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Abstract

In this paper, it is shown that fuzzy sets and possibility theory provide an homogeneous framework
for the representation of both imprecise/uncertain information and soft queries with a flexible
interpretation. Incompletely known information as well as flexible query handling capabilities are
expected to extend the range of applications for future database management systems. The term fuzzy
databases which is extensively used in the specialized literature covers several different meanings
which are reviewed. A special emphasis is put on flexible queries addressed to regular databases.
Such queries enables the user to easily express preferences among more or less admissible attribute
values. Several approaches for introducing flexibility, including fuzzy sets, are compared. A query
language based on SQL is outlined and some issues related to query processing are discussed. In
addition, possibility theory proves to be useful for representing imperfectly known data and soft
constraints. Pattern matching is extended for handling this kind of data, as well as flexible queries.

1. Introduction

The information to be stored in a data base is not always precise and certain. Information
about attribute values may be even missing for objects of interest (this corresponds to the null value
"unknown"). Other types of null values (e.g., Biskup, 1980) are also encountered when an attribute
does not apply to a particular object or when we do not know if the value is missing or does not exist.
When the only available information is imprecise, uncertain or even vague it seems rather natural to
try to represent it, as it is, and to store it in a data base in order to use it to answer queries of interest
as far as possible.

Another data base issue which may be also connected with the idea of uncertainty, is the
handling of unsharp queries, of queries which are not clear-cut. There may be several reasons for
such queries. First the way the query is stated may be ambiguous because for instance it is expressed
in natural language and we do not know to what, some part of the query refers. Some contextual and
pragmatic knowledge may then help to choose the most plausible interpretation. Natural language
queries may also involve words or phrases with vague meanings. The user may also be unsure about
what he is looking for. In all these cases the unsharpness can be viewed as a defect of the query.
However the presence of vague predicates in a query may be also motivated by the need of
expressing gradual preferences between admissible values. Then the query is made flexible for
expressing tolerance.

Fuzzy set and possibility theory (Zadeh, 1965, 1978) offer a unified framework which
enables us to provide a solution both to the handling of flexible queries and to the management of
imprecise and uncertain information. A fuzzy set F is an extension of the idea of a regular set viewed
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in terms of membership function. It describes a subpart of a universe U whose boundaries are not
strictly defined and a grade of membership (valued in [0,1]) is attached to each element of U. In so
doing, there is a gradual transition between full membership and exclusion and it is then possible to
have a better representation of gradual properties, vague classes, approximate descriptions currently
used in natural languages when speaking of the real world. As a consequence, if we consider a
precise value x in U, it is possible to estimate the extent to which x is compatible with the concept
represented by F. In other situations, the issue is rather to represent an ill-known value x and, in this
case, the notion of possibility distribution is used to express a restriction on the more or less possible
values of x and to specify the extent to which a given element of U is possible as being the actual
value of x. Clearly, fuzzy sets and possibility distributions encode preferences on a universe, but it
should be emphasized that they deal with two different issues as illustrated by Figure 1. Indeed,
depending on the considered situation, Figure 1 may either mean that the value "a" (e.g., John's
salary) is compatible at degree .8 with the concept represented by the membership function of a fuzzy
set ("high" for instance) if John's salary is precisely known, or it may mean that it is possible at
degree .8 that "a" is the actual value of an ill-known piece of data whose possible values are described
by the possibility distribution in bold in Figure 1 (e.g., we only know that John's salary is high).
Possibility distributions restrict the possible values of variables on universes of mutually exclusive
values, while fuzzy sets represent gradual properties whose satisfaction may be a matter of degree.

1

0
salarya

.8 high

Figure 1 : Fuzzy set or possibility distribution ?

The paper gives a general introduction to fuzzy set and possibility theory-based approaches, provides
an overview of the available methods, and refers to the existing literature where more details can be
found. The paper is organized in the following way. Section 2 defines the basic vocabulary and
introduces the fundamental concepts for characterizing the various forms of imperfect information.
Section 3 examines what are the main different kinds of fuzzy data bases. Section 3 also briefly
considers the corresponding issues in documentary information retrieval systems. Section 4 is
devoted to the treatment of flexible queries. Section 5 deals with the management of imprecise and
uncertain pieces of information in a data base. Section 6 discusses integrity constraints and especially
functional dependencies whose expressions involve tolerance, graduality or uncertainty. In the
concluding remarks, other topics related to uncertainty and imprecision issues in data base systems
are briefly mentioned, in particular, the updating of the content of a data base when new information
is provided or time is passing, the management of fuzziness and uncertainty in object-oriented
representations, and the summarization of data.

2. Imperfect Information : Vocabulary

The purpose of this section is to define the main terms which are in use when referring to
imperfect information. By information, we mean data (facts) as well as general knowledge (rules).
We successively distinguish four main types of defects which may pervade information, namely :
uncertainty, imprecision, vagueness and inconsistency. The distinction between imprecision and
uncertainty has been particularly advocated by Dubois and Prade (1988a).
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2.1. Uncertainty

Uncertainty refers to the lack of available information about the state of the world for
determining if a classical statement (which can only be true or false) is actually true or false.
Examples of such statements are : "It will rain at 5 p.m. to-day", "Tweety flies" (knowing only that
Tweety is a bird and that birds usually fly), "The number of inhabitants in Palma de Mallorca is over
500.000" (but the person who gave me this information is not fully reliable).

In such situations, the best that we can do is to try to estimate the tendancy of the statement to
be true (or to be false) and several frameworks are possible : i) numerical approaches such as
probability theory, possibility theory, belief functions, and more ad hoc certainty factor-based
techniques, ii) purely symbolic deduction methods using non-classical mechanisms for producing
plausible conclusions in spite of the partial lack of information (defeasible reasoning).

2.2. Imprecision

Imprecision refers to the contents of the considered statement and depends on the granularity
of the language used to describe the information. For instance, the sentence "Paul is between 25 and
30 years old" is clearly imprecise, but the sentence "Paul is 26 years old" is precise if we only expect
integer values for the age and is imprecise if the values should also indicate the number of months.
Imprecise statements may stem from disjunctive information such as "Peter is 25 or 27", or negative
information (when the underlying domain contains more than two values) such as "Peter is not
between 25 and 29 years old". An extreme situation is when Peter's age is completely unknown
which means that any value of the universe may equally be assigned. Imprecision is represented in
terms of subsets of the relevant attribute domain which are not singletons. These subsets constrain the
possible values which can be assigned to the attribute for the considered object.

A given statement may be both uncertain and imprecise. For instance, "Paul is 35 or 36 or 37
years old" is clearly imprecise, but in addition, we may have some doubt about our source of
information and it becomes then uncertain. Generally, a balance exists between uncertainty and
imprecision : "the more imprecise you are, the more certain your statement", and conversely "the
more precise you are, the more uncertain the statement" with respect to a given state of available
information. For instance if somebody, after meeting Peter for just a few minutes, says that "Peter is
between 30 and 50", this can be regarded as certain or at least as almost certain, since it is a very
imprecise statement for which there is  almost no risk to be denied ; on the contrary if the person
claims that "Peter is 35, 36 or 37 years old" this is more precise but the uncertainty should have
increased.

Imprecision may also be due in a multiple source data base system to the use of different
vocabularies for expressing attribute values, corresponding to different partitions of the same
universe of discourse. In that case, there is not a one-to-one correspondence between the labels of the
elements of the different partitions. Given two partitions 1 = (A1, …, An) and 2 = (B1, …, Bm)
of a domain D, we can only define an upper approximation Ai* and a lower approximation Ai* of the
element Ai of 1 in terms of those of 2, namely Ai* = { Bj, Ai ! Bj " Ø}, Ai* = { Bj,
Bj # Ai} thus giving birth to a rough set (Pawlak, 1991).

