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Abstract

Recent works show that the data distribution in a net-
work’s latent space is useful for estimating classification
uncertainty and detecting Out-Of-Distribution (OOD) sam-
ples. To obtain a well-regularized latent space that is con-
ducive for uncertainty estimation, existing methods bring
in significant changes to model architectures and training
procedures. In this paper, we present a lightweight and
high-performance regularization method for Mahalanobis
distance (MD)-based uncertainty prediction, and that re-
quires minimal changes to the network’s architecture. To
derive Gaussian latent representation favourable for MD
calculation, we introduce a self-supervised representation
learning method that separates in-class representations into
multiple Gaussians. Classes with non-Gaussian representa-
tions are automatically identified and dynamically clustered
into multiple new classes that are approximately Gaussian.
Evaluation on standard OOD benchmarks shows that our
method achieves state-of-the-art results on OOD detection
and is very competitive on predictive probability calibra-
tion. Finally, we show the applicability of our method to a
real-life computer vision use case on microorganism classi-
fication.

1. Introduction

Current deep learning classification networks achieve su-
perior performance and find widespread applications in var-
ious industrial domains such as biology and robotics [16,
30, 41]. While they achieve state-of-the-art accuracy, there
remain two main challenges that hinder the deployment of
deep classifiers in critical situations: the derivation of cal-
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Standard CNN MAPLE

Figure 1. Self-supervised latent space regularization with
MAPLE for uncertainty estimation and OOD detection. MAPLE
improves class separation as illustrated by the PCA visualization
of a CNN’s latent space trained on CIFAR10 without regulariza-
tion (left) and with MAPLE regularization (right). Our method
constrains the latent representations to be approximately Gaussian
to enable efficient distance-based uncertainty estimation.

ibrated classification and a measure of the classification
uncertainty. Without those, a network exposed to Out-of-
Distribution (OOD) data makes incorrect predictions with
high confidence [17] and no human-in-the-loop can catch
such errors. It is thus necessary to obtain calibrated proba-
bilities [17] i.e., predict probabilities that represent true like-
lihood, and to estimate the uncertainty in the network’s pre-
dictions to allow users to make informed decisions.

Among deep uncertainty estimation approaches [1,
12, 14, 21] are Bayesian Neural Networks [2], MC-
Dropout [13] and Deep Ensemble [26]. These stochastic
methods require multiple forward-passes, so they are not
scalable to large systems. Aware of the scalability require-
ments, current research focuses on estimating uncertainty
from deterministic single-forward-pass networks [19,32,35,
38,42,45]. Distance-based methods belong to this category
and are an attractive alternative for their excellent perfor-
mance in OOD detection [29, 46].

Distance-based methods rely on the distance between
the test samples and the In-Distribution (ID) samples in
a network’s latent space to determine if the test samples
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Figure 2. Representation regularization with MAPLE for un-
certainty estimation. Our approach trains a classification network
to learn representations that are approximately Gaussian for each
class. During inference, the Mahalanobis distance between a test
sample and the class centroids is used for classification, uncer-
tainty estimation and OOD detection.

are OOD. A relevant distance is the Mahalanobis distance
(MD) [34] for its superior performance over Euclidean Dis-
tance (ED) [24, 39, 48]. One key MD assumption though is
that the in-distribution samples in the latent space should
follow class-conditional Gaussian distributions. In prac-
tice, though, there is nothing in the classification train-
ing that constrains the latent space to fulfil such an as-
sumption [7]. Instead, research on representation learning
shows that each class is usually composed of several clus-
ters of visually similar images [3, 9, 50]. This can be due
to intra-class variance of images taken from different view-
points, the presence of additional objects in the image, and
variations in object shapes. In the network’s latent space,
these variations appear as distinct distributions or deviate
from a Gaussian distribution. This breaks the MD assump-
tion, which could lead to incorrect or imprecise uncertainty
estimation. In this paper, we introduce MAPLE, a self-
supervised representation learning method that regularizes
a classification network’s latent space to exhibit multivari-
ate Gaussian distributions. MAPLE generates a latent space
where class representations are Gaussian, making it com-
pliant with the MD assumption and allows fast and high-
performance MD-based OOD detection, uncertainty esti-
mation, and calibrated classification. The effect of MAPLE
is illustrated in Fig. 1 with the 2D projection of the latent
space of a Convolutional Neural Network (CNN) trained on
CIFAR10.

MAPLE stands for MAhalanobis distance based uncer-
tainty Prediction for reLiablE classification, and is illus-
trated in Fig. 2. MAPLE relies on two components: i) a
self-supervised intra-class label refinement through cluster-

ing in the latent space; ii) a deep metric learning loss that
improves the class separation. During training, the repre-
sentations associated to a class that deviate from a Gaus-
sian distribution are divided into several clusters that are
approximately Gaussian. The cluster assignments become
the new labels of the representations, and the training goes
on. Since each cluster gathers samples that exhibit simi-
lar intra-class variations, the clustering step is akin to auto-
matic fine-grained annotation. The metric-learning then re-
inforces the fined-grained class separation by pushing apart
the new classes. The combination of in-class clustering
and metric learning results in classification representations
that are well-clustered and approximately Gaussian, which
makes them suitable for MD-based uncertainty estimation.

We evaluate MAPLE against existing uncertainty quan-
tification methods on the following standard benchmarks:
CIFAR10 [25] vs. SVHN [36]/CIFAR100 [25], CIFAR100
vs. CIFAR10/Tiny ImageNet [28], ImageNet [40] vs.
ImageNet-O [20] for OOD detection and predictive prob-
ability calibration. Results show that MAPLE achieves the
best compromise between performance and run time effi-
ciency while being the most lightweight integration-wise.
Also, it introduces minor architectural changes and does not
require additional fine-tuning to OOD datasets.

We summarize the paper’s contributions as follows.
i) We develop a self-supervised representation learning
method that constrains a classification network’s latent
space to be approximately Gaussian. ii) We show that such
representations allow for reliable OOD detection and prob-
ability calibration using MD. iii) We design the method
such that it has a minimal impact on the network’s origi-
nal architecture, and achieves results competitive with the
state-of-the-art on OOD detection. The code is avail-
able in: https://github.com/vaishwarya96/
MAPLE-uncertainty-estimation.git

2. Related Work
Multi-forward-pass Uncertainty Estimation. Tradi-

tional uncertainty quantification methods rely on Bayesian
Neural Networks [15, 23] to learn a distribution over the
network weights. To extract predictive probability variance,
sampling [5] or variational methods [2] are used. The ap-
plication of these methods is limited, as they increase the
number of parameters by a factor of two and hinder conver-
gence. As a lighter alternative, MC Dropout [13] enables
dropout at test time and averages the network’s output over
several forward passes. While MC Dropout paves the way
towards faster and lighter uncertainty estimation, it has been
shown to produce over-confident predictions [26] and un-
derestimate uncertainty [43]. To improve uncertainty esti-
mation, Deep Ensembles [26] average the predictions from
an ensemble of trained models and achieve state-of-the-art
performance on several classification tasks. It remains com-
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putationally expensive due to the training of multiple mod-
els and the several forward passes during inference. By
deriving uncertainty from a single forward pass, MAPLE
achieves significantly faster inference time without sacrific-
ing performance.

