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Abstract

Recent works show that the data distribution in a network’s latent space is useful for estimating classi-
fication uncertainty and detecting Out-Of-Distribution (OOD) samples. To obtain a well-regularized latent
space that is conducive for uncertainty estimation, existing methods bring in significant changes to model
architectures and training procedures. In this paper, we present a lightweight, fast, and high-performance
regularization method for Mahalanobis distance (MD)-based uncertainty prediction, and that requires min-
imal changes to the network’s architecture. To derive Gaussian latent representation favourable for MD
calculation, we introduce a self-supervised representation learning method that separates in-class represen-
tations into multiple Gaussians. Classes with non-Gaussian representations are automatically identified and
dynamically clustered into multiple new classes that are approximately Gaussian. Evaluation on standard
OOD benchmarks shows that our method achieves state-of-the-art results on OOD detection with mini-
mal inference time, and is very competitive on predictive probability calibration. Finally, we show the
applicability of our method to a real-life computer vision use case on microorganism classification.

1 Introduction
Current deep learning classification networks achieve superior performance and find widespread applications
in various industrial domains such as biology and robotics [1–3]. While they achieve state-of-the-art accuracy,
there remain two main challenges that hinder the deployment of deep classifiers in critical situations: the
derivation of calibrated classification and a measure of the classification uncertainty. Without those, a network
exposed to Out-of-Distribution (OOD) data makes incorrect predictions with high confidence [4] and no
human-in-the-loop can catch such errors. It is thus necessary to obtain calibrated probabilities [4] i.e., predict
probabilities that represent true likelihood, and to estimate the uncertainty in the network’s predictions to
allow users to make informed decisions.

Among deep uncertainty estimation approaches [5–8] are Bayesian Neural Networks [9], MC-Dropout [10]
and Deep Ensemble [11]. These stochastic methods require multiple forward-passes so they are not scalable
to large systems. Aware of the scalability requirements, current research focuses on estimating uncertainty
from deterministic single-forward-pass networks [12–17]. Distance-based methods belong to this category
and are an attractive alternative for their excellent performance in OOD detection [18, 19].

Distance-based methods rely on the distance between the test samples and the In-Distribution (ID) sam-
ples in a network’s latent space to determine if the test samples are OOD. A relevant distance is the Maha-
lanobis distance (MD) [20] for its superior performance over Euclidean Distance (ED) [21–23]. One key
MD assumption though is that the in-distribution samples in the latent space should follow class-conditional
Gaussian distributions. In practice, though, there is nothing in the classification training that constrains the
latent space to fulfil such an assumption [24]. Instead, research on representation learning shows that each
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Standard CNN MAPLE

Figure 1: Self-supervised latent space regularization with MAPLE for uncertainty estimation and OOD
detection. MAPLE improves class separation as illustrated by the PCA visualization of a CNN’s latent space
trained on CIFAR10 without regularization (left) and with MAPLE regularization (right). Our method con-
strains the latent representations to be approximately Gaussian to enable efficient distance-based uncertainty
estimation.

class is usually composed of several clusters of visually similar images [25–27]. This can be due to intra-
class variance of images taken from different view-points, the presence of additional objects in the image,
and variations in object shapes. In the network’s latent space, these variations appear as distinct distributions
or deviate from a Gaussian distribution. This breaks the MD assumption, which could lead to incorrect or
imprecise uncertainty estimation.

In this paper, we introduce MAPLE, a self-supervised representation learning method that regularizes a
classification network’s latent space to exhibit multivariate Gaussian distributions. MAPLE generates a latent
space where class representations are Gaussian, making it compliant with the MD assumption and allows fast
and high-performance MD-based OOD detection, uncertainty estimation, and calibrated classification. The
effect of MAPLE is illustrated in Fig. 1 with the 2D projection of the latent space of a Convolutional Neural
Network (CNN) trained on CIFAR10.

MAPLE stands for MAhalanobis distance based uncertainty Prediction for reLiablE classification, and
is illustrated in Fig. 2. MAPLE relies on two components: i) a self-supervised intra-class label refinement
through clustering in the latent space; ii) a deep metric learning loss that improves the class separation. Dur-
ing training, the representations associated to a class that deviate from a Gaussian distribution are divided
into several clusters that are approximately Gaussian. The cluster assignments become the new labels of
the representations, and the training goes on. Since each cluster gathers samples that exhibit similar intra-
class variations, the clustering step is akin to automatic fine-grained annotation. The metric-learning then
reinforces the fined-grained class separation by pushing apart the new classes. The combination of in-class
clustering and metric learning results in classification representations that are well-clustered and approxi-
mately Gaussian, which makes them suitable for MD-based uncertainty estimation.

We evaluate MAPLE against existing uncertainty quantification methods on the three standard bench-
marks: CIFAR10 [28] vs. SVHN [29]/CIFAR100 [28], FashionMNIST [30] vs. MNIST [31] for OOD detec-
tion and predictive probability calibration. Results show that MAPLE achieves the best compromise between
performance and run time efficiency while being the most lightweight integration-wise. It achieves very
competitive performance with the state-of-the-art and has the best inference time. Also, it introduces minor
architectural changes and does not require additional fine-tuning to OOD datasets.

We summarize the paper’s contributions as follows. i) We develop a self-supervised representation learn-
ing method that constrains a classification network’s latent space to be approximately Gaussian. ii) We show
that such representations allow for reliable OOD detection and probability calibration using MD. iii) We
design the method such that it has a minimal impact on the network’s original architecture, has low compu-
tational cost during inference, and achieves results competitive with the state-of-the-art on OOD detection.
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Figure 2: Representation regularization with MAPLE for uncertainty estimation. Our approach trains
a classification network to learn representations that are approximately Gaussian for each class. During
inference, the Mahalanobis distance between a test sample and the class centroids is used for classification,
uncertainty estimation and OOD detection.

2 Related Work
Multi-forward-pass Uncertainty Estimation. Traditional uncertainty quantification methods rely on Bayesian
Neural Networks [32, 33] to learn a distribution over the network weights. To extract predictive probability
variance, sampling [34] or variational methods [9] are used. The application of these methods is limited, as
they increase the number of parameters by a factor of two and hinder convergence. As a lighter alternative,
MC Dropout [10] enables dropout at test time and averages the network’s output over several forward passes.
While MC Dropout paves the way towards faster and lighter uncertainty estimation, it has been shown to pro-
duce over-confident predictions [11] and underestimate uncertainty [35]. To improve uncertainty estimation,
Deep Ensembles [11] average the predictions from an ensemble of trained models and achieve state-of-the-art
performance on several classification tasks. It remains computationally expensive due to the training of mul-
tiple models and the several forward passes during inference. By deriving uncertainty from a single forward
pass, MAPLE achieves significantly faster inference time without sacrificing performance.

