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Abstract

A large class of networks is able to provide some guar-
antees in terms of quality of service, end-to-end delays
and throughput to data flows. In return, the data flows
must verify constraints of burstiness and throughput.
The aim of this work is to introduce and evaluate the
network coding for independent flows in such networks.
First, we present efficient coding nodes strategies allow-
ing the building of output flows as a combination of a
subset of all the input flows. These strategies are eval-
uated in terms of maximal output throughput, max-
imum buffer size and maximal crossing-delays of the
network node. In a second part, we show that a gener-
alization of these results to a complete network can be
obtained through a transfer matrix whose entries are
expressed in terms of network calculus. Thanks to the
formalism used to characterize the flows, the obtained
results can be considered as guarantees in terms of the
burstiness, buffers size or end-to-end delays.

1. Introduction

Several works have demonstrated the potential of
the network coding to improve the throughput or the
reliability of multicast, broadcast or unicast flows in
practical cases [1] [2] [3] [4].

Compared with the theoretical hypothesis on the
network, which assume a fluid traffic and a synchro-
nization of the network nodes, practical applications
must cope with several problems, such the variable de-
lays and rates on the different paths.

In this work, we consider the integration of network
coding in the large class of networks providing qual-
ity of service (QoS) guarantees. In these networks, the
data flows verify constraints of burstiness and maximal
throughput and in return, the network provides guar-
antees in terms of end-to-end delays, minimal through-

put to the data flows. Examples of such networks are
ATM networks or IntServ and DiffServ IP networks.

In these networks, a useful framework to the differ-
ent constraints, bounds and service guarantees is the
network calculus framework [5]. This theory can help
to analyze flows, networks and its elements by algebraic
methods. It allows to calculate the maximum and the
minimum bounds of delay and backlog.

The main issues addressed here are :

1. can we improve the levels of guarantee offered to
the flows (maximum end-to-end delay, through-
put) with network coding ?

2. can we improve the network parameters (link use,
buffer size) with network coding ?

The hypothesis made in this work are the following:
The input flows, considered as a sequence of pack-

ets of same length, are non-synchronized and they can
be temporarily idle. They have one or several sources
and one or several receivers. Each flow verifies con-
straints of burstiness and throughput. The network is
represented by a graph G = (V,E) where V is a set
of nodes and E is a set of directed edges. The edges
have a given capacity. The set of nodes is split into
three categories. The first one is the source nodes gen-
erating the flows. The second subset is composed of
the coding nodes which are able to perform network
coding operations following a given strategy (service
policy). They are composed of network elements like
buffers and/or shapers, each one guarantying a service
level. The other nodes are the receiver nodes which
receive and decode the combined flows.

We assume that a linear network code is determined
a priori for this network. Consequently, each coding
node knows how to combine its input flows to produce
the output flows.

The objectives are the following. From



- the constraints on the input flows
- the guaranteed services of the network elements
- the strategy of the coding nodes
we express guarantees on :
- the delay for the receivers to receive the data
- the level of utilization of a link by a flow
- the buffer sizes
The first problem we address is to determine the

coding node strategy. Since the input flows are in-
dependent, non-synchronized, possibly idle, and have
different rate and burstiness, all the packets can not
be obviously combined. This implies that some pack-
ets are combined following the network code and other
ones are simply multiplied by the coefficient determined
by the linear network code and forwarded without com-
bination with other packets (or equivalently, combined
with the null packet).

The node strategy must be able to take into account
the interests of both the flows and the network. Indeed,
it should ensure a minimum level of combination in the
output flow in order to decrease the total amount of
data transmitted on the output link. On the other side,
it should avoid to strongly constrain the flows by e.g.
delaying packets in order to combine them with packets
of another flow. Indeed, this operation increases the
total crossing-network delay observed by the receiver.

The proposed coding strategy is described through
an node architecture based on leaky bucket shapers and
synchronized buffers. This strategy ensures that the
maximal rate of the output flows is the maximum of
the maximal rates of the input flows. The extension
of these results at the network level is also presented.
It allows in particular to obtain maximum bounds on
delays at the receiver side. This generalization is done
through the use of a transfer matrix defined over the
min-plus algebra of network calculus.

