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Given an ω-automaton and a set of word homomorphisms, we look at which accepted words have such a substitutive structure, and in particular if there is at least one. We introduce a method using desubstitution of ω-automata to describe the structure of preimages of accepted words under arbitrary sequences of homomorphisms: this takes the form of a meta-ω-automaton. We decide the existence of an accepted purely substitutive word, as well as the existence of an accepted fixed point. In the case of multiple substitutions (non-erasing homomorphisms), we decide the existence of an accepted infinitely desubstitutable word, with possibly some constraints on the sequence of substitutions (e.g. Sturmian words or Arnoux-Rauzy words). As an application, we decide when a set of finite words codes e.g. a Sturmian word. As another application, we also show that if an ω-automaton accepts a Sturmian word, it accepts the image of the full shift under some Sturmian morphism.

Sturmian and infinitely desubstitutable words accepted by an ω-automaton 1 Introduction

One-dimensional symbolic dynamics is the study of infinite words and their associated dynamical structures, and is linked with combinatorics on words. Two classical methods to generate words are the following: on the one hand, sofic shifts are the set of walks on a labeled graph (which can be considered as an ω-automaton) [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF]; on the other hand, the substitutive approach consists in iterating a word homomorphism on an initial letter. The latter method was introduced by Axel Thue as a way to create counterexamples to conjectures in combinatorics on words [START_REF] Berstel | Axel thue"s papers on repetitions in words: a translation[END_REF]. It is then natural to ask whether a given ω-automaton accepts a word with a given substitutive structure. Carton and Thomas provided a method to decide this question in the case of substitutive or morphic words on Büchi ω-automata, using verification theory and semigroups of congruence [START_REF] Carton | The monadic theory of morphic infinite words and generalizations[END_REF]. This result was partially reproved by Salo [START_REF] Salo | Decidability and universality of quasiminimal subshifts[END_REF], using a more combinatorial point of view. For the last 20 years, the substitutive approach (iterating a single homomorphism) has been generalized to the S-adic approach [START_REF] Ferenczi | Rank and symbolic complexity[END_REF] that lets one alternate betweeen multiple substitutions. This more general framework lets us describe other natural classes, such as the family of Sturmian words.

In this paper, we develop a new method based on desubstitutions of ωautomata. We can express the preimages of an ω-automaton by any sequence of substitutions through a meta-ω-automaton, whose vertices are ω-automata and whose edges are labeled by substitutions. We use this meta-ω-automaton to decide whether an ω-automaton accepts a purely substitutive word (giving an alternative proof of [START_REF] Carton | The monadic theory of morphic infinite words and generalizations[END_REF]), or a fixed point of a substitution, or a morphic word, or an infinitely desubstitutable word (by a set of substitutions). The method is flexible enough to allow for additional constraints on the directive sequences of substitutions, which is powerful enough for example to decide whether an ω-automaton accepts a Sturmian word. A consequence is the decidability of whether a given set of finite words codes some Sturmian word (or from any family with an Sadic characterization). We also describe the set of directive sequences of words accepted by some ω-automaton, which is an ω-regular set.

The meta-ω-automaton also provides a more combinatorial insight on how Sturmian words and ω-regular languages interact: namely, that an ω-automaton accepts a Sturmian word if, and only if, it accepts the image of the full shift under a Sturmian morphism.

Definitions

Words and ω-automata

An alphabet A is a finite set of symbols. The set of finite words on A is denoted as A ˚. A (mono)infinite word is an element of A N . It is usual to write x " x 0 x 1 x 2 x 3 . . . where x i " xpiq P A. If x is a word, |x| is the length of the word (if x is infinite, then |x| " 8). For a word x and 0 ď j ď k ă |x|, x j,k is the word x j x j`1 x j`2 . . . x k´1 x k and is called a factor of x. For a finite word w and x a (possibly infinite word), w ĺ f x means that w is a factor of x, and w Ď p x means that w is a prefix of x.

It is possible to endow A N with a topology, called the prodiscrete topology. The prodiscrete topology is defined by the clopen basis rws n " tx P A N | x n x n`1 . . . x n`|w|´1 " wu for w P A ˚. To this topology, we can adjunct a dynamic with the shift operator S: S :

ˆAN Ñ A N x " x 0 x 1 x 2 x 3 . . . Þ Ñ Spxq " x 1 x 2 x 3 x 4 . . . Ȧ set X Ď A N is called a shift (space) if it
is stable by S and closed for the prodiscrete topology. In particular, A N is a shift space, called the full shift (space).

