatisfying arms in St. The second issue can be addressed
by only providing successful arms in St with the cumula-
tive reward as in a Semi-Bandit strategy with Bernoulli re-
wards. Concerning the first issue, we believe that for opti-
mistic COM-MAB approaches, a cumulative reward may, in
actual fact, be an advantage. Thus, BUSBC is mainly de-
signed to enhance UCB-based COM-MAB algorithms.



Algorithm 1 P-BUSBC-OE

Require: St, Recommended Super arm.
Yt, Feedback vector associated to A or user ut.
π, Agent’s policy.
ψ, Number of feedback allowed.

1: Pt ← ∅
2: while |Pt| < ψ do
3: Construct Pt with

Pt = Pt ∪ {argmina∈St\Pt
obsa,t}

(according to Equation 2)
4: end while

5: Feedback Retrieval: Ft = {Yt,a | a ∈ Pt}
6: Compute cumulative reward: RBt = P⊤

t Ft

7: for a ∈ Pt do
8: if Ft,a > 0 then
9: Update policy π with SRt,a = SRt−1,a +RBt

10: end if
11: end for

4 Experiments
4.1 Experiment Settings
Datasets: Experiments are performed on several real-life
datasets: RSASM, Jester and MovieLens (See Table 1). For
each dataset and for each arm, we consider user feedback as
Bernoulli variables i.e., for each arm, Ft,a = 1 if the user
considers the recommended item (arm) as relevant or 0 oth-
erwise. For Jester and MovieLens datasets, where feedbacks
are a rating between 0 and 5, arms are considered relevant if
their rating is greater than or equal to 4.

Datasets Users Arms Interactions Source
RSASM 2 152 18 > 38K Kaggle

Jester 59 132 150 > 1.7M Kaggle
MovieLens 942 1682 > 100K Groupelens.org

Table 1: Datasets

Algorithms & Baselines: Our goal is to observe the im-
pact of the studied feedback strategies on the performances
of a COM-MAB algorithm, with regards to its policy π.
Thus, in our experiments, we applied the multiple plays
method (Anantharam, Varaiya, and Walrand 1987) to the fol-
lowing popular MAB approaches :

• ε-greedy (Sutton and Barto 1998), with ε = 0.0009

• Thompson Sampling (TS) (Agrawal and Goyal 2012)
• Upper Confidence Bounds (UCB) 1 & 2 (Auer 2002)

We chose those algorithms because they are the back-
ground methods of a number of state of the art algorithms
and do not take advantage of any problem dependant opti-
misation. Therefore, we believe that the improvements ob-
served on those algorithms would also be observed on their
more specific derived methods. Nevertheless, in this work,
the COM-MAB algorithms are mainly the required support

to allow an evaluation of feedback strategies. We compare
our proposed BUSBC Rewards Computing process with the
following baselines, still used in the literature:

• Bandit (B) (Ito et al. 2019)

• Semi-Bandit (SB) (Combes et al. 2015)

• Bandit and Semi-Bandit (BSB) (Letard et al. 2020)

Evaluation Metric: We consider the global accuracy
(Acc) metric (Gutowski 2019) as defined by the following
equation:

Acc(T ) =

∑T
t=1 rt
T

(6)

As explained in sub-section 2.1, rt ∈ {0, 1}, is an un-
known evaluation reward modeling user ut’s overall opin-
ion of recommendation St. Its only purpose is to be used
in the computation of the global accuracy and thus remains
unknown to the agent. The reward rt is computed using the
feedback provided for each arm a of St as follows:

rt =

{
1 if

∑k
a=0 Yt,a ≥

k
2 , with Yt,a ∈ {0, 1}

0 otherwise
(7)

The rewards observed by a COM-MAB algorithm (Rt) are
built following the considered feedback strategy and based
on the acquired feedback. Therefore, such an independent
assessment variable (rt) is essential for a fair evaluation of
the competitive approaches.

Experimental Protocol: We compare each Reward Com-
puting process by experimenting them for each algorithm
and dataset, under both the full-vector and partial-vector
setups. In the partial-vector setup, we consider Optimal-
Exploration (OE) and Reinforce (RE) as Feedback Identifi-
cation processes. For each experiment, we simulate 10 cycli-
cal iterations with a finite horizon of T = 10 000 rounds.
The studied feedback strategies are identified by their pa-
rameters and named S-C-I, with :

S: Feedback Setup (FV or P).
C: Reward Computing process (B, SB, BSB or BUSBC).
I: Feedback Identification process (OE, RE or ”/” if FV).