2.3. Vagueness and Gradual Properties

A vague statement contains vague or gradual predicates. It may also include vague quantifiers.
For instance, "Paul is a young researcher" refers to Paul's age using the linguistic term "young".
Note that the meaning of a vague predicate depends on the context : a big butterfly is smaller than a
small elephant ; the context may even depend on the user. So, it is not a universally accepted meaning
of "young" in a given context that we try to represent in practice, but the intended meaning of a given
person. Fortunately, fuzzy sets are rather easy to elicitate (since it is sufficient in practice to identify
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its support (the elements with non-zero membership) and its core (the elements with membership 1).
See 4.1.3. A statement such as "Paul is young" is not necessarily true or false, and as already said, it
may be used in two completely different situations : i) Paul's age is precisely known, for instance he
is 30 years old, and the statement then receives a degree of truth which estimates to what extent 30
matches the representation of "young" in the considered context ; or ii) the fact that "Paul is young" is
the only available information about Paul's age and thus the statement represents a flexible constraint
on the acceptable values for Paul's age. In both cases, an ordering among the values compatible with
the idea of "young" is defined.

Remark : It is possible to encounter second order imprecision and uncertainty if the value of a
degree of truth or of a measure of uncertainty (probability, possibility, etc.) is imprecisely, vaguely
stated, or not known with complete certainty. For instance, we may want to express that "it is not
completely certain that John's is ill-paid". It gives birth to a possibility distribution of the type
pictured in Figure 2. Such a possibility distribution expresses that there is a possibility equal to 1 – $
that John is not-ill paid and thus that "John is ill-paid" is only certain at degree $.

1

1 – $

0 $

ill-paid

Figure 2 : Representing a vague and uncertain piece of information

2.4. Inconsistency

An inconsistent state of information is such that there is no possible assignment of the variable
under consideration (or no model). The two pieces of information "Peter is 25" and "Peter is older
than 27" illustrate this situation since there is no way of assigning a value to Peter's age which agrees
with both pieces of information. This may be due to the existence of distinct sources of information
with different levels of reliability. Acknowledging this fact may lead to a solution ; see Dubois, Lang
and Prade (1992) where a set of n certainty degrees associated with the n sources under consideration
is attached to each proposition in a possibilistic logic framework.

3. What 'Fuzzy Data Base' Means ?

The expressions "fuzzy data base" or "fuzzy data base system" have been used as generic
terms for referring to any fuzzy set-based approach in information management. So these terms cover
quite different views which are briefly reviewed in the following. Most of the approaches take place
in the framework of the relational model of data, although the handling of fuzzy information in the
entity-relationship model has been also explored (Zvieli and Chen, 1986 ; Ruspini, 1987).

If we take apart the idea of a fuzzy or flexible query (e.g., Tahani, 1977 ; Zemankova and
Kandel, 1984 ; Dubois and Prade, 1988a ; Bosc et al., 1988) which is discussed in the next section,
"fuzzy data base" may have at least four different intended meanings according to the way we use
fuzzy sets for representing data pervaded with uncertainty and vagueness, or for modelling fuzzy
concepts.

A first interpretation consists in extending the data base relational scheme by dealing with
fuzzy relations rather than with ordinary relations, a fuzzy relation being defined as a fuzzy subset of
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a Cartesian product of domains. Each tuple is provided with a grade of membership expressing the
extent to which it belongs to the fuzzy relation. Such fuzzy relations made of weighted tuples can be
either used as a format for storing information (Kunii, 1976 ; Baldwin and Zhou, 1984 ; Li and Liu,
1990) or only produced when answering flexible queries addressed to a non-fuzzy data base (Tahani,
1977 ; Bosc et al., 1988). In this latter case the relation represents a fuzzy concept, e.g. "employees
who are middle-aged and recently-engaged" ; in such an example the weight attached to a tuple
represents to what extent the corresponding employee is "middle-aged and recently-engaged". In this
case the data are neither imprecise nor uncertain but a level of compatibility with respect to some
fuzzy concept(s) of interest is associated to them.

 However, relations with weighted tuples, which can be seen as fuzzy relations from a formal
point of view, can be understood at least in two different ways depending on the intended meaning of
the weights. Unfortunately this meaning remains sometimes unclear in the fuzzy set literature.
Weights may represent : i) the compatibility of tuples with respect to a fuzzy concept as said above ;
ii) the certainty we have in the information stored in the tuple, i.e., the information contained in the
tuple is qualified with a certainty equal to the weight (we may also think of weighting the tuples in
terms of possibility). This applies as well to relations modelling the association between values, as
for instance in the fuzzy relation "likes (person, movie)", which can be either weighted in terms of
uncertainty or in terms of strength of feeling. Note that if the weight models uncertainty, "likes" may
be considered as an ordinary predicate, while if it models strength or intensity, "likes" is necessarily
viewed as a fuzzy predicate (in such a situation the fuzzy relation represents the extension of a n-ary
fuzzy predicate). In any case, weights can be assessed in terms of linguistic values (e.g.
'moderately', 'very unlikely'). Clearly the interpretation of the weights should be taken into account
when defining operations for manipulating them.

A second view of fuzziness in data bases relies on the notion of interchangeability or tolerance
relations defined on attribute domains (Buckles and Petry, 1982, 1987 ; Cayrol et al., 1982 ;
Potoczny, 1984 ; McClelland et al., 1988 ; Zemankova, 1989 ; Rundensteiner et al., 1989). For
instance, this approach may be used to represent data issued from some measurement devices in order
to represent the error on the measure. Indeed, given an attribute domain , an interchangeability
relation T may be defined through its membership function µT from  ×  to [0,1], such that the
closer (or the more interchangeable) the values d and d', the closer to 1 the degree of membership
µT(d,d'). The value of µT may be explicitely given by an expert for each pair (d,d') for discrete
domains, if no distance is available, or µT may be built from a distance, especially on continuums (in
practice, closed sub-intervals of the real line). Given a distance %, we may for instance define µT as :
max(0, 1 – %(d,d')/&) where & is a positive real number. The interchangeability relation attached to
each attribute domain may be understood as a standard amount of fuzziness which should be attached
to each (apparently) precise value of this attribute stored in the data base in order to restore the
inherent imprecision or uncertainty of this value (Prade and Testemale, 1987b). In this case we
acknowledge the fact that there is an approximate "synonymy" between close elements in attribute
domains and that when a precise attribute value is stored, another value, close to the former value,
might have been stored as well. Another use of fuzzy relations expressing proximity is when a
tolerance is added to a request in order to enlarge the set of acceptable values in a fuzzy way.

A third type of fuzzy data base that we shall consider in greater details in Section 5 allows for
the representation of ill-known attribute values inside tuples by means of possibility distributions
(Zadeh, 1978). For instance, in a database describing houses, if the size (or the price) is not perfectly
known, it will be described by means of a possibility distribution (which in fact restricts the set of
possible values for the size (or the price) of a particular house). This approach has been particularly
developed by Umano (1982, 1983), Umano and Fukami (1987), Prade, (1982, 1984), Prade and
Testemale (1984), Zemankova and Kandel (1984), Vandenberghe et al. (1989). In this approach,
attribute values are allowed to be precise, imprecise, vague, pervaded with uncertainty, unknown, or
inapplicable, according to the nature of the available information. In all these cases, the information is
represented by means of a possibility distribution 'A(x) which restricts the possible values of the
attribute A for the considered object x. 'A(x) takes its values in the interval [0,1], 'A(x)(u) = 0
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means that u is impossible and thus totally excluded for A(x), while 'A(x)(u) = 1 means that u is
completely possible for u ; clearly several distinct values can be considered as completely possible for
A(x) in case of imprecise information. The values restricted by 'A(x) are mutually exclusive as
possible values of A(x), and thus 'A(x) is defined on D if A is single-valued, and on 2D if A is an
attribute which can have several values in D simultaneously (e.g., the language(s) spoken by a
person).

