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This paper is an attempt at providing a fuzzy set-based approach to case-based decision. Case-based decision consists in selecting an action to be applied to a current problem on the basis of a set of cases storing the results of various actions applied to similar, previously encountered, problems. Recently, Gilboa and Schmeidler have presented an axiomatic justification of a counterpart of the expected utility used in decision under uncertainty, where similarity degrees play a role somewhat analogous to probability, and have proposed to apply it to case-based decision. This proposal resembles Sugeno's approach to fuzzy control. The relation between the two approaches is investigated. Besides, another approach, based on possibility and necessity measures, is presented and discussed. The idea is to favor actions which have never given bad results in problems similar to the current problem. A much more permissive view considers all the actions which have given good results (at least one time) in a similar problem.

Besides, Gilboa and Schmeidler [START_REF] Gilboa | Case-based decision theory[END_REF] have recently proposed an axiomatized approach to casebased decision, where a similarity-based counterpart of expected utility is justified. Interestingly enough, the decision procedure they advocate looks somewhat similar to Sugeno and Nishida [START_REF] Sugeno | Fuzzy control of model car[END_REF] approach to fuzzy rule-based control, where a control value is computed by interpolation between values recommended by fuzzy rules, on the basis of the degrees of matching of the current situation with these rules.

In Section 3, Gilboa and Schmeidler's proposal is recalled and its relationship with fuzzy control techniques is discussed in relation with the strong modelling of fuzzy functional dependencies. Then, Section 4 proposes another approach to case-based decision more in agreement with the weak dependency view.

-Fuzzy Functional Dependencies in Case-Based Reasoning

Let M denote a memory of experienced cases represented by pairs (s i ,t i ) for i = 1,n, where s i denotes a problem and t i the associated outcome (solution). The current problem will be denoted by s 0 and its intended solution by t 0 .

A fuzzy functional dependency (e.g., Raju and Majumdar [START_REF] Raju | Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems[END_REF]) of the form "the more similar s 1 and s 2 , the more similar t 1 and t 2 " where (s 1 ,t 1 ) and (s 2 ,t 2 ) are cases of M, can be modelled by the constraint ∀(s 1 ,t 1 ),(s 2 ,t 2 ) ∈ M, S(s 1 ,s 2 ) ≤ T(t 1 ,t 2 ) [START_REF] Bensana | OPAL: A multi-knowledge-based system for industrial job-shop scheduling[END_REF] where S and T are fuzzy proximity relations 1 (they range on [0,1]). S and T are supposed to be symmetric (∀s 1 , s 2 , S(s 1 ,s 2 ) = S(s 2 ,s 1 ), T(t 1 ,t 2 ) = T(t 2 ,t 1 )), and reflexive (∀s 1 , S(s 1 ,s 1 ) = 1, T(t 1 ,t 1 ) = 1). According to (1), the similarity of s 1 and s 2 constrains the similarity of t 1 and t 2 at a minimum level, i.e., S(s 1 ,s 2 ) is a lower bound of T(t 1 ,t 2 ). In particular if S(s 1 ,s 2 ) = 1 then T(t 1 ,t 2 ) should be 1 also. Expression (1) corresponds to the representation of a gradual rule [START_REF] Dubois | Gradual inference rules in approximate reasoning[END_REF].

In particular, ∀ α ∈ (0,1], we have

(s 1 ,s 2 ) ∈ S α ⇒ (t 1 ,t 2 ) ∈ T α
where S α = {(s,s'), S(s,s') ≥ α} is the α-cut of S and T α is similarly defined. So it expresses that when s 1 and s 2 are close, t 1 and t 2 should be at least as close. Moreover, if T is such that T(t 1 ,t 2 ) = 1 ⇔ t 1 = t 2 , then the classical functional dependency s 1 = s 2 ⇒ t 1 = t 2 is a consequence of (1) using the reflexivity of S. Constraint (1) is then clearly stronger than a classical functional dependency in this case, since the above implication holds for any α-cut.

