
HAL Id: hal-04034888
https://hal.science/hal-04034888v1

Submitted on 17 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Configuration Optimization with Limited Functional
Impact

Edouard Guégain, Amir Taherkordi, Clément Quinton

To cite this version:
Edouard Guégain, Amir Taherkordi, Clément Quinton. Configuration Optimization with Limited
Functional Impact. CAISE’23 - 35th International Conference on Advanced Information Systems
Engineering, Jun 2023, Zaragoza, Spain. �hal-04034888�

https://hal.science/hal-04034888v1
https://hal.archives-ouvertes.fr

Configuration Optimization
with Limited Functional Impact

Edouard Guégain1, Amir Taherkordi2 and Clément Quinton1

1 Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France
{edouard.guegain,clement.quinton}@univ-lille.fr

2 University of Oslo, Oslo, Norway
amirhost@ifi.uio.no

Abstract. Dealing with a large configuration space is a complex task for
developers, especially when configurations must comply with both func-
tional constraints and non-functional goals. In this paper, we introduce
an approach to optimize any set of performance indicators for an exist-
ing configuration, while meeting functional requirements. The efficiency
of this approach is assessed by exhaustively optimizing a configurable
system, and by analyzing how the algorithm navigates through the con-
figuration space. This approach proves especially efficient at optimizing
configurations through a minimal number of changes, thus limiting the
impact on their functional behavior.

Keywords: Software · Variability · Optimization · Performance.

1 Introduction

Modern software-intensive systems are highly configurable. Software engineers
thus have to develop, test and maintain a significant number of options, or
features, that are then combined together to produce a specific software configu-
ration. As the number of features grows, the number of configurations (i.e., the
configuration space) consequently grows exponentially and modern systems face
the ever-increasing complexity of their configurations [20]. Dealing with large
configuration spaces is challenging, especially when configurations must com-
ply with both functional constraints and non-functional performance goals. To
avoid facing this complexity, developers may stick to default configurations or
sub-optimal ones [12].

Based on this observation and inspired by our previous work on measuring
the energy consumption of configurable systems [2], we propose in this paper
an approach that optimizes a configuration regarding multiple performance ob-
jectives. Contrarily to prior work that samples or predicts performance models
seeking for the best configuration of the whole configuration space [4,7,9,10,22],
our approach optimizes existing configurations by maximizing performance gains
while minimizing changes to such configurations. The objective is to provide the
developer with the best-performing configuration by altering as little as possible
the initial one, in order to remain as close as possible to the developer’s functional

https://orcid.org/https://orcid.org/0000-0002-3335-5495
https://orcid.org/https://orcid.org/0000-0003-1672-054X
https://orcid.org/https://orcid.org/0000-0003-3203-6107

2 E. Guégain et al.

requirements. Our contribution is threefold. First, we propose ICO, a novel op-
timization approach for configurable systems that addresses the aforementioned
objective. Second, we release an up-and-running Java-based implementation of
the approach. Third, we provide an in-depth analysis of the behavior of our
approach and assess its efficiency on a real-world system.

In the remainder of this paper, Section 2 explains fundamentals and a running
example. Section 3 explains our optimization approach. Section 4 and Section 5
present the design and results of our experiments, respectively. Section 6 provides
a critical discussion. Section 7 discusses related work and Section 8 concludes
the paper.

2 Motivation and Running Example

Feature models are commonly used to define the configuration space of highly-
variable software systems. A feature model is a tree or a directed acyclic graph
of features [8], organized hierarchically in parent / sub-feature(s) relationships.
Features can be mandatory, optional, or alternative and the selection of a fea-
ture may require or exclude the selection of other features. While most of these
relationships can be encoded in a feature tree, require and exclude relationships
are usually defined using cross-tree constraints. Therefore, the feature model de-
scribes the configuration space of a software system encoded both as a feature
tree and a set of cross-tree constraints. It thus defines, in an implicit yet compact
way, the set of possible configurations for that software.

Fig. 1: Excerpt of the feature model of GPL-FH-Java.