A precise, imprecise or vague piece of information can be qualified in terms of uncertainty. As
already said, one interpretation of a weighted tuple is to view the weight attached to the tuple as an
estimate of the reliability, or of the certainty of the information contained in the tuple. Modelling this
certainty in terms of a necessity measure in the framework of possibility theory leads to associate the
level of certainty attached to the tuple to each of the elements of the tuple and to modify each
possibility distribution in the tuple into another possibility distribution reflecting this level of
certainty. Figure 2 gives an example of how a possibility distribution, here representing the fuzzy set
of possible values compatible with the idea of "ill-paid", is modified into another possibility
distribution to acknowledge the fact that the information is only certain at the degree $.

Note that in the above-mentioned representation of pieces of information by means of
possibility distributions, the values which are outside the fuzzy set whose membership function is
equal to the possibility distribution, are definitely excluded as possible values (since their possibility
degree is zero). In other words, we are totally certain that the value of the attribute for the considered
item is among the values with a non-zero degree of possibility. However we may imagine as
suggested in Dubois and Prade (1991) to have to store in a database a value or a set of values which
are individually judged as more or less possible for the considered attribute of the object under
concern, without completely knowing the set of all its possible values. In this case we are no longer
certain that the value of the attribute is among the values stored in the databases, we only know that
these values are possibilities for sure (but there may be other ones as well). This corresponds to
possibility-qualified pieces of information and may be considered as a fourth kind of fuzziness in
databases. If more information of this kind is provided it would lead to enlarge the scope of
possibilities, while in the case of a possibility distribution restricting with certainty the possible
values, the scope of possible values can only diminish with the arrival of new information. In case of
possibility-qualified pieces of information, the intended purpose is to express that there is a
"guaranteed possibility" for a given attribute value to apply to the considered item. For instance,
when we have examples of possible prices for a second-hand car (these prices do not necessarily
intend to describe all the more or less possible prices with certainty).

Apart from the relational view of a database expressed in terms of values of attributes in
tuples, we may use a logical framework for the representation of data (and integrity constraints) in
deductive databases. Then treatment of uncertainty in the setting of possibility theory can be handled
in possibilistic logic (Dubois, Lang and Prade, 1989, 1991, 1993) ; the case of flexible queries would
require the use of fuzzy predicates. The reader is referred to the above-mentioned references for
introductions to this approach, which will not be recalled in the following for the sake of brevity. See
also Steger et al. (1989) for an example of handling of certainty degrees using fuzzy set combination
operations in a logic programming style.

Remark : Flexible Querying and Information Retrieval
In the context of information retrieval systems, flexible querying makes sense since by nature

the result should be an ordered list of documents matching the user's needs. Then it may seem natural
to attach a degree of importance to each key-word appearing in a query to make it flexible by
expressing preferences, and/or to grade the relevance of a key-word with respect to a document in
order to take into account the uncertainty pertaining to the appropriateness of the keyword for the
document (Negoita and Flondor, 1976 ; Bollman and Konrad, 1976 ; Bookstein, 1980 ; Kohout et
al., 1984 ; Kraft and Buell, 1983 ; Yager, 1987 ; Biswas et al., 1987 ; Murai et al., 1989 ; Miyamoto,
1990 ; Nomoto et al., 1990 ; Ogawa et al., 1991 ; Bordogna et al., 1991). Fuzzy thesauri taking into
account the approximate synonymy between key-words can be also introduced (e.g., Reisinger,
1974).
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4. Flexible Queries

When querying a database, one sometimes does not wish to define precise limits of acceptance
or rejection for a condition, especially when the satisfaction of this condition is a matter of degree.
This also occurs when one wishes to express preferences and thus to distinguish between acceptable
and non-acceptable items in a more refined way than with a Boolean filter. In order to do that, vague
predicates are allowed in the requests ; such predicates are represented by fuzzy sets and model
gradual properties whose satisfaction is a matter of degree ; we can thus express that among
acceptable attribute values, some are preferred. A query looking for "hotels not too expensive close to
downtown" illustrates this expression of preferences. An advantage of flexible queries is first to
provide a reply when a classical crisp, too requiring request would have produced an empty
response, and secondly to rank-order the n best replies rather than to provide a long list of
undifferentiated replies to the user. An advantage of this approach is that the user has not to
reformulate his request too many times.

4.1. The Fuzzy Set Approach

4.1.1. O v e r v i e w

Here, vague criteria involved in requests are assumed to be represented by fuzzy sets. A query
will be constructed using several types of vague predicate expressions :

– atomic predicate : defined by a fuzzy set on a domain Di, i.e., by a membership function from Di to
[0,1] ; examples of such vague predicates are "tall", "young", "important", etc., to be represented
in a given context. In practice, unimodal functions with a trapezoidal shape are often used.

– modified predicate : modifier functions, from [0,1] to [0,1], can be applied to fuzzy set
membership functions in order to model the effect of linguistic hedges such as "very", "more or
less", "rather", etc. The most usual modifier functions are of the form y = x$, or are translating
operations. Antonyms can also be treated in this category : the antonym ant(T) of a fuzzy label T is
defined by taking the membership function of ant(T) as the symmetrical of the one of T with
respect to the axis passing by the middle of the domain D on which these functions are defined,
namely if D = [a,b], µant(T)(x) = µT(a + b – x). Thus ant(ant(T)) = T.

– compound predicate : it is defined as a combination of membership functions representing atomic
predicates by means of fuzzy set connectives ; for instance we may have a request for "cars not
expensive and rather recent (or with a limited mileage)" ; see Section 4.1.2.

Besides queries may involve vague quantifiers (e.g. "most", "a few", "about a dozen"). It may be
queries about the (relative) cardinalities of some subsets of objects, as for instance in "Is it true that
most of the employees which satisfy A satisfy also B ?", or even queries looking for objects
satisfying most of the prescribed conditions.

Queries which look for the maximal, minimal or average values, or more generally for the
evaluation of any scalar function, over a set objects specified in a fuzzy way can also be handled. An
example of such a query is "what is the average salary of young employees ?". See Dubois and Prade
(1990) for a presentation of scalar and fuzzy-valued solutions.

4.1.2. Connect ives

Compound conditions expressed under the form of logical expressions are represented using
fuzzy set operations. Fuzzy set theory offers a panoply of aggregation attitudes richer than the
Boolean framework. We have at our disposal a variety of conjunctions and disjunctions, but also
trade-off operations. Let Ai(x) be the precise value of the attribute Ai for the item x and Pi be the
subset expressing the restriction for Ai(x), in the request. Thus, conjunctive (resp. disjunctive)
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aggregations of the elementary degrees of matching µPi(Ai(x)) are performed usually by applying
min (resp. max) operation to the degrees. Using min for evaluating a conjunction of required
properties means that the grading of the least satisfied property will reflect the global level of
satisfaction. This type of logical conjunction may be felt as too requiring in some situations. See
below for other possible candidates for modelling a "and" connective. Negation is modelled by
1 – µPi(Ai(x)) which represents the extent to which Ai(x) belongs to the complement of Pi. In some
applications, we may like to express that some elementary conditions are less important than others.
Conjunctive and disjunctive aggregations are respectively generalized in that case by (Dubois and
Prade, 1986 ; Sanchez, 1989)

mini max(µPi(Ai(x)), 1 – wi)
maxi min(µPi(Ai(x)), wi)

where wi is a weight of importance of the condition bearing on the attribute Ai in the request. The
weights are supposed to satisfy the normalization condition maxi wi = 1. Clearly, when all the
elementary conditions are equally important, (i.e., (i, wi = 1), the two operations above reduce
respectively to min and max. When wi = 0, no condition on the attribute Ai is taken into account. We
observe, in the case of the conjunctive combination, that even if Ai(x) fails to satisfy the restriction Pi
of importance wi, this cannot make the global result of the combination going below 1 – wi. For
instance, if we look for an apartment which is "cheap and sufficiently large" (the second criterion
being less important, we are led to evaluate an expression of the form min(µcheap(price),
max(µsufficiently-large(surface), 1 – w)). In this expression, if the surface is not sufficiently large,
the global rating will be equal to 1 – w rather than to zero if the price is OK. Thus, an apartment
cannot be completely rejected only on the basis of its surface in this case.