Single-forward-pass Uncertainty Estimation. One
line of work relies on the distribution of data samples in
the network’s latent space. A test sample is considered ID
if it lies within the training data manifold, otherwise it is
labelled as OOD. Methods differ in the way they regularize
the representation space and the way they derive distances.
DUQ [46] uses a Radial Basis Function (RBF) kernel in
the representation space to measure distances between test
samples and the centroids of various classes. Addition-
ally, they use gradient penalty to obtain a regularized space,
which improves the prediction’s quality. SNGP [31] uses
Spectral Normalization on the network’s weights to satisfy
the bi-Lipchitz condition, which is a more gradient-friendly
regularization than DUQ. This condition preserves seman-
tically meaningful distance changes in the representation
space with respect to input changes. The prediction’s un-
certainty is then given by a Gaussian Process layer on the
output. To improve the scalability of the Gaussian Process
estimation, [45] proposes Deep Kernel Learning to process
the input images with a distance-preserving network and fit
a Gaussian on inducing points only. Contrary to these meth-
ods, MAPLE avoids the Gaussian Process estimation and
gradient regularization during training and instead relies on
simple metric learning. Similarly, [6] and VMDLS [7] sim-
plifies the Gaussian enforcement by training the network
with a Bregman divergence and KL-divergence loss respec-
tively, so that each class representations follow an isotropic
Gaussian distribution in the latent space for OOD detec-
tion. However, this ignores the possible intra-class varia-
tion within each class and requires the Gaussian variance to
be tuned manually. Instead, MAPLE uses a simpler self-
supervised clustering that automatically fits the data. Also,
MAPLE makes the latent space not only suitable for OOD
detection but also for calibrated probability prediction.

Mahalanobis-Distance for OOD detection. MD is a
common distance in the OOD detection literature. Early
work by Lee et al. [29] derives confidence values as a func-
tion of MD to predict the likelihood of a sample being ID.
To obtain competitive performance, the method requires
several tweaks such as adding noise to input samples, com-
bining confidence values from multiple feature layers, and
fine-tuning on OOD datasets. [24] proposes two light im-
provements: Partial MD and Marginal MD. In Partial MD,
the MD is computed on lower dimensional representations
with PCA. Marginal MD uses all training representations to
fit a single Gaussian to calculate the MD. While both per-
form well on Far-OOD datasets i.e., where ID and OOD
samples are significantly distinct, their results are limited

on Near-OOD [11], where the OOD samples are semanti-
cally similar to the ID ones. Relative MD (RMD) [39] im-
proves the MD performance on Near-OOD by computing a
global MD between the test sample and the samples of all
classes combined, and then subtracting this value from the
per-class MDs. All these methods exhibit satisfying perfor-
mance, but their main limitation is their strong assumption
that the image representations follow a Gaussian distribu-
tion, even though standard classification training does not
enforce such a constraint. MAPLE addresses this limitation
with a self-supervised regularization. By doing so, the fea-
tures better fit the theoretical framework of MD-based OOD
detection, thereby improving the performance.

3. Method
In this section, we describe MAPLE, a self-supervised

regularization method for MD-based OOD detection, un-
certainty estimation, and calibrated classification. It aug-
ments a standard CNN classifier with a self-supervised reg-
ularization to output both class probabilities and MD-based
uncertainty. To enable MD for OOD detection, the rep-
resentations of the training samples are dynamically clus-
tered into multiple Gaussians using X-Means [37] during
training. The samples are assigned new pseudo-class la-
bels defined by their cluster assignment. The network is
then optimized with the cross-entropy loss and the triplet
loss. With periodic validation, the clusters are updated and
the total number of classes change with every validation.
At inference time, the MD between a test sample and each
cluster’s centroid is used to estimate the classification un-
certainty and the probability of the point being OOD. Note
that the only modification to the original network architec-
ture is in the final layer, where the number of output neu-
rons change according to the number of clusters identified.
This makes MAPLE easy to integrate to any classification
network. An algorithmic and computational description is
provided in Appendix C.

3.1. Representation Regularization

This section describes the self-supervised automatic la-
bel refinement through clustering.

Notations. Consider a classification problem con-
sisting of k classes with input samples x and labels
y ∈ {1, .., k}. The training dataset is denoted by
Dtrain = {(xn, yn)}Nn=1 and the validation dataset by
Dval = {(xm, ym)}Mm=N+1. Let the training input sam-
ples be represented as xtrain = {xn}Nn=1. The training is
done with an off-the-shelf classification CNN. The penulti-
mate layer of the CNN is used as a deep feature extractor
fθ(.), where fθ : RD → Rd is a mapping from an input of
dimension D to a representation (or feature) of dimension
d, and θ is the model’s parameters. The final layer consists
of k neurons, followed by softmax activation to obtain the



Figure 3. Visualizing intra-class label refinement and feature
optimization. The original data is not perfectly Gaussian due to
intra-class variations. X-Means refines the labelling by dividing
the samples into multiple clusters that are approximately Gaus-
sian. The clusters are considered as separate classes during train-
ing. Triplet loss optimizes the representations by bringing the in-
class samples together and separating them from other classes.

predictive probabilities. In addition to the standard cross-
entropy loss used in CNNs, we use the triplet loss on the
representations to train the network. See Appendix. B.6 for
a recall of these standard losses.

Self-Supervised Dynamic Relabelling. During train-
ing, MAPLE updates the training labels to make them rep-
resentative of the features’ separation in the latent space.
Every p epochs, the network is evaluated on Dval and the
classes with a false negative ratio higher than a threshold t
are updated. This is representative of the scenarios where
the samples of a given class are misclassified, which is typ-
ical of classes with high intra-class variations. For every
class to update, the training representations belonging to
such a class are extracted and clustered using X-Means [37].
The resulting clusters form well-separated groups and we
use the cluster assigmnent as new pseudo-labels for the
train samples. If k′ additional clusters are introduced by X-
Means, each of them are considered as independent classes.
Thus, the number of classes becomes K = k + k′, and the
final layer of the model is updated to have K neurons. Then,
the network training continues with the new labels. During
inference, the pseudo labels are remapped to the original set
of k labels to identify their original class.

Fig. 3 illustrates the benefits of jointly using X-Means
and the triplet loss on the representations: X-Means
splits classes with high intra-class variations into separated
classes that are semantically more representative of the data,
and the triplet loss reinforces this separation.

The method introduces three hyperparameters:
false negative ratio threshold t, frequency of vali-
dation epochs p and the maximum number of clus-
ters (max num cluster), which is a parameter needed
for X-Means. More details on the hyperparameters are
provided in Appendix. B.5.

Clustering. The motivation for using X-Means over
other commonly used clustering methods such as K-
Means [33], DB-SCAN [10] and Gaussian Mixture Models
(GMMs) are two-folds: (1) X-Means is scalable and au-
tomatically identifies the number of clusters based on the
Bayesian Information Criterion (BIC); (2) BIC uses a max-

imum likelihood estimation of the variance under the spher-
ical Gaussian assumption, which means that the samples are
approximately spherical Gaussian in each cluster.