Single-forward-pass Uncertainty Estimation. One line of work relies on the distribution of data sam-
ples in the network’s latent space. A test sample is considered ID if it lies within the training data manifold,
otherwise it is labelled as OOD. Methods differ in the way they regularize the representation space and the
way they derive distances. DUQ [18] uses a Radial Basis Function (RBF) kernel in the representation space to
measure distances between test samples and the centroids of various classes. Additionally, they use gradient
penalty to obtain a regularized space, which improves the prediction’s quality. SNGP [36] uses Spectral Nor-
malization on the network’s weights to satisfy the bi-Lipchitz condition, which is a more gradient-friendly
regularization than DUQ. This condition preserves semantically meaningful distance changes in the represen-
tation space with respect to input changes. The prediction’s uncertainty is then given by a Gaussian Process
layer on the output. To improve the scalability of the Gaussian Process estimation, [14] proposes Deep Ker-
nel Learning to process the input images with a distance-preserving network and fit a Gaussian on inducing
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points only. Contrary to these methods, MAPLE avoids the Gaussian Process estimation and gradient regu-
larization during training and instead relies on simple metric learning. Similarly, VMDLS [24] simplifies the
Gaussian enforcement by training the network with a KL-divergence loss so that each class representations
follow an isotropic Gaussian distribution in the latent space. However, this ignores the possible intra-class
variation within each class and requires the Gaussian variance to be tuned manually. Instead, MAPLE uses a
simpler self-supervised clustering that automatically fits the data. Also, MAPLE makes the latent space not
only suitable for OOD detection but also for calibrated probability prediction.

Mahalanobis-Distance for OOD detection. MD is a common distance in the OOD detection literature.
Early work by Lee et al. [19] derives confidence values as a function of MD to predict the likelihood of
a sample being ID. To obtain competitive performance, the method requires several tweaks such as adding
noise to input samples, combining confidence values from multiple feature layers, and fine-tuning on OOD
datasets. [23] proposes two light improvements: Partial MD and Marginal MD. In Partial MD, the MD is
computed on lower dimensional representations with PCA. Marginal MD uses all training representations to
fit a single Gaussian to calculate the MD. While both perform well on Far-OOD datasets i.e., where ID and
OOD samples are significantly distinct, their results are limited on Near-OOD [37], where the OOD samples
are semantically similar to the ID ones. Relative MD (RMD) [22] improves the MD performance on Near-
OOD by computing a global MD between the test sample and the samples of all classes combined, and then
subtracting this value from the per-class MDs. All these methods exhibit satisfying performance, but their
main limitation is their strong assumption that the image representations follow a Gaussian distribution, even
though standard classification training does not enforce such a constraint. MAPLE addresses this limitation
with a self-supervised regularization. By doing so, the features better fit the theoretical framework of MD-
based OOD detection, thereby improving the performance.

3 Method
In this section, we describe MAPLE, a self-supervised regularization method for MD-based OOD detec-
tion, uncertainty estimation, and calibrated classification. It augments a standard CNN classifier with a
self-supervised regularization to output both class probabilities and MD-based uncertainty. To enable MD
for OOD detection, the representations of the training samples are dynamically clustered into multiple Gaus-
sians using X-Means [38] during training. The samples are assigned new pseudo-class labels defined by their
cluster assignment. The network is then optimized with the cross-entropy loss and the triplet loss. With
periodic validation, the clusters are updated and the total number of classes change with every validation. At
inference time, the MD between a test sample and each cluster’s centroid is used to estimate the classification
uncertainty and the probability of the point being OOD. Note that the only modification to the original net-
work architecture is in the final layer, where the number of output neurons change according to the number
of clusters identified. This makes MAPLE easy to integrate to any classification network. An algorithmic
description is provided in Appendix C.

Self-Supervised Dynamic Relabelling. During training, MAPLE updates the training labels to make
them representative of the features’ separation in the latent space. Every p epochs, the network is evaluated
on Dval and the classes with a false negative ratio higher than a threshold t are updated. This is representative
of the scenarios where the samples of a given class are misclassified, which is typical of classes with high
intra-class variations. For every class to update, the training representations belonging to such a class are
extracted and clustered using X-Means [38]. The resulting clusters form well-separated groups and we use
the cluster assigmnent as new pseudo-labels for the train samples. If k′ additional clusters are introduced
by X-Means, each of them are considered as independent classes. Thus, the number of classes becomes
K = k + k′, and the final layer of the model is updated to have K neurons. Then, the network training
continues with the new labels. During inference, the pseudo labels are remapped to the original set of k
labels to identify their original class.

Fig. 3 illustrates the benefits of jointly using X-Means and the triplet loss on the representations: X-Means
splits classes with high intra-class variations into separated classes that are semantically more representative
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Figure 3: Visualizing intra-class label refinement and feature optimization. The original data is not
perfectly Gaussian due to intra-class variations. X-Means refines the labelling by dividing the samples into
multiple clusters that are approximately Gaussian. The clusters are considered as separate classes during
training. Triplet loss optimizes the representations by bringing the in-class samples together and separating
them from other classes.

of the data, and the triplet loss reinforces this separation.
The method introduces three hyperparameters: false negative ratio threshold t, frequency of validation

epochs p and the maximum number of clusters (max num cluster), which is a parameter needed for
X-Means. More details on the hyperparameters are provided in Appendix. B.4.

Clustering. The motivation for using X-Means over other commonly used clustering methods such as K-
Means [39], DB-SCAN [40] and Gaussian Mixture Models (GMMs) are two-folds: (1) X-Means is scalable
and automatically identifies the number of clusters based on the Bayesian Information Criterion (BIC); (2)
BIC uses a maximum likelihood estimation of the variance under the spherical Gaussian assumption, which
means that the samples are approximately spherical Gaussian in each cluster.

3.1 Representation Distance
This section describes the MD derivation over the latent representations. To avoid matrix singularities, the
latent representations are first reduced using PCA.

Dimensionality reduction. Representations extracted from large neural networks usually have a high
dimension and redundant dimensions. The MD requires calculating the inverse covariance matrix of these
features, but the presence of redundancy causes the covariance matrix to be singular. Furthermore, [22] shows
that the presence of non-informative dimensions could be detrimental to MD performance. This motivates
the use of dimensionality reduction.

A common dimensionality reduction method is t-SNE [41], widely used for latent space’s visualization.
While t-SNE maintains the local distribution of points, it fails to represent global distributions accurately,
which is undesirable in distance-based uncertainty predictions. Instead, we use Principal Component Anal-
ysis (PCA) for dimensionality reduction. The principal components are constructed from the covariance
matrix of the standardized training representations. The eigen vectors of the covariance matrix are the prin-
cipal components and the eigen values account for the amount of original information (variance) present in
these components. We automatically estimate the number of principal components by the number of eigen
values in decreasing order, required to explain 95% of the original data variance. This transformation is de-
noted by g : Rd → Rd′

, where d′ is the dimension of the reduced features. With x′
train = fθ(xtrain) the

full dimensions training features, we denote ztrain = g(x′
train) the reduced features.