Real-world applications are rarely equiprobabilistic,
which can lead to biased performances when evaluating
models. For example, only a third of the feedbacks stored
in RSASM are positive. In other words, on this dataset, each
user consider on average 6 arms as relevant. 2 Hence for
each dataset, a more in-depth study of optimal values for k,
the number of items to recommend at each iteration, should
be done. However, as our purpose is to observe feedback
strategies’ impact on COM-MAB algorithms’ global accu-
racy, we avoid those biaises by performing experiments with
k = 6 for every chosen dataset (RSASM being the worst
case scenario). Concerning the ψ number of feedback ob-
served at each iteration, this study focus on worst case sce-
nario to ensure benefits for any real-world application. Saha

2Note that it is a characteristic of the original dataset.



and Gopalan have shown that, under partial feedback setup,
ψ = 2 gave worst performances, which is thus the chosen
value for our experiments. In Tables 2 and 3 we observe
each algorithm’s global accuracy when applied with a spe-
cific feedback strategy. Finally, in subsection 4.2 we anal-
yse our results. We performed Kruskal-Wallis and Wilcoxon
signed rank tests over the global accuracy to ensure the ob-
served differences are significant.

4.2 Results Analysis

RSASM Jester MovieLens
Algorithm Strategy Acc(T ) Acc(T ) Acc(T )

ε-greedy

FV-B-/ 0,490 ±0, 044 0,402 ±0, 003 0,879 ±0, 006

FV-BSB-/ 0,551 ±0, 008 0,416 ±0, 007 0,907 ±0, 007

FV-BUSBC-/ 0,557 ±0, 008 0,436 ±0, 005 0,919 ±0, 004

FV-SB-/ 0,555 ±0, 008 0,453 ±0, 006 0,928 ±0, 003

TS

FV-B-/ 0,351 ±0, 071 0,193 ±0, 017 0,853 ±0, 005

FV-BSB-/ 0,390 ±0, 051 0,395 ±0, 018 0,855 ±0, 005

FV-BUSBC-/ 0,528 ±0, 027 0,415 ±0, 009 0,883 ±0, 010

FV-SB-/ 0,564 ±0, 004 0,446 ±0, 005 0,923 ±0, 003

UCB

FV-B-/ 0,488 ±0, 004 0,402 ±0, 004 0,853 ±0, 004

FV-BSB-/ 0,557 ±0, 005 0,407 ±0, 004 0,873 ±0, 004

FV-BUSBC-/ 0,563 ±0, 004 0,431 ±0, 005 0,921 ±0, 004

FV-SB-/ 0,555 ±0, 004 0,404 ±0, 006 0,759 ±0, 004

UCB2

FV-B-/ 0,488 ±0, 004 0,173 ±0, 005 0,871 ±0, 012

FV-BSB-/ 0,545 ±0, 011 0,177 ±0, 004 0,874 ±0, 005

FV-BUSBC-/ 0,559 ±0, 005 0,183 ±0, 003 0,915 ±0, 005

FV-SB-/ 0,545 ±0, 005 0,178 ±0, 002 0,837 ±0, 002

Table 2: Results under Full-vector setup, best in bold, second
in italic

(a) UCB1

(b) UCB2

Figure 1: Global accuracy’s evolution on MovieLens dataset
under full-vector setup

RSASM Jester MovieLens
Algorithm Strategy Acc(T ) Acc(T ) Acc(T )