The next Section presents related work in the do-
mains of network coding and network calculus for ag-
gregated flows. The proposed coding node strategy and
the associated results are presented in Section 3. The
generalization to the network is proposed in Section
4. A discussion about decoding issues is presented in
Section 5 and the last Section concludes.

2. Related Work

2.1. Network coding

To implement network coding in practical networks,
several work proposed strategies for coding nodes poli-
cies. In different contexts, [6], [2] present solutions en-
suring the encoding of all the packets in coding nodes.
In [6], the problems of implementation are solved by

considering that the network coding is done at appli-
cation level and that the nodes have more capabilities
than classical router or switches. In the two latter ones,
the implementations are based on particular network
nodes strategies to cope e.g. with the asynchronous
data arrivals which involves buffering information at
coding nodes in order to code them with other incom-
ing information from the same batch. An alternative
proposed for cyclic networks is to take a continuous
coding approach [7] [8] where information from differ-
ent time periods is combined.

To the best of our knowledge, the problem of ex-
tracting guaranteed service of networks implementing
network coding was not addressed.

2.2. Network Calculus

Network Calculus is a framework providing deter-
ministic bounds on end-to-end delays and backlogs. A
detailed presentation of this theory can be found in [5].
Other pioneering work on this subject are e.g. [9, 10].

The following definitions and results are extracted
from [5].

1. A data stream F transmitted on a link can be
described by the cumulative function R(t), such
that for any y > x, R(y − x) is the quantity of
the data transmitted on this link in time interval
[x, y].

2. Let F be a data stream with cumulative function
R(t). We say that an increasing function α is
an arrival curve of F (or equivalently R) if for
any 0 ≤ t1 ≤ t2, R(t2) − R(t1) ≤ α(t2 − t1).
A common class of arrival curves are the affine
functions γr,b(t) = rt+b for t > 0 and 0 otherwise.
The curve γr,b(t) = rt + b represents the arrival
curve of the leaky bucket controller with leak rate
r and bucket size b.

3. The min-plus convolution of two functions X and
Y is defined as X(t) ⊗ Y (t) = inf0≤s≤t

(X(s) +
Y (t − s)). It can be shown that α is an arrival
curve of R if and only if R ≤ R⊗ α.

4. Let Rout be the output flow of a node with
one input flow R. We say that the node of-
fers a service curve β(t) to R if for any t > 0,
Rout(t) ≥ R(t)⊗ β(t).

5. Assume a flow R(t), constrained by an arrival
curve α(t) traverses a system that offers a service
curve of β. The output flow Rout is constrained
by the arrival curve α � β, where (α � β)(t) =
sup

v≥0{α(t + v)− β(v)} .



6. The backlog, defined as R(t) − Rout(t) for all t,
satisfies R(t) − Rout(t) ≤ sups>0{α(s) − β(s)}.
The virtual delay d(t), for all t, satisfies: d(t) ≤
h(α, β), where h(α, β) = sups>0{δ(s)} where
δ(s) = inf{τ ≥ 0 : α(s) ≤ β(s + τ)}.

7. The Staircase Functions vT,τ used for T-periodic
stream of packets of same size L which suffer a
variable delay τ is defined as :

vT,τ (t) =
{
d t+τ

T e if t > 0
0 otherwise

where T > 0 and 0 ≤ τ ≤ T .

3. Network Coding Node Strategy

The approach we develop in this paper focuses on
minimizing the backlogs and the crossing-network de-
lays. Such strategy leads to combine a subset of the
data and then to forward the other part (multiplied
by the scalar coefficient affected by the linear network
code).

3.1. Definitions and assumptions

For sake of simplicity, we consider in this section
a coding node with 2 input flows and one output flow
Rout. Note that the results presented in this Section
can be easily extended to nodes with more input and
output flows.

The two input flows and the output flow are respec-
tively represented by their cumulative functions R1, R2

and Rout. The input flows are composed of packets of
length L. They are supposed to be independent, non-
synchronized and they can be temporarily idle. We
consider that the links have an infinite capacity (this
constraint will be discussed later).

We consider that the input flows Ri, for i = 1, 2,
are constrained by the arrival curve αi, where αi(t) =
σi + L ∗ vL/ρi,−L/ρi

(t) for t > 0 and 0 otherwise. This
corresponds to a stair function with backlog σi and av-
erage rate of ρi (see Figure 1-a). For sake of simplicity,
we consider that the values σ1 and σ2 are multiple of
L. Let us define ρ = max(ρ1, ρ2) and T = L/ρ.