Mahalanobis Distance. The MD is a generalized version of Euclidean distance that takes into account
the data correlation to measure the distance. Hence, the MD is more accurate when predicting the distance
between a point and a distribution of points. Here, MD is calculated on the PCA-reduced representations
as follows. Let {zi} be the set of training representations after dimensionality reduction, µc be the class
centroids with c = 1, 2, ...,K, and Σ be the shared covariance for all training samples, given by
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µc =
1
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∑
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zi

Σ =
1

N

∑
c

∑
i:yi=K

(zi − µc)(zi − µc)
T

(1)

The following Eq. 2 gives the Mahalanobis distance between the centroid µc of class c and a test sample
x̃ with reduced representation z̃ = g(fθ(x̃))

MDc(x̃) =

√
(z̃ − µc)TΣ

−1(z̃ − µc) (2)

3.2 Classification and Uncertainty Estimation
We now show how to use the MD distance calculated in Eq. 2 for three purposes: classification, predictive
probability, and uncertainty prediction.

MD-based Classification. The predicted class is the one whose centroid c∗ is closest to the test sample
x̃:

c∗ = argmin
c

(MDc(x̃)) (3)

Note that this classification is inferred in addition to the usual classification done by the network by taking
the maximum of the output logits.

Predictive Probability. We convert the MD into a calibrated classification probability using the following
property: the squared MD on representations with dimension d′ follows a chi-squared distribution χ2

d′ with
d′ degrees of freedom. The MD is converted as follows:

P c
MD = 1− cdf(χ2

d′)(MDc(x̃)
2) (4)

where cdf(.) is the cumulative distribution function. P c
MD represents the probability that a test sample belongs

to class c. When the test point belongs to a particular class, the MD to that class is low and the corresponding
P c
MD is high. The predictive probability is the one associated with the class c∗ obtained in Eq. 3:

P c∗

MD = max
c

(P c
MD) (5)

Note that contrary to a CNN softmax ‘probabilities’, this classification probability is calibrated and can
be interpreted as a confidence in the classification output. This means P c

MD represents the actual probability
that a sample belongs the class c.

Uncertainty Prediction. We define the predictive uncertainty, which is the uncertainty in the network
prediction as

uc∗ = 1− P c∗

MD (6)

For small values of MD, uc∗ is around 0 and goes to 1 as the MD increases.

4 Experiments
We compare MAPLE with the following related works: two multi forward-pass methods MC-Dropout [10]
(10 dropout samples) and Deep ensemble [11] (10 models), four single forward-pass methods: DUQ [18],
SNGP [36], DUE [14] and VMDLS [24]. Following the standard evaluation on OOD detection, we evaluate
the methods on classification, predictive probability calibration, and OOD detection on the three benchmark
datasets: FashionMNIST [30] vs. MNIST [31], CIFAR10 [28] vs. SVHN [29], CIFAR10 vs. CIFAR100 [28].

We also compare MAPLE with MD-based methods on OOD detection, namely, the approach by Lee
et al. [19], Marginal MD [23] and RMD [22]. We used the near-OOD CIFAR10 vs. CIFAR100 for the
comparison, which is notably challenging for OOD detection.
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4.1 Evaluation Metrics
We report the standard evaluation metrics [18, 36] namely, the classification accuracy, the Expected Calibra-
tion Error (ECE), the Negative Log-Likelihood (NLL), the Area Under the Receiver Operating Characteristics
(AUROC) and the Area Under the Precision-Recall curve (AUPR). For qualitative analysis, we use calibra-
tion plots and uncertainty histograms (Appendix. D.1). As mentioned previously, MAPLE produces two
classification outputs so we report the accuracies obtained from both the traditional softmax probability and
the MD-based classification (Sec. 3.2). The ECE and the NLL are calculated from the predictive probability
P c∗

MD. AUROC and AUPR are calculated from the uncertainty uc∗ . The definition of these standard metrics
are recalled in Appendix A.

4.2 Implementation Details
As in [18], the network architecture used for training FashionMNIST is a three layer CNN. The CIFAR10
training follows [14,36] and uses a Wide ResNet 28-10 [42] for the classification backbone. The hyperparam-
eters for the trainings are p = 10, t = 0.3 and max num cluster= 5. Additional details on the network
architecture, dataset splits, hyperparameter search, and the hardware used for training are provided in the
Appendices B.1, B.2 and B.4.

4.3 Results
We report the results on FashionMNIST and CIFAR10 in Table (Tab.) 1 and 2 respectively.

Method ID metrics OOD metrics Latency↓
Accuracy ↑ ECE ↓ NLL ↓ AUROC ↑ AUPR ↑ (ms/sample)

MC Dropout [10] 0.923 0.069 0.213 0.912 0.895 15.46
Deep ensemble [11] 0.939 0.018 0.238 0.874 0.866 23.87

DUQ [18] 0.923 0.045 0.276 0.941 0.945 2.61
SNGP [36] 0.924 0.009 0.259 0.981 0.978 2.54
DUE [14] 0.923 0.028 0.284 0.954 0.948 2.57

VMDLS [24] 0.920 - - 0.963 0.970 2.60
MAPLE 0.925/0.924 0.020 0.262 0.995 0.994 2.48

Table 1: FashionMNIST (ID) vs MNIST (OOD). MAPLE achieves the best performance on OOD detection
and has the best inference time. It is very competitive with other single-pass methods on the classification
task. Blue: Classification based on prediction from softmax probability Orange: MD-based classification.

OOD Detection Results. MAPLE outperforms all baseline methods by upto 12% on the AUROC and
AUPR scores, and achieves so with the least computation time1. Note that competitive approaches, such as
SNGP and DUE, derive their performance from spectral normalization and Gaussian process layer, which are
invasive training add-ons. In contrast, MAPLE relies only on the layers of a standard CNN architecture to
achieve superior performance.

When it comes to inference speed, MC Dropout and Deep Ensemble perform the worst, which is expected
since they require multiple forward passes during inference. In contrast, most single-forward-pass methods
achieve scores comparable to MC Dropout and Deep Ensemble while being faster, with a factor close to
8 times faster when comparing MAPLE and Deep Ensemble. This reinforces MAPLE’s motivation: the
distribution of feature points in a network’s latent space holds reliable information for fast prediction of a
network’s uncertainty and detection of OOD samples.

1Latency value for MAPLE includes time for inference+post-processing with MD. Latency for MC Dropout and Deep Ensemble are
when the inferences are performed serially.
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Method ID metrics OOD AUROC ↑ OOD AUPR ↑ Latency↓
Accuracy ↑ ECE ↓ NLL ↓ SVHN CIFAR100 SVHN CIFAR100 (ms/sample)

MC Dropout [10] 0.960 0.048 0.293 0.932 0.835 0.965 0.829 27.10
Deep Ensemble [11] 0.964 0.014 0.134 0.934 0.864 0.935 0.885 38.10

DUQ [18] 0.945 0.023 0.222 0.927 0.872 0.973 0.833 8.68
SNGP [36] 0.957 0.016 0.153 0.991 0.911 0.994 0.907 6.25
DUE [14] 0.956 0.015 0.179 0.936 0.852 0.967 0.850 6.94

VMDLS [24] 0.951 - - 0.932 0.868 0.953 0.864 5.61
MAPLE 0.956/0.954 0.012 0.142 0.996 0.926 0.997 0.918 4.96

Table 2: CIFAR10 (ID) vs SVHN / CIFAR100 (OOD). MAPLE outperforms all single and multi pass
methods on OOD detection, and results in significantly faster derivation. Classification with MAPLE is very
competitive with the state-of-the-art and the predicted probabilities are better calibrated. Blue: classification
based on prediction from softmax probability. Orange: MD-based classification.