However, conjunction and disjunction operations, other than min and max, can be used. There
exist more drastic conjunction operations (e.g., the product a · b, or max(0, a + b – 1)) and less
drastic disjunction operations (e.g., the "probabilistic sum" a + b – a · b, or the bounded sum
min(1, a + b)). There also exist many trade-off operations between min and max (e.g., the arithmetic
mean) which can model compensatory "and" for instance (a low degree of satisfaction for one
elementary condition can be somewhat balanced by a high degree of satisfaction for another
condition). See Zimmermann and Zysno (1980) for instance.

Overviews on fuzzy set aggregation connectives can be found in (Dubois and Prade, 1985 ;
Yager, 1991a). See also Su et al. (1987) for an applied perspective based on "an extended continuous
logic" (in fact on fuzzy sets). Let us also mention ordered weighted average (OWA) operations,
defined by OWA(a1, …, an) = w1 b1 +… + wn bn where bi denotes the ith largest value among the
ai's and the sum of the wi's equals 1 ; this aggregation performs a somewhat dynamic weighting (the
weights apply after ordering the values to be aggregated and do not depend on the places of these
values in the initial list), which contrasts with the ordinary weighted mean (Yager, 1988).

4.1.3. Elicitation of Membership Functions and Connectives

An important issue is the elicitation of the fuzzy set membership functions representing the
fuzzy predicates or fuzzy predicate expressions involved in a user query. There are two main
possibilities. A first solution consists in the use of a standard vocabulary with a set of connectives
(and possibly of fuzzy set modifiers) made available to the user for specifying requests ; this requires
that the user is familiar with the intended meaning of the fuzzy vocabulary. A better solution, in
general, seems to have a procedure which elicitates the intended meaning of user's words. Indeed
what is of interest is what the user means by "not-too-expensive" for instance and not to have a
universally valid representation of "expensive" and of the modifier "not-too", which may not exist.
The procedure first elicitates the membership functions of the fuzzy labels referring to a unique
domain Di, mainly by identifying when this function should be zero and when it is equal to 1 and by
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providing gradual transition(s) elsewhere. Then, we have to identify the intended meaning of the
connectives used in the query in case of compound predicates. Indeed a conjunction like "and" may
have a variety of different meanings ranging from a purely logical interpretation (requiring the more
or less complete satisfaction of each of the conditions involved in the conjunction) to compensatory
"and" 's allowing for trade-offs between the levels of satisfaction of the conditions. A simple
procedure for the elicitation of connectives is presented in (Dubois and Prade, 1988a, Chapter 3). It
requires global ratings given by the user for few prototypical objects.

As far as we are using max or min operations and the complementation to 1 (which is an
order-reversing operation), it can be shown that computation is not sensitive to slight variations of the
membership grades, since these operations are concerned only by the ordering between the degrees.
Thus, a very precise identification of the membership functions is not necessary in practice.
However, it is important to be aware that fuzzy sets require a commensurability hypothesis, i.e., the
use of a common scale for grading the compatibility with respect to the different predicates.

4.2. Flexible Querying of Regular Data Bases

In this section, we consider usual databases where data are assumed to be precisely known
and we investigate the issue of flexible querying. First of all, we briefly review the approaches
suggested in the literature and their position with respect to fuzzy sets, then some elements of an
extended SQL-like language are given. Finally, query processing aspects are discussed.

4.2.1. Fuzzy Set Based Approach

From an algebraic point of view, we can consider that the relational operations (selection,
projection and join) and set operations are extended to fuzzy relations according to the following
schema :

base relation R 1 base relation R2 .... base relation Rn

QUERY = COMPLEX
COMPOSITION

fuzzy relation R(A , ... A1 p )
where each tuple has a grade of 

membership with respect to the query

One can thereby select one relation or the product of several relations and receive a projection
of all the tuples provided with a degree of membership with respect to the query. Answers are then
ordered and this provides a way for avoiding (at least partly) empty or too large set of answers.
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4.2.2. Extensions of Relational Systems

Other approaches to flexible querying have been proposed and can be divided into three
groups : i) introduction of a complementary criterion in the query, ii) use of similarities and distances
and iii) description of explicit preferences and weighting.

Complementary Criterion

In the PREFERENCES system (Lacroix and Lavency, 1987), a question is composed of a
principal condition C and a complementary part P that is relative to the description of preferences,
both of which are based on Boolean expressions. The meaning of this type of question is : "find the
tuples which satisfy C and rank them according to their satisfaction of P." This system allows for the
combination of preference clauses (P) by means of two constructors : nesting (hierarchy of
conditions) and juxtaposition (conditions of equal importance). From the subset RC of the tuples of a
relation R satisfying condition C, the nesting (resp. juxtaposition) of preference clauses P1, …, Pn
leads to the sets : S1 the subset of RC satisfying P1 and not P2 (resp. one single clause); S2 the
subset of RC satisfying P1 and P2 but not P3 (resp. exactly two clauses) ; … ; Sn the subset of RC
satisfying P1 and … and Pn. The user receives as an initial response the set Si, with the highest index
i which is not empty, and he can go back to the previous sets, all of which corresponds to a
weakening of the preference condition.

One of the significant advantages of this system is the avoidance of successive formulations in
reaching a desired set of responses. The authors rightly point out that to handle an equivalent
formulation in a classic language would be rather tiresome. However, it must be noticed that the
discrimination capacity remains limited, since it directly depends on the number of preference
predicates given by the user. If n such predicates are provided (in practice n is small - less than 10),
any tuple belongs to one of n possible classes.

Another attempt based on a complementary criterion has been suggested with the system
called DEDUCE2 (Chang, 1982). However, it has been shown (Bosc et al., 1992a) that the
composition of predicates, which is based on ranks issued from sorts, is not semantically founded.

Similarities and Distances

Another idea relies upon queries which include conditions based on the notion of similarity
(denoted here by )) rather than strict equality. Let us consider conditions of the type "A ) v" where
"v" represents an ideal value, but where other values are nevertheless acceptable ; for instance salary
) $2000 means that $2000 is excellent but values around (the interval [1950-2050] for instance) can
also be accepted. The evaluation of such a condition on an element x is made using a distance
according to the following principle : if A(x) is somewhat similar to the value "v", then the
dissimilarity between x and the ideal value will be estimated by the distance between A(x) and v,
otherwise the dissimilarity will be infinite. In the presence of connectors such as conjunction and
disjunction, an overall distance must then be calculated, thus allowing the elements concerned to be
ordered. Several systems based either on an explicit operator of similarity (ARES (Ichikawa and
Hirakawa, 1986), VAGUE (Motro, 1988)), or an implicit one (the "nearest neighbors" technique
proposed by (Friedman et al., 1975)), have been suggested.