Another fundamental class of shifts is the one of sofic shifts. Although the traditional way to define them uses labeled graphs (see [START_REF] Lind | An Introduction to Symbolic Dynamics and Coding[END_REF]), we will here use the notion of ω-automata, which is equivalent.

Definition 1 (ω-automaton

). An ω-automaton A over an alphabet A is a tuple pQ, I, T, Accq, where Q is a finite set of states, I Ď Q is the set of initial states, T Ď Q ˆA ˆQ is the set of transitions of A and Acc Ď Q N Y Q ˚is an acceptance condition (see the following definition).

We extend several classical notions from finite automata. We write transitions as q s a Ý Ñ q t P T . Definition 2 (Computations and walks). For n ě 1 (or n " 8), a sequence pq k q 0ďkďn with q k P Q is a walk in A if there is pa k q 1ďkďn Ď A such that for all k, q k a k`1 Ý ÝÝ Ñ q k`1 P T . We then write q 0 a1 Ý Ñ q 1 a2 Ý Ñ q 2 a3 Ý Ñ ¨¨¨a n Ý Ý Ñ q n . The word w " pa k q 1ďkďn labels the walk.

A walk pq k q 0ďkďn is accepting if it is in Acc and q 0 P I. A word w " pa k q 0ďkďn´1 is accepted by A if it labels an accepting walk pq k q 0ďkďn , and q

0 a1 Ý Ñ q 1 a2 Ý Ñ q 2 a3 Ý Ñ ¨¨¨a n Ý Ý Ñ q n is
a computation accepting w. To be clear, a computation is an accepting walk associated with an accepted word that labels it.

The most classical type of acceptance condition is the Büchi condition [START_REF] Thomas | Languages, Automata, and Logic[END_REF]: one chooses a set Q F Ď Q of final states, and only the walks visiting Q F infinitely many times are accepted. However, in contrast to much of the literature, in this paper, when Acc is not specified, we will consider that Acc " Q N Y Q ˚, i.e. that every walk is accepted. Definition 3 (Language of an ω-automaton). Let A be an ω-automaton. The language of finite words of A is L F pAq " tw P A ˚| w is accepted by Au. The language of infinite words of A is L 8 pAqqtw P A N | w is accepted by Au. Then, the language of A is LpAq " L F pAq Y L 8 pAq.

If all states of A are initial (I " Q), its language of infinite words is a shift (called a sofic shift) .

Substitutions

Definition 4 (Homomorphisms and substitutions). A homomorphism is a function σ : A ˚Ñ A ˚such that σpuvq " σpuqσpvq for all u, v P A ˚. σ is extended to A N Ñ A N by σpx 0 x 1 x 2 x 3 . . . q " σpx 0 qσpx 1 qσpx 2 qσpx 3 q . . . A substitution is a nonerasing homomorphism, that is, σpaq ‰ ε for all letters a P A.

Definition 5 (Fixed points, purely substitutive, substitutive and morphic words). Let σ, τ : A N Ñ A N be two homomorphisms. An infinite word x P A N is:

a fixed point of σ if σpxq " x; a purely substitutive word generated by σ if there is a letter a P A such that

x " lim nÑ8 σ n paq and the limit is well-defined;

a morphic word generated by σ and τ if x " τ pyq, where y is a purely substitutive word generated by σ; a substitutive word generated by σ if x is a morphic word with τ being a coding, i.e. τ pAq Ď A.

It is now possible to extend these definitions in the case we use multiple homomorphisms. However, most of literature revolves around the use of multiple non-erasing homomorphisms (substitutions), and we will stick to this case. Let pσ n q nPN be a sequence of substitutions. The equivalent of a fixed-point of one homomorphism is an infinitely desubstitutable word by a sequence of substitutions: Definition 6 (Infinitely desubstitutable words and directive sequences). Let S be a finite set of substitutions, and let pσ n q nPN Ď S. An infinite word x is infinitely desubstitutable by pσ n q nPN (called a directive sequence of x) if, and only if, there exists a sequence of infinite words px n q nPN such that x 0 " x and x n " σ n px n`1 q. An infinite word x is infinitely desubstitutable by S if x is infinitely desubstitutable by some directive sequence pσ n q nPN Ď S.

Just like for words, we write σ i,j " σ i ˝σi`1 ˝¨¨¨˝σ j . Then x is infinitely desubstitutable by pσ n q nPN if, and only if, there is a sequence of infinite words px n q nPN such that x " σ 0,n px n`1 q for all n ě 0.