3.2. Representation Distance

This section describes the MD derivation over the la-
tent representations. To avoid matrix singularities, the latent
representations are first reduced using PCA.

Dimensionality reduction. Representations extracted
from large neural networks usually have a high dimension
and redundant dimensions. The MD requires calculating
the inverse covariance matrix of these features, but the pres-
ence of redundancy causes the covariance matrix to be sin-
gular. Furthermore, [39] shows that the presence of non-
informative dimensions could be detrimental to MD perfor-
mance. This motivates the use of dimensionality reduction.

A common dimensionality reduction method is t-
SNE [47], widely used for latent space’s visualization.
While t-SNE maintains the local distribution of points, it
fails to represent global distributions accurately, which is
undesirable in distance-based uncertainty predictions. In-
stead, we use Principal Component Analysis (PCA) for
dimensionality reduction. The principal components are
constructed from the covariance matrix of the standardized
training representations. The eigen vectors of the covari-
ance matrix are the principal components and the eigen val-
ues account for the amount of original information (vari-
ance) present in these components. We automatically es-
timate the number of principal components by the number
of eigen values in decreasing order, required to explain 95%
of the original data variance. This transformation is denoted
by g : Rd → Rd′

, where d′ is the dimension of the reduced
features. With x′

train = fθ(xtrain) the full dimensions
training features, we denote ztrain = g(x′

train) the re-
duced features.

Mahalanobis Distance. The MD is a generalized ver-
sion of Euclidean distance that takes into account the data
correlation to measure the distance. Hence, the MD is more
accurate when predicting the distance between a point and a
distribution of points. Here, MD is calculated on the PCA-
reduced representations as follows. Let {zi} be the set of
training representations after dimensionality reduction, µc

be the class centroids with c = 1, 2, ...,K, and Σ be the
shared covariance for all training samples, given by

µc =
1

Nc

∑
i:yi=c

zi

Σ =
1

N

∑
c

∑
i:yi=K

(zi − µc)(zi − µc)
T

(1)

The following Eq. 2 gives the Mahalanobis distance be-
tween the centroid µc of class c and a test sample x̃ with



reduced representation z̃ = g(fθ(x̃))

MDc(x̃) =

√
(z̃ − µc)TΣ

−1(z̃ − µc) (2)

3.3. Classification and Uncertainty Estimation

We now show how to use the MD distance calculated in
Eq. 2 for three purposes: classification, predictive probabil-
ity, and uncertainty prediction.

MD-based Classification. The predicted class is the one
whose centroid c∗ is closest to the test sample x̃:

c∗ = argmin
c

(MDc(x̃)) (3)

Note that this classification is inferred in addition to the
usual classification done by the network by taking the max-
imum of the output logits.

Predictive Probability. We convert the MD into a cal-
ibrated classification probability using the following prop-
erty: the squared MD on representations with dimension
d′ follows a chi-squared distribution χ2

d′ with d′ degrees of
freedom. The proof of this is provided in Appendix. ??.
The MD is converted as follows:

P c
MD = 1− cdf(χ2

d′)(MDc(x̃)
2) (4)

where cdf(.) is the cumulative distribution function. P c
MD

represents the probability that a test sample belongs to class
c. When the test point belongs to a particular class, the MD
to that class is low and the corresponding P c

MD is high. The
predictive probability is the one associated with the class c∗

obtained in Eq. 3:

P c∗

MD = max
c

(P c
MD) (5)

Note that contrary to a CNN softmax ‘probabilities’, this
classification probability is calibrated and can be interpreted
as a confidence in the classification output. This means
P c
MD represents the actual probability that a sample belongs

the class c.
Uncertainty Prediction. We define the predictive un-

certainty, which is the uncertainty in the network prediction
as

uc∗ = 1− P c∗

MD (6)

For small values of MD, uc∗ is around 0 and goes to 1 as
the MD increases.

4. Experiments
We compare MAPLE with the following related works:

two multi forward-pass methods MC-Dropout [13] (10
dropout samples) and Deep ensemble [26] (10 models),
four single forward-pass methods: DUQ [46], SNGP [31],
DUE [45] and VMDLS [7]. Following the standard

evaluation on OOD detection, we evaluate the methods
on classification, predictive probability calibration, and
OOD detection on the following benchmark datasets: CI-
FAR10 [25] vs. SVHN [36]/CIFAR100 [25], CIFAR100
vs. CIFAR10/Tiny ImageNet [28] and ImageNet [40] vs.
ImageNet-O [20].

Additionally, we compare the ID metrics for the cor-
rupted version of CIFAR100 [20]. We also compare
MAPLE with MD-based methods on OOD detection,
namely, the approach by Lee et al. [29], Marginal MD [24]
and RMD [39]. We used the near-OOD CIFAR10 vs. CI-
FAR100 for the comparison, which is notably challenging
for OOD detection.

4.1. Evaluation Metrics

We report the standard evaluation metrics [31, 46]
namely, the classification accuracy, the Expected Calibra-
tion Error (ECE), the Negative Log-Likelihood (NLL),
the Area Under the Receiver Operating Characteristics
(AUROC) and the Area Under the Precision-Recall curve
(AUPR). For qualitative analysis, we use calibration plots.
As mentioned previously, MAPLE produces two classifica-
tion outputs, so we report the accuracies obtained from both
the traditional softmax probability and the MD-based clas-
sification (Sec. 3.3). The ECE and the NLL are calculated
from the predictive probability P c∗

MD. AUROC and AUPR
are calculated from the uncertainty uc∗ . The definition of
these standard metrics are recalled in Appendix A.

4.2. Implementation Details

The CIFAR10 and CIFAR100 training follows [31, 45]
and uses a Wide ResNet 28-10 [51] for the classification
backbone. The hyperparameters for the trainings are p =
10, t = 0.3 and max num cluster= 5. The ImageNet
training is performed on ResNet-50 [18]. The hyperparam-
eters are p = 20, t = 0.2 and max num cluster= 5.
Additional details on the dataset splits, hyperparameters,
and the hardware used for training are provided in the Ap-
pendix B.

4.3. Results

We report the results on CIFAR10, CIFAR100 and Ima-
geNet in Table (Tab.) 1, 2 and 3 respectively.

OOD Detection Results. MAPLE outperforms the
baseline methods by upto 12% on OOD detection. Note that
competitive approaches, such as SNGP and DUE, derive
their performance from spectral normalization and Gaus-
sian process layer, which are invasive training add-ons. In
contrast, MAPLE relies only on the layers of a standard
CNN architecture to achieve superior performance.

