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Abstract: Centuries of scientific breakthroughs have brought us closer to understanding and manag-
ing the spread of parasitic diseases. Despite ongoing technological advancements in the detection,
treatment, and control of parasitic illnesses, their effects on animal and human health remain a major
concern worldwide. Aptamers are single-stranded oligonucleotides whose unique three-dimensional
structures enable them to interact with high specificity and affinity to a wide range of targets. In recent
decades, aptamers have emerged as attractive alternatives to antibodies as therapeutic and diagnostic
agents. Due to their superior stability, reusability, and modifiability, aptamers have proven to be effec-
tive bioreceptors for the detection of toxins, contaminants, biomarkers, whole cells, pathogens, and
others. As such, they have been integrated into a variety of electrochemical, fluorescence, and optical
biosensors to effectively detect whole parasites and their proteins. This review offers a summary
of the various types of parasite-specific aptamer-based biosensors, their general mechanisms and
their performance.

Keywords: biosensor; aptamer; parasite; diagnostics; aptasensor; detection

1. Introduction

Parasitic illnesses continue to contribute significantly to the global burden that infec-
tious diseases have on humanity. While developing countries are most heavily afflicted
by cases of malaria, cysticercosis, and schistosomiasis, cases of parasitic disease can also
be found in the world’s wealthiest nations, where food and waterborne illnesses such as
cryptosporidiosis, giardiasis, toxoplasmosis, echinococcosis and trichinellosis are continual
causes of concern for public health authorities [1]. In 2010, the World Health Organiza-
tion (WHO) reported an estimated 137,000 deaths, and 15 million disability-adjusted life
years (DALYs) caused by foodborne parasitic diseases [2–5]. Furthermore, vector-borne
diseases caused by parasites, bacteria, and viruses result in an estimated 700,000 deaths
every year, with 400,000 being caused by malaria alone [6]. In addition to their visibly
debilitating effects on human and animal health, the results of parasite illness can also
be seen at the economic level, where worker and livestock productivity is reduced as
a consequence of crippling morbidity and death [7]. Despite the many scientific break-
throughs in the prevention, diagnosis, treatment, and control of infectious diseases, the
remarkable ability of infectious pathogens to evolve and adapt to changing environments
and pressures has made their eradication a seemingly impossible endeavor. Luckily, in the
face of perpetual adversity, man has showcased his equally remarkable ability to observe,
learn, and innovate.

Along with their critical role in providing proper and timely treatment to patients
and animals, accurate and robust diagnostics are equally essential in acquiring crucial
surveillance data for developing effective public health strategies [8]. While recent accom-
plishments in the surveillance and control of parasitic diseases can be partly attributed to
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advances in rapid detection and treatment, conventional parasitological, serological, and
molecular detection methods are still considered standard practice. Unfortunately, these
methods can be highly cumbersome, expensive, and difficult to perform in resource-limited
settings. Furthermore, some of these modes of detection struggle with distinguishing
between past, latent, acute, and reactivated infections, making it difficult to implement
proper treatment regimens [9,10]. As a result, the continued development and improve-
ment of point-of-care (POC) diagnostic tools such as rapid diagnostic tests (RDTs) have
demonstrated great potential in resource-limited settings and hold much promise in dis-
ease diagnostics, active surveillance, and treatment [11,12]. While a wide array of rapid
immunochromatographic tests have been developed for protozoan and helminth infections,
potential cross-reactivity in cases of co-infection can lead to reduced test specificity. In light
of this, the current state of POC testing for parasitic diseases mostly allows for prelimi-
nary diagnostics, whereby initial findings are used to determine if further parasitological
diagnostics are required [13].

2. Biosensors

Biosensors are compact and portable analytical devices capable of rapid diagnostic
testing that convert biological and/or chemical reactions into signals proportional to
an analyte’s concentration (Figure 1). In addition to monitoring disease treatment and
progression, biosensors have also found uses in many areas of drug discovery, food safety,
and environmental monitoring [14,15]. Classically, biosensors employ bioreceptors or
molecular recognition elements (MREs) that function to provide analyte specificity to the
biosensor. Several classes of MREs exist, each with their own advantages and limitations
in terms of biosensing selectivity, sensitivity, reproducibility, and reusability [16]. Such
recognition elements may be derived from naturally occurring materials (e.g., enzymes,
antibodies, nucleic acids, cell receptors, microorganisms), that take advantage of naturally-
evolved interactions, or synthetic biorecognition elements (e.g., synthetic peptides and
receptors, imprinted polymers), that can be engineered to mimic the physiological activities
of natural elements [17]. Despite the wide variety of options, antibodies remain a staple in
biosensing platforms, specifically for the detection of pathogens [16,18].
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Following amplification, a crucial step of ssDNA generation from dsDNA PCR products 
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analyte and recognition element is converted and amplified into a measurable signal. Adapted with
permission from [17]. Created with BioRender.com (accessed on 19 December 2021).
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In order to achieve analyte detection, the MRE of choice is first immobilized onto
the surface of a transducer before being challenged with the target analyte. Following
bio-recognition, an event described as the interaction between bioreceptor and analyte, a
transducer converts the reaction into a measurable signal [14]. The transducer is a vital
element of any successful biosensor and may be electrochemical, optical, mass-based (piezo-
electric), magnetic, thermometric or micromechanical [17,19]. As with the category of MRE,
the transduction system heavily influences the biosensors performance and is chosen based
on the type of signal that is required. Finally, ongoing advances in nanobiotechnology
offer new approaches into biosensor development. Nanomaterials such as gold nanoparti-
cles, carbon nanotubes (CNTs), magnetic nanoparticles, quantum dots, and graphene are
some examples of nanostructures being integrated into biosensor technologies to enhance
sensitivity and specificity [20].

3. Aptamers and SELEX

In 1990, two independent research groups stumbled upon the remarkable discovery
of what Andrew Ellington and Jack Szostak termed ‘aptamers’, from the Latin ‘aptus’, to
fit [21,22]. These short ssDNA or RNA oligonucleotides, varying in length from 20–100 nu-
cleotides, displayed an impressive ability to bind various targets with high affinity and
specificity. Their highly unique tertiary structures, dictated by their sequence diversity,
grant aptamers with particular three-dimensional motifs such as loops, bulges, hairpins,
G-quadruplexes, and pseudoknots [23]. By means of non-covalent interactions such as van
der Waals, electrostatic forces, and hydrogen bonding, aptamers can be used as molecular
recognition elements (MREs) to capture many types of small molecules (metal ions, hor-
mones, antibiotics), macro-molecules (antibodies, antigens, viruses), live cells, and even
whole microorganisms [24–26].