3 Finding substitutive and infinitely desubstitutable words in ω-automata

Desubstituting ω-automata

In this section, we explain our main technical tool: an effective transformation of ω-automaton, called desubstitution. We define it for the broad case of possibly erasing homomorphisms.

Definition 7 (Desubstitution of an ω-automaton). Let A " pQ, I, T q be an ω-automaton, and σ a homomorphism. Then, we define σ ´1pAq as the ωautomaton pQ, I, T 1 q where, for all q 1 , q 2 P Q and a P A, q 1 a Ý Ñ q 2 P T 1 iff

q 1 σpaq Ý ÝÝ Ñ ˚q2 is a computation in A.
In particular, in this case, we consider that q ε Ý Ñ q is a computation. Thus, if σpaq " ε, the desubstituted automaton σ ´1pAq has a loop labeled by a on every state.

For example, consider the following ω-automaton A and substitution σ (Figure 1(a,b)).

We build the ω-automaton σ ´1pAq. Start from an empty automaton on the same set of states. For every computation in A labeled by 01 " σp0q -say, q σp0q Ý ÝÝ Ñ ˚r -add an edge q 0 Ý Ñ r to the automaton (Figure 1(c)). To conclude, do this with σp1q " 0 (Figure 1(d)).

It is a classical construction in the theory of finite automata, and it satisfies the following property : Proposition 1. An infinite word u is accepted by σ ´1pAq if and only if σpuq is accepted by A. In other words, L 8 pσ ´1pAqq " σ ´1pL 8 pAqq.

σ : Proof. Let u be accepted by σ ´1pAq. Consider the associated accepting walk pq i q iPN . By definition of σ ´1pAq, for every i P N, there exists a computation

" 0 Þ Ñ 01 1 Þ Ñ 0 (a) σ 0 0 1 0 0 1 0 (b) A 0 0 0 (c) Intermediate step 0 0 0 1 1 1 1 1 (d) σ ´1pAq
q i σpuiq ÝÝÝÑ ˚qi`1 in A.
By concatenating these computations, we get an infinite computation q 0 σpu0q ÝÝÝÑ ˚q1 σpu1q ÝÝÝÑ ˚q2 σpu2q ÝÝÝÑ ˚¨¨¨in A that accepts σpuq in A. Conversely, suppose there is a word of the form σpuq accepted by A. Consider the states pq i q iPN obtained after reading each σpaq for a P A. This defines an accepting walk labeled by u in σ ´1pAq.

There is a more precise equivalent for finite words: Proposition 2. Let w be a finite word, A be an ω-automaton and σ a homo-

morphism. Then q s σpwq Ý ÝÝ Ñ ˚qt is a computation in A iff q s w Ý Ñ ˚qt is a computation in σ ´1pAq.
An easy but significant property is the composition of desubstitution of ωautomata: Proposition 3. Let A be an ω-automaton, and σ and τ be two homomorphisms. Then, pσ ˝τ q ´1pAq " τ ´1pσ ´1pAqq.

Proof. These two ω-automata share the same sets of states and of initial states. We prove that they have the same transitions. We have indeed:

q s a Ý Ñ q t in pσ ˝τ q ´1pAq ðñ q s σ˝τ paq Ý ÝÝÝ Ñ ˚qt in A ðñ q s τ paq Ý ÝÝ Ñ ˚qt in σ ´1pAq, by Proposition 2 ðñ q s a Ý Ñ q t in
τ ´1pσ ´1pAqq, by Proposition 2 again.

The problem of the purely substitutive walk

When desubstituting automata, the following property is crucial: Fact 1 Let A be an ω-automaton on the alphabet A, let SpAq be the set of all ω-automata which have the same set of states and the same initial states as A. For any homomorphism σ on A, σ ´1pAq is an element of SpAq.

In particular, remark that SpAq is finite: given A " pQ, I, T q, an element of SpAq is identified by its transitions, which form a subset of pQ ˆA ˆQq, so CardpSpAqq " 2 |Q| 2 ˆ|A| . We could work on a subset of SpAq by identifying ω-automata with the same language [START_REF] Bassino | Asymptotic enumeration of minimal automata[END_REF], but finiteness is sufficient for our results.

Given A an ω-automaton, and σ a homomorphism, σ ´1 defines a dynamic on the finite set SpAq. By the pidgeonhole principle: Fact 2 Let A be an ω-automaton, and σ be a homomorphism. Then there exist n ă m P N such that σ ´npAq " σ ´mpAq.