Classification Results. MAPLE achieves results com-
petitive to state-of-the-art, only 1% below the top method
Deep ensemble [26] whose score comes at the cost of



Method ID metrics OOD AUROC ↑ OOD AUPR ↑ Latency↓
Accuracy ↑ ECE ↓ NLL ↓ SVHN CIFAR100 SVHN CIFAR100 (ms/sample)

Deterministic 95.0±0.01 0.094 ±0.002 0.138±0.01 0.801±0.01 0.765±0.01 0.794±0.01 0.762±0.01 4.01
MC Dropout [13] 96.0±0.01 0.048±0.001 0.293±0.01 0.932±0.01 0.835±0.01 0.965±0.01 0.829±0.01 27.10

Deep Ensemble [26] 96.4±0.01 0.014±0.001 0.134±0.01 0.934±0.01 0.864±0.01 0.935±0.01 0.885±0.01 38.10
DUQ [46] 94.5±0.02 0.023±0.001 0.222±0.01 0.927±0.01 0.872±0.01 0.973±0.01 0.833±0.01 8.68
SNGP [31] 95.7±0.01 0.016±0.001 0.153±0.01 0.991±0.01 0.911±0.01 0.994±0.01 0.907±0.01 6.25
DUE [45] 95.6±0.02 0.015±0.001 0.179±0.01 0.936±0.01 0.852±0.01 0.967±0.01 0.850±0.01 6.94

VMDLS [7] 95.1±0.01 - - 0.932±0.01 0.868±0.01 0.953±0.01 0.864±0.01 5.61
MAPLE 95.6±0.01/95.4±0.01 0.012±0.001 0.142±0.01 0.996±0.01 0.926±0.01 0.997±0.01 0.918±0.01 4.96

Table 1. CIFAR10 (ID) vs SVHN/CIFAR100 (OOD). Results are averaged over 10 seeds. MAPLE outperforms all single and multi
pass methods on OOD detection, and is significantly faster. Classification with MAPLE is very competitive with the state-of-the-art and
the predicted probabilities are better calibrated. Blue: classification based on prediction from softmax probability. Orange: MD-based
classification.

Method Accuracy↑ ECE↓ NLL↓ OOD AUROC↑ OOD AUPR ↑
Clean Corrupted Clean Corrupted Clean Corrupted CIFAR10 TinyImageNet CIFAR10 Tiny ImageNet

Deterministic 79.0±0.02 52.2±0.03 0.108±0.012 0.279±0.003 1.342±0.03 2.834±0.03 0.697±0.01 0.748±0.01 0.713±0.01 0.747±0.01
MC Dropout [13] 79.4±0.02 46.3±0.05 0.115±0.010 0.293±0.004 0.986±0.02 2.868±0.02 0.786±0.01 0.787±0.01 0.781±0.01 0.790±0.01

Deep ensemble [26] 79.6±0.01 54.0±0.06 0.029±0.008 0.254±0.005 0.706±0.01 2.893±0.02 0.798±0.01 0.811±0.01 0.792±0.01 0.801±0.01
DUQ [46] 77.6±0.02 50.5±0.04 0.112±0.015 0.277±0.006 1.303±0.03 2.811±0.02 0.740±0.01 0.759±0.01 0.747±0.01 0.761±0.01
SNGP [31] 78.7±0.01 50.5±0.03 0.129±0.012 0.286±0.003 1.080±0.01 2.676±0.02 0.743±0.01 0.783±0.01 0.749±0.01 0.765±0.01
DUE [45] 77.8±0.02 49.3±0.05 0.134±0.014 0.305±0.005 1.454±0.02 2.756±0.03 0.732±0.01 0.754±0.01 0.734±0.01 0.768±0.01
MAPLE 78.9±0.02/78.6±0.01 54.2±0.04/54.0±0.03 0.065±0.001 0.245±0.004 1.112±0.01 2.715±0.02 0.793±0.01 0.828±0.01 0.799±0.01 0.817±0.01

Table 2. CIFAR100 (ID) vs CIFAR10/Tiny ImageNet (OOD). Results are averaged over 10 seeds. We also evaluate the ID metrics for
the corrupted version of CIFAR100 from [20]. MAPLE achieves the best performance on OOD detection. It is very competitive with
other single-pass methods on the classification task. Blue: Classification based on prediction from softmax probability Orange: MD-based
classification.

Method ID metrics OOD metrics Latency ↓
Accuracy ↑ ECE ↓ NLL ↓ AUROC ↑ AUPR ↑ (ms/sample)

Deterministic 75.7±0.03 0.058±0.004 0.925±0.03 0.553±0.01 0.546±0.01 42.64
MC Dropout [13] 75.3±0.04 0.032±0.003 0.922±0.02 0.614±0.08 0.609±0.05 93.74

Deep ensemble (3 models) [26] 76.4±0.08 0.024±0.004 0.930±0.03 0.625±0.05 0.616±0.04 130.78
MAPLE 75.6±0.05/75.2±0.07 0.021±0.003 0.928±0.03 0.637±0.06 0.635±0.04 55.26

Table 3. ImageNet (ID) vs ImageNet-O (OOD). Results are av-
eraged over 10 seeds. MC-Dropout is performed for 10 forward
passes. MAPLE achieves the best performance on OOD detec-
tion. It is very competitive with other single-pass methods on the
classification task. Blue: Classification based on prediction from
softmax probability Orange: MD-based classification.

training and inference on several models. Note that both
MAPLE accuracies, the softmax probability and the MD-
based one are close. A finer analysis of the accuracy shows
that the slight difference in accuracy with the MD-based
classification occurs on samples the network is uncertain
about: MAPLE achieves top accuracy on high-confidence
predictions (above 80% and 90% confidence) and the ac-
curacy slightly decreases for lower-confidence predictions.
See Appendix. D.1 for an extended analysis.
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Figure 4. Calibration plots. A perfectly calibrated plot is when
the predicted confidence equals the true likelihood i.e., the accu-
racy. This is shown by the linear dotted line in the plots.

Calibration Results. MAPLE is competitive with state-

of-the-art SNGP [31] and Deep Ensembles. The calibration
plot for CIFAR10 and CIFAR100 and shown in Fig. 4. On
CIFAR10, all methods are well-calibrated, except for MC-
Dropout that is overconfident in its predictions, which ex-
plains its high ECE score. When the accuracy is below 0.4,
baseline methods become overconfident, whereas MAPLE
is closer to optimal calibration and achieves the best ECE
score.

Additional results on Gaussian test, are provided in Ap-
pendix. D.

4.4. Comparison with other MD methods

Setup. MAPLE is compared against MD-based OOD
detectors [24, 29, 39]. These methods are tailored for OOD
detection, so we report the metric relevant to this task only
for the sake of fairness. We report the AUROC score on
the challenging near-OOD dataset CIFAR10 vs. CIFAR100.
The experiments are done with a Wide ResNet 28-10 [51].

Method Lee et al. [29] Marginal MD [24] RMD [39] Ours
AUROC ↑ 0.893 0.838 0.897 0.926

Table 4. Comparison with MD-based OOD detection. MAPLE
performs better in OOD detection than existing MD-based meth-
ods on the CIFAR10 vs. CIFAR100 setup.