Figure 1 presents an excerpt of the GPL-FH feature model (some features,
like HiddenWgt, are collapsed and only two constraints are shown). GPL-FH
is a testbed, used in particular to evaluate different implementations and algo-
rithms that can be executed on a graph. The graph under test is generated at
runtime through the TestProg feature. GPL-FH exhibits 156 configurations for
37 features and 14 constraints. These features represent different characteristics

Configuration Optimization with Limited Functional Impact 3

of the generated graph, such as Weighted or Unweighted, and cross-tree con-
straints define what algorithm can be run depending on the implementation of
the graph, e.g., MSTKruskal can only be run with a WithEdges implementation.

When running a configuration, a few questions arise regarding its perfor-
mance, such as: Are there better (e.g., faster regarding GPL-FH) configura-
tions? If yes, is there one that is close enough so it still complies with the user’s
requirements? What would be the gain of running this configuration? How to
make sure changing feature(s) will not result in a worst configuration? These
questions arise for several reasons. In particular, the large number of configu-
rations makes picking the best configuration on the first try almost impossible,
unless having the proper background knowledge of the configuration space. De-
velopers usually do not have this background knowledge and only consider less
than 20% of the available configurations [20]. Another reason is the use of the
default configuration or a legacy one, e.g., to make sure functional requirements
are met. Running such a configuration does not guarantee running the optimal
one; On the contrary, it may result in running worst or incorrect configura-
tions [12,10].

In both cases, it is necessary to explore the configuration space to seek con-
figurations providing better performance. Yet, the size of the configuration space
increases exponentially with the number of functionalities, making this explo-
ration impractical manually. There is thus a need for an approach that optimizes
the performance of an existing configuration while minimizing the impact on
functional requirements for such a configuration.

3 ICO: Iterative Configuration Optimization Approach

To address these challenges, we propose the Iterative Configuration Optimization
(ICO) approach. The core idea is as follows: From an initial configuration, ICO
explores the remaining configuration space in search of configurations that (i) are
neighbors of the initial configuration, (ii) comply with the user’s functional re-
quirements (i.e., features that have to be selected or excluded) and (iii) optimize
given performance indicators. It then provides optimization suggestions to the
developer. ICO is inspired by the energy consumption optimization approach
presented in [2], but the approach in this paper differs from the one in [2] in
several aspects. In particular, the approach proposed in this paper addresses the
limitations listed in [2]. That is, we propose an approach that is feature model ag-
nostic and supports multi-objective optimization, in contrast to an optimization
method that was tightly coupled to the feature model under test and dedicated
to only one performance indicator, the energy consumption. In addition, ICO
supports cross-tree constraints in its optimization process, while the approach
presented in [2] only focused on switching selected features based on the feature
tree structure.

4 E. Guégain et al.

3.1 Optimizing Configurations

To perform the optimization process, ICO relies on the performance of each
feature regarding all the considered metrics. That is, as shown by Equation 1,
the overall performance P of a feature f with respect to n metrics is the sum,
for each metric, of pif the normalized performance of the feature regarding this
metric, multiplied by wi the weight associated to this metric and by di the
objective optimization for this metric, i.e., 1 or −1, respectively to maximize or
minimize.

Pf =

n∑
i=1

diwipif (1)

As interactions between features impact performance [15], ICO is able to
optimize configurations w.r.t tuples of features of any size, in which case f defines
a tuple of features instead of a single one. The performance of a configuration is
then computed as the average performance of features - or tuples of features in
interaction-wise optimization - contained in this configuration.

The ICO approach is realized by Algorithm 1, which takes the set of fea-
tures, the list of constraints and the initial configuration as input to compute a
set of improvement suggestions. The algorithm starts by creating a set of can-
didate configurations for the configuration to optimize (lines 5– 13). Candidate

Algorithm 1: ICO optimization algorithm

Input: features, constraints, conf init;
Output: suggestions

1 candidates← ∅
2 suggestions← ∅
3 addable← (features\conf init)\constraintsexclude
4 removable← conf init\constraintsinclude

5 for rem ∈ removable do
6 candidates← candidates ∪ newConfig(conf init\rem)

7 end
8 for add ∈ addable do
9 candidates← candidates ∪ newConfig(add ∪ conf init)

10 end
11 for add ∈ addable, rem ∈ removable do
12 candidates← candidates ∪ newConfig(addable ∪ conf init\removable)

13 end
14 candidates← sortByPerfGain(candidates)
15 for c ∈ candidates do
16 if isValid(c, constraints) ∧ perf(c) > perf(conf init) then
17 suggestions← suggestions ∪ diff(c, conf init)