In the remainder of the section, we prove that, given an ω-automaton A and a substitution σ, the problems of finding a fixed point of σ or a purely substitutive walk generated by σ accepted by A are decidable.

A purely substitutive word generated by an erasing homomorphism σ is also generated by a non-erasing homomorphism τ (that is, a substitution) that can be effectively constructed. Thus, we assume σ itself is a substitution. Proposition 4. Let A be an ω-automaton, let σ be a substitution and let n ă m P N be as in Fact 2. Then, A accepts a fixed point for σ k for some k ě 1 iff L 8 pσ ´npAqq is nonempty.

Proof. We have n ă m P N as in Fact 2, so that σ ´npAq " σ ´mpAq.

If L 8 pσ ´npAqq is empty, then L 8 pσ ´ppAqq is empty for every p ě n. Let k ě 1: if there were a fixed point x for σ k accepted by A, we would have x " σ k pxq " σ kn pxq by iterating. So x would be in L 8 pσ ´kn pAqq which is empty. By contradiction, there is no fixed point for any σ k .

If L 8 pσ ´npAqq is nonempty, let x be a word accepted by σ ´npAq. Because σ ´npAq " σ ´mpAq " σ ´pm´nq pσ ´npAqq, x is accepted by σ ´jpm´nq pσ ´npAqq " σ ´pn`jpm´nqq pAq for all j P N. This means that σ n`jpm´nq pxq is accepted by A for all j P N. Consider an adherence value x of the sequence pσ n`jpm´nq pxqq jPN . By compacity of the language of an ω-automaton, x P L 8 pσ ´npAqq.

Let N G σ m´n Ď A be the set of non-growing letters for σ m´n , i.e. @a P N G σ m´n , @j ě 1, |σ jpm´nq paq| " 1. Let k " infti P N | xi R N G σ m´n u (k may be infinite). Then, for i ă k, because σ is a (nonerasing) substitution and every letter in x 0,k´1 is non-growing, σ pm´nq pxq i " σ pm´nq px i q. In addition, because x is an adherence value of pσ n`jpm´nq pxqq jPN , there is ppx i q ě 1 such that σ ppxiq¨pm´nq px i q " xi for every position i ă k. Since A is finite, pppx i qq 0ďiăk contains only finitely many values, so we can define p " lcmtppx i qu.

When k ă 8, there exists q ě 1 such that |σ qpm´nq px k q| ą 1 and xk Ď p σ qpm´nq px k q, for the same reason that x is an adherence value of pσ n`jpm´nq pxqq jPN . If k " 8, we set q " 1.

Then, by concatenation, x 0,k Ď p σ pqpm´nq px 0,k q. Thus, pσ jpqpm´nq pxqq jPN has a limit, which is a fixed point for σ pqpm´nq , and by compacity of L 8 pAq, is accepted by A.

Because the emptiness of the language of an ω-automaton is decidable:

Corollary 1.
The following problem is decidable: Input: An ω-automaton A and a substitution σ Question: Does A accept a fixed point of σ k for some k?

As is, this method alone cannot determine, for instance, whether A accepts a fixed point for σ itself (without power). This problem is still decidable, as we show later in Proposition 6 with a refinement of this method. In appendix, we provide examples where A accepts fixed points for some σ k where k does not correspond to m ´n where n ă m are the minimal powers such that σ ´npAq " σ ´mpAq.

Now, we come back to purely substitutive words. A purely substitutive word generated by σ is also a fixed point for some σ k (in fact, it is a fixed point for every σ j with j ě 1). Proposition 5. Let A be an ω-automaton, σ a substitution and n ă m P N be as in Fact 2. Let RP σ Ď A be the set of letters that are right-prolongable for σ, i.e. @b P RP σ , b Ĺ p σpbq. Then, A accepts a purely substitutive word generated by σ iff σ ´npAq accepts an infinite word beginning with an element of RP σ .

Proof. If A accepts a purely substitutive word u generated by σ, u " lim jÑ8 σ j pbq begins by an element of RP σ . Since σpuq " u, σ n puq is accepted by A so u is accepted by σ ´npAq.

On the converse, suppose that σ ´npAq accepts an infinite word beginning by b P RP σ . Then, σ m´n pbq labels a accepting walk on σ ´mpAq " σ ´npAq. By iteration, for every k ě 1, we have that σ kpm´nq pbq labels a accepting walk on σ ´npAq, so σ n`kpm´nq pbq always labels an accepting walk on A. By compacity, u " lim kÑ8 σ n`kpm´nq pbq is accepted by A. Now, because b P RP σ , the word lim jÑ8 σ j pbq is defined and equal to u. Therefore u, the purely substitutive word generated by σ on the letter b, is accepted by A.