Let us know examine how (1) is used in the case-based inference process. Let (s,t) ∈ M, we have for the current situation s 0 S(s,s 0 ) ≤ T(t,t 0 ) where t 0 is unknown. Thus, the constraint defines a set of possible values for t 0 , namely {t 0 , S(s,s 0 ) ≤ T(t,t 0 )}. Since, it applies for any (s,t) in M, we obtain the following set E of possible values for t 0 E = (s,t)∈M {t' ∈ | S(s,s 0 ) ≤ T(t,t')}.
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Note that E may be empty if T is not permissive enough. It can be shown that the nonemptiness of E can be guaranteed by the coherence (in the sense of (Dubois, Prade and Ughetto [START_REF] Dubois | Coherence of fuzzy knowledge bases[END_REF])) of the set of fuzzy gradual rules "the more s 0 is S-similat to s i the more t 0 should be Tsimilar to t i for each case (s i ,t i )∈ M.

The requirement that the value of s uniquely determines the value of t, or at least that when s i and s j are close t i and t j should be close also, may be felt to be too strong in some practical applications where M may for instance simultaneously include cases like (s,t) and (s,t') with t much different from t'. Indeed two very similar second hand cars might be sold at different prices, for instance. In such a case, we suggest to use a weaker version of the principle underlying case-based reasoning, stating that "the more similar s 1 and s 2 , the more possible t 1 and t 2 are similar". The formal expression of this principle requires the clarification of the intended meaning of 'possible' in the above rule.

Rules of the form "the more X is A, the more possible Y is B" correspond to a particular kind of fuzzy rules called "possibility rules" (Dubois and Prade [START_REF] Dubois | What are fuzzy rules and how to use them[END_REF]). They express that "the more X is A, the more possible B is a range for Y", which can be understood as "∀u, if X = u, it is possible at least at the degree A(u) that Y lies in B". When B is an ordinary subset, it clearly expresses that i) if v ∈ B, v is possible for Y at least at the level A(u) if X = u, and ii) if v ∉ B, nothing is said about the minimum possibility level of value v for Y. It leads to the following constraint on the conditional possibility distribution π Y|X representing the rule

∀ u ∈ U, ∀ v ∈ V, min(A(u), B(v)) ≤ π Y|X (v,u).
See Dubois and Prade [START_REF] Dubois | Fuzzy rules in knowledge-based systems -Modelling gradedness, uncertainty and preference[END_REF] for a full justification of its semantics when both A and B are fuzzy. This model of fuzzy rule is close to Mamdani [START_REF] Mamdani | Application of fuzzy logic to approximate reasoning using linguistic systems[END_REF]'s original proposal in fuzzy logic-based control.

Since we apply the principle "the more similar are s and s 0 (in the sense of S), the more possible is that t and t 0 are similar (in the sense of T)", the fuzzy set of possible values t' for t 0 is given by π t 0 (t') ≥ min(S(s,s 0 ), T(t,t')).

As it can be seen, what is obtained is the fuzzy set of values t' T-similar to t, "truncated" by the global degree S(s,s 0 ) of similarity of s and s 0 . Since it applies to all the pairs (s,t) ∈ M, we obtain the following fuzzy set E of possible values t' for t 0 (E(t') = π t 0 (t')) E(t') = max (s,t)∈M min(S(s,s 0 ), T(t,t')).

(3)

-Gilboa and Schmeidler's Approach

Computing the result of a case-based inference is not only a matter of retrieving similar relevant cases, even if no adaptation is to be performed, as shown by the case-based decision paradigm. Recently, Gilboa and Schmeidler [START_REF] Gilboa | Case-based decision theory[END_REF] have advocated a similarity-based approach to decision where a case is described as a triple (problem, act, result) and where a decision-maker's nonnegative utility function u assigns a numerical value u(r) to a result r. When faced with a new situation s 0 , the decision-maker is supposed to choose an act a which maximizes a counterpart of classical expected utility used in decision under uncertainty, namely

U s 0 ,M (a) = ∑ (s,a,r)∈M S(s 0 ,s) • u(r) ( 4 
)
where S is a non-negative function which estimates the similarity of situations, here the similarity of the current situation s 0 against already encountered ones stored in the memory M. Moreover it is assumed that ∀s, ∀a, ∃!r such that (s, a, r) ∈ M (i.e., results are uniquely determined by the act applied to the context of a given problem), and ∀s, ∃!a such that (s, a, r) ∈ M and u(r) ≠ 0 (i.e., it means that only the best act in context s is stored in the memory). Gilboa and Schmeidler [START_REF] Gilboa | Case-based decision theory[END_REF] give an axiomatic derivation of this U-maximization, within a formal model.