During the same time, while studying the interaction between the bacteriophage T4
DNA polymerase (gp43) and its encoding mRNA, Craig Tuerk and Larry Gold developed
a novel method for the selection of preferred binding sequences from a highly variable
population. This procedure, which they termed Systematic Evolution of Ligands by Ex-
ponential Enrichment (SELEX), was founded on the general mechanisms of evolution,
whereby forces of variation, selection, and replication are implemented to gradually select
molecular species specific to a target of interest (Figure 2) [22]. In conventional SELEX, a
nucleic acid library consisting of approximately 1015 unique ssDNA or RNA sequences is
incubated with a target molecule. After removing non-binding sequences, target-specific
species are retrieved and PCR-amplified (RT-PCR amplified in the case of RNA aptamers).
Following amplification, a crucial step of ssDNA generation from dsDNA PCR products can
be achieved by means of asymmetric PCR, magnetic bead separation by biotin-streptavidin
interaction, strand separation under denaturing conditions, and lambda exonuclease di-
gestion [27]. This pool of sequences is subsequently subjected to additional rounds of
selection with gradually increasing degrees of stringency to ensure the successful selection
of high-affinity binders.
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December 2021).  
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Figure 2. The graphical representation of the SELEX strategy for ssDNA aptamer selection. In the
case of RNA aptamer selection, the ssDNA library is first amplified into dsDNA before transcription
for RNA synthesis. After collecting the target-specific sequences, RNA is amplified in two consecu-
tive steps of reverse-transcription and transcription. Created with BioRender.com (accessed on 19
December 2021).

Aptamers as Diagnostic Reagents

Since the pioneering publications of aptamer-based biosensors [28,29], a variety of
diagnostic ‘aptasensors’ have been designed. These biosensors, which employ aptamers
as MREs, circumvent the costly and complicated production of antibody bioreceptors.
Furthermore, in contrast with their protein counterparts, aptamers exhibit high thermal
stability, are easily modifiable, and can be easily conjugated to a wide range of reporter
molecules [30–32]. Despite their obvious advantages, a large portion of biosensors still rely
on antibodies for analyte detection. Prone to heat-induced damage, this is especially trou-
blesome in warm, tropical climates, where parasitic diseases flourish. Since the introduction
of a thrombin-detecting electrochemical-based aptasensor [33,34], their application in the
field of infectious disease diagnostics has expanded towards tuberculosis (TB) [35], Listeria
monocytogenes [36], dengue virus [37], and HIV [38] detection, among many others [39].

In this paper, we focus on the various applications of aptasensors and aptamer-based
detection strategies in the field of parasitology. From detection in humans and animals to
detection in environmental samples and insect vectors, the aptasensors described below
showcase only a few potential uses. Despite the wide variety of parasites targeted by con-
ventional antibody-based tests, the only parasites targeted by aptamer-based technologies
thus far have been Plasmodium spp., Trypanosoma spp., Leishmania spp., Cryptosporidium
parvum, Toxoplasma gondii, and Trichomonas vaginalis (Table 1). Used in conjunction with
nanomaterials, these aptamer-based sensors employ electrochemical, fluorescent, colori-
metric, and optical modes of detection.
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Table 1. The summary of the aptamers and aptasensors developed against various parasites.

Target Organism Target Protein Aptamer
Name Aptasensor Type Limit of Detection

(LOD) Reference

Plasmodium
spp.

P. falciparum

Pf LDH
2008s

Electrochemical
0.84 pM [40]

1.0 pM [41]

Optical/Colorimetric 57 pg/uL [42]

APTEC
Opti-

cal/Colorimetric

14 ± 6 fmol [43]

5 ng/mL
(syringe test)

50 ng/mL
(well test)

[44]

0.001% parasitemia [45]

N/A [46]

FRET-based N/A [47]

Fluorescence

0.20 nM [48]

10 amol [49]

30 fM [50]

P38
Electrochemical 0.5 fM [51]

Optical/Colorimetric 281 ± 11 pM [52]

PfGDH NG3

Optical Fiber 352 pM [53]

Electrochemical 0.77 pM [52]

FRET-based 2.85 nM [54]

HRP-II B4 Electrochemical 3.15 pM [55]

P.vivax
P. falciparum

pLDH
(PfLDH/PvLDH)

pL1

Electrochemical 108.5 fM (PvLDH)
120.1 fM (Pf LDH) [56]

Optical/Colorimetric

8.3 pM (PvLDH)
10.3 pM (Pf LDH) [57]

1.25 pM (PvLDH)
2.94 (Pf LDH) [58]

pLDH N/A FRET-based 550 pM [59,60]

Leishmania
spp.

L. infantum LiKMP-11 SELK10 Electrochemical 2.27 uM [61]

L. major rHSP
LmWC-35R

LmHSP-
7b/11R

Fluorescence
50 ng/mL in

sandfly
homogenate

[62]

Trypanosoma
spp.

T. cruzi TESA
Apt-L44

ELA assay N/A
[63]

Apt-29/Apt-71 [64]

T. brucei VSG cl57 Electrochemical 10.0 pM [65]

Cryptosporidium
spp.

C. parvum Whole oocysts

Min_Crypto1
Min_Crypto2 Fluorescence 10 whole oocysts in

wastewater [66]

R4-6 Electrochemical

100 whole
oocysts in
fruit juice

homogenate

[67]

50 oocysts in
recreational

and drinking water
samples

[68]
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Table 1. Cont.

Target Organism Target Protein Aptamer
Name Aptasensor Type Limit of Detection

(LOD) Reference

Toxoplasma
spp.

T. gondii

ROP18 protein AP001
and AP002 Colorimetric

1.56 ug/mL in
human serum [69]

SAG1 Protein aptamer-2 N/A [70]

Antitoxoplasma
IgG

TGA6 and
TGA7 Fluorescence 0.1 IU [71]

Trichomonas
spp. T. vaginalis AP65 AP65_A1 ELA assay 32 pM [72]

Schistosoma
spp. S. japonicum S. japonicum

whole eggs
LC-6

LC-15 N/A N/A [73]

4. Aptasensors for Parasite Detection
4.1. Electrochemical Aptasensors

Due to their portability, high sensitivity and specificity, quick response, and relative
low cost, electrochemical aptasensors have gained much interest since their introduction
in 2004 [33,34]. Since then, various aptasensors operating by voltammetric, amperometric,
impedimetric, and potentiometric modes of transduction have been described [74]. Typical
electrochemical aptasensors use an electrode surface, preferably gold (Au) or carbon-based,
as the substrate onto which a redox probe-labeled aptamer, specific for a target of interest,
is immobilized (Figure 3). In theory, aptamer-target binding induces a conformational
change, transporting the probe closer to the electrode surface in the commonly used
“signal-on” architecture [75,76]. This was demonstrated in an earlier work, where aqueous
potassium ions (K+) converted an aptamer sequence from a loose coil to a compact G-
quadruplex conformation resulting in electrochemical signaling [76]. Alternatively, a
“signal-off” aptasensor, whose conformational change carries the probe further from the
electrode, was used to measure the loss of redox current following thrombin recognition in
blood serum samples [77]. Finally, an aptasensor featuring both “signal-on” and “signal-
off” elements of signal amplification was developed for adenosine triphosphate (ATP)
recognition [78].
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Figure 3. The schematic illustration of an impedimetric electrochemical-based aptasensor. Aptamers
immobilized on the surface of a gold electrode act as MREs to capture analyte from a sample. The
resulting decrease in electron transfer from ferrocene (Fc)-modified silicon nanoparticles (Fc-SiNPs)
to the electrode surface is proportional to the concentration of analyte. Adapted with permission
from Ref. [79]. 2015, American Chemical Society. Created with BioRender.com (accessed on 19
December 2021).
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4.1.1. Plasmodium spp.