OOD Detection Results. MAPLE achieves top-
performance on Near-OOD detection (Tab. 4), which sup-
ports MAPLE’s representation regularization. Note that the
primary difference between MAPLE and the baselines is
their lack of constraints on the latent representation. In con-
trast, we force the samples of every class to be Gaussian be-



Method ID metrics OOD metrics - SVHN OOD metrics—CIFAR100 #EigSoftmax Accuracy ↑ MD-based Accuracy↑ ECE ↓ AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑
DNN+MD (1) 0.950 0.943 0.086 0.752 0.762 0.583 0.564 -

DNN+PCA+MD (2) 0.950 0.946 0.053 0.855 0.839 0.813 0.859 12
DNN+PCA+ED (3) 0.950 0.943 0.105 0.829 0.804 0.734 0.765 12

DNN+Triplet+PCA+MD (4) 0.954 0.953 0.013 0.945 0.948 0.912 0.894 11
DNN+Clustering+PCA+MD (5) 0.947 0.945 0.032 0.922 0.908 0.811 0.815 12

MAPLE (6) 0.956 0.954 0.012 0.996 0.997 0.926 0.930 12

Table 5. Ablation study. We evaluate the influence of several MAPLE components. PCA (1 vs 2) results in a significant improvement of
the OOD detection by discarding non-informative dimensions. The distances derived on these reduced features are better representative
of the similarity between the input samples. The MD (2 vs 3) is better suited than ED for calibrated classification and OOD detection,
which reiterates conclusions already found in previous works. The triplet loss (2 vs 4) improves both the accuracy and the OOD metrics
by increasing the class separation. Clustering alone (2 vs 5) also contributes to a better separation of the classes, but the results are not as
significant. The joint use of triplet loss and clustering, as done in MAPLE (6) achieves the best results on both classification and OOD
detection. Note: #Eig refers to the number of principal components, whenever applicable.

fore calculating MD. Non-Gaussian samples lead to incor-
rect mean and covariance calculations, resulting in incorrect
distance values. The error is more pronounced when the
samples deviate from the Gaussian distribution by a large
factor. This explains why the MD-based approaches under-
perform compared to MAPLE on Near-OOD.

4.5. Ablation analysis

In this study, we assess how the different components of
MAPLE impact its performance. We train a Wide ResNet
28-10 [51] network on CIFAR10 and use SVHN and CI-
FAR100 as OOD datasets.

Dimensionality Reduction. We consider two scenarios:
(1) DNN+MD - A baseline where a standard Deep Neu-
ral Network (DNN) is trained with the cross-entropy loss
and with no feature regularization. The MD is computed
on the raw features, and we add a value of 1e−20 to the di-
agonal elements [39] to avoid a singular covariance matrix.
(2) DNN+PCA+MD - It follows (1) except that the MD is
derived on PCA-reduced features.

Results: Dimensionality reduction (2) drastically im-
proves the network’s performance, as shown in the first line
of Tab. 5. The improvement amounts to 7-30% on the OOD
metrics and 3% on the ID metrics. One possible explanation
is that the reduced dimensions are the ones that contribute
to distinguishing ID samples from OOD ones, as previously
observed by [39]. When including all the feature dimen-
sions in the MD, the dimensions that do not contribute to
discriminating ID and OOD samples add up and dominate
the final MD score.

Distance Definition. We compare Mahalanobis distance
and Euclidean distance (ED) in the network’s latent space.
We compare (2) DNN+PCA+MD with the new experiment
(3) DNN+PCA+ED - It follows (2) except that the MD is
replaced with ED. As for MD, the χ2

d′ distribution is used
to obtain the probability values from ED (Sec 3.3).

Results: The results show that MD boosts the perfor-
mance in terms of ID and OOD metrics. The improvement
is ECE score is by 5%, and the OOD metrics improved by

3-9% when using MD. This is because MD takes into ac-
count the data correlation, which gives a better estimate of
the probability and uncertainty values.

Representation training. To study the influence of
the training on the representations, we consider three
experiments: (4) DNN+Triplet+PCA+MD - We train
the DNN using both cross-entropy and triplet loss. (5)
DNN+Clustering+PCA+MD - We train using the cross-
entropy loss only and periodically cluster the feature points
using X-Means. (6) MAPLE - This is our proposed method
that fuses (4) and (5). For all experiments, the MD is de-
rived on the reduced features.

Results: Using the triplet loss (4) improves the perfor-
mance considerably compared to training with the cross-
entropy loss only (2). An explanation is that the triplet loss
pulls in-class feature embeddings together, and pushes the
other class features apart. This encourages the representa-
tions to be well separated and makes it easier to distinguish
OOD features. Choosing the triplet loss for metric learning
is empirically motivated: experiments using contrastive loss
showed that triplet loss has a slightly better performance.

Periodic clustering (5) improves the ECE score by 2%,
and the AUROC and AUPR scores on SVHN by about 7%
compared to (2). However, there is a slight drop in accuracy
by 0.3% and OOD metric by 4% on CIFAR100. One expla-
nation is that clustering increases the chances of new classes
to overlap. This phenomenon is illustrated in the centre plot
of Fig. 3. The class overlap is particularly hindering when
the new domain is close to the training one: with cluster-
ing (5), the SHVN scores are better but the near-OOD CI-
FAR100 performs better without clustering (2).

MAPLE uses clustering together with triplet loss and
achieves top-performance. The triplet loss reduces the over-
lap introduced with the clustering by pulling apart the newly
created classes. With MAPLE, the latent representations are
approximately Gaussian and well-clustered resulting in bet-
ter MD estimates and superior performance in both ID and
OOD metrics. Compared to experiment (2), the calibration
error drops by 4%and the OOD scores improved by 4-11%.



False Negative SVHN CIFAR100
Ratio (t) #Classes Accuracy↑ ECE↓ AUROC↑ AUROC↑

0.0 23 0.9449 0.014 0.922 0.888
0.1 18 0.9534 0.013 0.964 0.918
0.2 14 0.9544 0.012 0.991 0.925
0.3 12 0.9541 0.012 0.996 0.926
0.4 10 0.9535 0.013 0.961 0.921
0.5 10 0.9535 0.012 0.955 0.915

Table 6. Metrics for different values of False Negative Ratio
evaluated on CIFAR10 #Classes refers to the total number of out-
put classes obtained after clustering. A low value of t results in
overclustering, whereas a high t fails to detect classes with high
variance.

False Negative Ratio t. We evaluate the influence of the
clustering trigger i.e., the False Negatives Ratio. We train
MAPLE with a range of t values on CIFAR10 (Tab. 6).

Results: A low value of t results in overclustering,
where multiple clusters contain similar images. This fur-
ther increases the chances of misclassifications, leading to
decrease in the metric values. On the other hand, high t val-
ues result in underclustering. Note that for t > 0.3, there
are no additional clusters generated. This is because, the
classes have false negative ratios that are below this thresh-
old and so, they are not clustered. For CIFAR10, a t value
of 0.3 yields the best results.

An extended ablation analysis on the influence of classi-
fication backbones, clustering methods, and hyperparame-
ters is provided in Appendix. E.

5. Discussion
With the periodical clustering and the dynamic re-

labeling, a natural question that arises is ’Is there a drop
in performance when the ground truth labels change during
training?’. Experimentally, we observe a drop in training
accuracy by 2-3% in the following epoch after every clus-
tering phase. However, the network makes up for the drop
within 4-5 epochs of training.

It can happen that the clusters contain very few samples,
which introduces label imbalance when classifying. This is
exacerbated when the samples are over-clustered. To miti-
gate this, we restrict X-Means to only cluster the classes that
get misclassified. These are the classes with a false negative
ratio higher than the threshold t. Automatic clustering reg-
ularization [4, 22, 27] is left for future work.