In order to relate the case-based reasoning framework of the previous section to the above approach to decision problems, we consider the triples (s, a, r) as cases ((s,a), r) and we assume S((s,a), (s 0 ,a)) = S(s,s 0 ). Under a rather special hypothesis on the contents of M, it is then possible to retrieve (4) by applying the approach of Section 2 in the deterministic case.

Indeed let us try to estimate the utility u(r 0 ) attached to the act a applied to the current problem description s 0 . Then (2) yields E a = (s,a,r)∈M {u(r') | S(s,s 0 ) ≤ T(u(r), u(r'))}.

(5)

Using results in the Appendix, it can be checked that under the hypothesis that M and S are such that for s 0 , ∃!(s 1 ,s 2 ) such that (s 1 , a, r 1 ) ∈ M, (s 2 , a, r 2 ) ∈ M, S(s 0 ,s 1 ) > 0, S(s 0 ,s 2 ) > 0 and moreover that S(s 0 ,s 1 ) + S(s 0 ,s 2 ) = 1, then E a contains only one element e a equal to e a = ∑ (s,a,r)∈M S(s,s 0 ) • u(r) ∑ (s,a,r)∈M S(s,s 0 )

where we recognize (4) upto a normalization factor depending on the act a. An appropriate choice of T in ( 5) is also required in order to have [START_REF] Dubois | Gradual inference rules in approximate reasoning[END_REF] reducing to the value [START_REF] Dubois | Fuzzy rules in knowledge-based systems -Modelling gradedness, uncertainty and preference[END_REF]. See Appendix. This shows that for particular S and T, (5) embeds a linear interpolation mechanism. One way of satisfying the requirement of the above hypothesis when the problems s in M can be linearly ordered, is in fact to assume that a different S, say S s , is associated with the neighborhood of each problem s, in such a way that S(s,s') decreases to 0 when s' goes away from s and coincide with one of the two closest neighbors of s in M. Moreover we have to make S s 1 (s 0 ,s 1 ) + S s 2 (s 0 ,s 2 ) = 1.

Note that ( 4) is also akin to the fuzzy vote procedure used by Bensana et al. [START_REF] Bensana | OPAL: A multi-knowledge-based system for industrial job-shop scheduling[END_REF] for selecting a (scheduling) decision b in a situation s 0 from a set of rules if s is S (i) then the recommended act is a (i) with weight w (i) (where w (i) can be viewed as the utility of the result of the act a (i) ) as the one maximizing an index of the form

U(a) = ∑ i:a=a (i) S (i) (s 0 ) • w (i) (7) 
where S (i) is a fuzzy set describing a fuzzy class of situations.

At the reasoning level, the above decision procedures make use of similarity notions which can be viewed as the amount of "stretching" of the typical situation described in the condition part of the rule (i.e., the tolerance expressed by S (i) for extending the range of use of the rule) to encompass the current problem s 0 .

Although (4) looks like an expected utility expression where probabilities are replaced by similarity degrees, its intuitive interpretation is quite different from the decision under uncertainty situation. First, note that there is no constraint on the sum ∑ s S(s,s 0 ), in particular it has not to sum to 1 (in ( 6) the normalizing factor depends on act a!). The idea is rather to look for acts that in several similar situations had results with a high utility. However, a drawback of ( 4) is it unability to distinguish between the two following types of "extreme" situations (i) For act a 1 , ∃! s* such that S(s 0 ,s*) is high, u(r*) is high and (s*, a 1 , r*) ∈ M and S(s 0 ,s) is zero for any other s such that (s, a, r) ∈ M;

(ii) For act a 2 , ∃ s 1 , …, s n , with n sufficiently large, such that S(s 0 ,s i ) is high for i = 1,n and u(r i ) is low but non-zero where (s i , a 2 , r i ) ∈ M, while S(s 0 ,s) is zero for any other s such that (s, a, r) ∈ M and we have U s 0 ,M (a 1 ) < U s 0 ,M (a 2 ).

