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Geophysical flows are often turbulent and subject to rotation. This rotation modifies the
structure of turbulence and is thereby expected to sensibly affect its Lagrangian properties.
Here, we investigate the relative dispersion and geometry of pairs, triads, and tetrads
in homogeneous rotating turbulence by using direct numerical simulations at different
rotation rates. Pair dispersion is shown to be faster in the vertical direction (along the
rotation axis) than in the horizontal one. At long times, in Taylor’s regime, this is due to
the slower decorrelation of the vertical velocity component as compared to the horizontal
one. At short times, in the ballistic regime, this result can be interpreted by considering
pairs of different orientations at the release time and is a signature of the anisotropy of
Eulerian second-order structure functions. Rotation also enhances the distortion of triads
and tetrads also present in homogeneous and isotropic turbulence. In particular, at long
times, the flattening of tetrads increases with the rotation rate. The maximal dimension of
triads and tetrads is shown to be preferentially aligned with the rotation axis, in agreement
with our observations for pairs.

DOI: 10.1103/PhysRevFluids.8.034602

I. INTRODUCTION

Turbulence has long been investigated by using the Eulerian point of view. However, the
fundamental mechanisms of turbulent flows, as well as their mixing and transport properties, can
be more naturally understood in the Lagrangian framework. In particular, the relative dispersion
of a pair of tracers is closely related to the growth of a blob of passive scalar in a turbulent flow.
The Lagrangian approach to turbulence has seen significant developments since the beginning of
the century on the theoretical, experimental, and numerical sides [1,2]. Numerous works have been
devoted to the investigation of the Lagrangian dynamics of a single fluid particle [3–5].

The study of pair dispersion [6] was pioneered almost a century ago by Richardson [7], who put
forward the idea that turbulence strongly accelerates the separation between tracer particles when
their separation distance lies in the inertial range of the flow, as they are advected by turbulent eddies
in different directions. This mechanism explains the exceptional capacity of turbulence to mix and
diffuse passive scalars. According to Richardson’s classical picture, this explosive separation regime
is expressed as 〈|δX (t )|2〉 = gεt3, where 〈|δX |2〉 is the mean-squared distance between the particles,
ε is the turbulence energy dissipation rate, and g is known as Richardson’s constant. This relation
can be predicted from dimensional analysis in the framework of Kolmogorov’s K41 theory [8]. At
short times, when the influence of turbulent fluctuations is not important enough to decorrelate the
relative motion of the tracers, the mean-squared separation 〈�2〉(t ) = 〈|δX (t ) − δX (0)|2〉 grows
ballistically, with a ∼t2 scaling and an average separation velocity given by the second-order
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Eulerian velocity structure function [9]. At late times, when the dynamics of the two particles
become decorrelated, the application of Taylor’s law [10], valid for the diffusion of a single particle,
results in a ∼t scaling for their mean-squared distance.

While pairs provide information on the growth of a scalar cloud, the dynamics of a cluster of
n � 3 particles can give some insight on the geometric structure of turbulence. A tetrad (n = 4)
is the minimal configuration allowing us to define a volume, and thereby to account for the three-
dimensionality of the flow. Numerical works have been devoted to the investigation of the dynamics
of tetrads in homogeneous and isotropic turbulence (HIT) [11–15]. These objects have been found
to become preferentially coplanar, reflecting the tendency of turbulence to “flatten” blobs of fluid.
In two-dimensional turbulence, triads were also found experimentally to be preferentially elongated
[16].

The above-mentioned investigations were carried out in isotropic turbulence. However, many
turbulent flows of natural (ocean, atmosphere, ...) or industrial (turbomachinery, wind turbines,
...) relevance are subject to solid-body rotation. Rotation modifies the dynamics and structure of
turbulence by imposing a preferential direction, and thereby a strong anisotropy in the flow. It leads,
in particular, to the formation of large-scale vortical columnar structures aligned with the rotation
axis [17–21]. However, the effect of such features on the dispersion and deformation of Lagrangian
objects has received little attention in the literature. In geophysical flows, rotation is very often
coupled to density stratification. Single-particle and pair dispersions were investigated numerically
in decaying turbulence subject to rotation and stratification [22]. The dynamics of 1 � n � 4
particles was investigated in purely stratified turbulence [23]. To the best of our knowledge, the only
investigations of purely rotating turbulence carried out in the Lagrangian framework considered a
single particle [24–29].