Classification Results. MAPLE achieves results competitive to state-of-the-art, only 1% below the top
method Deep ensemble [11] whose score comes at the cost of training and inference on several models. Note
that both MAPLE accuracies, the softmax probability and the MD-based one are close. A finer analysis of the
accuracy shows that the slight difference in accuracy with the MD-based classification occurs on samples the
network is uncertain about: MAPLE achieves top accuracy on high-confidence predictions (above 80% and
90% confidence) and the accuracy slightly decreases for lower-confidence predictions. See Appendix. D.2
for an extended analysis.

FashionMNIST CIFAR10

Figure 4: Calibration plots. A perfectly calibrated plot is when the predicted confidence equals the true
likelihood i.e., the accuracy. This is shown by the linear dotted line in the plots. MAPLE is closer to optimal
calibration than existing methods, especially for low-accuracy samples.

Calibration Results. MAPLE is competitive with state-of-the-art SNGP [36] and Deep Ensembles.
When training on FashionMNIST, one source of ECE error is MAPLE’s under-confidence on the accuracy
range below 80%. This is visible in the calibration plot (Fig. 4) where the curve goes above the ideal cal-
ibration: the confidence is lower than the accuracy. This is typical of the scenario where the inter-class
representations are widely spread out. Even though a sample falls closest to its ground-truth centroid, their
inter-distance remains high, which decreases the confidence. The sample is then correctly classified, but with
a low confidence. Note that while optimal calibration is the gold-standard, MAPLE’s under-confidence still
makes it more compliant with hazardous applications than other methods that make over-confident predic-
tions, which can be disastrous. On CIFAR10, all methods are well-calibrated, except for the overconfident
MC-Dropout, which explains its high ECE score. When the accuracy is below 0.4, baseline methods become
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overconfident whereas MAPLE is closer to optimal calibration and achieves the best ECE score.

4.4 Comparison with other MD methods
Setup. MAPLE is compared against MD-based OOD detectors [19, 22, 23]. These methods are tailored for
OOD detection, so we report the metric relevant to this task only for the sake of fairness. We report the
AUROC score on the challenging near-OOD dataset CIFAR10 vs. CIFAR100. The experiments are done
with a Wide ResNet 28-10 [42].

Method AUROC ↑
Lee et al. [19] 0.893

Marginal MD [23] 0.838
RMD [22] 0.897
MAPLE 0.926

Table 3: Comparison with MD-based OOD detection. MAPLE performs significantly better in OOD de-
tection than existing MD-based methods on the CIFAR10 vs. CIFAR100 setup. By enforcing the learned
representations to follow a Gaussian distribution, MAPLE allows for distance derivations that are more se-
mantically meaningful.

Method ID metrics OOD metrics - SVHN OOD metrics—CIFAR100 #EigSoftmax Accuracy ↑ MD-based Accuracy↑ ECE ↓ AUROC ↑ AUPR ↑ AUROC ↑ AUPR ↑
DNN+MD (1) 0.950 0.943 0.086 0.752 0.762 0.583 0.564 -

DNN+PCA+MD (2) 0.950 0.946 0.053 0.855 0.839 0.813 0.859 12
DNN+PCA+ED (3) 0.950 0.943 0.105 0.829 0.804 0.734 0.765 12

DNN+Triplet+PCA+MD (4) 0.954 0.953 0.013 0.945 0.948 0.912 0.894 11
DNN+Clustering+PCA+MD (5) 0.947 0.945 0.032 0.922 0.908 0.811 0.815 12

MAPLE (6) 0.956 0.954 0.012 0.996 0.997 0.926 0.930 12

Table 4: Ablation study. We evaluate the influence of several MAPLE components. PCA (1 vs 2) results
in a significant improvement of the OOD detection by discarding non-informative dimensions. The distances
derived on these reduced features are better representative of the similarity between the input samples. The
MD (2 vs 3) is better suited than ED for calibrated classification and OOD detection, which reiterates con-
clusions already found in previous works. The triplet loss (2 vs 4) improves both the accuracy and the OOD
metrics by increasing the class separation. Clustering alone (2 vs 5) also contributes to a better separation
of the classes, but the results are not as significant. The joint use of triplet loss and clustering, as done
in MAPLE (6) achieves the best results on both classification and OOD detection. Note: #Eig refers to the
number of principal components, whenever applicable.

OOD Detection Results. MAPLE achieves top-performance on Near-OOD detection (Tab. 3), which
supports MAPLE’s representation regularization. Note that the primary difference between MAPLE and the
baselines is their lack of constraints on the latent representation. In contrast, we force the samples of every
class to be Gaussian before calculating MD. Non-Gaussian samples lead to incorrect mean and covariance
calculations, resulting in incorrect distance values. The error is more pronounced when the samples deviate
from the Gaussian distribution by a large factor. This explains why the MD-based approaches under-perform
compared to MAPLE on Near-OOD.

4.5 Ablation analysis
In this study, we assess how the different components of MAPLE impact its performance. We train a wide
ResNet 28-10 [42] network on CIFAR10 and use SVHN and CIFAR100 as OOD datasets.

9



Dimensionality Reduction. We consider two scenarios: (1) DNN+MD - A baseline where a standard
Deep Neural Network (DNN) is trained with the cross-entropy loss and with no feature regularization. The
MD is computed on the raw features, and we add a value of 1e−20 to the diagonal elements [22] to avoid
a singular covariance matrix. (2) DNN+PCA+MD - It follows (1) except that the MD is derived on PCA-
reduced features.

Results: Dimensionality reduction (2) drastically improves the network’s performance, as shown in the
first line of Tab. 4. The improvement amounts to 7-30% on the OOD metrics and 3% on the ID metrics. One
possible explanation is that the reduced dimensions are the ones that contribute to distinguishing ID samples
from OOD ones, as previously observed by [22]. When including all the feature dimensions in the MD, the
dimensions that do not contribute to discriminating ID and OOD samples add up and dominate the final MD
score.

Distance Definition. We compare Mahalanobis distance and Euclidean distance (ED) in the network’s
latent space. We compare (2) DNN+PCA+MD with the new experiment (3) DNN+PCA+ED - It follows
(2) except that the MD is replaced with ED. As for MD, the χ2

d′ distribution is used to obtain the probability
values from ED (Sec 3.2).

Results: The results show that MD boosts the performance in terms of ID and OOD metrics. The im-
provement is ECE score is by 5%, and the OOD metrics improved by 3-9% when using MD. This is because
MD takes into account the data correlation, which gives a better estimate of the probability and uncertainty
values.

Representation training. To study the influence of the training on the representations, we consider three
experiments: (4) DNN+Triplet+PCA+MD - We train the DNN using both cross-entropy and triplet loss. (5)
DNN+Clustering+PCA+MD - We train using the cross-entropy loss only and periodically cluster the feature
points using X-Means. (6) MAPLE - This is our proposed method that fuses (4) and (5). For all experiments,
the MD is derived on the reduced features.