In ARES, elementary distances are attached to a given domain and are given by means of a
relation expressing the distance between any two values. In a given query (which involves both
Boolean predicates and predicates involving similarity that can only be ANDed), the user chooses a
threshold (ti) for each predicate involving a similarity. The global distance is defined as the sum of the
elementary distances tied to the similarity predicates involved in the query.

In VAGUE, we have three main differences with respect to ARES : the disjunction of
predicates is allowed, similarity predicates can be explicitly weighted and the global distance
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mechanism for a conjunction is based on the euclidian distance. ARES and VAGUE share a common
characteristic, namely the fact that only elements which more or less satisfy any term of a conjunction
are ordered. It is clear that this behaviour may cause some sort of discontinuity since an element
which is satisfying very poorly each term will be retained whereas one satisfying very well all terms
but one, will be definitely rejected. It is to notice that this drawback can be obviated in a fuzzy set
oriented environment.

In the "nearest neighbors" approach a query involves a set of values which characterize an
ideal tuple X. Each concerned tuple is then compared with X by means of a global function which
gathers the results of local distance functions applied to some attributes. One of the most used global
functions is the Lp-norm defined as :

with disti(x) = |xi – Xi|
maxi – mini

*disti(x)p
i=1            

n             
p                      

where xi and Xi stand for the values of the ith attribute of the current tuple and the prototype, which
can vary between mini and maxi.

Criteria with Preferences and Weighting

In the framework of information retrieval, the flexible retrieval system called MULTOS
(Rabitti, 1990) has been proposed. Its principle consists in replacing a traditional criterion with a set
of criteria to which an explicit preference level (expressed by a value between 0 and 1, or by a
linguistic term) is attached. Thus, if we are interested in the year of publication, we might write :
{year + [1978, 1982] "preferred", year  + [1983, 1988] "accepted"}. Furthermore, we can weight
each set of criteria (e.g. the subject matter is more important (high) than the price of the document
(medium) which in turn is more important than the year of publication (low)). The conjunction and
disjunction connectives allow the combination of several criteria in the queries. In particular, the
semantics of the conjunction is expressed by the weighted sum (the aforementioned linguistic values
"high", "medium" and "low" being encoded by values between 0 and 1) of the results weighted
according to the preference attached to them (accepted, preferred).

The analysis of these three kinds of non fuzzy approaches aiming at discriminated answers
(Bosc and Pivert, 1992a, b) shows that in any case : i) any of these queries is expressible in the fuzzy
sets framework, ii) the ordering mechanism is basically a mean, iii) the allowed queries have a very
special typology and iv) each system proposes only one (or two) aggregation mechanism(s) and it is
then clear that fuzzy sets provide a much more general framework for choosing and expressing the
appropriate aggregation mechanism.

4.2.3. Survey of an Extended SQL-Like Language

Query languages of the SQL type are very popular and represent a standard. This motivates an
extension of SQL into a language SQLf allowing the processing of fuzzy queries (Bosc et al., 1988 ;
Bosc and Pivert, 1991). The basic block in SQL is :

select attributes from relations where condition

The basic idea consists in introducing imprecise predicates into the condition (Boolean conditions
being a particular case). Furthermore, in order to ensure the calibration of the number of responses, a
number of desired responses (quantitative aspect) and/or the minimum degree of satisfaction required
for selection (qualitative aspect) is specified. The result of such a query is then a fuzzy relation.
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Elementary predicates (unary or n-ary, including (fuzzy) relational comparators) allow the
comparison between an attribute and a given value or between two attributes. Modified predicates
thanks to modifiers such as "very", "fairly", "relatively" are also allowed. With the help of these two
types of basic predicates, compound predicates using connectives can be defined. Conjunction and
disjunction (binary or n-ary), defined in terms of intersection and union of fuzzy sets, generalize the
Boolean AND and OR, and it is possible to define other aggregation operators such as the means
(arithmetic, geometric, weighted) which convey compensation effects.

In SQL, it is possible to nest blocks using operators such as "in" or "exists" and it is useful to
study how these constructions can be extended. This point is all the more important as it poses the
question of preserving the equivalences of different expressions of the same query. Below we give as
an illustration the expression in four different forms of a question in standard SQL and the
corresponding forms when fuzzy conditions are introduced, which remain equivalent as in the non-
fuzzy case. We consider a database made of the two relations "employee" and "department", their
format being :

Emp (#emp, name, #dept, salary, job), Dept (#dept, budget)

"number and name of any employee working
in a department whose budget is 1000 times the
employee's salary "

a) select #emp, name from  Emp, Dept
where Dept.#dept = Emp.#dept and
Dept.budget = Emp.salary * 1000

b) select #emp, name from  Emp where
#dept in (select #dept from  Dept where
budget = Emp.salary * 1000)

c) select #emp, name from  Emp where
(salary * 1000) in (select budget from Dept
where #dept = Emp.#dept)

d) select #emp, name from  Emp where
exists (select * from Dept where #dept =
Emp.#dept and budget = Emp.salary * 1000)

"number and name of any employee working in
a department whose budget is about1000 times
the employee's salary "

a') select #emp, name from  Emp, Dept
where Dept.#dept = Emp.#dept and
Dept.budget ) Emp.salary * 1000

b') select #emp, name from  Emp where
#dept in (select #dept from  Dept where
budget ) Emp.salary * 1000)

c') select #emp, name from  Emp where
(salary * 1000) inf (select budget from Dept
where #dept = Emp.#dept)

d') select #emp, name from  Emp where
exists (select * from Dept where #dept =
Emp.#dept and budget ) Emp.salary * 1000)

The operator of comparison ) means "approximately equal to". The operators "in", "inf" and "exists"
(in the right hand column) respectively correspond to the membership of an element to a fuzzy set, the
fuzzy membership of an element to a fuzzy set and the existence of an element in a fuzzy set . It is
possible to show that, if appropriate definitions are chosen for the extended nesting operators, then
expressions a'), b'), c') and d') deliver the same result as a), b), c) and d) do.

It is also possible to introduce fuzzy predicates operating no longer on individual tuples, but
on sets of tuples by extending the framework of the partitioning offered by SQL. On this level, we
find two main types of imprecise condition : i) a fuzzy predicate is applied to the result of a function
aggregating tuples (max, sum, mean, for example), ii) fuzzy quantifiers are brought into play. Thus,
the request "find the best 10 departments such that the average salary of the secretaries should be
around $6000" will be expressed by :

select 10 #dept from Emp
where job = "secretary"
group by #dept having avg(salary) ) 6000
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and the query "find the 10 best departments such that most of the young employees are well-paid"
will be expressed by :

select 10 #dept from Emp group by #dept
having most_of (young are well-paid)

See Bosc and Pivert (1992c), Kacprzyk et al. (1989) for requests involving fuzzy quantifiers. See
also Yager (1991b) for the definitions of fuzzy quotient operators from fuzzy quantifiers and OWA
operations.

4.2.4. Query Processing

The evaluation of queries in the context of declarative languages of the relational type, for
example, remains at the present time, in spite of numerous works of research, an open problem.
Indeed, nobody knows how to find the best plan of execution (algorithm) of any request in a
"reasonable" time. Based on this statement, it is clear that we cannot hope to achieve an optimal
response to the evaluation of imprecise requests inasmuch as these requests are themselves at least as
complex as ordinary ones. The increase in complexity is due to two main causes : i) the usual access
paths such as index are no longer usable, ii) the operations to be carried out depend on a larger
volume of data since the selections, joins, etc. produce more tuples than in the Boolean context. In
what follows, we give some elements relative on the one hand to the definition of index usable for
fuzzy predicates and, on the other hand, to an approach called derivation which allows the evaluation
of the relational queries which requires only one projection, some selections and some joins.