18 end

19 end
20 return suggestions

Configuration Optimization with Limited Functional Impact 5

configurations are the set of configurations that are one change away from the
initial configuration, i.e., neighbor configurations, since they differ by the se-
lection/deselection of one feature. For instance, a GPL-FH configuration for
a Weighted graph is a neighbor of the same configuration where Unweighted

graph is selected since both features are mutually exclusive. In a general way,
each unselected feature leads to a candidate configuration where this feature is
selected (lines 5– 7), each selected feature leads to a candidate configuration
where this feature is unselected (lines 8– 10), and each exclusive relationship of
both a selected and unselected features leads to a candidate configuration where
the selected feature is deselected and the unselected one is selected (lines 11– 13).
Candidate configurations are then ordered by performance gain (line 14), and
finally filtered regarding their validity and performance (line 16), to ensure that
the returned suggestions (i) cannot turn a valid configuration into an invalid
one and (ii) can only improve the performance of the configuration, according
to the performance model3.

For each candidate configuration, the algorithm then computes the difference
between this candidate configuration and the initial one (line 17). This differ-
ence takes the form of a feature to add or a feature to remove – or both, and
its estimated performance gain. As a result, the algorithm provides a set of im-
provement suggestions, ordered by potential performance gains. For instance, a
possible suggestion for a GPL-FH configuration is to replace the Undirected

feature by the Directed feature which offers better performances, while other
features remain unchanged.

The approach can thus be entirely automated by applying, while new sug-
gestions are provided, the one providing the highest performance gain. ICO
also offers an interactive mode, where developers select the suggestion to apply
according to their functional requirements and domain knowledge.

3.2 Implementation

ICO has been implemented as a series of tools, namely the ICO tool suite.
This tool suite has been built with the objectives of (i) providing developers
with feedback about the performances of a given configuration and (ii) provid-
ing suggestions to optimize its performance by adding or removing a feature.
ICO is composed of three software components: (1) ICOlib, a Java implemen-
tation of the proposed approach; (2) ICOcli, a command-line interface; and (3)
ICOplugin, an Eclipse plugin. The ICO tool suite takes as input a configura-
tion, a feature model and performance files, and then returns optimized config-
urations based on the suggestions provided by Algorithm 1. Figure 2 provides
an overview of the architecture of ICO: through either ICOcli or ICOplugin,
user instructions are sent to ICOlib which then performs various operations
based on input files.

3 The computation of the performance model is out of the scope of this paper. Yet,
we discuss this particular point in Section 6.

6 E. Guégain et al.

Configuration, Feature model, Performances

ICOpluginICOcli

ICOlib

FeatureIDE

Optimized configuration

Fig. 2: The architecture of the ICO tool suite.

The tool suite is centered on ICOlib, a Java library that exposes the API
managing all operations that can be performed with ICO: loading a project,
displaying current performances, managing constraints (i.e., the lists of features
required or excluded by the developer), listing or applying improvement sugges-
tions and saving the new configurations. In particular, ICOlib delegates to the
FeatureIDE [19] library the responsibility to load, update, validate and save the
configurations. Taken as a standalone component, ICOlib can be integrated as
a Java dependency into any tool requiring an implementation of Algorithm 1.
ICOplugin is an Eclipse Plugin developed to interact with ICOlib and imple-
mented as an Eclipse view. It thus provides a GUI that assists developers when
seeking optimized configurations, in particular by proposing visual feedback on
suggested optimizations. ICOcli is a command-line interface to interact with
ICOlib, enabling an in-depth exploration of the variability of the software and
its performances. It can be used directly by the developer or integrated into au-
tomated processes such as CI/CD. The source code of ICO is publicly available4,
and [3] covers the specifics of its implementation.

4 Experimental Methodology

Our goal is to assess the validity and effectiveness of our approach. In particular,
we aim to answer the following research questions:

RQ1: Can any configuration be optimized? Considering a configuration
space, we investigate whether or not any configuration from that space can be
optimized using our approach.

RQ2: How effective is the ICO optimization approach? When the ICO ap-
proach provides a better configuration, we measure the performance discrepancy
between that configuration and the initial one.