The first electrochemical aptasensor for Plasmodium detection was developed in 2012,
targeting the well-known Plasmodium lactate dehydrogenase (pLDH) biomarker [56]. In
comparison to its mammalian counterparts, protozoan LDHs display major structural dif-
ferences, a feature that has been exploited to develop highly selective drugs and diagnostic
systems [80,81]. Following its selection, aptamer pL1 was 5′-thiol-modified and integrated
into a gold electrode-based aptasensor. pL1-pLDH binding was monitored by electrochem-
ical impedance spectroscopy (EIS) and charge transfer resistance (RCT) was measured at
the electrode surface to yield detection limits of 108.5 fM and 120.1 fM for Plasmodium vivax
LDH (PvLDH) and Plasmodium falciparum LDH (Pf LDH), respectively. When challenged
with blood samples of infected patients, the aptasensor could detect pLDH corresponding
to 100 parasites/µL [56]. Furthermore, enzyme-linked oligonucleotide assay (ELONA) and
electrophoretic mobility shift assay (EMSA) displayed pL1′s superior affinity to PvLDH
and Pf LDH compared to another Pf LDH-specific aptamer, 2008s [46].

The additional discovery of a Pf LDH-specific ssDNA aptamer, termed P38, brought
about the production of a graphene-oxide (GO) plated aptamer-electrode capable of prob-
ing Pf LDH [51,52]. With the addition of a NAD/NADH redox probe, lactate oxidation
and Pf LDH activity at the aptamer-electrode surface was monitored electrochemically. By
measuring reduced cofactor NADH in human serum samples, Pf LDH was detected at con-
centrations as low as 0.5 fM. Additionally, the aptasensor retained 62% of its functionality
after storage at ambient temperature with a relative humidity of 70% to 90% [51].

Using the 2008s aptamer previously described by Cheung et al. as a recognition
molecule, the group of Figueroa-Miranda et al. developed a label-free electrochemical
impedance aptasensor for Pf LDH detection. Once immobilized, aptamer-Pf LDH based
modifications at the electrode surface were evaluated by EIS using a ferri/ferro-cyanide
redox probe. With this strategy, Pf LDH in 10-fold diluted human serum was detected
at concentrations as low as 0.84 pM. In order to test the aptasensor’s stability, urea was
used as a denaturation agent to disrupt the aptamer-protein interaction. Following three
consecutive rounds of treatment, the sensor could still detect 1 nM of Pf LDH [40].

Aptamer 2008s was further tested using two independent transduction principles. EIS
and surface plasmon polariton (SPP) were employed with a 2008s-modified gold electrode
to monitor the presence of Pf LDH. Complementary signals generated by EIS and SPP-based
transduction allowed for the detection of Pf LDH at concentrations of 1 pM to 100 nM and
10 nM to 1 µM, respectively [41].

Similarly, an ssDNA aptamer entitled NG3 was selected against Plasmodium falci-
parum glutamate dehydrogenase (Pf GDH), a mitochondrial enzyme and potential malaria
biomarker due to its unique structure, sequence, kinetics, and absence in healthy host
red blood cells [54,82,83]. With this aptamer, a capacitive aptasensor operating by a non-
Faradaic mode of EIS transduction was developed. Once thiolated and fixed to the gold elec-
trode, NG3-Pf GDH binding, along with the subsequent displacement of water molecules
and ions from the electrode surface, resulted in changes in electron transfer equivalent to
0.77 pM of Pf GDH in serum samples. Additionally, interference from Plasmodium falciparum
lactate dehydrogenase (Pf LDH) and histidine rich protein-II (Pf HRP-II), common malaria
biomarkers, was negligible [54].

An additional study exploited the species specificity of Pf HRP-II to generate an
ssDNA aptamer (B4) with an equilibrium dissociation constant (KD) of 1.32 µM. Using an
impedimetric method to study Pf HRP-II adsorption, a B4-decorated gold electrode was
fabricated. By measuring the charge transfer resistance (RCT) during B4-mediated Pf HRP-II
recognition events, the resulting electrochemical aptasensor was capable of detecting at
least 3.15 pM of Pf HRP-II [55].

Pf HRP-II was further investigated by the group of Tanner et al. to select an ssDNA
aptamer after 21 rounds of SELEX. Compared to other candidates, aptamer 2106s displayed
high affinity and specificity to Pf HRP-II. SPR estimated a KD of 29.53 nM towards Pf HRP-II
and no significant binding interaction with Pf LDH. An electrochemical aptamer-based



Sensors 2023, 23, 562 8 of 24

biosensor was constructed by fixing methylene blue (MB)-conjugated 2106s to a gold
surface electrode. The change in Faradaic current between the MB redox tag and the gold
surface, governed by the aptamer’s change in conformation upon target binding, was
monitored to determine the KD of the 2106s aptasensor towards Pf HRP-II. In PBS, a KD
and limit of detection (LOD) of 51.84 nM and 2.47 nM were estimated, respectively. In
diluted human serum spiked with Pf HRP-II, a KD and LOD of 22.59 nM and 3.73 nM were
determined, respectively [84].

Both pLDH and HRP-II have proven to be important biomarkers of malaria infection.
While pLDH is expressed in all species of malaria, HRP-II is expressed exclusively by P.
falciparum parasites [82,85]. In light of this, a flexible multielectrode array (flex-MEA), inte-
grating the previously described aptamers 2008s, pL1, LDHp11, and 2106s, was fabricated
for multi-target biosensing to discriminate between P. falciparum and P. vivax infections [86].
In blood samples spiked with biomarker proteins, changes in electric currents, induced
by aptamer-protein binding, resulted in the detection of Pf LDH, PvLDH, and HRP-II, by
LDHp11, 2008s, and 2106s with LODs of 1.80 fM, 0.42 pM, and 0.15 pM, respectively. In
parasite-infected whole blood samples, the LODs were estimated at 0.001% parasitemia
(50 parasites/µL) with 93.3%, 100%, and 100% sensitivities, respectively, for 2008s, pL1,
and 2106s [86].

4.1.2. Leishmania infantum

Despite their potential as effective point-of-care diagnostic tools, electrochemical
aptasensors targeting Leishmania spp. have not yet been explored in great detail. In
contrast, several visceral leishmaniasis (VL) antibody-detecting RDTs targeting rK39 and
rKE16 antigens are commercially available. However, while these tests are generally
highly specific and sensitive, variation in product performances, attributed to parasite
diversity, different antibody concentrations, and/or the biological fluid being assayed,
have been described [87,88]. Additionally, the RDT DiaMed-IT-Leish displayed reduced
sensitivity in cases of HIV/VL co-infection, [89]. In their work, Moreno et al. have presented
a biosensor to detect Leishmania infantum kinetoplastid membrane protein 11 (LiKMP-
11), a potential regulator of parasite mobility and host cell attachment [61]. After 10
rounds of SELEX, a pool of LiKMP-11 specific sequences, termed SELK10, was generated
using a novel colloidal gold-based approach [90]. Following LiKMP-11 conjugation, gold
nanoparticles were electro-deposited onto a screen-printed gold microelectrode, incubated
with digoxigenin-labeled SELK10, and incubated with horseradish peroxidase (HRP)-
labeled anti-digoxigenin antibody. Evaluating the HRP-mediated reduction in hydrogen
peroxide, LiKMP-11 could be detected at concentrations as low as 2.27 µM [61].