Fuzzy Predicates Indexing

In a classic DBMS, indexation gives direct access to the tuples which have a given value of
the indexed attribute. This type of structure is unfortunately only usable if the requests contain classic
predicates where a value (or an interval) is referred to. In order to take into account imprecise
predicates, we can construct an index for a given fuzzy predicate which, representing a degree of
membership at each input, associates the tuples satisfying this predicate with the degree under
consideration. This process can use an already existing index according to the figure below :

.1
.25

1

312, Jones,65,12000

217,Smith,40,8500

68,Martins,65,25000

815,Allen,87,18000

    A partial extension for 
        EMP(num,name,
         department,salary)

Index entry for the 
fuzzy predicate 
salary = "high"

37,Dean,36, 25000

97, Thomas,87,22800

8500

12000

18000

22800

25000

usual index
on the attribute

salary

This kind of structure provides an efficient access to tuples as far as the degree is known.
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Derivation Method

For the sake of simplificity, we consider here compound fuzzy predicates applied to a single
relation and their &-level cuts, i.e., the elements (tuples) satisfying these predicates at a level higher
than or equal to &. The idea is to derive one (or several) Boolean necessary condition(s) for the
belonging of an element to a &-cut. Consequently, we can evaluate this condition using a normal
DBMS in order to construct a subset (with cardinality much lower than that of the original
relationship) to which the original fuzzy predicate will then be applied. In some cases, necessary and
sufficient conditions are found, which permits the direct construction of the desired &-cut. The
problem to be solved is the distribution of the &-cut operation on a compound predicate.

If the fuzzy predicate under consideration is atomic and represented by a trapezoid (a common
case in practice), the &-cut corresponds to the membership of the variable to an interval. Thus we
obtain a simple Boolean condition which is both necessary and sufficient, in the form x + [v1,v2]. If
a linguistic modifier is used, it is easy to show that we are back to a condition of the same type. In the
case of compound predicates, the idea is to express the &-cut of the compound predicate in terms of
&-cuts bearing on the constituting predicates (and therefore expressible as condition of the form
x + [v1,v2]). Here, two types of situation may occur (Bosc and Pivert, 1992d) : i) it is possible to
find out an equivalent formula, or ii) it is only possible to exhibit an expression whose result is a
superset of the elements satisfying the initial &-cut. A large number of connectors have been
examined and necessary conditions have been provided for each of them. Once the final expression
got, the idea is to submit it to the regular DBMS (which should be able to process it efficiently) in
order to get a "reasonable" subset of tuples against which the initial fuzzy query will be processed.

A Strategy for Processing Quantified Queries

Now, we would like to take into account queries where a condition applies to a set of tuples
and not to individual tuples as for the derivation method. We point out a strategy (Bosc and Pivert,
1992c) whose goal is essentially to avoid the exhaustive scan of the elements of a set, thus likely to
save disk accesses which represent the main cost for the database query evaluation process.

The two following queries are illustrations of the use of quantified propositions in the scope
of database querying :

1) find the best 10 departments where at least three employees are "middle-aged"

select 10 dep from EMPLOYEE
group by dep having at least three are middle-aged

2) find the best 10 departments where almost all "low salary employees" are "recently engaged"

select 10 dep from EMPLOYEE
group by dep having almost-all low-salary are recently-engaged.

These two queries invoke the grouping mechanism of the SQL language.

A naive algorithm would be to access all the tuples of a given partition (having the same value
for the considered attribute) and to compute the value of the quantified proposition. If this value is
over a given threshold (&-cut), the partition is retained and the next partition is in turn considered.

Another idea is to take advantage of properties of the quantifier (especially monotonicity if the
quantifier is represented as an OWA aggregation) to improve the evaluation. This goal can be
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achieved for queries of type 1) as far as the number of tuples of any partition can be known without
scanning the partition. It is then possible to get conditions for partial evaluations of the OWA
aggregation in order to decide after each new access to a tuple whether : i) it is sure that the desired
degree (&) will not be attained (failure condition), ii) this degree will be attained for sure (success
condition) or iii) none of the previous conclusion holds and a new access is needed. In case i) or ii) it
is possible to conclude about a partition before all its tuples have been accessed and thus data accesses
are saved (Bosc et al., 1992c).

5. Imperfect Data in a Database

5.1. Representing Imperfect Data

Presently, avalaible database systems only accept two types of values : precise values and null
values of various kinds. The representation of disjunctive information and more generally of
imprecise, vague or uncertain data in data bases has been investigated in logical (Demolombe, 1992)
or in probabilistic frameworks (Wong, 1982 ; Barbará et al., 1992). See Zimanyi (1992) for a general
overview encompassing both logical and numerical uncertainty formalisms.

In the possibility theory-based approach (Prade, 1982, 1984 ; Prade and Testemale, 1984,
1987), the available information about the value of a single-valued attribute A for a tuple x is
represented by a possibility distribution 'A(x) on D , {e} where e is an extra-element which stands
for the case when the attribute does not apply to x. The possibility distribution 'A(x) can be viewed
as a fuzzy restriction of the possible value of A(x) and defines a mapping from D , {e} to [0,1]. If
information is consistent, there should exist a value in D , {e} for A(x), which leads to the
normalization condition maxd 'A(x)(d) = 1 (i.e., at least one value in D , {e} is completely
possible). For instance, the information "Paul is young" will be represented by : 'Age(Paul)(e) = 0
and 'Age(Paul)(d) = µyoung(d), ( d + D. Here, µyoung is a membership function which represents
the vague predicate "young" in a given context. It is important to notice that the values restricted by a
possibility distribution are considered as mutually exclusive. The degree 'A(x)(d) rates the possibility
that d + D is the right value of the attribute A for x. 'A(x)(d) = 1 only means that d is a completely
possible value for A(x), but does not mean that it is certain that d is the value of A for x (or in other
words that d is necessarily the value of A for x), except if ( d' " d, 'A(x)(d') = 0. Moreover the
possibility distribution 'A(x) is supposed to be normalized on D , {e}, i.e., - d + D such that
'A(x)(d) = 1 or 'A(x)(e) = 1, since either at least one value of the attribute domain is completely
possible, or the attribute does not apply. This approach proposes a unified framework for
representing precise, imprecise, as well as vague, values of attributes, and the following null value
situations : i) the value of A for x is completely unknown : (d + D, 'A(x)(d) = 1, 'A(x)(e) = 0, ii)
the attribute A does not apply to x : ( d + D, 'A(x)(d) = 0, 'A(x)(e) = 1, and iii) we don't know
whether we are in situation i or ii : ( d + D, 'A(x)(d) = 1, and 'A(x)(e) = 1. Multiple-valued
attributes can be dealt with in this framework too.

The interest of such an approach is thus to be able to represent in a unified way, precise values
as well as null values and ill-known values as shown on the following figures where different states
of knowledge about John's salary are represented.
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a) precise value

8643

b) inapplicable value
(the value does not exist)

{e}

!

0

1 !

0

1

{e} salary salary

salary{e}

c) unknown but existing value d) total ignorance : everything
    is completely possible

{e}
0

1 1

0
salary

salary

e) usual interval

6000 9000

f) disjunctive information
    

0

1

0

1

{e} {e} salary

g) distribution corresponding to
    the restriction of salary by the
    fuzzy set "high" 

high

salary{e} 8000{e} salary

1-$

h) the fact that John's salary is around
    $8000 is $-certain

0

1

0

1

Figure 3 : Different kinds of incomplete information

In these examples, we have considered a single-valued attribute, but multiple-valued attributes
can be handled as well. In our approach, multiple-valued attributes can be formally dealt with in the
same manner as single-valued ones, provided that we work with possibility distributions defined on
the power set of the attribute domains rather than on the attribute domains themselves. Indeed, in the
case of multiple-valued attributes, the mutually exclusive possibilities are represented by subsets of
values. Let us consider the example of languages spoken by an employee, the universe being
{English, German, Spanish, Italian} and let us suppose that we know the following : we are certain
that the employee Peter speaks English, it is totally possible that he also speaks German or Spanish,
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Italian is unlikely and incompatible with Spanish. We therefore have the distribution (the possibility
degree is given after the subset) :

{English}/1, {English,German}/1, {English,Spanish}/1, {English,German,Italian}/0.3,
{English, German,Spanish}/1, {English,Italian}/0.3.