ε-greedy

P-B-OE 0,504 ±0, 037 0,418 ±0, 016 0,875 ±0, 006

P-B-RE 0,448 ±0, 042 0,397 ±0, 014 0,860 ±0, 007

P-BSB-OE 0,480 ±0, 042 0,429 ±0, 009 0,871 ±0, 008

P-BSB-RE 0,483 ±0, 036 0,411 ±0, 009 0,877 ±0, 005

P-BUSBC-OE 0,511 ±0, 025 0,423 ±0, 008 0,878 ±0, 009

P-BUSBC-RE 0,527 ±0, 020 0,421 ±0, 007 0,882 ±0, 006

P-SB-OE 0,523 ±0, 012 0,424 ±0, 008 0,881 ±0, 004

P-SB-RE 0,529 ±0, 008 0,425 ±0, 005 0,893 ±0, 003

TS

P-B-OE 0,469 ±0, 053 0,407 ±0, 016 0,843 ±0, 008

P-B-RE 0,361 ±0, 042 0,424 ±0, 009 0,847 ±0, 018

P-BSB-OE 0,520 ±0, 030 0,427 ±0, 012 0,882 ±0, 006

P-BSB-RE 0,498 ±0, 025 0,422 ±0, 006 0,872 ±0, 005

P-BUSBC-OE 0,533 ±0, 023 0,427 ±0, 011 0,865 ±0, 008

P-BUSBC-RE 0,507 ±0, 030 0,443 ±0, 005 0,878 ±0, 011

P-SB-OE 0,531 ±0, 007 0,420 ±0, 005 0,843 ±0, 006

P-SB-RE 0,548 ±0, 007 0,424 ±0, 002 0,888 ±0, 003

UCB

P-B-OE 0,547 ±0, 007 0,433 ±0, 007 0,858 ±0, 008

P-B-RE 0,491 ±0, 021 0,395 ±0, 005 0,777 ±0, 005

P-BSB-OE 0,534 ±0, 018 0,422 ±0, 005 0,821 ±0, 007

P-BSB-RE 0,500 ±0, 015 0,398 ±0, 003 0,784 ±0, 003

P-BUSBC-OE 0,545 ±0, 008 0,421 ±0, 006 0,846 ±0, 006

P-BUSBC-RE 0,505 ±0, 018 0,404 ±0, 005 0,826 ±0, 005

P-SB-OE 0,510 ±0, 008 0,401 ±0, 006 0,754 ±0, 004

P-SB-RE 0,503 ±0, 005 0,384 ±0, 004 0,714 ±0, 003

UCB2

P-B-OE 0,517 ±0, 033 0,174 ±0, 007 0,867 ±0, 006

P-B-RE 0,344 ±0, 054 0,173 ±0, 007 0,849 ±0, 010

P-BSB-OE 0,512 ±0, 014 0,170 ±0, 005 0,842 ±0, 011

P-BSB-RE 0,431 ±0, 048 0,178 ±0, 004 0,852 ±0, 006

P-BUSBC-OE 0,508 ±0, 023 0,175 ±0, 003 0,863 ±0, 014

P-BUSBC-RE 0,466 ±0, 031 0,176 ±0, 006 0,875 ±0, 003

P-SB-OE 0,467 ±0, 034 0,174 ±0, 002 0,805 ±0, 016

P-SB-RE 0,473 ±0, 005 0,178 ±0, 004 0,857 ±0, 005

Table 3: Results under Partial-vector setup, best in bold, sec-
ond in italic

Summary of Experimental Results

Full feedback vector: Table 2 presents the global accu-
racy obtained by each algorithm on each dataset, depend-
ing on the Reward Computing process employed. Almost all
of those results are significantly different (p-value < 0.05).
Most of the non-significant differences are observed be-
tween the FV-BSB-/ and FV-B-/ feedback strategies, ex-
tracted from the literature. We can see that UCB1 and UCB2
algorithms reach higher global accuracy when using the pro-
posed BUSBC Reward Computing process. Figure 1 con-
firms that BUSBC outperforms the concurring approaches
after a few iterations till end of the horizon. Another point
of interest it that while BUSBC has not been designed to en-
hanced the performances of greedy or bayesian algorithms,
it still allows their second best results on each dataset.

Partial feedback vector: Table 3 presents the global ac-
curacy obtained by each algorithm on each dataset, depend-
ing on the Reward Computing and Feedback Identification
processes applied. The differences between the studied Re-
ward Computing are smaller but still significant (p-value
< 0.05). This can be explained by the feedback reduc-
tion leading to a closer behavior between the studied ap-
proaches. Concerning Feedback Identification process, we
also observe an impact on the global accuracy of the COM-
MAB algorithm with OE outperforming RE most of the time.
Note that the Bandit Rewards Computing (B) process is
more competitive under a partial-vector setup than under