Let us defined Rout
i as the cumulative functions of

the subset of the data of Rout obtained from data of Ri

(either combined with packets of other flows or simply
multiplied by a coefficient).

We define the delay experienced by a data as the
difference between the time when it arrives at the node
and the time when it leaves it.

The backlog of a flow R1 (resp. R2) in the node
at the time t is the amount of data ”in transit” in the
node.

Figure 1: (a) staircase arrival curve. (b) coding node
Architecture.

3.2. Coding node architecture

The architecture we propose is represented in 1(b).
It is composed of two greedy Leaky Bucket Shapers,
LBS1 and LBS2, and two FIFO buffers B1 and B2.
The flow R1 (resp. R2) traverses the leaky bucket
shaper LBS1 (resp. LBS2) and the buffer B1 (resp.
B2) in sequence. LBS1 (resp. LBS2) has a buffer size
σ1 (resp. σ2) and offers a service L ∗ vT,0(t) to the
flow. This operation consists in shaping the flow such
that there is at least a time interval T between two
packets. It can be shown that the flow R1 (resp. R2),
which is α1-smooth (resp. α2-smooth) is conformant
with LSB1 (resp. LBS2).

The buffers B1 and B2 are synchronized and offer
the same service curve of L ∗ vT,−T (t) to the flows.
In other words, after each time interval T , the buffers
authorize a packet to leave (if there is one) simultane-
ously. The two output packets of the buffers are then
multiplied by a scalar and added. We consider that
these operations do not add additional delays. If one
of the buffer does not contain any packet, the packet
leaving the other buffer is multiplied by the scalar and
forwarded (i.e. it is combined with a null packet).

The output flows of the buffers are represented by
their cumulative functions Rout

1 and Rout
2 . Actually,

these functions also represent the amount of data of
Rout obtained respectively from data of R1 and R2.

Under these assumptions, we can obtain the follow-
ing properties for the node :

Theorem 1 There exists a service policy for a coding
node ensuring that, for i = 1, 2:

1. The service curve βi provided by the node to Ri

is equal to L ∗ vT,−T (t).

2. the maximum delay experienced by a data of Ri

is T (1 + σi/L).

3. the maximum backlog is equal to σi.



4. Rout
i is constrained by αi � L ∗ vT,−T .

5. Rout is constrained by (α1 � L ∗ vT,−T ) ∨ (α2 �
L ∗ vT,−T

Proof. Let us now determine the service curve of-
fered by the node to the flows. Since LBS1 is greedy,
the flow which leaves LBS1 is equal to [R1(t) ⊗ L ∗
vT,0(t)]. Then it is served by the buffer B1 with a ser-
vice curve L ∗ vT,−T (t)]. It follows that :

Rout
1 (t) ≥ (R1(t)⊗ L ∗ vT,0(t))⊗ L ∗ vT,−T (t)

≥ R1(t)⊗ {L ∗ vT,0(t)⊗ L ∗ vT,−T (t)}
≥ R1(t)⊗ L ∗ vT,−T (t)

Thus, L ∗ vT,−T (t) is a service curve offered by the
node to R1. The same result holds for R2.

The backlog and the delay for R1 and R2 can be
then deduced. The maximum backlog of the flow Ri is
given according to (point 6 - section 2.2) by:

bi(t) ≤ sup
s≥0

{αi(s)− L ∗ vT,−T (s)}

≤ sup
s≥0

{σi + L ∗ vTi,−Ti
(s)− L ∗ vT,−T (s)}

≤ σi.

Following (point 6 -section 2.2), the maximum de-
lay di experienced by a packet from a flow Ri is upper-
bounded by :

di(t) ≤ sup
t≥0

{inf{τ ≥ 0 : αi(t) ≤ L ∗ vT,0(t + τ)}}

≤ sup
t≥0

{inf{τ ≥ 0 : σi + L ∗ vTi,−Ti(t) ≤

L ∗ vT,0(t + τ)}}

≤ σi+L
ρ = T (1 + σi/L)

(see Section 2.2- point 7) indicated in the theorem.
This flow is then served by the buffer with service

curve L ∗ vT,−T . Then an arrival curve of Rout
i is equal

to αi � {L ∗ vT,0 ⊗ L ∗ vT,−T } = αi � L ∗ vT,−T .
Since 1) the buffers B1 and B2 are synchronized, 2)

the packets leaving the two buffers are added (XOR-
ed) and 3) an arrival curve of Rout

i is equal to αi �L ∗
vT,−T , then the flow Rout is necessarily constrained by
(α1 � L ∗ vT,−T ) ∨ (α2 � L ∗ vT,−T ).