See (Prade and Testemale, 1987) for details and (Dubois and Prade, 1989) for lower and upper
approximations of possibility distributions on 2D in terms of subsets of D. Relevant keywords for a
document is a good example of a multiple-valued attribute ; see Prade and Testemale (1987c) for a
treatment of keywords in this spirit. Another representation issue which can be dealt with in the
possibilistic framework is the handling of interactivity constraints, e.g., "John and Paul have the
same age which is between 20 and 30".

Clearly a similar approach can be developed in the probabilistic framework by using
probability distributions in place of the possibility distributions 'A(x). However possibility
distributions, because of their "ordinal" nature, may be easier to elicitate. Also their normalization is
easier than in the probabilistic case when we have not an exhaustive knowledge of the attribute
domain. Moreover the probabilistic setting do not allow us to extend to gradual scales the modal
distinction between what it is just possible and what is certain or necessarily true as recalled in
Section 5.2. In other words, while P(A) = 1 . P(A) = 0, we have for a possibility measure /,
/(A) = 0 0 /(A) = 1 but not /(A) = 1 0 /(A) = 0. This enables us to distinguish between the
certainty that A is false (/(A) = 0) and the total lack of certainty that A is true (/(A) = 1). Possibility
theory is well-suited for modelling states of partial ignorance.

5.2. Matching Mechanism

When a condition applies to imperfectly known data, the result of a query evaluation can no
longer be a single value. Since we do not know the precise values of some attributes for some items,
we may be uncertain about the fact that these items satisfy or not the query (to some degree). It is
why we use two degrees attached to two points of view : the extent to which it is possible that the
condition is satisfied and the extent to which it is certain that the condition is satisfied. From the
possibility distributions 'A(x) and a subset P (ordinary or fuzzy), we can compute the fuzzy set /P
(resp. NP) of the items whose A-value possibly (resp. necessarily) satisfies the condition P.

The membership degree of an item x to /P and NP are respectively given by (Dubois and
Prade, 1988) :

µ/P(x) = /(P ; A(x)) = supd+  min(µP(d), 'A(x)(d))
µNP(x) = N(P ; A(x)) = infd+ ,{e} max(µP(d), 1 – 'A(x)(d))

/(P ; A(x)) estimates to what extent there is a value restricted by 'A(x) compatible with P and
N(P ; A(x)) to what extent all the values more or less possible for A(x) are included in P. It can be
shown that /P and NP always satisfy the inclusion relation /P 1 NP, provided that 'A(x) is
normalized, i.e.,

(x, µNP(x) 2 µ/P(x).

Thus, in case of incomplete information, we are able to compute the set of items which more
or less possibly satisfy an elementary condition and to distinguish among them the items which more
or less certainly satisfy this condition. In case of non-fuzzy requests (i.e., P is an ordinary subset of

), a stronger inclusion holds since then NP is included in the core of /P. When the information is
precise, i.e., 'A(x) is equal to 1 for one element d and is zero elsewhere in  , {e}, it can be
checked that µ/P(x) = µP(A(x)) = µNP(x).
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/(P;A(x))

P

1

0

/(P ; A(x)) = supd+P 'A(x)(d)

'A(x)

N(P;A(x))

P
0

1

N(P ; A(x)) = infd3P 1 – 'A(x)(d)

'A(x)

Figure 4 : Computation of possibility and necessity degrees (non-fuzzy query)

N.B. : Similar pattern matching degrees can be defined in the belief function framework where P and
A(x) are represented in terms of basic probability assignments (Dubois, Prade and Testemale, 1986).

Selections involving disjunction, conjunction or negation of elementary conditions can be
handled using the following basic relations of possibility theory, which express decomposability
properties of possibility and necessity degrees with respect to conjunctions and disjunctions provided
that the attribute values are logically independent (for any value of A1(x), all values compatible with
'A2(x) are allowed and conversely) :

N(P ; A(x)) = 1 – /(P ; A(x))
N(P1 × P2 ; A1(x) × A2(x)) = min(N(P1 ; A1(x)), N(P2 ; A2(x)))
/(P1 + P2 ; A1(x) × A2(x)) = max(/(P1 ; A1(x)), /(P2 ; A2(x)))
N(P1 + P2 ; A1(x) × A2(x)) = max(N(P1 ; A1(x)), N(P2 ; A2(x)))
/(P1 × P2 ; A1(x) × A2(x)) = min(/(P1 ; A1(x)), /(P2 ; A2(x)))

where

– the attribute Ai and the subset Pi (i = 1,2) refer to the same domain,
– the overbar denotes the set complementation (defined by µP(d) = 1 – µP(d)),
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– A1(x) × A2(x) denotes an extended Cartesian product, expressing a conjunction, defined by

'A1(x) × A2(x)(d1,d2) = min('A1(x)(d1), 'A2(x)(d2))

P1 × P2 is similarly defined,
– P1 + P2 = P1 × P2 expresses a disjunction, namely

µP1+P2(d1,d2) = max(µP1(d1), µP2(d2)).

Note that the above expressions of N(P1 + P2 ; A1(x) × A2(x)) and /(P1 × P2 ; A1(x) ×
A2(x)) require the logical independence of the attribute values respectively restricted by 'A1(x) and
'A2(x), to be valid. See (Dubois, Prade and Testemale, 1988) for weighted conjunctions and
disjunctions. These combination formulae are consistent with the fuzzy set operations (based on min
and max), when the available information becomes precise, since then the measures of possibility and
necessity become equal to a membership degree.

Selections involving fuzzy comparators, e.g., approximate equalities, strong inequalities, can
be also easily handled in this framework ; see Prade and Testemale (1984).

The case of other fuzzy set combination operations in compound requests (e.g., product,
arithmetic mean), for which no decomposition formula exists for the possibility and necessity
measures in presence of incomplete information, can be dealt with by using a fuzzy-real-valued
compatibility degree for estimating the agreement between the information and what is required. Then
an extended version of the considered combination operation is performed on these fuzzy real values
and finally a possibility and a necessity degree can be extracted in a standard way from the global
compatibility measure which has been thus computed. The reader is referred to Chapter 3, pp. 98-99
and Chapter 4, pp. 125-126 of (Dubois and Prade, 1988), for detailed definitions and justifications.

For simplicity, we have focused on the selection operation. Queries demanding an extended
join operation on relational tables containing fuzzy information are discussed in (Prade and
Testemale, 1984).

Possibility theory offers a powerful tool for the representation and the treatment of flexible
queries as well as partial information. In spite of the apparent complexity of the expressions of the
possibility and necessity degrees, the approach is computationally tractable at least when we restrict
ourselves to possibility distributions which are defined on small-sized discrete domains or whose
shape is trapezoidal when the domain is a continuum. See Dubois, Mo and Prade (1992) for the use
of fuzzy discrimination trees in the pattern matching procedure. Moreover, extensions of indexation
techniques have been proposed (Bosc and Galibourg, 1989).