4 https://gitlab.inria.fr/ico

https://gitlab.inria.fr/ico

Configuration Optimization with Limited Functional Impact 7

RQ3: How many iterations does it take to optimize a configuration? We
evaluate the number of iterations of ICO required to converge from an initial
configuration to its respective optimal one.

We evaluate our approach on the real-world configurable system GPL-FH
presented in Section 2. This system was selected for several reasons. First, both
its source code and feature model are publicly available, and they seamlessly
integrate as GPL-FH can be run from the command line. Second, its feature
model (presented in Figure 1) exhibits 156 configurations, thus providing a large-
enough configuration space for the optimization process to be significant.

The experiments consist in optimizing all 156 configurations regarding a pair
of performance indicators, namely the execution time (time) and the number of
lines of code (LoC). This exhaustive optimization highlights how the approach
navigates through the configuration space. To not interfere with the time mea-
surements, the logging functionality that comes as a default option of the GPL-
FH system was disabled, as it might misrepresent the actual execution time.
The GPL-FH default number of vertices was changed from 10 to 3500 to yield
a larger graph and be able to properly measure the time, thus getting mean-
ingful readings. The building time of the graph itself is excluded from the time
measurement, since constant across configurations. In order to consolidate the
measure of the time of each configuration, the experiment was repeated 20 times.
Beyond that point, the average execution time converges.

The performance of each feature w.r.t LoC and time is computed according
to the method proposed in [2], i.e., the performance of a feature w.r.t a metric is
the average performance in this metric of configurations containing this feature.
The global performance of each feature (i.e., the performance taking all metrics
into consideration) is then calculated using Formula 1. Both metrics were given
the same weight, while the optimization goal was set to a minimization of both
performance indicators. The optimization algorithm has then been applied on
each of the 156 configurations of GPL-FH: for each initial configuration, it seeks
for a better neighbor configuration that minimizes LoC and time. All measure-
ments were performed on a machine with an Intel Core i5 CPU at 2.9GHz and
8GB of RAM.

5 Results

The configuration space of GPL-FH has been exhaustively measured, providing
insight into the performance of each of the 156 configurations w.r.t LoC and time.
Figure 3 presents such performances. The best and worst time are respectively
0.09 and 23.4 seconds, while LoC ranges from 282 to 632. The optimization of a
configuration should thus provide higher variations in time than in LoC, as the
ratio between the worst and best readings for time (260) is orders of magnitude
higher than the one for LoC (2.2).

Investigating RQ1: Can any configuration be optimized? Applying the best sug-
gestion (if any) provided by Algorithm 1 to a given configuration results in either

8 E. Guégain et al.

300 350 400 450 500 550 600

5

10

15

20

25

LoC

Time (s)

Fig. 3: Performance of each GPL-FH configuration w.r.t LoC and time (lower
left corner is better).

one of the following situations: (S1) the configuration improved regarding both
performance indicators; (S2) the configuration improved regarding one perfor-
mance indicator and worsened regarding the other; (S3) the configuration did
not improve nor worsen, i.e., ICO returned no suggestion; (S4) the configuration
worsened on both indicators5.

Table 1 summarizes the performance gains resulting from applying Algo-
rithm 1 on the GPL-FH configuration space regarding the four situations dis-
cussed above. Out of the 156 configurations, 138 were modified while 18 remained
unchanged. Among the 138 modified configurations, 110 were improved regard-
ing both performance indicators, and 16 regarding only one. As a matter of fact,
all these 16 single-indicator optimizations relate to an improvement of LoC at the
expense of time. The remaining 12 configurations worsened on both performance
indicators.

RQ1: These results show the efficiency of ICO: only 8% of the configuration
space could not be improved by our approach. 12% remained unchanged
as there was no way to further optimize them, and 80% were successfully
optimized.

5 Due to inaccuracies in the performance model. See Section 6 for further analysis.

Configuration Optimization with Limited Functional Impact 9

−60 −40 −20 20 40 60 80 100 120

5

10

15

20

Removed LoC

Saved Time (s)

Fig. 4: Performance gains for each GPL-FH configuration w.r.t LoC and time

(top right corner is better).