6. Use Case: Microorganism Classification
We consider the real-life computer vision use-case of

image-based diatom identification [8]. Diatoms are mi-
croorganisms present in the water. The distribution of di-
atoms in the water is a useful indicator for predicting the
water quality. Diatoms consist of several species or ’taxa’,
each corresponding to a different class with a different ap-

pearance. Typical in several biology applications, the image
dataset includes a lot of intra-class variance (Fig. 5). In this
study, we evaluate the performance of different approaches
when encountering taxa that were not previously trained on.

Method Accuracy ↑ ECE ↓ AUROC ↑ AUPR ↑ Latency (ms/sample)↓
MC-Dropout [13] 0.936 0.039 0.548 0.589 129.7

Deep Ensemble [26] 0.969 0.025 0.589 0.570 146.81
SNGP [31] 0.954 0.196 0.798 0.826 26.25

MAPLE 0.963 0.036 0.864 0.865 17.38

Table 7. Real Case Application: microorganism classifica-
tion. With its top performance and state-of-the-art speed, MAPLE
makes for a particularly applicable method for classification and
OOD detection on real case datasets.

We train a Wide ResNet 28-10 on 130 taxa and use
36 taxa as OOD. The dataset is particularly challenging
since it is fine-grained and Near-OOD. Additional details
on the dataset and experimental setup are provided in Ap-
pendix B.4. As shown in Tab. 7, MAPLE outperforms
all baselines on OOD detection. While Deep Ensemble
has a slightly better classification accuracy and ECE score,
MAPLE significantly outperforms it in OOD with a 30%
score boost and a runtime 8 times faster.

Figure 5. Micro-organisms belonging to the same class. These
images of one diatom class show wide appearance changes due to
different viewpoints during the acquisition. These translate into
separate distributions in the latent space, deviating from Gaus-
sian distribution. MAPLE’s regularization makes the latent space
Gaussian, hence suitable for MD calculation.

7. Conclusion
This paper presents MAPLE, a self-supervised regu-

larization method for uncertainty estimation and out-of-
distribution detection on CNN classifiers. The uncertainty
is derived from the Mahalanobis Distance (MD) between
an image representation and the class representations in
the network’s latent space. MAPLE derives meaningful
MD distances by introducing a regularizer based on self-
supervised label refinement and metric learning. Thus,
MAPLE learns well-clustered representations that are ap-
proximately Gaussian for each class, which complies with
the theoretical requirements of MD-based uncertainty esti-
mation. Experimental results show that MAPLE achieves
state-of-the-art results on out-of-distribution detection and
is very competitive with existing methods on predictive
probability calibration. MAPLE also has the significant ad-
vantage of introducing the least architectural changes. Fi-
nally, we demonstrate a real-life use-case of our method on
microorganism classification for the automatic assessment
of water quality in natural ecosystems.
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A. Metrics Definitions
In this section, we provide the definitions and formulas

of metrics used for evaluation in this paper. Let the samples
be represented by [(x1, y1), (x2, y2), ..., (xN , yN )], where
N is the total number of samples. xi is the input and yi is
the corresponding label, having values between 1 and K.

Accuracy. This gives the fraction of samples that were
correctly identified by the network.

acc =
1

N

N∑
n=1

1[argmax(p(yn|xn)) = yn]

where, p(yn|xn) is the predicted probability that the sample
xn belongs to the class yn. A higher accuracy indicates
better performance.

Expected Calibration Error. ECE is a measure of pre-
dictive probability calibration error. The output probability
is divided into a histogram of B equally spaced bins. The
expected calibration error gives the difference between the
observed relative frequency (accuracy) and the average pre-
dicted frequency (confidence).

ECE =

B∑
b=1

nb

N
|acc(b)− conf(b)|

where nb is the number of samples in bin b, N is the total
number of samples, acc(b) and conf(b) are the accuracy
and confidence of bin b. A lower ECE score means that
the accuracy and confidence are aligned, indicating better
calibration.

Negative Log Likelihood. NLL calculates the negative
log-likelihood for the predicted class probability. While it
is generally used for optimization using cross-entropy loss,
it is also commonly used to evaluate the prediction uncer-
tainty. A lower NLL score is preferred.

NLL =
−1
N

N∑
n=1

log(p(yn|xn))

Area Under Receiver Operating Characteristic
Curve. AUROC indicates the ability to separate ID and
OOD samples. To calculate this metric, the predicted un-
certainty is used to determine if a sample is ID or OOD.
This can be considered as a binary classification problem.
The area under the plot between the true positive rate and
the false positive rate gives the AUROC value. Higher AU-
ROC value means better separation between ID and OOD.

Area Under Precision-Recall Curve. AUPR, like AU-
ROC measures the ability to separate ID and OOD samples.
Considering ID and OOD separation as a binary classifica-
tion problem, the area under the plot between precision and
recall values give the AUPR score.

B. Experimental details
B.1. CIFAR10 vs. CIFAR100/SVHN

CIFAR10 [25] consists of 10 classes. We split the orig-
inal training set consisting of 50000 samples into train and
validation set, in the ratio of 80:20. The validation set was
used for hyperparameter tuning. The test set consists of
10,000 samples, used for inference. For OOD analyses, we
use the test set of SVHN and CIFAR100, which consists of
26,032 and 10,000 samples respectively. The OOD images
are normalized the same way as train images during infer-
ence.

The network architecture is Wide ResNet 28-10 [51].
The feature embedding layer has a dimension of 640. Af-
ter training MAPLE , the number of classes were 12, and
hence, the final layer has a dimension of 12, followed by
softmax. We trained the model for 200 epochs. We used an
SGD optimizer with a learning rate of 0.05. The momen-
tum was set to 0.9 and weight decay of 1e−4. The training
was performed using PyTorch on a 12Gb NVIDIA GeForce
GTX 1080Ti with a batch size of 64. The dimension of the
reduced features from PCA is 12.

B.2. CIFAR100 vs. CIFAR10/Tiny ImageNet

CIFAR100 [25] consists of 100 classes. We split the
original training set consisting of 50000 samples into train
and validation set, in the ratio of 80:20. The validation set
was used for hyperparameter tuning. The test set consists
of 10,000 samples, used for inference. Additionally, infer-
ence and ID metrics were also calculated for the corrupted
version (CIFAR100-C [20]). For OOD analyses, we use the
test set of Tiny ImageNet and CIFAR100, which consists of
10,000 samples each. The OOD images are normalized the
same way as train images during inference.

The network architecture is Wide ResNet 28-10 [51].
The feature embedding layer has a dimension of 640. Af-
ter training MAPLE , the number of classes were 118, and
hence, the final layer has a dimension of 118, followed by
softmax. We trained the model for 200 epochs. We used an
SGD optimizer with a learning rate of 0.05. The momen-
tum was set to 0.9 and weight decay of 1e−4. The training
was performed using PyTorch on a 12Gb NVIDIA GeForce
GTX 1080Ti with a batch size of 64. The dimension of the
reduced features from PCA is 34.

B.3. ImageNet vs. ImageNet-O

The ImageNet dataset [40] consists of 1,000 classes with
1,281,167 train, 50,000 validation and 10,000 test images.
For OOD analysis, ImageNet-O [19] is used, which con-
sists of 200 classes and 2000 images. The OOD images are
normalized the same way as train images during inference.