4.1.3. Trypanosoma brucei

As with leishmaniasis, research into aptamer-based diagnostic tools for trypanoso-
miasis remains rather underdeveloped. With that being said, several aptamers targeting
the variable surface glycoproteins (VSGs) of T. brucei have been isolated. Coating the
trypanosome surface, VSGs are targets of frequent antigenic variation, a mechanism that
effectively undermines the development of a host antibody response, making vaccine
development seemingly impossible [91–93]. RNA 2-16, an aptamer specific to live infec-
tive bloodstream stage African trypanosomes, was monitored with in situ fluorescence
microscopy and localised to the parasite’s flagellar pocket, an invagination at the base of
the flagellum with functions in exo- and endocytosis [94,95]. In order to investigate the
potential ‘piggy-back’ carrier function of aptamers for therapeutic means, fluorophore-
coupled anti-biotin antibodies were incubated with live trypanosomes in the presence
of biotin-modified RNA aptamers. Remarkably, the endosomal transport of anti-biotin
antibody from the flagellar pocket to the lysosome was confirmed and the mechanism
further investigated in colocalization experiments with transferrin, whose results suggest
receptor-mediated internalization [96]. In order to confer serum stability to the aptamer,
2′F-substituted pyrimidine nucleotides (2′F’dUTP/dCTP) were co-transcriptionally in-



Sensors 2023, 23, 562 9 of 24

corporated. While this led to reduced binding affinity, RNA 2-16 had benefited from an
improved serum stability of up to 3.4 days with no changes in its characteristic binding to
the flagellar pocket and eventual transport to the lysosome [97].

An additional study produced 2′F-modified RNA aptamers with high stability in
mouse serum and affinities for several VSG variants in the subnanomolar range, suggesting
the possible recognition of a structurally conserved domain. In fluorescence labeling ex-
periments, biotin-conjugated aptamers displayed an ability to direct fluorophore-coupled
anti-biotin antibodies to the surface of live trypanosomes [98]. A specific aptamer, entitled
cl57, was further integrated into a single-walled carbon nanotube (SWCNT) based aptasen-
sor for the potentiometric detection of VSGs in blood samples. When exposed to gradually
increasing concentrations of VSG, the nanotube-tethered aptamer captures the target and
undergoes a conformational change resulting in a switch of the SWCNT surface charge.
The subsequent changes in electromotive force (EMF) readings indicated the detection
of VSG concentrations as low as 10 pM. Finally, this aptasensor’s functionality could be
recovered following a treatment with 2 M NaCl and washing with deionized water [65].

4.1.4. Cryptosporidium parvum

A food and water-borne parasite, Cryptosporidium spp. infection is best prevented by
monitoring its presence in fresh produce and frequently accessed bodies of water. However,
the analysis of environmental oocysts is tedious, consisting of centrifugation, filtration,
purification, and staining [99–101]. To detect Cryptosporidium parvum in pineapple and
mango concentrates, an aptamer-based biosensor was fabricated using a gold nanoparticle-
modified screen-printed carbon electrode (GNP-SPCE) with thiolated ssDNA capture
probes. Of the aptamers tested, sequence R4-6 exhibited the highest binding affinity for
the whole oocyst target with an estimated limit of detection (LOD) of approximately
100 oocysts [67]. The median infectious dose of C. parvum ranges from less than 30 to
over 1000 oocysts [102]. An increase in this aptasensors sensitivity could therefore result
in a promising alternative to conventional detection methods. Therefore, aptamer R4-6
was integrated into a magnetic bead-based aptasensor to detect C. parvum oocysts in
recreational and drinking water samples. Using aptamer-conjugated magnetic beads,
oocysts were first captured and concentrated prior to evaluation with the GNP-SPCE. With
this method, increases in current intensity corresponding to a LOD of 50 oocysts was
observed [68].

4.2. Fluorescence-Based Aptasensors

As with electrochemical aptasensors, fluorescence-based aptasensors exploit the highly
dynamic nature of aptamers. In response to target binding, fluorophore-modified se-
quences undergo conformational and/or structural alterations. These changes in molecular
proximity can affect the fluorescence or “Forster Resonance Energy Transfer (FRET)” be-
tween donor and acceptor fluorophores in close proximity, resulting in a quantifiable
signal [103–105]. This concept has also been exploited with the growing use of quantum
dot (QD) nanomaterials, whose fluorescence can be quenched and restored in the same fash-
ion [106]. In light of this, quantum dots have been successfully integrated into aptasensors
for Pseudomonas aeruginosa [107] and Staphylococcus aureus [108] detection.

However, depending on the type of biosensor being used, target binding and con-
centration can be determined by detecting increases (“signal-on” mode) or decreases
(“signal-off”) in signal strength. In the case of “signal-on” fluorescence-based aptasen-
sors, an aptamer-conjugated fluorophore’s signal is initially suppressed by a neighbouring
quenching molecule (Figure 4). Upon target binding, the aptamer’s conformational change
liberates the fluorophore from the quencher’s FRET-based activity, restoring the fluores-
cence signal. Conversely, “signal-off” aptasensors are constructed in such a way that target
binding results in a reduction in fluorescence emission.
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4.2.1. Plasmodium spp.

In combination with single layer molybdenum disulfide (MoS2) nanosheets, a fluores-
cein (FAM)-labeled aptamer specific for the pLDH malaria biomarker was used to yield a
FRET-based aptasensor capable of pLDH detection in heterogeneous protein mixtures [59].
In this aptamer-based “capture-release” sensing assay, aptamer fluorescence was quenched
upon adsorption to the MoS2 monolayer and recovered in response to pLDH binding.
Based on the results of fluorescence recovery, the limit of detection for pLDH was estimated
at approximately 550 pM, exceeding the requirements for clinical applications, where the
mean level of pLDH in malaria-infected patients is estimated to be in the hundreds of
nanomolar range [47]. However, the non-specific adsorption of both target and non-target
biomolecules to the MoS2 surface was causing aptamer displacement, fluorescence recovery,
and false positive results. To combat this, a blocking strategy using bovine serum albumin
(BSA) to limit non-specific adsorption was successfully employed [60].

Metal nanoclusters (NCs) have gained recent attention in the field of diagnostics as
their unique properties of intense fluorescence emission and photostability make them ideal
biological probes [109]. Therefore, double-stranded DNA-scaffolded silver nanoclusters
(AgNCs-dsDNA) were used in combination with a highly selective single-stranded DNA
aptamer (2008s) to detect the well-established Pf LDH malaria biomarker at a concentration
of 0.20 nM in buffer solution [48]. Similarly, sensitive Pf LDH detection was accomplished
using aptamer-modified magnetic microparticles (MMPs) for capture and oligonucleotide-
modified quantum dots (QDs) for detection. Furthermore, to increase detection sensitivity,
the fluorescence signal was amplified using oligonucleotide-modified gold nanoparticles
(AuNPs) to conjugate multiple QDs to each target antigen. Using this technology, the
detection sensitivity of Pf LDH and PvLDH was amplified from 0.5 fmole to 10 amole [49].