Investigating RQ2: How effective is the ICO optimization approach? Figure 4
shows the performance gains when running ICO on the GPL-FH configuration
space. As anticipated above, variations in time were more significant than the
Loc-related ones, i.e., ranging from +96,6% to -133,6% regarding time and from
+26,5% to -17,7% regarding Loc. The 12 configurations discussed in Table 1
worsen both performance indicators (situation S4) thus represent a negative
gain and as depicted below the horizontal axis and the left side of the vertical
axis. The figure highlights that the performance loss on such features is very
limited when compared to the performance gains in other situations.

Performance change Configurations Removed LoC Saved Time (s)

w.r.t indicators (Situation) Count % worst med. best worst med. best

Optimized - both indicators (S1) 110 70 5 69 129 ∼0 0,78 20,21

Optimized - one indicator (S2) 16 10 5 5 76 -1,35 -0,01 ∼0

Unchanged (S3) 18 12 - - - - - -

Worsened - both indicators (S4) 12 8 -69 -31 -31 -0,99 -0,74 -0,15

Table 1: The effect of ICO on the GPL-FH configuration space.

10 E. Guégain et al.

RQ2: ICO provides efficient optimizations, especially for poorly perform-
ing configurations, but can sometimes worsen configurations’ performance.
Nevertheless, although worsened, these configurations remain in the top-tier
performance ranking.

Investigating RQ3: How many iterations does it take to optimize a configura-
tion? Since an initial configuration cannot be turned into an invalid one by
Algorithm 1 (see line 16), running the algorithm on each configuration of the
configuration space thus results in a set of optimized configurations which are
a subset of the initial configurations. These optimized configurations cannot be
further optimized, as they have no neighbor configuration with better perfor-
mances. Based on this inclusion, it is then possible to build a directed graph
representing all successive iterations of the algorithm.

Figure 5 depicts such a graph for the GPL-FH case study, where each node
represents a configuration. For the sake of readability, nodes are placed on a rel-
ative logarithmic scale representing their related configuration’s time and LoC,
respectively on the vertical axis and on the horizontal axis. Each edge repre-
sents the application of the first suggestion returned by Algorithm 1: the initial
configuration is the source node for that edge, while the optimized configuration
resulting from applying this first suggestion is the target node. Thus, an edge
represents the removal of a feature, the addition of a feature, or the substitu-
tion of a feature by another one. This graph is composed of 18 disconnected
sub-graphs. Each sub-graph converges towards one of the 18 configurations that
could not be optimized and remained unchanged (see Table 1, situation S3).
These 18 configurations are thus local optima, and one of them is the global
optimum.

Nb Iterations 0 1 2 3 4 5

Nb Configurations 18 61 48 22 6 1

Nb Configurations, cumulative 18 79 127 149 155 156

% remaining configurations 11.5 44.2 62.3 75.8 85.7 100

% total configurations 11.5 39.1 30.7 14.1 3.8 0.6

% total configurations, cumulative 11.5 51 81 95 99 100

Table 2: Applying ICO on the GPL-FH configuration space.

Table 2 shows the number of iterations of Algorithm 1 required by all config-
urations to converge towards their related optimized configuration. As explained
before, 18 configurations remain unchanged and therefore do not need any iter-
ation of the ICO algorithm to reach their convergence point. Regarding the 138
other configurations, a single iteration drives 61 of them (44.2%) toward their

Configuration Optimization with Limited Functional Impact 11

Fig. 5: ICO transition graph between configurations of GPL-FH. Configurations
on a relative logarithmic scale for readability, time on the vertical axis, LoC on
the horizontal axis, lower left is better.

convergence point. That is, after one iteration, 79 configurations (more than half
the configuration space) have already converged. After a second iteration, 81%
of configurations have reached their convergence point. Up to five iterations are
required to optimize the whole set of configurations, but the last two iterations
only apply to 3.8% of the configurations.

RQ3: The number of iterations required by ICO to optimize a configuration
is very limited, as (i) half of configurations are optimized after a single
iteration and (ii) the number of configurations yet to be optimized decreases
dramatically after each iteration. In this experiment, only 1 configuration
required the maximum number of five iterations to be optimized.