Results: Using the triplet loss (4) improves the performance considerably compared to training with the
cross-entropy loss only (2). An explanation is that the triplet loss pulls in-class feature embeddings together,
and pushes the other class features apart. This encourages the representations to be well separated and makes
it easier to distinguish OOD features. Choosing the triplet loss for metric learning is empirically motivated:
experiments using contrastive loss showed that triplet loss has a slightly better performance.

Periodic clustering (5) improves the ECE score by 2%, and the AUROC and AUPR scores on SVHN
by about 7% compared to (2). However, there is a slight drop in accuracy by 0.3% and OOD metric by
4% on CIFAR100. One explanation is that clustering increases the chances of new classes to overlap. This
phenomenon is illustrated in the centre plot of Fig. 3. The class overlap is particularly hindering when the
new domain is close to the training one: with clustering (5), the SHVN scores are better but the near-OOD
CIFAR100 performs better without clustering (2).

MAPLE uses clustering together with triplet loss and achieves top-performance. The triplet loss reduces
the overlap introduced with the clustering by pulling apart the newly created classes. With MAPLE, the latent
representations are approximately Gaussian and well-clustered resulting in better MD estimates and superior
performance in both ID and OOD metrics. Compared to experiment (2), the calibration error drops by 4%and
the OOD scores improved by 4-11%.

False Negative Ratio t. We evaluate the influence of the clustering trigger i.e., the False Negatives Ratio.
We train MAPLE with a range of t values on CIFAR10 (Tab. 5).

Results: A low value of t results in overclustering, where multiple clusters contain similar images. This
further increases the chances of misclassifications, leading to decrease in the metric values. On the other hand,
high t values result in underclustering. Note that for t > 0.3, there are no additional clusters generated. This
is because, the classes have false negative ratios that are below this threshold and so, they are not clustered.
For CIFAR10, a t value of 0.3 yields the best results. An extended ablation analysis on the influence of
classification backbones, clustering methods, and hyperparameters is provided in Appendix. E.
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False Negative SVHN CIFAR100
Ratio (t) #Classes Accuracy↑ ECE↓ AUROC↑ AUROC↑

0.0 23 0.9449 0.014 0.922 0.888
0.1 18 0.9534 0.013 0.964 0.918
0.2 14 0.9544 0.012 0.991 0.925
0.3 12 0.9541 0.012 0.996 0.926
0.4 10 0.9535 0.013 0.961 0.921
0.5 10 0.9535 0.012 0.955 0.915

Table 5: Metrics for different values of False Negative Ratio evaluated on CIFAR10 #Classes refers to the
total number of output classes obtained after clustering. A low value of t results in overclustering, whereas a
high t fails to detect classes with high variance.

5 Discussion
With the periodical clustering and the dynamic re-labeling, a natural question that arises is ’Is there a drop in
performance when the ground truth labels change during training?’. Experimentally, we observe a drop in
training accuracy by 2-3% in the following epoch after every clustering phase. However, the network makes
up for the drop within 4-5 epochs of training.

It can happen that the clusters contain very few samples, which introduces label imbalance when clas-
sifying. This is exacerbated when the samples are over-clustered. To mitigate this, we restrict X-Means to
only cluster the classes that get misclassified. These are the classes with a false negative ratio higher than the
threshold t. Automatic clustering regularization [43–45] is left for future work.

6 Use Case: Microorganism Classification
We consider the real-life computer vision use-case of image-based diatom identification [46]. Diatoms are
microorganisms present in the water. The distribution of diatoms in the water is a useful indicator for predict-
ing the water quality. Diatoms consist of several species or ’taxa’, each corresponding to a different class with
a different appearance. Typical in several biology applications, the image dataset includes a lot of intra-class
variance (Fig. 5). In this study, we evaluate the performance of different approaches when encountering taxa
that were not previously trained on.

Method Accuracy ↑ ECE ↓ AUROC ↑ AUPR ↑ Latency (ms/sample)↓
MC-Dropout [10] 0.936 0.039 0.548 0.589 129.7

Deep Ensemble [11] 0.969 0.025 0.589 0.570 146.81
SNGP [36] 0.954 0.196 0.798 0.826 26.25

MAPLE 0.963 0.036 0.864 0.865 17.38

Table 6: Real Case Application: microorganism classification. With its top performance and state-of-the-
art speed, MAPLE makes for a particularly applicable method for classification and OOD detection on real
case datasets.

We train a Wide ResNet 28-10 on 130 taxa and use 36 taxa as OOD. The dataset is particularly challenging
since it is fine-grained and Near-OOD. Additional details on the dataset and experimental setup are provided
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in Appendix B.3. As shown in Tab. 6, MAPLE outperforms all baselines on OOD detection. While Deep
Ensemble has a slightly better classification accuracy and ECE score, MAPLE significantly outperforms it in
OOD with a 30% score boost and a runtime 8 times faster.

Figure 5: Micro-organisms belonging to the same class. These images of one diatom class show wide
appearance changes due to different viewpoints during the acquisition. These translate into separate distri-
butions in the latent space, deviating from Gaussian distribution. MAPLE’s regularization makes the latent
space Gaussian, hence suitable for MD calculation.

7 Conclusion
This paper presents MAPLE, a self-supervised regularization method for uncertainty estimation and out-of-
distribution detection on CNN classifiers. The uncertainty is derived from the Mahalanobis Distance (MD)
between an image representation and the class representations in the network’s latent space. MAPLE derives
meaningful MD distances by introducing a regularizer based on self-supervised label refinement and metric
learning. Thus, MAPLE learns well-clustered representations that are approximately Gaussian for each class,
which complies with the theoretical requirements of MD-based uncertainty estimation. Experimental results
show that MAPLE achieves state-of-the-art results on out-of-distribution detection with the shortest inference
time, and is very competitive with existing methods on predictive probability calibration. MAPLE also has
the significant advantage of introducing the least architectural changes. Finally, we demonstrate a real-life
use-case of our method on microorganism classification for the automatic assessment of water quality in
natural ecosystems.
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A Metrics Definitions
In this section, we provide the definitions and formulas of metrics used for evaluation in this paper. Let the
samples be represented by [(x1, y1), (x2, y2), ..., (xN , yN )], where N is the total number of samples. xi is
the input and yi is the corresponding label, having values between 1 and K.

Accuracy. This gives the fraction of samples that were correctly identified by the network.

acc =
1

N

N∑
n=1

1[argmax(p(yn|xn)) = yn]

where, p(yn|xn) is the predicted probability that the sample xn belongs to the class yn. A higher accuracy
indicates better performance.

Expected Calibration Error. ECE is a measure of predictive probability calibration error. The output
probability is divided into a histogram of B equally spaced bins. The expected calibration error gives the
difference between the observed relative frequency (accuracy) and the average predicted frequency (confi-
dence).

ECE =

B∑
b=1

nb

N
|acc(b)− conf(b)|

where nb is the number of samples in bin b, N is the total number of samples, acc(b) and conf(b) are the
accuracy and confidence of bin b. A lower ECE score means that the accuracy and confidence are aligned,
indicating better calibration.