After showing that aptamer 2008s could still bind Pf LDH once integrated into a DNA
nanostructure scaffold, a DNA nanobox, whose opening could be mediated by aptamer
dependent Pf LDH recognition, was developed. By labelling the DNA nanobox with Cy3
and Cy5 fluorophores at strategic locations, a FRET-based assay was designed to monitor
Pf LDH recognition and the subsequent change in box open/closed conformation. Upon
target binding, aptamer conformational change caused the DNA nanobox to adopt an
“open” conformation. In this scenario, the FRET signal was reduced due to the increased
distance between Cy3 and Cy5 fluorophores. Pf LDH treatment resulted in an increase in
box opening from 20% to 70% compared to the hLDH condition, where open conformation
was stable at 20%. Furthermore, a reduction in FRET signal was determined in conditions
with increasing concentrations of Pf LDH, corresponding to an estimated KD value of
655 nM. While promising, this assay illustrated a significant decrease in aptamer sensitivity
when complexed with the DNA nanobox, compared to that of the native aptamer, with a
reported KD of 42 nM [110].
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As mentioned previously, Pf GDH has gathered interest as a potential biomarker of
malaria infection due to some distinctive structural features differentiating it from its
human counterpart HGDH. In light of this, a protein-based SELEX method was employed
to develop a Pf GDH specific aptamer called NG3, whose binding affinity was subsequently
approximated at 0.5 ± 0.04 µM using a circular dichroism (CD) assay. In order to detect
Pf GDH, a fluorescent reporter assembly was constructed by chemically conjugating NG3
to carbon dots, a carbon-based nanomaterial with unique fluorescent properties. With
this system, FRET-based detection of Pf GDH in human serum samples was accomplished
via a protein-induced fluorescence enhancement (PIFE) phenomenon capable of detecting
Pf GDH at concentrations as low as 2.85 nM. Additionally, when challenged with analogous
malaria biomarkers Pf LDH and Pf HRP-II, signal to noise ratios were 8 and 4 times weaker,
respectively (Figure 5) [111].

Sensors 2023, 23, x FOR PEER REVIEW 11 of 26 
 

 

distance between Cy3 and Cy5 fluorophores. PfLDH treatment resulted in an increase in 
box opening from 20% to 70% compared to the hLDH condition, where open confor-
mation was stable at 20%. Furthermore, a reduction in FRET signal was determined in 
conditions with increasing concentrations of PfLDH, corresponding to an estimated KD 

value of 655 nM. While promising, this assay illustrated a significant decrease in aptamer 
sensitivity when complexed with the DNA nanobox, compared to that of the native ap-
tamer, with a reported KD of 42 nM [110]. 

As mentioned previously, PfGDH has gathered interest as a potential biomarker of 
malaria infection due to some distinctive structural features differentiating it from its hu-
man counterpart HGDH. In light of this, a protein-based SELEX method was employed 
to develop a PfGDH specific aptamer called NG3, whose binding affinity was subse-
quently approximated at 0.5 ± 0.04 µM using a circular dichroism (CD) assay. In order to 
detect PfGDH, a fluorescent reporter assembly was constructed by chemically conjugating 
NG3 to carbon dots, a carbon-based nanomaterial with unique fluorescent properties. 
With this system, FRET-based detection of PfGDH in human serum samples was accom-
plished via a protein-induced fluorescence enhancement (PIFE) phenomenon capable of 
detecting PfGDH at concentrations as low as 2.85 nM. Additionally, when challenged with 
analogous malaria biomarkers PfLDH and PfHRP-II, signal to noise ratios were 8 and 4 
times weaker, respectively (Figure 5) [111].  

 
Figure 5. The schematic illustration of the Fluorescence-based aptasensor for Plasmodium falciparum 
GDH detection described by Singh et al. [111]. The fluorescence intensity (F) of the carbon dot-ap-
tamer assembly is enhanced by their interaction with PfGDH. Adapted with permission from Ref. 
[111]. 2018, American Chemical Society. Created with BioRender.com (accessed on 19 December 
2021). 

In a most recent work, the highly sensitive detection of PfLDH in whole blood was 
made possible with an antibody-aptamer sandwich biosensor with gold nanoparticle sub-
strates for fluorescent enhancement. In addition, a unique photochemical immobilization 
technique (PIT) was used for close-packing of antibodies on the AuNP surface. When 
treated with Cy5-labeled 2008s, antibody-captured PfLDH was detected at femtomolar 
levels (LOD = 30 fM) in whole blood samples. Furthermore, PvLDH could be captured by 
the anti-pLDH antibody layer of the sandwich biosensor but, due to the aptamer’s high 
specificity for PfLDH, fluorescent readings mirrored those of negative controls [50].   

4.2.2. Leishmania major 
Compared to malaria, the status of leishmaniasis as a neglected tropical disease is 

clearly illustrated by the reduced number of research articles geared towards aptamer-
mediated diagnostics. Despite this, several aptamers have been developed against mito-
chondrial import receptors [112], the poly-A binding protein (PABP) [113], H2A and H3 
histone proteins [114–117], and kinetoplastid membrane protein-11 (KMP-11) [61,90]. As 
such, a single fluorescence-based aptasensor was developed [62]. In their research, 10 cy-
cles of whole-cell and magnetic bead-based protein SELEX were conducted to yield 

Figure 5. The schematic illustration of the Fluorescence-based aptasensor for Plasmodium falciparum
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2018, American Chemical Society. Created with BioRender.com (accessed on 19 December 2021).

In a most recent work, the highly sensitive detection of Pf LDH in whole blood was
made possible with an antibody-aptamer sandwich biosensor with gold nanoparticle sub-
strates for fluorescent enhancement. In addition, a unique photochemical immobilization
technique (PIT) was used for close-packing of antibodies on the AuNP surface. When
treated with Cy5-labeled 2008s, antibody-captured Pf LDH was detected at femtomolar
levels (LOD = 30 fM) in whole blood samples. Furthermore, PvLDH could be captured by
the anti-pLDH antibody layer of the sandwich biosensor but, due to the aptamer’s high
specificity for Pf LDH, fluorescent readings mirrored those of negative controls [50].

4.2.2. Leishmania major

Compared to malaria, the status of leishmaniasis as a neglected tropical disease is
clearly illustrated by the reduced number of research articles geared towards aptamer-
mediated diagnostics. Despite this, several aptamers have been developed against mito-
chondrial import receptors [112], the poly-A binding protein (PABP) [113], H2A and H3
histone proteins [114–117], and kinetoplastid membrane protein-11 (KMP-11) [61,90]. As
such, a single fluorescence-based aptasensor was developed [62]. In their research, 10 cycles
of whole-cell and magnetic bead-based protein SELEX were conducted to yield capture
(LmWC-35R) and reporter (LmHSP-7b/11R) aptamers against Leishmania major promastig-
otes and recombinant hydrophilic surface protein (rHSP). In a sandwich type assay, capture
aptamer-coated magnetic beads were used to stabilize rHSP while peroxidase conjugated
reporter aptamers functioned to oxidize Amplex Ultra Red, yielding measurable amounts
of fluorescent resorufin. This led to the development of a novel handheld fluorometric
reader (FLASH) capable of detecting as little as 100 ng per 2 mL of MgCl2-extracted L.
major promastigote protein from sandfly homogenate in under 1 h. While this method
was successful in detecting promastigote protein extract in PBS samples, detection was
not possible in 50% human serum [62]. Despite this, the FLASH field-portable assay may
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function as a useful surveillance tool to monitor the presence of L. major infected sandfly
populations, helping to provide important epidemiological data.