the full-vector setup, becoming the best choice for UCB1
when applied with OE. This is mainly explained by the de-
crease of the number of unexpected rewarded arms. How-
ever, from the global accuracy evolution, we observed that,
for both UCB1 and UCB2 algorithms and for each dataset,
P-BUSBC-OE was becoming increasingly equivalent to P-
B-OE . Hence, P-BUSBC-OE may, in fact, be a better choice
when considering a greater horizon or when more feedback
are allowed at each round. To top it all, an important point
to note is that on this setting, the evaluation of the Rewards
Computing processes is 1) restricted by the small number of
feedbacks provided; 2) influenced by the Feedback Identi-
fication process employed. When averaging the results ob-
tained with each Reward Computing process, that is, inde-
pently from the Feedback Identification process employed,
BUSBC actually still performs better than the Bandit (B)
strategy with UCB1 and UCB2 for all datasets.

Discussion: The general feedback strategy model pro-
posed in this article is defined as the application of three
processes: a) Feedback Identification ; b) Feedback Retrieval
; c) Reward Computing. Based on our results, we observe
that both the Feedback Identification and Reward Comput-
ing processes have a significant impact on the global accu-
racy. As the interest of the Feedback Retrieval process has
previously been highlighted in the literature with Cascad-
ing Bandits models, we can conclude that any step of our
general model can be used to significantly enhance the per-
formances of a COM-MAB algorithm. A limitation of this
study is the number of feedback employed under a partial-
setup. The behaviors of the considered Reward Computing
processes become increasingly closer as the number of per-
ceived feedback become smaller. Similarly, with less feed-
back to identify, the impact observed from different Feed-
back Identification processes will also be smaller. In this
study, since the number of feedback employed would be de-
pendant of the application, we considered the worst case en-
abling differences between those approaches to ensure that
the observed differences between each of the Reward Com-
puting and Feedback Identification processes studied will be
greater in real-world applications.

5 Conclusion
In this paper, we have formally defined a three-process
model for feedback strategy and have empirically shown
that for any COM-MAB algorithm, global accuracy can be
improved by tuning any of those three processes. We pro-
posed the BUSBC approach for the Reward Computing pro-
cess, which gives significantly better results for UCB-based
algorithms, without adding any constraint compared to pre-
vious methods. Opposing most of recents works, this paper
only considers background algorithms and feedback strate-
gies without considering any problem-dependant settings
or optimizations (e.g. context availability). Our motivations
were two-fold : 1) Showing that feedbacks strategies could
be used to improve COM-MAB alorithms performances even
on worst case scenario, i.e. when only items index and users’
feedbacks can be used and thus only minute changes are pos-
sible ; 2) Illustrating benefits that can be extended to state of

the art approaches built-upon the underlying COM-MAB al-
gorithms studied. Hence, we believe that any recommender
system, built-upon COM-MAB algorithms can benefit from
this work. We also observed that the optimal feedback strat-
egy for a COM-MAB algorithm may change over time, one
of the promising perspectives would thus be to implement
a portfolio-based algorithm to dynamically select different
processes during the exploitation step.

References
Agrawal, S., and Goyal, N. 2012. Analysis of thompson sam-
pling for the multi-armed bandit problem. In COLT.
Anantharam, V.; Varaiya, P.; and Walrand, J. 1987. Asymptot-
ically efficient allocation rules for the multiarmed bandit prob-
lem with multiple plays-part i: I.i.d. rewards. IEEE TSA.
Audibert, J.-Y.; Bubeck, S.; and Lugosi, G. 2011. Minimax
policies for combinatorial prediction games. COLT.
Auer, P. 2002. Using confidence bounds for exploitation-
exploration trade-offs. JMLR.
Bouneffouf, D., and Rish, I. 2019. A survey on practical appli-
cations of multi-armed and contextual bandits. ARXIV.
Chen, W.; Wang, Y.; and Yuan, Y. 2013. Combinatorial multi-
armed bandit: General framework and applications. In ICML.
Combes, R.; Shahi, M. S. T. M.; Proutiere, A.; and Lelarge, M.
2015. Combinatorial bandits revisited. In NIPS.
Elahi, M.; Ricci, F.; and Rubens, N. 2016. A survey of active
learning in collaborative filtering recommender systems. Com-
puter Science Review.
Gutowski, N. 2019. Context-aware recommendation systems
for cultural events recommendation in Smart Cities. Ph.D. Dis-
sertation, Université d’Angers.
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