12 E. Guégain et al.

6 Discussion

A thorough analysis of the GPL-FH optimization graph depicted in Figure 5
provides additional findings regarding the ICO approach. The graph is composed
of four clusters of nodes: (C1) the green nodes at the bottom left; (C2) the black
nodes in the center; (C3) the “horizontal” cluster of blue nodes in the upper
part above cluster (C2); and (C4) the red nodes in the upper right corner. In
particular, we observe that all the configurations located in C4 move to C2 once
optimized. Such configurations thus share the same optimization. In particular,
they are optimized by removing the MSTPrim feature, which is characterized by
both the worst LoC and time performance.

Feature Model Design. One can also notice that no optimization edge enters or
leaves clusters C1 and C3. These two clusters are characterized by the pres-
ence of features that are mutually dependent such as Directed, WithEdges
and DirectedWithEdges (a sub-feature of the collapsed HiddenGtp feature),
which are tightly-coupled by the Directed ∧ WithEdge ↔ DirectedWithEdge

cross-tree constraint. In addition, C3 contains configurations whose couple of
features StronglyConnected and Transpose are selected, complying with the
StronglyConnected ↔ Transpose cross-tree constraint, thus preventing the
removal or addition of these features. The best-performing configuration from
C3 is actually similar to a configuration from C1, with the addition of Transpose
and StronglyConnected features that, as explained before, must be removed to-
gether. It is thus impossible to enter or leave these clusters without changing two
or three features at once, or without turning the configuration into an invalid
transitional state, which is not supported by the ICO approach. Configurations
from these clusters can only be optimized by changing other features, and con-
figurations from C2 and C4 cannot be optimized towards C1 or C3. Feature re-
lationships and cross-tree constraints also explain why the optimization process
converges towards 18 different configurations: these configurations only contain
mutually-dependent features and cannot be further improved while remaining
valid. The shape of the feature model and related cross-tree constraints can thus
hinder the capacity of ICO to optimize the entire configuration space.

Performance Model. To perform its optimization process, ICO relies on a perfor-
mance model. This model provides an estimated performance for each feature,
measured based on the method proposed in [2]. As the performance model is
estimated, it may contain measurement inaccuracies which in turn may impact
the efficiency of the approach. For instance, we observed that, while optimizing
GPL-FH, the performance of twelve configurations worsened after an iteration.
When analyzing the initial and “optimized” configurations, we found out that
the twelve performance regressions were caused by the addition of either the
feature Number or Cycle. Both of these features happen to be present in all the
configurations from C1, the cluster of best-performing configurations. However,
such good performances are actually not related to Number or Cycle alone, but
to the presence of other features in combination. The performance model seems

Configuration Optimization with Limited Functional Impact 13

thus biased toward Number and Cycle, which causes inaccuracies during the
execution of ICO.

Validity Threats. To assess our approach, we ran our experiments on a specific
configurable system (GPL-FH) and optimized it based on specific metrics, i.e.,
minimizing the execution time and the number of lines of code of configurations
from this system. Results such as the performance gains or the number of it-
erations are thus only related to this single system, and cannot be generalized.
Nonetheless, our contribution can be easily applied to any configurable system
as long as a feature model is provided. The optimization gains resulting from
applying our approach to other configurable systems will depend on the initial
performance of each configuration for such systems. We leave the evaluation of
our approach across a larger set of domains to a future study.

We ran the ICO optimization algorithm on the whole configuration space
of GPL-FH.While relying on an exhaustive performance model was convenient,
we acknowledge that this may not be practical for any case study, in particular
regarding performance models of software systems exhibiting larger configuration
spaces. Yet, it is still possible to use our approach by sampling or predicting
performance models for such larger spaces, using approaches such as [2,10,1].

7 Related Work

The management of highly configurable systems has been widely studied in the
last decade. Research has mainly addressed one of the following three areas:
(i) performance prediction, intending to estimate the performance of a configu-
ration without actually measuring it, (ii) performance optimization, to generate
optimal configurations of a system, and (iii) recommender systems, to assist
developers during the feature selection process.

Performance prediction. Performance prediction approaches have been proposed
by many researchers [7,4,14]. The aim of such approaches is to build an estimated
performance model of the system’s features. These approaches rely on machine
learning techniques to infer performance data from a sample of configurations.
One of their main objectives is to detect feature interactions – as they can have
significant impact on performances, and provide more accurate prediction than
approaches that do not consider such interactions. Relying on such performance
models, Siegmund et al. [15,17] predict the performance of configurations as
the sum of the impact of each feature on performances. Such approaches are
complementary to the current performance model of ICO, which originates from
[2], and can extend its current implementation.