Thus, it may look strange to prefer act a 2 , which always gave rather poor results in situations similar to s 0 , to act a 1 , which gave a very good result in a situation quite similar to s 0 (even if this situation is unique). Moreover (4) somewhat compensates between good results r and bad results r' attached to the same act a for distinct problems s and s' which are both similar to s 0 (if we have both (s, a, r) and (s', a, r') in M).

-Alternative Approach

Another idea is to look for acts which for similar problems always gave good results. Then, for a given act a, we are interested in computing a degree of inclusion of the fuzzy set of problems which are similar to s 0 and where act a was experienced, into the fuzzy set of situations where act a led to good results.

The function u, like S, is now supposed to range on the real interval [0,1], with the following interpretations: S(s,s') = 1 means perfect similarity of s and s', S(s,s') = 0 means that s and s' are not at all similar as previously, while u(r) = 1 means that the result r is among the best ones, while u(r) = 0 means that r is among the worst ones. Thus, the fuzzy set of situations similar to s 0 is represented by S(s 0 ) = {s 0 } S, and u is the membership function of the fuzzy set of good results. The following degree of inclusion enables us to select the act(s) a, if any, which for problems similar to s 0 always gave good results:

U *s 0 ,M (a) = min (s,r): (s,a,r)∈M S(s,s 0 ) → u(r) [START_REF] Dubois | What are fuzzy rules and how to use them[END_REF] where ( 16) is a multiple-valued implication connective (i.e., x → y increases with y, decreases with x, and coincides with material implication on {0,1}). Assuming that • U *s 0 ,M (a) = 1 only if {s, (s, a, r) ∈ M, S(s,s 0 ) > 0} ⊆ {s, (s, a, r) ∈ M and u(r) = 1}

• U *s 0 ,M (a) = 0 as soon as ∃s, S(s,s 0 ) = 1, (s, a, r) ∈ M and u(r) = 0.

This leads to choose an implication x → y of the form x → y = n(x) ⊥ y where n is an involutive negation function and ⊥ a disjunction operation. In case of a purely ordinal interpretation of [0,1] where only the ordering of the levels is meaningful, we are led to use x → y = max(1 -x, y),2 i.e., U *s 0 ,M (a) = min (s,r): (s,a,r)∈M max(u(r), 1 -S(s,s 0 ))

which expresses that the existence of a case (s, a, r) in M does not penalize act a w.r.t. s 0 , if r is a good result, or if s is not similar to s 0 .

U *s 0 ,M is a rather drastic criterium since it requires that in all the problems similar to s 0 , act a led in good results. A more "optimistic" behaviour can consist in selecting all the acts which led to a good result for at least one problem similar to s 0 , i.e., the dual criteria U* s 0 ,M (a) = max (s,r): (s,a,r)∈M min(u(r), S(s,s 0 )).