In this paper, we investigate the relative dispersion and geometry of clusters of two, three, and
four tracers in homogeneous rotating turbulence, by using direct numerical simulations (DNSs) at
different rotation rates. We begin in Sec. II by recalling the definitions of the size and geometry indi-
cators that will be used throughout the paper and by describing our numerical method. Section III is
then devoted to the characterization of the resulting flows. The size and geometry statistics obtained
for pairs, triads, and tetrads are presented and discussed in Sec. IV. Our conclusions are finally
provided in Sec. V.

II. DEFINITIONS AND NUMERICAL SIMULATIONS

A. Lagrangian multiparticle clusters

1. Geometric definitions

The present paper focuses on the time evolution of the size, shape, and orientation of clusters
of n tracer particles in three-dimensional rotating turbulence, with n = 2 (pairs), 3 (triads), and 4
(tetrads). In general, the geometry of such an n-particle cluster with positions (X 1, . . . , X n) can be
fully described by a set of n − 1 reduced separation vectors [11,14] defined by

ρ(m) =
√

m

m + 1

[
X m+1 − 1

m

m∑
i=1

X i

]
, m = 1, . . . , n − 1. (1)

Here, the scaling factor is such that if all positions X i within a cluster are statistically independent,
then the variance of each ρ(m) matches the variance of the positions X i [14].

The geometrical properties of a cluster are then contained in the 3 × 3 moment of inertialike
tensor g [12] defined by gi j = ∑n−1

k=1 ρ
(k)
i ρ

(k)
j . In particular, the squared radius of gyration—

characterizing the linear size of the cluster—is given by

R2 ≡ 1

2n

n∑
i=1

n∑
j=1

|X i − X j |2 =
n−1∑
k=1

∣∣ρ(k)
∣∣2 = g11 + g22 + g33 = g1 + g2 + g3, (2)
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FIG. 1. Schematic illustration of a tetrad and its eigendecomposition. The tetrad gyration radius R and the
square-root eigenvalues

√
gi are represented to scale.

where g1, g2, and g3 are the eigenvalues of g. For n � 4, the cluster volume is given by V =
(g1g2g3)1/2/3 [14]. As in previous works [12,14], we will thereafter sort the eigenvalues in decreas-
ing order, g1 � g2 � g3 � 0. Furthermore, the orientation dynamics of a multiparticle cluster can be
characterized by the respective eigenvectors g1, g2, and g3, where g1 and g3, respectively, represent
the directions of maximum and minimum elongation of the cluster. The eigendecomposition of a
four-particle cluster (a tetrad) is illustrated in Fig. 1.

For a regular tetrad with edges of equal length r0, the eigenvalues of g satisfy g1 = g2 = g3 =
r2

0 . In contrast, for a flattened (pancakelike) tetrad, g1 ∼ g2 � g3; while for a needlelike tetrad
g1 � g2, g3 [12]. The shape of a tetrad may also be characterized by the nondimensional shape
parameter � = V 2/3/R2 [14]. For instance, since the volume V of pancake and needlelike tetrads is
negligible compared to the gyration radius R, one has � ≈ 0 in those cases. Conversely, for a regular
tetrad, R2 = 3r2

0 and V = r3
0/3, which gives the maximum possible value of the shape parameter,

�reg ≡ 3−5/3 ≈ 0.16.
In the case of triads, the moment of inertia tensor has rank r � 2, and therefore g(triad)

3 = 0. The
shape of a triad with gyration radius R is commonly quantified by the ratio w = A/Areg between
its area A and the area Areg = √

3R2/4 of an equilateral triangle with the same gyration radius
[14,16,30,31]. The triad shape parameter w thus takes values between 0 for a collinear triangle with
zero area, and 1 for an equilateral triangle. The specification of the triad shape is completed by the
Euler angle χ = 1