Negative Log Likelihood. NLL calculates the negative log-likelihood for the predicted class probability.
While it is generally used for optimization using cross-entropy loss, it is also commonly used to evaluate the
prediction uncertainty. A lower NLL score is preferred.

NLL =
−1
N

N∑
n=1

log(p(yn|xn))

Area Under Receiver Operating Characteristic Curve. AUROC indicates the ability to separate ID
and OOD samples. To calculate this metric, the predicted uncertainty is used to determine if a sample is
ID or OOD. This can be considered as a binary classification problem. The area under the plot between the
true positive rate and the false positive rate gives the AUROC value. Higher AUROC value means better
separation between ID and OOD.

Area Under Precision-Recall Curve. AUPR, like AUROC measures the ability to separate ID and OOD
samples. Considering ID and OOD separation as a binary classification problem, the area under the plot
between precision and recall values give the AUPR score.

B Experimental details

B.1 FashionMNIST
FashionMNIST [30] consists of 10 classes. We split the original training set consisting of 60000 samples into
train and validation set, in the ratio of 80:20. The validation set was used for hyperparameter tuning. The
test set consists of 10,000 samples, which we used for inference and calculating the metrics. For analyses on
OOD dataset, we use the test set of MNIST [31], containing 10,000 instances. For realistic evaluation, the
normalization of MNIST is done the same way as FashionMNIST.

We use the network backbone of [18]. The CNN consists of three layers of convolution with 64, 128
and 128 3 × 3 filters, a dense layer for feature extraction and an output layer with softmax activation. Each
convolutional layer is accompanied by a batch normalization and a 2 × 2 max pooling. The feature embed-
ding’s dimension is 256. The dimension of the final layer is equal to the total number of classes obtained after
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clustering, which was 14 for MAPLE . We trained the network for 50 epochs. For training, we used an SGD
optimizer with a learning rate of 0.05, momentum 0.9, weight decay of 1e−4. The training was performed on
a 12Gb NVIDIA GeForce GTX 1080Ti with a batch size of 128. The reduced dimensional feature after PCA
had a dimension of 5.

B.2 CIFAR10
CIFAR10 [28] consists of 10 classes. We split the original training set consisting of 50000 samples into train
and validation set, in the ratio of 80:20. The validation set was used for hyperparameter tuning. The test
set consists of 10,000 samples, used for inference. For OOD analyses, we use the test set of SVHN and
CIFAR100, which consists of 26,032 and 10,000 samples respectively. The OOD images are normalized the
same way as train images during inference.

The network architecture is Wide ResNet 28-10 [42]. The feature embedding layer has a dimension of
640. After training MAPLE , the number of classes were 12, and hence, the final layer has a dimension of 12,
followed by softmax. We trained the model for 200 epochs. We used an SGD optimizer with a learning rate
of 0.05. The momentum was set to 0.9 and weight decay of 1e−4. The training was performed on a 12Gb
NVIDIA GeForce GTX 1080Ti with a batch size of 64. The dimension of the reduced features from PCA is
12.

B.3 Diatoms
The diatom dataset consists of 9895 individual RGB images of size 256 × 256, belonging to 166 classes.
We divide it into ID dataset consisting of 130 classes (7874 images) and the remaining 36 classes as OOD
(2021 images). 70% of the ID images were used for training, 10% for validation and 20% for testing. While
training, horizontal and vertical flips were used for data augmentation.

The network architecture is Wide ResNet 28-10 [42]. The feature embedding layer has a dimension of
640. After training, there were a total of 158 classes, hence the output layer consists of 158 neuron with a
softmax activation. We trained the model for 100 epochs with an Adam optimizer. The learning rate was
2e−4 and batch size 4. The training was performed on a 12Gb NVIDIA GeForce 1080Ti. The dimension of
the features after PCA reduction was 31.

B.4 Hyperparameter Tuning
Our training depends on the following hyperparameters: (1) Frequency of epochs p - After every p epochs,
validation is performed to obtain the new cluster assignments using X-Means. (2) False negative ratio
threshold t - t is a threshold used to decide the class features to be clustered. From the normalized confusion
matrix obtained during the validation step, the classes having false negative greater than t are clustered using
X-Means. (3) Maximum number of clusters - This is a parameter of X-Means, that specifies the upper
bound to the number of clusters that X-Means can generate for each class.

To find the optimal value of these parameters, a grid search was performed. For the grid search, the values
of hyperparameters used were: False negative ratio threshold t ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
frequency of validation epochs p ∈ {5, 10, 15, 20} and maximum number of clusters that X-Means can gen-
erate {3, 5, 7, 10}.

From the grid-search analysis, the best performance was obtained when t = 0.3, p = 10 and maximum
number of clusters=5. These values worked best for all the datasets that were trained on.

B.5 Loss Functions
For our training, we use the Cross-Entropy Loss and the Triplet Loss.
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B.5.1 Cross-Entropy Loss

To estimate the cross-entropy loss, the final layer of the model is passed through a softmax layer to obtain
probability values. Cross-entropy loss increases proportional to the difference between the predicted proba-
bility and the actual probability (typically 1) of the ground truth class. The cross-entropy loss is given by:

Lcross-entropy = −
K∑
i=1

yi log(pi) (7)

where K is the total number of samples, yi is the binary one-hot encoding value corresponding to ground
truth class, which equals 1, and pi is the probability predicted by the network.

B.5.2 Triplet Loss

To estimate the triplet loss, we use the feature embedding obtained from the penultimate layer of the clas-
sification network. Triplet loss tries to minimize the distance of intra-class data points, while maximizing
the inter-class distance. Consider three input samples, which are feature embeddings extracted: anchor x′

a,
positive x′

p and negative x′
n. x′

a and x′
p belong to the same class while x′

n belongs to a different class. The
triplet loss is given as:

Ltriplet = max{||x′
a − x′

p|| − ||x′
a − x′

n||+ α, 0} (8)

The final objective is
Ltotal = Lcross-entropy + Ltriplet (9)

C Algorithm
The proposed method is summarized in Algorithm 1 and Algorithm 2. Algorithm 1 provides the steps using
in training MAPLE . Algorithm 2 summarizes the procedure for estimating uncertainty from MD. At regular
intervals of the training process, validation is performed, and the train feature representations are clustered
using X-Means. The time complexity for X-Means is O(log K), where K is the number of clusters. The train
features are reduced in dimension using PCA, which has a complexity of O(nd2+d3), where n is the number
of train data and d is the feature dimension. Mahalanobis distance calculation requires calculating mean and
the covariance matrix, which has a complexity of O(n) and O(nd′2), where d′ is the PCA reduced feature
dimension.

The algorithm requires the mean and covariance matrix calculation to be performed only once, at the end
of the training. During inference, only the mean and covariance matrix from the train data is used to calculate
the Mahalanobis distance for all the test points.

D Additional Experiments
In this section, we provide results for additional evaluation of MAPLE .