Thus U* s 0 ,M (a) is maximum as soon as it exists a case corresponding to a problem completely similar to s 0 where the act a led to an excellent result. Note that U* s 0 ,M (a) ≥ U *s 0 ,M (a), [START_REF] Kolodner | Case-Based Reasoning[END_REF] provided that the fuzzy set S(•, s 0 ) of situations s which are similar to s 0 and where act a was already experienced (i.e., such that ∃ r and (s, a, r) ∈ M for the considered act a), is a normalized fuzzy set. Indeed when h S (s 0 ) = max s: (s,a,r)∈M S(s,s 0 ) < 1, it means that act a was never experienced on a situation completely similar to s 0 . In particular when {s, (s, a, r) ∈ M, S(s,s 0 ) > 0} = Ø, U *s 0 ,M (a) = 1 using (9) which is not satisfactory. It suggests to modify (9) into U *s 0 ,M (a) = min(h S (s 0 ), min (s,r): (s,a,r)∈M max(u(r), 1 -S*(s,s 0 )) [START_REF] Sombé | Reasoning by analogy, in: Reasoning Under Incomplete Information in Artificial Intelligence[END_REF] where S*(•, s 0 ) is a renormalized version of S(•, s 0 ) (e.g., S*(s,s 0 ) = S(s,s 0 ) / h S (s 0 ) with h S (s 0 ) ≠ 0). The rationale behind [START_REF] Sombé | Reasoning by analogy, in: Reasoning Under Incomplete Information in Artificial Intelligence[END_REF] is that our willingness to apply act a to s 0 is upper bounded by the existence of situations completely similar to s 0 where act a was experienced. Moreover S(•, s 0 ) is renormalized in order to obtain a meaningful degree of inclusion. Thus, [START_REF] Sombé | Reasoning by analogy, in: Reasoning Under Incomplete Information in Artificial Intelligence[END_REF] corresponds to the expression of the compound condition "there exists situations similar to s 0 where act a was used and the situations which are the most similar to s 0 are among the situations where act a led to good results". Note that the similarity is no longer estimated in an absolute manner, but in a relative way, hence the normalization. However with [START_REF] Sombé | Reasoning by analogy, in: Reasoning Under Incomplete Information in Artificial Intelligence[END_REF], the inequality ( 11) is not guaranteed, except if we change S(•, s 0 ) into S*(•, s 0 ) in ( 10) also.

Besides, it would be natural to have the optimistic evaluation all the greater as the act a was never applied to situations similar to s 0 in the past (indeed in this case, the lack of information should benefit to act a). This leads to modify (10) into U* s 0 ,M (a) = max(1 -h S (s 0 ), max (s,r): (s,a,r)∈M min(S(s,s 0 ), u(r))).

Using ( 12) and ( 13), the inequality ( 11) is preserved. Moreover when h S (s 0 ) = 1 (i.e., the set of situations similar to s 0 is normalized), ( 9) and (10) are retrieved. Note that we have U* s 0 ,M (a) = 1 and U *s 0 ,M (a) = 0, in two different situations: i) act a was experienced in situations completely similar to s 0 and both excellent and very bad results were obtained according to the considered cases; ii) act a has never been applied to a situation somewhat similar to s 0 . Note that, this contrasts with U s 0 ,M defined by (4) which gives a non-zero result in the first case and is zero in the second case. However, U (s 0 ,M) cannot always distinguish between acts which always gave good results and acts which fail sometimes.

Interestingly enough, (9) can be viewed as the counterpart of qualitative expectations recently introduced in decision making under uncertainty (Dubois and Prade [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF]), just as (4) may be seen as a counterpart of the classical expected utility.

We might also think of applying the approach proposed in Section 2 based on weak functional dependencies. This point of view leads to estimate the utility of act a for problem s 0 as the fuzzy set E a of possible values t' defined as E a (t') = max (s,a,r)∈M min(S(s,s 0 ), T(u(r), t')), [START_REF] Raju | Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems[END_REF] by application of a weak dependency rule stating that an act a applied to similar situations possibly yields results with similar values (which requires the knowledge of the relation T). When T is the identity (which expresses that the value of the result of an act remains unchanged when applied to situations which are somewhat similar), ( 14) can be simplified into E a (t') = max s: (s,a,r)∈M and u(r) = t' S(s,s 0 ).

Thus, ( 9) and ( 10) can be also viewed as pessimistic and optimistic scalar summaries (in a sense which is to be clarified), of the fuzzy set of values whose membership function is given by [START_REF] Sugeno | Fuzzy control of model car[END_REF]. Indeed ( 9) and ( 10) are weighted median operations; see (Dubois and Prade [4]).

Concluding remarks

This is short note is clearly preliminary. A deeper study is necessary for understanding when the different case-based decision methods which have been suggested can be applied. Besides, it is possible in practice to make U *s 0 ,M as defined in Section 4 less drastic by only requiring that for most cases (rather than all) where a is present, the obtained results are good when the situation is similar to s 0 , thus allowing for a few exceptions. This is a topic for further research.