2 arctan {2(ρ(1) · ρ(2) )/(ρ(2) · ρ(2) − ρ(1) · ρ(1) )}, which quantifies the triangle sym-
metry [16,31]. After taking into account particle relabeling symmetry, values of χ can be reduced to
the interval [0, π/6], where the two limits, respectively, represent isosceles triangles whose unequal
side is smaller and larger than the equal sides [16]. This angle is ill-defined for equilateral triangles.
Alternatively, and similarly to tetrads, the relative importance of the eigenvalues g(triad)

1 and g(triad)
2

can provide information on the shape of a triad (g(triad)
1 = g(triad)

2 for equilateral triangles), while the
statistics of the respective eigenvectors g(triad)

1 and g(triad)
2 provide information on the preferential

orientation of triads in the flow.
As for particle pairs, it is easy to see from Eqs. (1) and (2) that their gyration radius R is

proportional (but not equal) to the particle separation, namely, R = |δX |/√2, where δX ≡ X 2 − X 1
is the particle separation vector. For consistency with tetrads and triads, throughout this paper we
consider the pair gyration radius R (and its � variant defined in Sec. II A 2) instead of the equivalent
pair separation δX that is more commonly used in the relative pair dispersion literature.

2. Ballistic separation regime

In turbulent flows, the separation of a pair of fluid tracers tagged at an initial time t = 0 follows,
at short times, a ballistic regime of the form δX (t ) − δX (0) ≈ δv0 t + 1

2δa0 t2, where δv0 and δa0

are the initial relative velocity and acceleration of the particle pair [9,32,33]. This regime is valid at
times over which the influence of turbulent fluctuations is not important enough to decorrelate the
relative motion of the tracers, and results from a Taylor expansion of the particle trajectories. The
ballistic regime can be readily generalized to n-particle clusters via the reduced separation vectors
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[Eq. (1)], leading to

�2(t ) ≡
n−1∑
k=1

|ρ(k)(t ) − ρ(k)(0)|2 (3)

=
n−1∑
k=1

∣∣v(k)
0

∣∣2
t2 +

n−1∑
k=1

v
(k)
0 · a(k)

0 t3 + O(t4) for t 	 t0, (4)

where v
(k)
0 = dρ(k)

dt |t=0 and a(k)
0 = d2ρ(k)

dt2 |t=0 and t0 is a ballistic timescale. Note that the definition
of �2 is very similar to that of the gyration radius R2 in Eq. (2). In fact, �2 is expected to be
approximately equal to R2 at sufficiently long times (as |ρ(k)(t )| � |ρ(k)(0)| for large t). However,
at short times, only �2 is expected to rigorously display the t2 scaling associated with the ballistic
regime, unlike R2 (as shown later in Fig. 5). In particular, note that �2 = 0 at t = 0, and for this
reason we refer to � as the change of gyration radius. These considerations generalize the distinction
between the squared separation |δX (t )|2 and the squared change-of-separation |δX (t ) − δX (0)|2 in
the case of particle pairs [33,34].

The timescale t0 over which the ballistic regime takes place may be estimated, for particle pairs,
as t0 = 〈|δv0|2〉/|〈δv0 · δa0〉| [35]. By this definition, t0 depends on the initial pair separation (or
initial cluster scale) r0. In isotropic turbulence, 〈|δv0|2〉 = S2(r0), where S2 is the second-order
Eulerian velocity structure function. If r0 is in the inertial range of scales, K41 theory predicts
S2(r0) ∝ (εr0)2/3 [36], where ε is the mean energy dissipation rate per unit mass. Additionally, for
r0 in the inertial range, 〈δv0 · δa0〉 ≈ −2ε [37–39], leading to t0 ∝ (r2

0/ε)1/3. Hence, in this case,
t0 is proportional to the turbulent eddy-turnover time at scale r0 [36], as originally suggested by
Batchelor [9].