4.2.3. Cryptosporidium parvum

The primary structure of any aptamer is vital in determining its crucial three-dimensional
structures that allow target binding. However, in some cases, not all nucleotides contribute
to their unique shape. This is the case with the U.S. Food and Drug Administration (USFDA)
approved RNA aptamer against vascular endothelial growth factor (VEGF), whose binding
sequence consists of only 27 nucleotides [118,119]. In light of this, the aforementioned
R4-6 aptamer was truncated into two shortened sequences, designated Min_Crypto1 and
Min_Crypto2, to improve the specificity and sensitivity of C. parvum detection in river and
wastewater samples. More specifically, magnetic beads conjugated with fluorescein-labeled
Min_Crypto2, which demonstrated the highest binding affinity, were used to capture and
concentrate C. parvum oocysts prior to fluorescence intensity analysis. In spiked wastewater
samples, a microplate fluorescence-based assay using the truncated aptamer could detect
C. parvum oocysts at an LOD lower than the infective dose of 10 oocysts [66].

4.2.4. Toxoplasma gondii

Current antibody-based methods of toxoplasmosis diagnosis are hindered by false-
positive results due to the interference from various plasma proteins. Additionally, early
phases of infection may yield false-negative results due to late seroconversion [120]. There-
fore, specific capture and reporter aptamers were used alongside QDs to develop a more
sensitive and specific quantum dots-labeled dual-aptasensor (Q-DAS) for anti-Toxoplasma
IgG detection (Figure 6) [71]. After 10 cycles of SELEX with anti-toxoplasma IgG, two ap-
tamers (TGA6 and TGA7) were identified and employed as probes in the biosensor. Firstly,
the biotin-modified capture aptamer (TGA6) captures and immobilizes anti-toxoplasma
IgG on a 96-well microplate. The QD-labeled detection aptamer (TGA7) is then introduced
to yield a TGA6-IgG-TGA7 sandwich complex. Any emitted fluorescence from the QDs
is subsequently measured to evaluate the concentration of captured anti-toxoplasma IgG.
The described Q-DAS could detect the target antibody within the range of 0.5 to 500 IU
with a limit of detection of 0.1 IU. In order to test the aptasensor’s specificity, it was chal-
lenged with an array of interfering agents and high-concentration blood-derived proteins.
From this, the Q-DAS tool yielded high specificity with no false-positive reactions, an
issue previously reported in traditional indirect fluorescent antibody tests (IFATs). With
all of its strengths, however, the Q-DAS performance proved to be influenced by storage
time, yielding changes in fluorescence variability over time. Finally, when compared to
the Sabin-Fieldman immunoassay, considered the gold standard method for toxoplasma
antibody detection, the Q-DAS could detect the target IgG with a specificity of 95.7% and
sensitivity of 94.8% [71].

4.3. Colorimetric Aptasensors for Plasmodium Detection

Colorimetric biosensors achieve analyte detection through color changes that can be
easily detected by the naked eye or optical detectors. In the last few decades, nanoparticles
have been explored as colorimetric probes for the development of versatile biosensors due
to their unique optical properties and abilities to induce color changes under different
conditions. This is based on plasmonic effect, where the binding on an analyte to the parti-
cle can induce aggregation, resulting in interparticle surface plasmon coupling and color
change [121,122]. More specifically, the use of gold nanoparticles (AuNPs) has catalyzed the
advent of several colorimetric biosensors capable of highly sensitive analyte detection, in-
cluding the first AuNP-based colorimetric aptasensor for potassium ion detection [20,123].
Since then, a variety of colorimetric aptasensors targeting infectious agents, including
norovirus [124] influenza A virus [125], E. coli [126], and Salmonella [127], have been pro-
duced. In the field of parasitology, however, the application of this type of biosensor
remains relatively unexplored and has so far been restricted to the Plasmodium genus.
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Figure 6. The schematic illustration of the Quantum dots-labeled dual-aptasensor (Q-DAS) for anti-
Toxoplasma IgG detection. Capture and reporter aptamers bind to different epitopes of anti-Toxoplasma
IgG. Capture aptamers immobilize the IgG while aptamer-labeled quantum dots emit a measurable
fluorescence. Adapted with permission from Ref. [71]. 2013, American Chemical Society. Created
with BioRender.com (accessed on 19 December 2021).

Aptamer 2008s, mentioned previously in several aptasensors, was initially isolated
and characterized following 20 rounds of magnetic bead-based SELEX against Pf LDH.
With a KD in the range of 20–50 nM, it was first conjugated to gold nanoparticles (AuNPs)
to produce a colorimetric assay. In the presence of Pf LDH, AuNPs aggregation, induced by
Pf LDH-aptamer binding, was visualized by transmission electron microscopy. In addition,
the red color naturally emitted by naked AuNPs, monitored by absorbance at 520 nm,
was lost under the aggregated state (Figure 7). Finally, the assay showed no specificity
for human lactate dehydrogenase proteins hLDHA1 and hLDHB, and demonstrated an
estimated LOD of 57 pg/µL [42].
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Figure 7. The schematic illustration of the colorimetric-based aptasensor for Plasmodium falciparum
LDH detection. Adapted with permission from [42]. Aptamer-conjugated AuNps aggregate in the
presence of Pf LDH, resulting in a detectable loss of their red color. Created with BioRender.com
(accessed on 19 December 2021).

The same aptamer was further exploited to develop a novel aptamer-tethered enzyme
capture (APTEC) magnetic bead-based assay. Coupling the Pf LDH-catalyzed conversion
of L-lactate to pyruvate with the reduction in nitrotetrazolium blue chloride (NTB) into a
diformazan dye product, a measurable colorimetric response was produced upon aptamer-
mediated capture of Pf LDH (Figure 8). The resulting aptasensor could detect Pf LDH
with a LOD of 14 ± 6 fmol and correctly diagnose 12/15 light-microscopy confirmed
P. falciparum infections [43]. Furthermore, 3D printing was used to integrate the principles
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of this colorimetric assay into paper-based syringe and magnetic bead-based well test point
of care prototype devices [44]. While the proposed syringe test displayed a larger dynamic
range and higher sensitivity than the well test, its requirement of additional processing
steps for whole blood analysis makes it less friendly as a POC diagnostic tool. In addition,
the cost of the well test, estimated at 0.36 USD, is significantly cheaper than the syringe test,
estimated at 1.76 USD [44]. For further comparison, the average material cost of malaria
RDTs has been estimated at around 1.51 USD [128].
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Applications of the APTEC assay were further investigated to develop a mobile 3D-
printed microfluidic biosensor capable of detecting P. falciparum from in vitro parasite
cultures and malaria-infected patient samples. Following Pf LDH binding by a 2008s ap-
tamer decorated micro-magnetic bead mobile phase, subsequent washing and development
stages yielded a detectable colorimetric signal. When challenged with clinical samples from
patients diagnosed with P. falciparum and P. vivax infection, the assay performed with a
sensitivity of 90%, capable of detecting parasitemia as low as 0.01% [45].

Plasmodium falciparum-specific histidine-rich protein 2 (Pf HRP-2) is an important target
antigen that has been used in many immunochromatographic malaria rapid diagnostic tests
(mRTDs). However, in 2008, P. falciparum field isolates from the Peruvian Amazon tested
negative with HRP2-based kits due to deletions of both pfhrp2 and pfhrp3 genes [129]. Since
then, this issue has only worsened, with HRP2-deficient mutants having been isolated in
Colombia, Brazil, and Bolivia, stressing the need for non-HRP2 RDTs [130,131]. Moreover,
similar deletions have also been reported, though more scarcely, in Ethiopia [132] and
India [133].