Notes: The hypotheses taken on the capacity of
the links was that all the links have an infinite capacity.
From the proposed node architecture, we can reduce it
without damage to Max

i=1,2(ρi).

4. Network-level Bounds

The aim of this section is to analyse and to deter-
mine the properties of a network composed of nodes
built as described in the previous section.

Let us consider a delay-free communication network
represented by an acyclic directed graph G = (V,E)
with a vertex set V = {v1, . . . , vm} and an edge set
E = {e1, . . . , ep}. We allocate to each edge ei a capac-
ity Cei

. We consider that s vertex among the m are
source nodes and r are receiver nodes. We assume that
the source nodes generate some flows Ri, i = 1, . . . , k,
respectively constrained by an arrival curve αi. Each
source node offers a given service curve to its flows to-
wards its different output links.

A coding node with input links and output links
combines the input flows to produce the output flows
following a linear network code determined a priori.
We consider that its input flows R1, . . . , Rr are respec-
tively constrained by the arrival curves α1,in . . . , αr,in.
It offers to each of its input flows a service curve to-
wards each of the output flows. Let βi,j , i = 1, . . . , r
and j = 1, . . . , s be the service curve offered by the cod-
ing node to the input flow Ri towards the jth output
flow Rj,out.

It Rj,out is constrained by the arrival curve αj,out,
then we assume that the coding node policy satisfies
the following property :

αj,out = α1,in � β1,j ∨ . . . ∨ �αr,in � βr,j

This property is verified for the coding strategy pro-
posed in the previous section. Note that any coding
strategy verifying this property can use the results pre-
sented in this section.

We consider that the receivers decode the flows from
the input flows. The delays due to the decoding process
are not studied since the main goal of this paper is
to evaluate the impact of the network coding on the
network.

An example of such network is given in Figure 2.
This section aims at determining the service offered

by the network to the input flows towards the receivers.
In others words, we aim at defining a transfer matrix
M whose entries are service curves such that :

[α∗1, . . . , α
∗
n] = [α1, . . . , αk]�M (1)

where the α∗n are the input flows of the receivers.
The proposed construction follows the construction

of the transfer matrix for a linear network code pre-
sented in [7] excepted for the decoding part. The main
difference is that, in [7], the coding nodes perform lin-
ear combinations over a finite field such e.g.

Y = X1 ∗ β1 + X2 ∗ β2

where X1, X2 and Y are random processes representing
the flows and β1 and β2 belong to a finite field. In our



Figure 2: Simple delay-free, acyclic, directed network
with two sources A and B generating the input flows
R1, R2 with respective arrival curves α1 and α2. The
two sinks (or receiver nodes) are the nodes 5) and 6).
The nodes 1), 2), 3) and 4) are the Coding Nodes. Each
node offers a given service curve to their input flows
toward their output flows.

context, the node perform operations on service and
arrival curves, such e.g.

Y = X1 � β1 ∨X2 � β2

where X1, X2 and Y are arrival curves and β1 and β2

are service curves.
However, the operations on the curves must be ma-

nipulated carefully. Indeed, the construction of the
transfer matrix is based on products of matrices over a
finite field. Here, we have to define the operations that
must be used for service curves and matrices of service
curves.

We recall three rules of network calculus :
1) (α� β1)� β2 = α� (β1 ⊗ β2)
2) (α� β1) ∨ (α� β2) = α� (β1 ∧ β2)
3) (α1 ∨ α2)� β = (α1 � β) ∨ (α2 � β)
For 1) and 3), see [5]. The equation 2) can be di-

rectly obtained for the definition of the � operation.
The two first points concern some operations in-

cluding only one arrival curve. These operations are
then typically the one that must be used to compute
the multiplication of matrices of service curves. The
last one includes two arrival curves. Thus, it will be
used in the vector-matrix multiplication.