The following result already appeared in [START_REF] Salo | Decidability and universality of quasiminimal subshifts[END_REF], but an erratum clarified that some cases were not covered [START_REF] Salo | Notes and errata on "decidability and universality of quasiminimal subshifts[END_REF]. It is a parallel to a result in [START_REF] Carton | The monadic theory of morphic infinite words and generalizations[END_REF]. Our proof is essentially the same, but writing the proof through the lens of desubstitution makes it easier to extend the result to other decision problems.

Corollary 2. The problem of the purely substitutive walk is decidable: Input: an ω-automaton A, a homomorphism σ. Question: Does A accept some purely substitutive word generated by σ?

This result extends to morphic words: a morphic word generated by σ and τ in A is a purely substitutive word generated by σ in τ ´1pAq.

We now extend the method used to prove Proposition 5 to solve the question of finding a pure fixed point for a substitution σ in an ω-automaton. This improves Proposition 4 where we found a fixed point for some power of σ. Proposition 6. The problem of the fixed point walk is decidable: Input: an ω-automaton A, a substitution σ. Question: Does A accepts a fixed point for σ?

Proof. Let x a fixed point for σ and define F P σ " tb P A | σpbq " bu be the set of letters which are fixed points under σ. There are two cases:

1.

x is an infinite word on the alphabet F P σ .

2. there is a letter a appearing in x such that σpaq ‰ a. Suppose that a is the first such letter in x. Then x can be written as x " pax 1 where p is a word on F P σ . We have that x " σpxq " σppqσpaqσpx 1 q " pσpaqσpx 1 q. So a Ď p σpaq: a is right-prolongable for σ, so lim nÑ8 σ n paq exists. Since x "

σ n pxq " pσ n paqσ n px 1 q for every n P N, by compacity, x " p lim nÑ8 σ n paq.

The algorithm works as follows. First (case 1), check whether A accepts a word on the alphabet F P σ . Second (case 2), define a new automata A 1 which is equal to A except that the set of initial states is all the states reachable in A by words in F P σ , and check (by the previous algorithm) if A 1 accepts a purely substitutive word generated by σ. The algorithm outputs "yes" if either case is satisfied, and "no" otherwise.

The problem of the infinitely desubstitutable walk

In this section, we suppose that A is an ω-automaton and S is a finite set of substitutions (i.e. nonerasing homomorphisms), as is usual when studying multiple homomorphisms. We prove that the problem of finding an infinitely desubstitutable (infinite) word is decidable. To study this question, we introduce a meta-ω-automaton: each symbol is a substitution, and each state is an ωautomaton.

Definition 8 (The meta-ω-automaton S ´8pAq). Define the ω-automaton S ´8pAq " pDpAq, tAu, T q on the alphabet S, with the set of states DpAq " tσ ´1pAq, σ P S ˚u, A the only initial state and set of transitions T " tB σ Ý Ñ σ ´1pBq | B P DpAq, σ P Su.

Because DpAq Ď SpAq is finite (see Fact 1), S ´8pAq is computable. We prove that directive sequences of words accepted by A correspond to non-nilpotent walks in S ´8pAq, that is, walks pB n q nPN such that L 8 pB n q ‰ H for all n. Proposition 7. There exists x an infinite word infinitely desubstitutable by pσ n q nPN accepted by A if, and only if, there is a non-nilpotent infinite walk in S ´8pAq labeled by pσ n q nPN . This result has structural consequences on the set of directive sequences: Corollary 3. Let ReppA, Sq " tpσ n q nPN | Dx P L 8 pAq, x is inf. desub. by pσ n qu be the set of directive sequences of words accepted by A. Then ReppA, Sq is the language of some ω-automaton. In particular, ReppA, Sq is closed as a subset of S N . Proof (of Proposition 7). First, let x be an infinitely desubstitutable word with directive sequence pσ n q nPN , and let px n q nPN be the sequence of desubstituted words. Then, by Proposition 1, x n P L 8 ppσ 1 ˝¨¨¨˝σ n´1 q ´1pAqq. So the walk pσ ´1 0,n pAqq nPN is non-nilpotent and labeled by pσ n q nPN . Second, let pσ n q nPN label a non-nilpotent infinite walk in S ´8pAq. It means that each language pσ 1 ˝¨¨¨˝σ k q ´1pL 8 pAqq is nonempty. Now, consider the sequence ppσ 1 ˝¨¨¨˝σ n qpL 8 ppσ 1 ˝¨¨¨˝σ n q ´1pAqqqq nPN . It satisfies the following:

1. each element of the sequence is included in L 8 pAq; 2. because L 8 ppσ 1 ˝¨¨¨˝σ n q ´1pAqqq is compact and nonempty, and pσ 1 ˝¨¨¨˝σ n q is continuous, every element of the sequence is compact and nonempty; 3. the sequence is decreasing for inclusion. By Cantor's intersection theorem, there is a point x in the intersection of every element of the sequence. This point x is desubstituable by any σ 1 ˝¨¨¨˝σ k , thus it is infinitely desubstituable by the sequence pσ n q nPN . With Proposition 7, we can deduce the decidability of the existence of an infinitely desubstitutable walk in an ω-automaton A. First, build S ´8pAq; second, remove the states corresponding to ω-automata with an empty language; last, check whether there is an infinite walk.

Proposition 8. The problem of the infinitely desubstitutable walk is decidable: Input: a finite set of substitutions S, an ω-automaton A Question: does L 8 pAq contain a word which is infinitely desubstitutable by S?

The problem of the Büchi infinitely desubstitutable walk

Proposition 8 does not apply directly to Sturmian words. Indeed, the classical characterization of Sturmian words restricts the possible directive sequences.

S St is the set containing the four following substitutions, called (elementary) Sturmian morphisms, as described by [START_REF] Berstel | Sturmian Words[END_REF].

L 0 : " 0 Þ Ñ 0 1 Þ Ñ 01 , L 1 : " 0 Þ Ñ 10 1 Þ Ñ 1 , R 0 : " 0 Þ Ñ 0 1 Þ Ñ 10 , R 1 : " 0 Þ Ñ 01 1 Þ Ñ 1 Theorem 3 ([8]
). A word is Sturmian iff it is infinitely desubstitutable by a directive sequence pσ n q nPN Ă S St that alternates infinitely in type, i.e.: EN P N, p@n ě N, σ n P tL 0 , R 0 uq or p@n ě N, σ n P tL 1 , R 1 uq.

This characterization is usually expressed in the S-adic framework, but is equivalent in this context [START_REF] Richomme | On sets of indefinitely desubstitutable words[END_REF]. In this section, we generalize Theorem 8 to Sturmian words and more general restrictions on the directive sequence. Proposition 9. The problem of the Sturmian walk is decidable: Input: an ω-automaton A. Question: is there a Sturmian infinite word accepted by A?

Proof. Consider the associated representation automaton S ´8 St pAq. According to Proposition 7 combined with Theorem 3, there is a Sturmian infinite word accepted by A if, and only if, there is an infinite walk accepted by S ´8

St pAq labeled by a word pσ n q nPN which alternates infinitely in type. This last condition is decidable: compute the strong connected components of A, and check that there is at least one strongly connected component C which contains two edges labeled by substitutions in tL 0 , R 0 u and tL 1 , R 1 u, respectively.

In this case, the condition of alternating infinitely in type is easy to check: it can actually be described using a Büchi ω-automaton on the alphabet S. Proposition 9 generalizes to every such condition. Definition 9. Let S be a set of substitutions, and R a Büchi ω-automaton on the alphabet S. Define X R as tx P A N | Dpσ n q nPN P L 8 pRq, x is inf. desub. by pσ n qu.

Proposition 10. The following problem is decidable: Input: an ω-automaton A, a finite set of substitutions S, a Büchi ω-automaton R on the alphabet S Question: is there an infinite word of X R accepted by A?

Proof. The question of the problem is equivalent to: is L 8 pRq X L 8 pS ´8pAqq ‰ H? The intersection between a Büchi ω-automaton and an ω-automaton is a Büchi ω-automaton that can be effectively constructed, and checking the nonemptiness of a Büchi ω-automaton is decidable.

The interest of Proposition 10 is that there exists a zoology of families of words which have a characterization by infinite desubstitution. For instance, Proposition 10 applies to Arnoux-Rauzy words [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n+1[END_REF] and to minimal dendric ternary words [START_REF] Gheeraert | S -adic characterization of minimal ternary dendric subshifts[END_REF]. We also characterize the set of allowed directive sequences akin to Corollary 3: the set of directive sequences on S accepted by the Büchi ωautomaton R that define a word accepted by A is itself recognized a Büchi ω-automaton.