To address this issue, aptamer 2008s was challenged in ELONA and EMSA assays,
displaying strong specificity and affinity to Pf LDH. In addition, 2008s showed no binding
to PvLDH, hLDH, or BSA. With these results, it was integrated into the APTEC assay to
discriminate Plasmodium falciparum and Plasmodium vivax infections. Interestingly, when
challenged with infected blood samples of both Plasmodium species, the 2008s-integrated
APTEC assay could indeed differentiate the two cases. Unfortunately, false negative results
in the P. falciparum infected cohort were found, potentially due to variance in the parasite’s
metabolic stage [46].

Many colorimetric biosensors exploit the aggregative properties of AuNPs under
conditions of high salt concentration. By fixing ssDNA aptamer P38 to the surface of
AuNPs, aggregation was arrested and further controlled with the addition of Pf LDH. With
increasing concentrations of Pf LDH, P38 dissociates from the AuNP surface, allowing
for particle aggregation and a shift in color from red (dispersed AuNPs) to blue (aggre-
gated AuNPs). Using this salt-mediated assay, a detection limit of 402 ± 40 pM was
calculated. However, due to the disaggregation of AuNPs at higher protein concentrations
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during the salt-based assay, an alternative cationic surfactant-based assay was implemented.
With the use of Benzalkonium chloride (BCK), the assay was capable of detecting Pf LDH
at a more efficient limit of detection of 281 ± 11 pM [51]. Cationic polymers such as
poly(diallyldimethylammonium chloride) (PDDA) and poly(allylamine hydrochloride)
(PAH) have also exhibited significant advantages in relation to AuNP aggregation. In
conjunction with ssDNA aptamer pL1, polymer-conjugated AuNPs were used to evaluate
blood samples of malaria infected patients. In the absence of pLDH, polymer-conjugated
AuNP aggregation is inhibited as pL1 binds and occupies PDDA or PAH. However, with
increasing concentrations of pLDH, available pL1 diminishes as pL1-pLDH complexes
are formed. Malaria positive cases therefore resulted in detectable color shifts from red
(dispersed AuNPs) to blue (aggregated AuNPs). Respectively, as little as 74 (8.3 pM) and
92 (10.3 pM) P. vivax and P. falciparum parasites could be detected per µL of sample [57]. In
a similar study, hexadecyltrimethylammonium bromide (CTAB) was employed as an ag-
gregating agent to yield LODs of 1.25 pM and 2.94 pM for PvLDH and Pf LDH, respectively.
In human serum samples, however, the detection limits of PvLDH and PvLDH decreased
to 10.17 pM and 13.54 pM, respectively [58].

4.4. Fiber Optic Aptasensor against Plasmodium falciparum

Compared to other sensing platforms, fiber optic biosensors (FOBS) are unique due
to their optical-based method of signal transduction, which uses absorbance, reflectance,
luminescence, refractive index, and light scattering to alter the signal for processing [134].
Many FOBS implement surface plasmon resonance (SPR) sensor configurations, a powerful
technology that measures the refractive index of very thin layers of material adsorbed on a
metal in response to biochemical interactions [135,136]. While this category of biosensor
was initially developed using silica optical fibers, plastic optic fibers (POFs) offer a low-
cost, robust, and high flexibility alternative [137,138]. Since their introduction, FOBS have
demonstrated an impressive ability to detect a wide range of molecules using SPR and
localized SPR transduction methods [134,139]. They have also successfully exploited a
range of different MREs such as antibodies, molecular imprinted polymers (MIPs) and
aptamers to produce sensitive and versatile detection platforms. Previously, fiber optic
aptasensors have successfully detected environmental contaminants [140], antibiotics [141],
disease biomarkers [142], and viruses [143].

While FOBS have been used previously to detect Cryptosporidium parvum [144], Plas-
modium falciparum [145], and Giardia lamblia [146], the only aptamer-based FOB has been
developed against Plasmodium falciparum to detect Pf GDH [53]. This aptasensor included a
gold-sputtered U-bent POF functionalized with the previously mentioned Pf GDH-specific
NG3 aptamer. A smartphone was integrated into the system to supply a light source and
camera detector. As with previously described FOBS using SPR systems, this aptasensor
functioned by probing the changes in refractive index in response to Pf GDH and NG3
interaction. The smartphone’s camera was used to take images from the fiber which were
later processed by ImageJ software. Moreover, multiplex biosensing was made possible
through multiple measuring channels.

In spiked buffer and diluted serum samples, the device detected Pf GDH concentra-
tions as low as 264 nM and 352 nM, respectively. In tests of specificity, the smartphone-based
POF aptasensor was challenged with analogous enzymes such as Pf LDH, HGDH, and
Pf HRP-II. Although the system did respond to HGDH, the tool’s response to Pf GDH was
7–8 times higher than the interferents. Finally, the shelf-life of the aptasensor was assessed
after 20 days in storage at 20–30 ◦C. After this time, the efficiency of the probe was 91.38%
of the initial value [53].

4.5. Enzyme-Linked Oligonucleotide Assays (ELONA)
4.5.1. Trypanosoma cruzi

During the acute phase of infection, T. cruzi, the causative agent of Chagas disease, can
be detected in patient blood by microscopy and PCR. These techniques, however, become
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less effective during the chronic phase of infection, when parasitemia is at its lowest [147].
Conversely, indirect methods of detection, which target host anti-Trypanosoma antibodies,
suffer from cross-reactivity issues in cases of co-infection and false negative diagnosis
during the early stages of infection [148]. In order to overcome this, RNA aptamers specific
for T. cruzi excreted secreted antigens (TESA), biomarkers of infection, were developed and
implemented into an Enzyme-Linked Aptamer (ELA) assay to detect T. cruzi in infected
mice (Figure 9). To monitor SELEX and the proportion of TESA-specific aptamers, mixtures
of biotinylated sequences from various rounds of selection were challenged with TESA
in the ELA assay. Sequencing and phylogenetic analysis of round 10 aptamers, which
demonstrated the strongest ELA signals, indicated a convergence into 7 families repre-
senting 73.4% of the total number of clones sequenced. From this, an aptamer (Apt-L44)
was challenged with the sera of mice infected with T. cruzi at various stages and could
qualitatively detect infection as early as 7 dpi and as late as 230 dpi [63].
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Figure 9. The schematic illustration of the Enzyme-Linked Aptamer (ELA) assay for the detection
of T. cruzi excreted secreted antigens (TESA) described by Nagarkatti et al. [63]. Created with
BioRender.com (accessed on 19 December 2021).

Aptamer sequences from round 10 of SELEX were subjected to an additional 11 rounds
of selection to yield a 6-fold increase in the ELA assay TESA binding signal. In addition,
aptamers from these pools produced higher signals at aptamer concentrations as low as
32.25 nM. Furthermore, sequences of the round 21 pool produced a signal 2.5 times higher
than those of the round 10 pool when challenged with plasma of infected mice. Of the
7 sequences tested by ELA assay, Apt-29 yielded the strongest signals when challenged with
T. cruzi TESA preparations. To monitor drug treatment efficacy during acute phase infection,
the ELA assay was tested against the sera of Benznidazole-treated mice at 15 and 55 dpi.
While a decrease in signal was shown from 15 to 55 dpi, all aptamers except Apt-1 displayed
significantly higher levels of biomarker in the drug treated infected group compared to
the drug treated non-infected control group, suggesting a reduction in parasitemia but
failure to cure. In a similar fashion, the developed ELA assay was used to evaluate drug
treatment in chronic cases of infection by using mouse sera at 130 and 170 dpi. In this case,
5 of 7 aptamers could detect significant differences in the level of biomarker between the
infected drug treated group and the non-infected drug treated control [64].