D.1 Qualitative Evaluation using Uncertainty Histograms
Uncertainty histograms (UH) are a means to visualize the uncertainty values predicted. When provided with
OOD samples, it is expected that the network makes predictions with high uncertainty. The frequency of
predicted uncertainties is plotted as a histogram. A high frequency at top uncertainty ranges show that the
network is uncertain when provided with OOD. Fig. 6 shows the uncertainty histograms for the different
approaches (deep ensemble [11], MC-Dropout [10], DUQ [18], DUE [14], SNGP [36] and MAPLE ) on the
three OOD datasets of FashionMNIST vs. MNIST, CIFAR10 vs. SVHN and CIFAR10 vs. CIFAR100.
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Algorithm 1: MAPLE training
Data: Ground truth labels y ∈ {1, 2, ...k},
Input samples x ∈ RD,
Train input samples xtrain = {xn}Nn=1,
Train dataset Dtrain = {(xn, yn)}Nn=1,
Validation dataset Dval = {(xv, yv)}Mm=1

Initialize: nc = k, p = 10, t = 0.3,max clusters = 5
Model : fθ : RD → Rd

for epoch = 1 to max-epochs do
Train fθ with Dtrain and nc classes and loss given by Ltotal = Lcross−entropy + Ltriplet

if epoch%p==0 then
x′
train = fθ(xtrain)

Get softmax predictions on Dval

if nc > k, remap pseudo-labels to original class labels
Compute confusion matrix
for i=1 to k do

if false negative ratio(i) > t then
Cluster using X-Means. X-Means(x′

train(i), max clusters)

K ← total number of clusters obtained from all the classes
nc = K
Update Dtrain with pseudo-labels from clustering

Algorithm 2: MAPLE Prediction
Data: Train feature embeddings x′

train

Input: Test sample x̃
Compute the reduced dimensional train features: ztrain = g(x′

train)
Compute individual class means and shared covariance µc,Σ
µc =

1
Nc

∑
i:yi=c zi

Σ = 1
N

∑
c

∑
i:yi=K(zi − µc)(zi − µc)

T

Get reduced dimensional feature for x̃: z̃ = g(fθ((x̃))

Compute Mahalanobis distance: MD(x̃) =
√
(z̃ − µc)TΣ

−1(z̃ − µc)

Get the prediction probabilities: PMD = 1− cdf(χ2
d′)(MD2)

Predicted class = argmax(PMD)
Compute uncertainty u = cdf(χ2

d′)(MD2)
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MNIST Uncertainty SVHN Uncertainty CIFAR100 Uncertainty

Figure 6: Uncertainty Histograms for OOD datasets. A high frequency of prediction at top uncertainty
ranges indicate that the network is uncertain about its prediction. MAPLE outperforms the other methods
and predicts OOD samples with high uncertainty. In other words, MAPLE is able to correctly identify these
samples as OOD.

Results. From the plots, MAPLE assigns high uncertainty for OOD datasets. Compared to the other
methods, MAPLE exhibits a higher frequency peak at an uncertainty around 1 for MNIST and SVHN. While
MC-Dropout and DUE has a high frequency at uncertainty of 1 for CIFAR100, these methods also have a
relatively higher peak at low uncertainties, since they make over-confident predictions on some OOD samples.
Whereas, MAPLE’s uncertainty values are spread across the higher end, which is desirable.

Method acc@.50 acc@.80 acc@.90
MC Dropout [10] 0.962 0.976 0.988

Deep ensemble [11] 0.967 0.987 0.995
DUQ [18] 0.950 0.977 0.982
SNGP [36] 0.959 0.978 0.985
DUE [14] 0.962 0.974 0.979
MAPLE 0.958 0.989 0.995

Table 7: Accuracy on CIFAR10 with different confidence levels. MAPLE achieves top accuracy at confi-
dence levels of 0.80 and 0.90.

D.2 Accuracy based on prediction confidence
We evaluate the accuracy of prediction when selecting samples with predictive confidence above a given
threshold. In other words, classification is performed only when the network’s confidence is above a thresh-
old. This is representative of real-life applications where a network’s prediction is considered only when
the confidence is high. We consider three probability thresholds: 0.50, 0.80 and 0.90. For all samples with
predictive probability above these values, we report the classification accuracy. Tables 7 and 8 give the results
on the test set of CIFAR10 [28] and FashionMNIST [31] dataset respectively.

Results. MAPLE achieves the best accuracy at confidence values of 0.80 and 0.90 on CIFAR10. Over-
all, on both CIFAR10 and FashionMNIST, MAPLE has competitive accuracy with the other approaches.
This shows that even though MAPLE is computationally efficient, it can achieve the same level or better
performance as the other methods.
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Method acc@.50 acc@.80 acc@.90
MC Dropout [10] 0.924 0.931 0.948

Deep ensemble [11] 0.946 0.975 0.983
DUQ [18] 0.925 0.947 0.962
SNGP [36] 0.931 0.963 0.977
DUE [14] 0.929 0.951 0.964
MAPLE 0.930 0.972 0.974

Table 8: Accuracy for FashionMNIST samples with different confidence levels. MAPLE achieves com-
petitive accuracies at different confidence values.

D.3 Gaussian test
In Section ??, it was theoretically shown that X-Means creates clusters of feature points that are Gaussian.
In this section, we empirically test this. A commonly adopted method to check for multivariate Gaussian
is to use a quantile-quantile plot, where an observed quantile is compared with a theoretical one. If the
samples are Gaussian, their squared MD follows a χ2 distribution. Thus, we use MD2

c∗ of the samples
feature embeddings as our observed quantile and compare with theoretical χ2 quantiles.

For our test, we use the reduced feature embeddings, ztrain, from a standard classifier network and
MAPLE . The MD2

c∗ of samples are calculated and plotted with χ2 quantiles with d′ degrees of freedom,
where d′ is the dimension of feature embeddings. We measure the error, which is the mean absolute difference
between the two quantiles, to test which method generates feature embeddings that are closer to a Gaussian.
In the ideal situation, this value should be zero. The larger the error, the greater is the deviation from a
Gaussian distribution.

Table 9 shows the errors computed on feature embeddings from CIFAR10 and FashionMNIST dataset.
From the results, MAPLE’s error is reduced by over 50%, which shows that the feature representations of
MAPLE are more Gaussian than when using a standard DNN classifier.

Method CIFAR10 FashionMNIST
Standard CNN 3.540 2.564

MAPLE 1.395 1.215

Table 9: Mean absolute error between squared MD and χ2 distribution. The lower the error, the more
Gaussian are the samples. MAPLE’s training generates sample distributions that are approximately Gaussian,
fitting with the theoretical framework for MD calculation.

E Extended Ablation Analyses

E.1 MAPLE evaluated on different backbones
MAPLE is tested on three networks: Wide ResNet 28-10 [42], ResNet-18 [47] and EfficientNet-B0 [48].
Table 10 gives the quantitative metrics for evaluation on CIFAR10 vs. SVHN and CIFAR100. While it is
expected that the accuracy depends on the architecture used, the calibration and OOD detection are also
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influenced by the architecture. Wide ResNet, which has more number of parameters than the other two
architectures, learns better feature representations for discriminating each class. As the model parameters
decrease, there are overlapping feature points between different classes, which explains the lower accuracy
and worse calibration and OOD metrics.