Let us translate Proposition 10 in more dynamical terms:

Proposition 11. The following problem is decidable: Input: a set of substitutions S, a Büchi ω-automaton R on the alphabet S and a sofic shift S. Question: Is S X X R empty?

Application to the coding of Sturmian words

Here is an example of a natural question from combinatorics on words that we solve on Sturmian words, even though the method generalizes easily. Let W be a finite set of finite words on t0, 1u. Consider W ω the set of infinite concatenations of elements of W , i.e. W ω " tx P t0, 1u N | Dpw n q nPN Ď W, x " lim nÑ8 w 0 w 1 . . . w n u.

Proposition 12. The following problem is decidable: Input: W a finite set of words on {0,1} Question: does W ω contain a Sturmian word?

Proof. The language W ω is ω-regular: there is an ω-automaton A W such that L 8 pA W q " W ω . Then, W ω contains a Sturmian word iff A W accepts a Sturmian word, which is decidable by Proposition 9.

About ω-automata recognizing Sturmian words

In this Section, we focus on Sturmian words and show that the language of Sturmian words is as far as possible from being regular, in the sense that an ω-automaton may only accept a Sturmian word if it accepts the image of the full shift under a Sturmian morphism. Theorem 4. Let S " S St be the set of elementary Sturmian morphisms as defined earlier, and let A be an ω-automaton. If A accepts a Sturmian word, then Dσ P S St , σpA N q Ď L 8 pAq. This is equivalent to the presence of a total automaton in S ´8pAq: an ωautomaton A is total if L 8 pAq " A N . Totality is a stable property under any desubstitution.

Proof. Let x be a Sturmian word accepted by A. Consider the transformation of ω-automata forget : pQ, I, T q Þ Ñ pQ, Q, T q which makes all states initial. Then, forgetpAq also accepts x, and its language is shift-invariant: therefore, Opxq Ď L 8 pforgetpAqq. Let χpxq be the Sturmian characteristic word associated with x (see [START_REF] Perrin | A note on sturmian words[END_REF]): it belongs to Opxq, so it is accepted by forgetpAq. Then, χpxq " lim nÑ8 σ 0 ˝¨¨¨˝σ n pa n q with pσ n q nPN Ď S St a sequence that alternates infinitely in type (see Theorem 3). But, because χpxq is a characteristic word, it represents the orbit of zero when considering the point of view of circle rotation (see [START_REF] Perrin | A note on sturmian words[END_REF]): when combined with Proposition 2.7 of [START_REF] Berthé | Initial powers of sturmian sequences[END_REF], it yields that pσ n q nPN Ď tL 0 , L 1 u N . By the pigeonhole principle, there is an ω-automaton B that appears infinitely often in the sequence pσ ´1 0,n pforgetpAqqq nPN Ď SpforgetpAqq. Thus, we can find a substitution τ such that B " τ ´1pBq and τ P S St zpL 0 YL 1 q. Because τ contains both L 0 and L 1 , there are two cases:

1. L 1 L 0 Ď f τ : we can write τ " p τ L 1 L 0 s τ . Let B 1 " pp τ ˝L1 q ´1pBq and τ 1 " L 0 ˝sτ ˝pτ ˝L1 : we have that τ 1´1 pB 1 q " B 1 . 2. L 1 L 0 Ę f τ : then, τ begins with a L 0 and ends with a L 1 . In both cases, we can come back to the case where τ begins with a L 0 and ends with a L 1 .

We now prove the following technical lemma: Definition 10. Let A be an ω-automaton on A " t0, 1u. A state q of A has property pHq if pDq s , q 0 Ý Ñ q s Ý Ñ ω ¨¨¨P Aq ô pDq t , q 1 Ý Ñ q t Ý Ñ ω ¨¨¨P Aq, where q s Ý Ñ ω ¨¨¨means that there is an infinite computation starting from q t in A.

If all states of A have property (H), there are two possibilities: if there is no infinite computation starting on an initial state, the infinite language of A is empty; otherwise, A is total. Lemma 1. Let C be an ω-automaton, and ϕ P S St starting with L 0 and ending with L 1 such that ϕ ´1pCq " C. Then, every state of C has property pHq.