The approach is robust due to the use of the operations max and min, which are not very
sensitive to small variations. In practice, it is sufficient to elicitate possibility distributions in a rough
way ; i.e., identifying what values are completely impossible, what are the values which are the most
possible ones, and then remembering that it is mainly the ordering of possibility degrees with is
meaningful in possibility theory, as already explained in 4.1.3.

6. Integrity Constraints and Fuzzy Functional Dependencies

Integrity constraints have been recognized as essential in database management systems since
they provide users with the automatic handling of data properties which should be maintained at any
time. However, some people have pointed out the fact that sometimes exceptions to these properties
occur and should be accepted since they represent actual (although exceptional) situations in the real
world. Soft integrity constraints can appear as a rather natural answer to deal with exceptions (for
instance, "generally a manager earns more than his subordinates"). Moreover, it is clear that many
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data properties (not necessarily constraints) can only be viewed in terms of soft conditions. This field
has not received a lot of attention except functional dependencies for which several soft extensions
have been proposed.

Soft constraints (expressing either qualitative relationships, like "the larger X, the smaller Y",
or allowing for tolerance, exceptions, e.g. "salaries of all employees are approximately equal") may
have different uses and associated interests : i) integrity checking is clearly the most important use for
constraints and we believe that many practical constraints are in fact fuzzy, ii) providing synthetic (or
cooperative) answers and iii) computing default values for missing data. This last use is investigated
with a fuzzy approach in (Arrazola et al., 1989).

In the usual framework, functional dependencies have been widely studied since they capture
some kind of redundancy and can be used for the design of "good" relational schemas, i.e., which
have a robust behaviour when updates are made (basically because the handling of dependencies
reduces to the checking of the unicity of key values).

Classical functional dependencies are expressed as

X 4 Y is valid on a relation R iff for any pair of tuples t1, t2 of R : t1[X] = t2[X] 0 t1[Y] = t2[Y].
(where t[X] denotes the projection of the tuple t on the set of attributes X).

In the fuzzy framework, one can think of extending the above expression in different ways : i)
replacement of the equality by a similarity relation µEQi ; ii) choice of an implication operator relating
degree of satisfaction or of uncertainty associated with (extended) equalities ; iii) weakening of the
universal quantification (( t1, t2 + R) by "for most of the pairs"…. Depending on the modelling of
the implication in the fuzzy case, various kinds of dependencies can be expressed. It may be
dependencies stating that the more similar t1[X] and t2[X], the more certain the identity (or the
similarity) of t1[Y] and t2[Y], or purely gradual dependencies expressing that the more similar t1[X]
and t2[X], the more similar t1[Y] and t2[Y]. See (Dubois and Prade, 1991). These generalized
dependencies may include classical functional dependency as a particular case. It will be so if the
fuzzy equality relations are such that µEQ(a,b) = 1 if and only if a = b. Then they are stronger since
they require equalities in the classical cases and approximate equalities in other cases. Otherwise they
are not comparable. People have mainly dealt with the first two points (Anvari and Rose, 1987 ; Raju
and Majumdar, 1988 ; Liu, 1992) and have paid attention to the properties of fuzzy functional
dependencies (reflexivity, augmentation, transitivity,…). In so doing, it has been shown that
Armstrong's axioms were still defining a valid and complete system for the deduction of all
dependencies given a starting set when appropriate choices were made for the implication.

Several approaches to the definition of extended functional dependencies have been proposed
in the literature and we give three of them. In (Raju and Majumdar, 1988), the authors advocate for
choosing the definition:

X 4 Y is valid on R iff µEQ1(t1[X] = t2[X] ) 2 µEQ2(t1[Y] = t2[Y]) where EQi is a similarity
function such that µEQi(a,a) = 1, defined on the domain of X if i = 1 and Y if i = 2.

In (Chen et al., 1991), the authors suggest the choice of another implication (Gödel's one) :

X 4$ Y is valid on R iff mint1,t2 + R I(µEQ1(t1[X] = t2[X] ), µEQ2(t1[Y] = t2[Y])) 5 $

with I(a,b) = 1 if a 2 b, I(a,b) = b otherwise.

However, with this definition, a dependency may fail because of following not very similar in
X are still less similar in Y. That is why, in (Cubero and Vila, 1992), the following definition is
proposed
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X 4$,6 Y iff ( t1, t2 + R : µEQ1(t1[X] = t2[X] ) 5 $ 0 µEQ2(t1[Y] = t2[Y]) 5 6.

The issue of replacing a relation by two of its projections, when a fuzzy functional
dependency holds, has been addressed in (Raju and Majumdar, 1988) and the only condition is that
the similarity relations used are such that µEQi(a,b) = 1 iff a = b. However, it should be noted that
fuzzy functional dependency checking cannot reduce to uniqueness of keys inside relations.
Consequently, these dependencies cannot affect the design process of a database.

When data are precisely known the semantics of fuzzy functional dependencies in the above-
mentioned cases is rather clear. However, when data are represented by possibility distributions, the
calculus of similarity between two distributions becomes crucial and the fact that two distributions are
identical does not provide any information about the similarity of the actual values themselves.
Consequently, the use of this notion should be performed carefully and it is mandatory to state clearly
the meaning of a dependency in case of ill-known values.

8. Concluding Remarks

Before concluding let us briefly mention other uncertainty management problems in data bases
where fuzzy set and possibility theory-based methods might be useful :

• data base updates : this problem has been particularly investigated in logical deductive data bases
(Winslett, 1990 ; Katsuno and Mendelzon, 1991). In possibility theory, so-called possibilistic
imaging (closely related to the fuzzy set extension principle) (Dubois and Prade, 1992) has been
proved in perfect agreement with Katsuno and Mendelzon (1991)'s postulates for updates.
Generally speaking possibility theory enables us to express preferences among candidates for
updating a value and to express the imprecision and the uncertainty pervading laws of evolution of
the real world.

• fuzziness and uncertainty in object-oriented representations : the reader is referred to (Dubois, Prade
and Rossazza, 1991) for a preliminary study, where an object-centered representation is presented,
where both a range of allowed values and a range of typical values can be specified for the attributes
describing a class. These ranges may be fuzzy. Then various kinds of (graded) inclusion relations
can be defined between classes. Another approach is presented in (Van Gyseghem, De Caluwe and
Vandenberghe, 1993) ; see also Mouaddib (1992).

• linguistic summaries : Yager (1982) has advocated the use of fuzzy sets and fuzzy quantifiers in
linguistic summaries of the form "Most A's are B". Other summaries expressing gradual
relationship such as "the older a person, the bigger the salary" would be also worth-producing.
More generally, fuzzy sets may be useful for expressing typical values of attributes for classes of
items, or outstanding exceptions to rules.

Imprecision and uncertainty are almost unavoidable when we want to represent and to store
the available information as it is, without losing a significative part of it. Allowing for flexible queries
seems also very desirable. Fuzzy sets and possibility theory offers a technically sound and powerful
framework for dealing both with imprecision and uncertainty and for handling flexible queries.
Clearly fuzzy set methods are good for modelling preference among acceptable values in a simple
way when expressing queries. Even if only prototypes of fuzzy versions of query languages like
SQL have been developed in laboratories until now, due to the smallness of the research community
in fuzzy data bases, more applications can be expected in the future. Already the interest in fuzzy
information retrieval systems has considerably increased in the last past years in Japan especially. The
handling of imprecise, uncertain, vague information in data bases systems is certainly also of practical
interest, at least to go a bit further than the treatment of standard null values. Among application-
oriented works using the fuzzy pattern matching techniques (presented in Section 5.2) in information
systems, let us mention the systems CLASSIC and FLORAN respectively developed by Granger
(1988) and Salotti (1993). The implementations which already exist (especially for fuzzy querying



22

systems) tend to show that, when clearly identified, problems can be solved in a reasonable
computational time.
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