The ResNet-50 [18] was used for training. The feature
embedding layer has a dimension of 640. After training



MAPLE , the number of classes were 1223, and hence, the
final layer has a dimension of 1223, followed by softmax.
We trained the model for 300 epochs. We used an Adam
optimizer with a learning rate of 0.01. The training was
performed using PyTorch on a 2 24Gb NVIDIA GeForce
RTX 3090 with a batch size of 64. The dimension of the
reduced features from PCA is 66.

B.4. Diatoms

The diatom dataset consists of 9895 individual RGB im-
ages of size 256 × 256, belonging to 166 classes [49]. We
divide it into ID dataset consisting of 130 classes (7874 im-
ages) and the remaining 36 classes as OOD (2021 images).
70% of the ID images were used for training, 10% for val-
idation and 20% for testing. While training, horizontal and
vertical flips were used for data augmentation.

The network architecture is Wide ResNet 28-10 [51].
The feature embedding layer has a dimension of 640. After
training, there were a total of 158 classes, hence the output
layer consists of 158 neuron with a softmax activation. We
trained the model for 100 epochs with an Adam optimizer.
The learning rate was 2e−4 and batch size 4. The training
was performed using PyTorch on a 12Gb NVIDIA GeForce
1080Ti. The dimension of the features after PCA reduction
was 31.

B.5. Hyperparameter Tuning

Our training depends on the following hyperparameters:
(1) Frequency of epochs p - After every p epochs, vali-
dation is performed to obtain the new cluster assignments
using X-Means. (2) False negative ratio threshold t - t
is a threshold used to decide the class features to be clus-
tered. From the normalized confusion matrix obtained dur-
ing the validation step, the classes having false negative
greater than t are clustered using X-Means. (3) Maximum
number of clusters - This is a parameter of X-Means, that
specifies the upper bound to the number of clusters that X-
Means can generate for each class.

To find the optimal value of these parameters, a grid
search was performed. For the grid search, the values of
hyperparameters used were: False negative ratio thresh-
old t ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
frequency of validation epochs p ∈ {5, 10, 15, 20} and
maximum number of clusters that X-Means can generate
{3, 5, 7, 10}.

From the grid-search analysis, the best performance was
obtained when t = 0.3, p = 10 and maximum num-
ber of clusters=5 for CIFAR10, CIFAR100 and the Diatom
datasets. For ImageNet, t = 0.2, p = 20 and maximum
number of clusters=5.

B.6. Loss Functions

For our training, we use the Cross-Entropy Loss and the
Triplet Loss.

B.6.1 Cross-Entropy Loss

To estimate the cross-entropy loss, the final layer of the
model is passed through a softmax layer to obtain proba-
bility values. Cross-entropy loss increases proportional to
the difference between the predicted probability and the ac-
tual probability (typically 1) of the ground truth class. The
cross-entropy loss is given by:

Lcross-entropy = −
K∑
i=1

yi log(pi) (7)

where K is the total number of samples, yi is the binary
one-hot encoding value corresponding to ground truth class,
which equals 1, and pi is the probability predicted by the
network.

B.6.2 Triplet Loss

To estimate the triplet loss, we use the feature embedding
obtained from the penultimate layer of the classification net-
work. Triplet loss tries to minimize the distance of intra-
class data points, while maximizing the inter-class distance.
Consider three input samples, which are feature embed-
dings extracted: anchor x′

a, positive x′
p and negative x′

n.
x′
a and x′

p belong to the same class while x′
n belongs to a

different class. The triplet loss is given as:

Ltriplet = max{||x′
a − x′

p|| − ||x′
a − x′

n||+ α, 0} (8)

The final objective is

Ltotal = Lcross-entropy + Ltriplet (9)

C. Algorithm
The proposed method is summarized in Algorithm 1 and

Algorithm 2. Algorithm 1 provides the steps using in train-
ing MAPLE . Algorithm 2 summarizes the procedure for
estimating uncertainty from MD. At regular intervals of the
training process, validation is performed, and the train fea-
ture representations are clustered using X-Means. The time
complexity for X-Means is O(log K), where K is the num-
ber of clusters. The train features are reduced in dimension
using PCA, which has a complexity of O(nd2+d3), where
n is the number of train data and d is the feature dimen-
sion. Mahalanobis distance calculation requires calculating
mean and the covariance matrix, which has a complexity
of O(nd′) and O(d′3), where d′ is the PCA reduced feature
dimension.



Note that the operations such as the PCA covariance cal-
culation and eigenvalue decomposition, and inverse covari-
ance calculation for MD is to be performed only once, at the
end of the training. During inference, the calculated mean
and inverse covariance matrix can be used to calculate the
Mahalanobis distance for all the test points.

Algorithm 1: MAPLE training
Data: Ground truth labels y ∈ {1, 2, ...k},
Input samples x ∈ RD,
Train input samples xtrain = {xn}Nn=1,
Train dataset Dtrain = {(xn, yn)}Nn=1,
Validation dataset Dval = {(xv, yv)}Mm=1

Initialize: nc = k, p = 10, t =
0.3,max clusters = 5

Model : fθ : RD → Rd

for epoch = 1 to max-epochs do
Train fθ with Dtrain and nc classes and loss
given by Ltotal = Lcross−entropy + Ltriplet

if epoch%p==0 then
x′
train = fθ(xtrain)

Get softmax predictions on Dval

if nc > k, remap pseudo-labels to original
class labels

Compute confusion matrix
for i=1 to k do

if false negative ratio(i) > t then
Cluster using X-Means.

X-Means(x′
train(i), max clusters)

K ← total number of clusters obtained from
all the classes
nc = K
Update Dtrain with pseudo-labels from
clustering

D. Additional Experiments
In this section, we provide results for additional evalua-

tion of MAPLE .

D.1. Accuracy based on prediction confidence

We evaluate the accuracy of prediction when selecting
samples with predictive confidence above a given thresh-
old. In other words, classification is performed only when
the network’s confidence is above a threshold. This is rep-
resentative of real-life applications where a network’s pre-
diction is considered only when the confidence is high. We
consider three probability thresholds: 0.50, 0.80 and 0.90.
For all samples with predictive probability above these val-
ues, we report the classification accuracy. Table 8 gives the
results on the test set of CIFAR10 [25] dataset.

Algorithm 2: MAPLE Prediction
Data: Train feature embeddings x′

train

Input: Test sample x̃
Compute the reduced dimensional train features:
ztrain = g(x′

train)
Compute individual class means and shared
covariance µc,Σ
µc =

1
Nc

∑
i:yi=c zi

Σ = 1
N

∑
c

∑
i:yi=K(zi − µc)(zi − µc)

T

Get reduced dimensional feature for x̃:
z̃ = g(fθ((x̃))

Compute Mahalanobis distance:

MD(x̃) =
√
(z̃ − µc)TΣ

−1(z̃ − µc)

Get the prediction probabilities:
PMD = 1− cdf(χ2

d′)(MD2)
Predicted class = argmax(PMD)
Compute uncertainty u = cdf(χ2

d′)(MD2)

Method acc@.50 acc@.80 acc@.90
MC Dropout [13] 0.962 0.976 0.988

Deep ensemble [26] 0.967 0.987 0.995
DUQ [46] 0.950 0.977 0.982
SNGP [31] 0.959 0.978 0.985
DUE [45] 0.962 0.974 0.979
MAPLE 0.958 0.989 0.995

Table 8. Accuracy on CIFAR10 with different confidence levels.
MAPLE achieves top accuracy at confidence levels of 0.80 and
0.90.