Proof (of Lemma 1). Let C " pQ C , I C , T C q, and q P Q C . First, suppose that q 0 Ý Ñ q t Ý Ñ ω ¨¨¨is a computation in C. Then q 0 Ý Ñ q t is also a transition of ϕ ´1pCq. So q ϕp0q Ý ÝÝ Ñ ˚qt is a computation in C. Because ϕ ends with L 1 , ϕp1q Ď p ϕp0q. So

q ϕp1q Ý ÝÝ Ñ ˚qu m Ý Ñ ˚qt Ý
Ñ ω ¨¨¨is a computation in C, with some q u P Q C and ϕp0q " ϕp1qm. Now, using C " ϕ ´1pCq, q

1 Ý Ñ q u m Ý Ñ ˚qt Ý Ñ ω ¨¨¨is a computation in C.
Conversely, if q 1 Ý Ñ q t Ý Ñ ω ¨¨¨is a computation in C " ϕ ´1pCq, there is also q ϕp1q Ý ÝÝ Ñ ˚qt Ý Ñ ω ¨¨¨Because ϕ begins with L 0 , ϕp1q " 0m for some finite m. So the last computation can be written q

0 Ý Ñ q u m Ý Ñ ˚qt Ý Ñ ω ¨¨¨N
ow, we apply Lemma 1 to show that every state of B has property pHq. B can be written as ψ ´1pforgetpAqq for some Sturmian morphism ψ. Since the transformation forget does not modify the transitions of an ω-automaton, this yields that every state of ψ ´1pAq also has property pHq. Since by assumption ψ ´1pAq accepts an infinite word, it follows that it is total.

By applying the proof of Theorem 4, we obtain an equivalent statement for the Fibonacci word: Corollary 4. Let f be the Fibonacci word, i.e. the substitutive word associated with the substitution σ f p0q " 01, σ f p1q " 0. Let A be an ω-automaton which accepts f . Then, there exists n P N such that σ ´n f pAq is total.

This combinatorial result can be thought in dynamical terms:

Corollary 5. A sofic subshift contains f iff it contains some σ k f pA N q.

Because the Fibonacci word is aperiodic, containing f means that there is a substitution τ such that τ pA N q is contained in S. Because the Fibonacci word is Sturmian, Berstel and Séébold [START_REF] Berstel | Sturmian Words[END_REF] established that τ had to be a Sturmian morphism. This new analysis specifies that τ can be chosen a power of σ f .

Open questions

-Following Proposition 8, find an algorithm to find an accepted S-adic word.

There are technical difficulties to take into account the growth of the directive sequence, which should be solvable using results from [START_REF] Richomme | On sets of indefinitely desubstitutable words[END_REF]. -Can our methods extend to Büchi ω-automata, as in [START_REF] Carton | The monadic theory of morphic infinite words and generalizations[END_REF]? The difficulty is that the language of Büchi ω-automata is not always compact, so Proposition 4 does not apply. It may be possible to extend methods from [START_REF] Carton | The monadic theory of morphic infinite words and generalizations[END_REF]. -For which sets of substitutions does Theorem 4 hold? 6 Appendix

Counterexamples for Proposition 4

Using the notation of Proposition 4, consider n ă m minimal such that σ ´npAq " σ ´mpAq. There is no clear relationship between n, m and k the power of the fixed point accepted by A.

Here is a example with m ´n ě 2, but A accepts a fixed point for σ.

σ :

$ & % 0 Þ Ñ 0 1 Þ Ñ 2 2 Þ Ñ 1 0 0 0 1 1 1
Fig. 2: n " 0 and m " 2, but A accepts 0 8 , which is a fixed point for σ.

Next is an example where m ´n is lesser than the power required to have a fixed point:

τ : " 0 Þ Ñ 11 1 Þ Ñ 00 0, 1 0,1 0,1 0,1 
Fig. 3: τ ´1pBq " B, so m " 1 and n " 0. τ has no fixed point: B cannot contain a fixed point for τ m´n . However, B contains a fixed point for τ 2 .

6.2 There is not always a total automaton in S ´8pAq

Theorem 4 does not generalize straightforwardly to any set of substitutions: in general, S ´8pAq may not contain a total automaton, even under classical dynamical constraints. For instance, consider the following ω-automaton A H and susbtitution σ H :

σH : $ & % 0 Þ Ñ 0120 1 Þ Ñ 11220011 2 Þ Ñ 222000111222 0 0 1 1 2 2
Fig. 4: An ω-automaton stable by desubstitution by σ H .

Notice that σ H is primitive, and that the three purely substitutive words generated by σ H are not eventually periodic. However, A H is not total, and σ ´1 H pA H q " A H , so there is no total automaton in S ´8pAq. In dynamical terms, it means that the sofic shift contains the associated purely substitutive words, but contains no factor of the form σ k H pA N q.

Fig. 1 :

 1 Fig. 1: Desubstitution of the ω-automaton A by σ