In this paper, we use the notations S(s 1 ,s

) and T(t 1 ,t 2 ) for denoting the degrees of similarity for simplicity, rather than using the notations µ S (s 1 ,s 2 ) and µ T (t 1 ,t 2 ) commonly used in the fuzzy set literature where they distinguish between a fuzzy set F and its membership function µ F . Thus, in all the paper, we write F(u) instead of µ F (u).

Since max(1 -x, y) = 1 if and only if y = 1 whenever x > 0. On an ordinal scale, 1 -(•) is replaced by the order-reversing function of the scale.

Appendix: Fuzzy Gradual Rules and Sugeno and Nishida's Interpolation Method Sugeno and Nishida [START_REF] Sugeno | Fuzzy control of model car[END_REF]'s method starts from rules with non-fuzzy conclusion parts of the form "if X is A (i) then Y = b (i) (x) (we do not deal here with compound conditions for simplicity), and computes the output y as the weighted sum

which indeed looks like an interpolation. When b (i) (x) does not depend on x, this result can be obtained by applying Zadeh [START_REF] Zadeh | A theory of approximate reasoning[END_REF]'s approximate reasoning combination and projection approach viewing the rules as gradual rules expressing that "the closer X is to a (i) , the closer Y is to b (i) ", i.e., modelling them as inequality constraints of the form A (i) (u) ≤ B (i) (v). Then the subset of V obtained by combining the results of the rules for the input X = x 0 is given by min i=1,n A (i) (x 0 ) → B (i) (v) where the implication defined by a → b = 1 if a ≤ b and a → b = 0 if a > b encodes the above interpretation of the rules. When the A (i) 's and B (i) 's make suitable fuzzy partitions of U and V respectively (it guarantees that ∀u, ∑ i A (i) (u) = 1), which is in particular the case with the usual partitions made of triangular membership functions as in Figure A.1, it can be shown that the fuzzy subset of V which is thus obtained is nothing but the singleton {y} computed by Sugeno's method (I). Let us explain the situation in more details.

Let us consider a collection of gradual rules of the form "the closer X is to a i , the closer Y is to b i " where (a i ,b i ), i = 1,n are pairs of scalar values. The first problem is to represent "close to a i ", by means of a fuzzy set A i . It seems natural to assume that A i (a i-1 ) = A i (a i+1 ) = 0 since there are special rules adapted to the cases X = a i-1 , X = a i+1 . Moreover if u ≠ a i , A i (u) < 1 for u ∈ (a i-1 ,a i+1 ), since information is only available for u = a i . Hence A i should be a fuzzy interval with support (a i-1 ,a i+1 ) and core {a i }. Besides, by symmetry, since the closer x is to a i-1 , the farther it is from a i , A i-1 should decrease when A i increases, and

The simplest way of achieving this is to let

an example of which are triangular-shaped fuzzy sets as in Figure A.1. Clearly the conclusion parts of the rules should involve fuzzy sets B i whose meaning is "close to b i ", with similar convention. In other words, each rule is understood as "the more X is A i , the more Y is B i ", i.e., here "the closer X is to a i , the closer Y is to b i ". In that case the output associated with the precise input X = a, where a i-1 < a < a i is

where α → B corresponds to the level cut B α , where → is the implication defined above and

Then it can be easily proved (without the assumption of a triangular shape) that there exists a unique value y = b such that B(b) = 1, which exactly corresponds to the result of a linear interpolation, i.e., we have b

It is a theoretical justification for Sugeno and Nishida [START_REF] Sugeno | Fuzzy control of model car[END_REF]'s inference method where the conclusion parts of the rules are precise values b i and where a linear interpolation is performed on the basis of the degrees of matching α i = A i (a). Hence reasoning with gradual rules does model interpolation, linear interpolation being retrieved as a particular case. The more complicated case of gradual rules with compound conditions, i.e., rules of the form "the more X 1 is A 1 , …, and the more X n is A n , the more Y is B" is studied in details in (Dubois, Grabisch and Prade [START_REF] Dubois | Gradual rules and the approximation of control laws[END_REF]).