4.5.2. Trichomonas vaginalis

Current microscopy and culture-based methods of Trichomonas vaginalis detection
suffer from issues of sensitivity. The T. vaginalis adhesion protein AP65 is a prominent
adhesin located on the parasite’s cell surface. Responsible for mediating binding to host
vaginal epithelial cells (VECs), it is also secreted into the extracellular environment [149].
In light of this, a microtiter plate SELEX (p-SELEX) method was used to enrich a library
of DNA aptamers against AP65. Following selection, next generation sequencing (NGS)
was performed and overrepresented sequences were screened by SPR. Aptamer AP65_A1
yielded the highest binding affinity with a KD of 56 nM and was selected for an ELA assay.
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When challenged with AP65 protein, AP65_A1 demonstrated a KD value of 1.057 nM and
an LOD of 32 pM. However, when challenged with whole T. vaginalis cells in an ELA assay,
AP65_A1 could detect no fewer than 8.3× 103 cells/mL. Finally, AP65_A1 was interrogated
with various enteric and urogenital tract microorganisms to evaluate specificity and cross-
reactivity. According to the ELA assay, the aptamer displayed high specificity for T. vaginalis
cells with low cross-reactivity to N. gonorrhoeae and minimal cross-reactivity with the other
9 organisms tested [72].

4.5.3. Toxoplasma gondii

The Toxoplasma ROP18 protein is secreted into the host cell upon invasion and has
been classified as a key virulence factor in toxoplasmosis [150,151]. To detect Toxoplasma
gondii in human serum samples, aptamers targeting ROP18 were produced using a pro-
tein SELEX strategy. Following 15 rounds of selection, Sanger sequencing identified two
aptamers entitled AP001 and AP002, which represented 14.42% and 13.46% of the final
enriched population, respectively. In order to construct an enzyme-linked aptamer assay
(ELAA), both aptamers were biotin-labeled and used as biorecognition elements. In prelim-
inary ELAA trials, the binding affinity of AP001 prevailed over AP002 with KD values of
62.7 ± 17.27 nM and 97.7 ± 22.20 nM, respectively. Additionally, AP001 was capable of de-
tecting rROP18 protein in serum samples at a concentration as low as 1.56 µg/mL. Finally,
when challenged with patient samples, the direct ELAA platform positively identified
22.6% of toxoplasmosis cases and 60% of congenital infection cases [69].

SAG1 is a major surface antigen of Toxoplasma tachyzoites, serving an important role
in host cell attachment [152,153]. As such, SAG1 has become an interesting target for
laboratory diagnosis of toxoplasmosis. Following the work with ROP18, SELEX against
recombinant SAG1 (r-SAG1) of Toxoplasma WH3 strain was performed using a synthetic
oligonucleotide library containing Indole-dU, Phenol-dU, and Amine-dU modifications.
From this, four aptamer candidates were identified by Next Generation Sequencing and
screened using a direct enzyme-linked aptamer assay (DELAA). After challenging all four
aptamers with native SAG1 (n-SAG1) from tachyzoite lysates, mouse sera of acute infection,
and Toxoplasma-positive human sera, aptamer-2 proved to have the best performance with
an estimated dissociation constant value of 41.57 ± 9.74 pM. The developed DELAA was
further tested for its ability to monitor Toxoplasma infection in mice over time, detecting
n-SAG1 as early as day 3 post infection. Finally, the DELAA was further evaluated with
15 positive and 35 negative human sera samples. In this test, the DELAA showcased a high
sensitivity of 93.33% and specificity of 94.29% [70].

5. Discussion

Despite the many scientific advances made to improve global health, the ongoing
emergence of infectious diseases highlights the increasingly complex relationship shared
between humans, animals, and their natural environments. In an era defined by expo-
nential advances in technology, increasing global travel, and rapid climatic changes, the
fight against infectious disease is a reminder to collectively engage the broader issues of
poverty, urbanization, and ecological collapse. This is true in the case of bacteria, viruses,
and parasites, whose transmission to humans is achieved via insect vectors, ingestion of
contaminated food or water, or by contact with infected animals and wildlife. With this in
mind, the development of robust and effective tools for parasite detection in these various
mediums is of high importance for monitoring, treating, and eradicating parasitic illnesses.

Although they are still in a nascent stage of development, the aptamer-based biosen-
sors described herein are excellent examples of the wide range of functions that can be
adopted by aptamers (Table 1). In addition to the aforementioned parasites in this text,
aptamers targeting Schistosoma japonicum [73] and Entamoeba histolytica [154] have also been
described. More specifically, fluorescently labeled aptamers specific for S. japonicum eggs,
the causative agent of schistosomiasis pathology in humans, were produced to greatly facil-
itate tissue imaging and disease diagnosis [73]. Furthermore, therapeutic RNA aptamers
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capable of inhibiting E. histolytica proliferation, leading to cell death, have further illus-
trated the wide array of applications that aptamers possess in medical parasitology [154].
Finally, an aptamer selected against Trypanosoma cruzi could capture and concentrate live
blood-borne trypomastigotes to facilitate PCR-based detection in blood [155].

Today, despite the obvious advantages of aptamer-based biosensors, parasite detection
continues to rely heavily on antibody-based testing. While antibodies have ultimately
changed the landscape of diagnostics for the better, their limitations, inherent to their
complex protein structures, have recently brought aptamers closer to the forefront of
diagnostics research. In order to reach commercial availability, however, improving the
performance of aptamer-based detection platforms remains a priority. Luckily, this can be
accomplished with the incorporation of chemical modifications to improve aptamer affinity,
specificity, and stability. This is especially valuable in the context of parasitic illnesses
endemic to tropical countries, whose warm and humid climates demand robust and heat-
stable tests. Along with chemical additions, aptamer performance can also be improved
using steps of negative selection throughout the SELEX process. By doing so, aptamers
capable of binding various targets are eliminated, ensuring the selection of sequences that
uniquely bind the target of interest. Aptamer performance can also be improved by using
high quality targets. In the field of parasitology, this means using purified proteins that
carry the appropriate post-translational modifications to ensure high affinity binding or,
in the case of whole-cell SELEX, using live parasites so that native proteins are targeted.
When used effectively, these methods can reduce the possibility of selecting aptamers with
low specificity capable of cross-reactivity.

Additionally, high-throughput sequencing (HTS) technologies and bioinformatics
software should be more frequently considered, as they offer possibilities that have seldom
been exploited in aptamer research. While these tools have been used endlessly in other
domains, their ability to analyze sequence diversity following each round of SELEX offers
researchers a glance into the complex dynamics of aptamer selection. Together, these
valuable tools allow us to evaluate the rate at which different sequences and sequence
families evolve, granting us the knowledge to more easily identify potential aptamer
candidates and explore different mutation avenues.

The current review outlines aptamers as promising tools of parasite detection in
humans as well as the various vehicles and vectors that transmit them. Unfortunately,
aptamer-based research against parasites remains mostly neglected, with the majority of
work surrounding Plasmodium spp. Despite this, their additional success in detecting other
pathogenic organisms highlights their potential to have a real-world impact on the lives
of many.
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