Results. MAPLE achieves the best accuracy at confi-
dence values of 0.80 and 0.90 on CIFAR10. Overall, on
CIFAR10, MAPLE has competitive accuracy with the other
approaches. This shows that even though MAPLE is com-
putationally efficient, it can achieve the same level or better
performance as the other methods.

D.2. Gaussian test

In Section 3.1, it was theoretically shown that X-Means
creates clusters of feature points that are Gaussian. In this
section, we empirically test this. A commonly adopted
method to check for multivariate Gaussian is to use a
quantile-quantile plot, where an observed quantile is com-
pared with a theoretical one. If the samples are Gaussian,
their squared MD follows a χ2 distribution. Thus, we use
MD2

c∗ of the samples feature embeddings as our observed
quantile and compare with theoretical χ2 quantiles.

For our test, we use the reduced feature embeddings,
ztrain, from a standard classifier network and MAPLE .
The MD2

c∗ of samples are calculated and plotted with χ2

quantiles with d′ degrees of freedom, where d′ is the dimen-
sion of feature embeddings. We measure the error, which
is the mean absolute difference between the two quantiles,



to test which method generates feature embeddings that are
closer to a Gaussian. In the ideal situation, this value should
be zero. The larger the error, the greater is the deviation
from a Gaussian distribution.

Table 9 shows the errors computed on feature embed-
dings from CIFAR10 and CIFAR100 dataset. From the re-
sults, MAPLE’s error is reduced by over 50%, which shows
that the feature representations of MAPLE are more Gaus-
sian than when using a standard DNN classifier.

Method CIFAR10 CIFAR100
Standard CNN 3.540 4.479

MAPLE 1.395 1.982

Table 9. Mean absolute error between squared MD and χ2 dis-
tribution. The lower the error, the more Gaussian are the samples.
MAPLE’s training generates sample distributions that are approx-
imately Gaussian, fitting with the theoretical framework for MD
calculation.

E. Extended Ablation Analyses
E.1. MAPLE evaluated on different backbones

MAPLE is tested on three networks: Wide ResNet 28-
10 [51], ResNet-18 [18] and EfficientNet-B0 [44]. Table 10
gives the quantitative metrics for evaluation on CIFAR10
vs. SVHN and CIFAR100. While it is expected that the
accuracy depends on the architecture used, the calibration
and OOD detection are also influenced by the architecture.
Wide ResNet, which has more number of parameters than
the other two architectures, learns better feature representa-
tions for discriminating each class. As the model parame-
ters decrease, there are overlapping feature points between
different classes, which explains the lower accuracy and
worse calibration and OOD metrics.

SVHN CIFAR100
Architecture Accuracy ↑ ECE ↓ AUROC ↑ AUROC ↑

Wide ResNet 28-10 [51] 0.954 0.012 0.996 0.926
ResNet-18 [18] 0.945 0.029 0.979 0.886

EfficientNet-B0 [44] 0.902 0.035 0.942 0.893

Table 10. MAPLE evaluated on different architectures. The
metrics improve as the model parameters increase, suggesting that
the network learns better discriminative feature representations,
thereby improving the performance.

E.2. Evaluation of different clustering methods

We analyse the performance of MAPLE on CI-
FAR10 when clustering is performed using K-Means, G-
Means [52] and X-Means [37]. The value of K in K-Means
is set to 3. Tab. 11 shows the results obtained. Based
on the results, X-Means yields the best performance. K-
Means and G-Means causes overclustering, which leads to

worser performance on OOD detection. Using X-Means,
we choose the optimal number of clusters, which performs
superior to the others.

SVHN CIFAR100
Clustering method #Classes Accuracy↑ ECE↓ AUROC↑ AUROC↑

K-Means 30 0.952 0.154 0.871 0.850
G-Means 67 0.910 0.266 0.710 0.627
X-Means 12 0.954 0.012 0.996 0.926

Table 11. Metrics for different frequency of validation epoch
#Classes refers to the total number of output classes obtained after
clustering. K-Means and G-Means lead to overclustering, whereas
using X-Means, the optimal number of clusters are generated lead-
ing to better performance.

E.3. Effect of maximum number of clusters

Tab. 12 shows the results when the maximum number of
clusters that can be generated for every class by X-Means is
varied, along with different values of false negative ratio t
for CIFAR10. For t > 0.5, none of the classes are clustered,
and hence we do not include them. From the results, when
the maximum number of clusters are low, MAPLE fails to
capture all the within-class variances, whereas higher val-
ues result in overclustering. With the maximum number of
clusters as 5, MAPLE achieves the best performance.

E.4. Effect of frequency of validation epochs.

Tab. 13 summarizes the metrics for CIFAR10 when the
number of epochs after which the validation and cluster re-
finements are performed is varied. A low value of valida-
tion epochs does not give the network enough time to learn
representations for the new clusters generated. Whereas,
with larger number of epochs, the number of cluster refine-
ments are low. In both these situations, the network does not
identify the optimal clusters. MAPLE gives the best results
when the validation is performed every 10 epochs.

Max. number SVHN CIFAR100
of clusters t #Classes Accuracy↑ ECE↓ AUROC↑ AUROC↑

0.1 14 0.9542 0.012 0.996 0.925
3 0.3 10 0.9540 0.014 0.972 0.919

0.5 10 0.9533 0.012 0.958 0.917
0.1 18 0.9534 0.013 0.964 0.918

5 0.3 12 0.9541 0.012 0.996 0.926
0.5 10 0.9535 0.012 0.955 0.915
0.1 18 0.9537 0.013 0.959 0.894

7 0.3 13 0.9545 0.012 0.992 0.921
0.5 10 0.9531 0.013 0.944 0.911
0.1 26 0.9519 0.014 0.909 0.863

10 0.3 22 0.9521 0.013 0.918 0.886
0.5 11 0.9534 0.012 0.952 0.908

Table 12. Effect of maximum number of clusters per class
on MAPLES’s performance. A high value of cluster num-
bers causes overclustering whereas a low value does not generate
enough clusters. A value of 5 results in optimal number of clusters
for MAPLE to learn meaningful representations.



SVHN CIFAR100
Validation epochs #Classes Accuracy↑ ECE↓ AUROC↑ AUROC↑

5 16 0.895 0.025 0.914 0.876
10 12 0.954 0.012 0.996 0.926
15 12 0.955 0.012 0.987 0.922
20 10 0.953 0.013 0.968 0.917

Table 13. Metrics for different frequency of validation epoch
#Classes refers to the total number of output classes obtained af-
ter clustering. With lower validation epochs, the clustering is too
frequent for the network to learn meaningful representations. At
lower frequency, the number of cluster refinements are not suffi-
cient.