Performance optimization. Many approaches have been proposed to address per-
formance optimization for configurable systems. Such approaches strive to locate
optimal or near-optimal configurations w.r.t some performance indicators. Sev-
eral studies provide deterministic approaches [22,11,10] to tackle this challenge.
Other authors like Hierons et al. rely on genetic algorithms to minimize the

14 E. Guégain et al.

number of measurements needed to optimize configurations [5], or leverage the
performance predictions methods discussed above [16]. Such approaches do not
take an initial configuration into consideration. For instance, Nair et al. [10] start
their optimization process from a random configuration. In contrast to such ap-
proaches, the approach proposed in this paper aims at optimizing a set of perfor-
mance indicators while remaining as close as possible to the initial user-defined
configuration. This optimization goal is shared with the approach of Soltani et
al., which takes user’s preferences into consideration to optimize a configuration,
but yet does not support the optimization of pre-existing configurations [18].

Recommender systems. In recent years, we observed an increased interest in
studies applying tools and approaches to assist users during the configuration
of their systems. Such systems provide recommendations to the users based on
their functional needs. For instance, Pereira et al. propose a visual recommender
system [13] based on proximity and similarity between features. Similarly, Zhang
et al. [21] use dynamic profiling and analyze the stack trace of the system to lo-
cate features that can be changed without altering the functional behavior of the
system. Other approaches, such as [9] or [6], aim at updating the configuration
of the system while it is running, in order to adapt it to the evolution of its
environment. To the best of our knowledge, no recommender system provides
suggestions based on both functional and performance considerations.

8 Conclusion

This paper introduced ICO, an iterative approach to optimize configurations re-
garding defined performance indicators. Considering an initial configuration to
optimize, ICO estimates the performance of neighbor configurations, i.e., con-
figurations that distinguish from the initial one by a single feature (de)selection
change. ICO provides performance improvement suggestions to drive the opti-
mization process, which can be run either in fully automated mode or based on
the developer’s inputs. We evaluated our approach on a real-world example by
running ICO on its entire configuration space, and our experiments showed that
ICO significantly improved 80% of the configurations.

As future work, we plan to improve the accuracy of performance sugges-
tions provided by ICO by relying on more accurate performance models and
performance prediction techniques. We also plan to extend the capabilities of
ICO supporting multiple feature changes at once, e.g., in highly heterogeneous
systems such as Edge and Fog computing systems. In such systems, the wide
range of possibilities (e.g., component-level resource allocation and computation
models) results in a huge configuration space that is not manually manageable.

Acknowledgements

The research leading to these results received funding from French Research
Agency through the ANR-19-CE25-0003-01 KOALA project and from the Nor-
wegian Research Council through the DILUTE project (Grant No. 262854/F20).

Configuration Optimization with Limited Functional Impact 15

References

1. Acher, M., Martin, H., Lesoil, L., Blouin, A., Jézéquel, J.M., Khelladi, D.E., Barais,
O., Pereira, J.A.: Feature subset selection for learning huge configuration spaces:
The case of linux kernel size. In: Proceedings of the 26th ACM International Sys-
tems and Software Product Line Conference - Volume A. p. 85–96. SPLC ’22,
Association for Computing Machinery, New York, NY, USA (2022)

2. Guégain, E., Quinton, C., Rouvoy, R.: On reducing the energy consumption of
software product lines. In: Proceedings of the 25th ACM International Systems
and Software Product Line Conference - Volume A. p. 89–99. SPLC ’21 (2021)

3. Guégain, E., Taherkordi, A., Quinton, C.: The ICO Tool Suite: Optimizing
Highly Configurable Systems (Nov 2022), https://hal.archives-ouvertes.fr/
hal-03874051, preprint.