SVHN CIFAR100
Architecture Accuracy ↑ ECE ↓ AUROC ↑ AUROC ↑

Wide ResNet 28-10 [42] 0.954 0.012 0.996 0.926
ResNet-18 [47] 0.945 0.029 0.979 0.886

EfficientNet-B0 [48] 0.902 0.035 0.942 0.893

Table 10: MAPLE evaluated on different architectures. The metrics improve as the model parameters
increase, suggesting that the network learns better discriminative feature representations, thereby improving
the performance.

E.2 Evaluation of different clustering methods
We analyse the performance of MAPLE when clustering is performed using K-Means, G-Means [49] and
X-Means [38]. The value of K in K-Means is set to 3. Tab. 11 shows the results obtained. Based on the
results, X-Means yields the best performance. K-Means and G-Means causes overclustering, which leads to
worser performance on OOD detection. Using X-Means, we choose the optimal number of clusters, which
performs superior to the others.

SVHN CIFAR100
Clustering method #Classes Accuracy↑ ECE↓ AUROC↑ AUROC↑

K-Means 30 0.952 0.154 0.871 0.850
G-Means 67 0.910 0.266 0.710 0.627
X-Means 12 0.954 0.012 0.996 0.926

Table 11: Metrics for different frequency of validation epoch #Classes refers to the total number of output
classes obtained after clustering. K-Means and G-Means lead to overclustering, whereas using X-Means, the
optimal number of clusters are generated leading to better performance.

E.3 Effect of False Negative Ratio t on FashionMNIST
For different values of False Negatives Ratio (t), X-Means clustering is performed on the extracted features
while training MAPLE . Tab. 12 shows the metrics obtained on the FashionMNIST datasets respectively. A
low value of t results in most of the classes getting clustered. This results in overclustering, where multiple
clusters contain similar looking images. This further increases the chances of misclassifications, leading to
decrease in the metric values. On the other hand, high t values result in underclustering. This is because,
most of the classes have false negative ratios that are below this threshold and so, they are not clustered.
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False Negative Ratio (t) #Classes Accuracy↑ ECE↓ AUROC↑
0.0 26 0.9149 0.028 0.942
0.1 19 0.9218 0.022 0.975
0.2 14 0.9242 0.023 0.990
0.3 14 0.9244 0.020 0.995
0.4 12 0.9241 0.024 0.988
0.5 10 0.9238 0.021 0.974
0.6 10 0.9240 0.023 0.969
0.7 10 0.9233 0.025 0.972
0.8 10 0.9229 0.023 0.969
0.9 10 0.9231 0.024 0.970
1.0 10 0.9232 0.022 0.971

Table 12: Metrics for different values of False Negative Ratio evaluated on Fashion MNIST #Classes
refers to the total number of output classes obtained after clustering. A low value of t results in overclustering,
whereas a high t fails to detect classes with high variance.

E.4 Effect of maximum number of clusters
Tab. 13 shows the results when the maximum number of clusters that can be generated for every class by
X-Means is varied, along with different values of false negative ratio t for CIFAR10. For t > 0.5, none of
the classes are clustered, and hence we do not include them. From the results, when the maximum number
of clusters are low, MAPLE fails to capture all the within-class variances, whereas higher values result in
overclustering. With the maximum number of clusters as 5, MAPLE achieves the best performance.

E.5 Effect of frequency of validation epochs.
Tab. 14 summarizes the metrics for CIFAR10 when the number of epochs after which the validation and
cluster refinements are performed is varied. A low value of validation epochs does not give the network
enough time to learn representations for the new clusters generated. Whereas, with larger number of epochs,
the number of cluster refinements are low. In both these situations, the network does not identify the optimal
clusters. MAPLE gives the best results when the validation is performed every 10 epochs.

F Proof of squared Mahalanobis Distance following a χ2 distribution
In this section, we derive the proof that the squared Mahalanobis distance follow a χ2 distribution with d′

degrees of freedom, where d′ is the dimension of the feature vectors used to calculate MD. A χ2 distribution
with d′ degrees of freedom is defined as the distribution of a sum of the squares of d′ independent standard
normal random variables.

The squared Mahalanobis distance of Z and the mean vector µ⃗ of a Multivariate Gaussian distribution is
given as

D2 = (Z − µ⃗)TΣ−1(Z − µ⃗) (10)
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Max. number SVHN CIFAR100
of clusters t #Classes Accuracy↑ ECE↓ AUROC↑ AUROC↑

0.1 14 0.9542 0.012 0.996 0.925
3 0.3 10 0.9540 0.014 0.972 0.919

0.5 10 0.9533 0.012 0.958 0.917
0.1 18 0.9534 0.013 0.964 0.918

5 0.3 12 0.9541 0.012 0.996 0.926
0.5 10 0.9535 0.012 0.955 0.915
0.1 18 0.9537 0.013 0.959 0.894

7 0.3 13 0.9545 0.012 0.992 0.921
0.5 10 0.9531 0.013 0.944 0.911
0.1 26 0.9519 0.014 0.909 0.863

10 0.3 22 0.9521 0.013 0.918 0.886
0.5 11 0.9534 0.012 0.952 0.908

Table 13: Effect of maximum number of clusters per class on MAPLES’s performance. A high value of
cluster numbers causes overclustering whereas a low value does not generate enough clusters. A value of 5
results in optimal number of clusters for MAPLE to learn meaningful representations.

Σ is the covariance matrix, which is symmetric. By property of matrices, the matrix inverse and it’s
square root are also symmetric. Thus,

D2 = (Z − µ⃗)TΣ− 1
2Σ− 1

2 (Z − µ⃗)

=
(
Σ− 1

2 (Z − µ⃗)
)T (

Σ− 1
2 (Z − µ⃗)

)
(11)

Let W = Σ− 1
2 and X = (Z− µ⃗). The whitening transform is given as Y = WX and W is also called

the Mahalanobis whitening matrix. Eq. 11 can be written as

D2 = Y TY

= ||Y ||2

=

d′∑
i=1

Y 2
i (12)

(Z − µ⃗) ∼ N (0,Σ), and so Y has zero mean. The covariance of Y is given as

ΣY = WΣW T

= Σ− 1
2ΣΣ− 1

2 T

= Σ− 1
2

(
Σ

1
2Σ

1
2

)
(Σ− 1

2 )T

=
(
Σ− 1

2Σ
1
2

)(
Σ− 1

2Σ
1
2

)
= (I)(I) = I (13)
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SVHN CIFAR100
Validation epochs #Classes Accuracy↑ ECE↓ AUROC↑ AUROC↑

5 16 0.895 0.025 0.914 0.876
10 12 0.954 0.012 0.996 0.926
15 12 0.955 0.012 0.987 0.922
20 10 0.953 0.013 0.968 0.917

Table 14: Metrics for different frequency of validation epoch #Classes refers to the total number of output
classes obtained after clustering. With lower validation epochs, the clustering is too frequent for the network
to learn meaningful representations. At lower frequency, the number of cluster refinements are not sufficient.

The covariance of Y is an identity matrix, which means that the elements from Y are drawn from an
independent standard Gaussian distribution i.e., Yi ∼ N (0, 1).

From the definition of the χ2 distribution, we can infer that D2 follows a χ2 distribution with d′ degrees
of freedom.
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