Recall that p, k and n represent respectively the
number of edges, input flows, and output flows. We
will say that an edge i (or a flow) is connected to an
edge j (or a flow) if the head of the edge i is the tail of
the edge j. Let us now define the following matrices:

Let A = (ai,j)i=1,...,k;j=1,...,p be defined as follows.
If the flow Ri is connected to the flow on the edge

j, then ai,j = βi,j is the service curve offered to Ri

towards the flow on the edge j; else ai,j = 0.
For the network of the Figure 2, we have :

A =

[
0 0 β13 0 β15 0 0 0 0
0 0 0 β24 0 0 β27 0 0

]

Let F = (fi,j)i=1,...,p;j=1,...,p be the adjacency ma-
trix defined as follows. If the edge i is connected to the
edge j, then fi,j = βi,j is the service curve offered to
the flow on the edge i towards the flow on the edge j;
else fi,j = 0.

For the network of the Figure 2, we have :

F =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 β36 0 0 0
0 0 0 0 0 β46 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 β68 β69

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


Intuitively, the multiplication of a vector of inputs

by M indicates the state of the inputs after one hop.
Similarly, the multiplication of a vector of inputs by
M i indicates the state of the inputs after i hops.
Since the graph G is acyclic, the adjacency matrix
can be represented as a strict upper-triangular matrix.
It is then nilpotent and we can compute the matrix
I + F + F 2 + F 3 + . . . which indicates the states of the
input flows in the network.

For the network of the Figure 2, I+F +F 2+F 3+. . .
is equal to :

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 β36 0 β36 ⊗ β68 β36 ⊗ β69

0 0 0 1 0 β46 0 β46 ⊗ β68 β46 ⊗ β69

0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 β68 β69

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


The transfer matrix can be obtained :

M = A× (I + F + F 2 + . . .)

For the network of the Figure 2, M is equal to :[
0 0 β13 0 β15 β13 ⊗ β36

0 0 0 β24 0 β24 ⊗ β46

0 β13 ⊗ β36 ⊗ β68 β13 ⊗ β36 ⊗ β69

β27 β24 ⊗ β46 ⊗ β68 β24 ⊗ β46 ⊗ β69

]



Now we can find each flow from the receivers input
flows by calculation of the max value of all the decon-
volution between the network input flows and the own
column of this flow in the preceding matrix.[

α∗
5 α∗

8 α∗
9 α∗

7

]
=

[
α1 α2

]
�

[
β15 β13 ⊗ β36 ⊗ β68 β24 ⊗ β46 ⊗ β68 0
0 β13 ⊗ β36 ⊗ β69 β24 ⊗ β46 ⊗ β69 β27

]
For example:

α∗8 = {α1� (β13⊗β36⊗β68)}∨{α2� (β24⊗β46⊗β68)}

This simple example demonstrated the interest of
the network coding in this context. Indeed, compared
to a traditional approach (with two multicast sources
and two receivers) multiplexing the flows, the network
coding allows to improve the guaranteed throughput if
we consider that the edge 6 has a finite capacity. In
this case, the deterministic bound on the end-to-end
delays is also improved.

5. Decoding issues

The approach used in the last sections was entirely
focused on optimizing the network parameters such the
delay, the backlog and the throughput. Even if we as-
sume that a network code was designed and that the
coding nodes always perform the same linear opera-
tions on the input flows, the variable throughput, the
different lengths of the multiple paths, the jitter and
the losses occurring in real networks could lead to a
near-random code.

The analysis of the decoding performance of pro-
posed approach is out the scope of this paper. How-
ever, many recent works have shown that randomized
coding could provide a interesting statistical level of
reliability [8]. Moreover, in networks with guarantees
of service, the ”random” parameters are minimized. It
follows that a detailed analysis of the network param-
eters should lead to the construction of codes ensuring
a high level of reliability.

6. Conclusion

This paper has provided a solution to introduce the
network coding in networks with service guarantees. A
coding strategy was proposed to obtain minimal upper
bounds on the rate of the output flow without excessive
buffering and delays. The second part of this paper has
presented a method to obtain global service curves of
the network. This method is based on a transfer matrix
whose the entries are service curves.

This work can be extended by several ways. First,
the produced code is partially-random and the decod-
ing performance will be precisely evaluated. Another
point concerns the strategy of the coding nodes and
more particularly the analyse of the trade-offs between
the network parameters and the end-users parameters.
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