4. Guo, J., Czarnecki, K., Apel, S., Siegmund, N., Wasowski, A.: Variability-aware
performance prediction: A statistical learning approach. pp. 301–311 (2013)

5. Hierons, R.M., Li, M., Liu, X., Segura, S., Zheng, W.: Sip: Optimal product se-
lection from feature models using many-objective evolutionary optimization. ACM
Trans. Softw. Eng. Methodol. 25(2) (Apr 2016)

6. Horcas, J.M., Pinto, M., Fuentes, L.: Context-aware energy-efficient applications
for cyber-physical systems. Ad Hoc Networks 82, 15–30 (2019)

7. Kaltenecker, C., Grebhahn, A., Siegmund, N., Apel, S.: The interplay of sampling
and machine learning for software performance prediction. IEEE Software 37, 58–
66 (2020)

8. Metzger, A., Pohl, K.: Software product line engineering and variability manage-
ment: Achievements and challenges. In: Future of Software Engineering, FOSE
2014, Hyderabad, India, May 31 - June 7, 2014. pp. 70–84 (2014)

9. Metzger, A., Quinton, C., Mann, Z., Baresi, L., Pohl, K.: Realizing self-adaptive
systems via online reinforcement learning and feature-model-guided exploration.
Computing (Mar 2022)

10. Nair, V., Yu, Z., Menzies, T., Siegmund, N., Apel, S.: Finding faster configurations
using flash. IEEE Transactions on Software Engineering 46(7), 794–811 (2020)

11. Olaechea, R., Stewart, S., Czarnecki, K., Rayside, D.: Modelling and multi-
objective optimization of quality attributes in variability-rich software. In: Proceed-
ings of the Fourth International Workshop on Nonfunctional System Properties in
Domain Specific Modeling Languages. NFPinDSML ’12 (2012)

12. Pereira, J.A., Acher, M., Martin, H., Jézéquel, J.M., Botterweck, G., Ventresque,
A.: Learning software configuration spaces: A systematic literature review. Journal
of Systems and Software 182, 111044 (2021)

13. Pereira, J.A., Matuszyk, P., Krieter, S., Spiliopoulou, M., Saake, G.: A feature-
based personalized recommender system for product-line configuration. In: Pro-
ceedings of the 2016 ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences. pp. 120–131 (2016)

14. Siegmund, N., Grebhahn, A., Apel, S., Kästner, C.: Performance-influence models
for highly configurable systems. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. p. 284–294. ESEC/FSE 2015 (2015)

15. Siegmund, N., Kolesnikov, S.S., Kästner, C., Apel, S., Batory, D., Rosenmüller, M.,
Saake, G.: Predicting performance via automated feature-interaction detection. pp.
167–177 (2012)

16. Siegmund, N., Rosenmüller, M., Kuhlemann, M., Kästner, C., Apel, S., Saake,
G.: Spl conqueror: Toward optimization of non-functional properties in software
product lines. Software Quality Journal 20, 487–517 (2012)

https://hal.archives-ouvertes.fr/hal-03874051
https://hal.archives-ouvertes.fr/hal-03874051

16 E. Guégain et al.

17. Siegmund, N., Rosenmüller, M., Kästner, C., Giarrusso, P.G., Apel, S., Kolesnikov,
S.S.: Scalable prediction of non-functional properties in software product lines:
Footprint and memory consumption. Information and Software Technology 55,
491–507 (2013)

18. Soltani, S., Asadi, M., Gašević, D., Hatala, M., Bagheri, E.: Automated planning
for feature model configuration based on functional and non-functional require-
ments. In: Proceedings of the 16th International Software Product Line Conference
- Volume 1. p. 56–65. SPLC ’12 (2012)

19. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Featureide:
An extensible framework for feature-oriented software development. Science of
Computer Programming 79, 70–85 (1 2014)

20. Xu, T., Jin, L., Fan, X., Zhou, Y., Pasupathy, S., Talwadker, R.: Hey, you have
given me too many knobs!: Understanding and dealing with over-designed con-
figuration in system software. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering. p. 307–319. ESEC/FSE 2015, Association
for Computing Machinery, New York, NY, USA (2015)

21. Zhang, S., Ernst, M.D.: Which configuration option should i change? In: Proceed-
ings of the 36th International Conference on Software Engineering. p. 152–163.
ICSE 2014, Association for Computing Machinery, New York, NY, USA (2014)

22. Švogor, I., Crnković, I., Vrček, N.: An extensible framework for software configu-
ration optimization on heterogeneous computing systems: Time and energy case
study. Information and Software Technology 105, 30–42 (2019)

	Configuration Optimization with Limited Functional Impact