B. Numerical simulations

1. Navier-Stokes equations in rotating frame

We consider a homogeneously rotating turbulent flow described by the incompressible Navier-
Stokes equations. In the rotating reference frame, these read

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν∇2u + 2u × �rot + F, (5)

∇ · u = 0, (6)

where u(x, t ) and p(x, t ) are, respectively, the velocity and the pressure fields in the rotating frame,
ν and ρ are, respectively, the fluid kinematic viscosity and density, and �rot is the rotation vector.
Note that the Coriolis term 2u × �rot performs no work and, as such, it has no influence on the
global energy balance of the system. In Eq. (5), the pressure field includes the contribution of the
centrifugal force f c = −∇|�rot × x|2/2. Throughout this paper, without loss of generality, we take
the rotation vector as pointing along the third Cartesian direction, i.e., �rot = �rotez = (0, 0,�rot ).
We also refer to ez as the vertical direction, while directions perpendicular to the rotation axis are
horizontal. Besides, F(x, t ) is a forcing term representing an external energy injection mechanism.
Here, its influence is limited to the large scales of the system, specifically to those Fourier coeffi-
cients û(k, t ) of the velocity field such that |k| � kf, with kf = 1.5. As in previous works [40–42],
such modes here obey the truncated Euler equations [43] within the sphere |k| � kf in the rotating
frame, while modes |k| > kf obey the incompressible Navier-Stokes equations (5) and (6).

The above equations are numerically solved in a three-dimensional periodic domain of size (2π )3

using DNSs. The solver uses a standard Fourier pseudospectral method, including the 2/3 dealiasing
rule to suppress discretization errors stemming from the nonlinear term of Eq. (5). The temporal
advancement is performed using an explicit third-order Adams-Bashforth scheme for the nonlinear
term, while the viscous term is treated exactly using an integrating factor technique. The simulations
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TABLE I. Physical and numerical simulation parameters. RoL = urms/(2L�rot ), large-scale Rossby num-
ber; Roω = ωrms/(2�rot ), small-scale Rossby number; Reλ = urmsλ/ν, Reynolds number based on the Taylor
microscale λ; L = (π/u2

rms)
∫ ∞

0 E (k)/k dk, Eulerian integral length scale; η = (ν3/ε)1/4, Kolmogorov length
scale; T i

L = ∫ ∞
0 ρ

(v)
i (τ ) dτ , horizontal and vertical Lagrangian integral timescales; τη = √

ν/ε, Kolmogorov
timescale; 〈u2

i 〉1/2/uη, fluctuations of the horizontal and vertical components of Eulerian velocity normalized
by uη = η/τη; kmax = N/3, maximum resolved Fourier wave number in the simulations.

Run RoL Roω Reλ L/η T x
L /τη T z

L /τη 〈u2
x〉1/2/uη 〈u2

z 〉1/2/uη kmaxη

1 ∞ ∞ 107 74.8 10.8 10.1 5.22 5.13 1.49
2 0.165 1.29 115 73.4 5.3 10.4 5.29 5.55 1.66
3 0.076 0.52 138 69.4 3.6 11.4 5.76 6.12 1.85
4 0.032 0.18 162 64.5 4.2 15.0 5.99 6.98 2.19

reported here are performed on N3 = 2563 collocation points for different rotation rates �rot. The
rotation rate can be nondimensionalized in terms of a Rossby number, defined as the ratio between
timescales associated with rotation and with turbulent fluctuations. We define here large-scale
and small-scale Rossby numbers, respectively, as RoL = urms/(2L�rot ) and Roω = ωrms/(2�rot ),
where urms =

√
〈u2〉/3 and ωrms =

√
〈ω2〉/3 are, respectively, the velocity and vorticity standard

deviations. Here, L = (π/u2
rms)

∫ ∞
0 E (k)/k dk is the integral length scale of the flow, with E (k)

being the kinetic energy spectrum. The Rossby numbers for the different runs considered here are
listed in Table I. Note that we also consider a reference run without rotation (run 1), corresponding to
HIT. Also listed in Table I are the Reynolds numbers Reλ = λurms/ν associated to each run—where
λ =

√
5〈u2〉/〈ω2〉 is the Taylor microscale [44]—and the maximal resolved Fourier wave number

kmax. The degree of scale separation in the Eulerian frame may also be characterized by the ratio,
reported in Table I, between the integral length scale L and the Kolmogorov scale η. Finally, we
give in Table I the values of T i

L , the Lagrangian integral timescales in the horizontal and vertical
directions (see Sec. III B), as well as the standard deviations of the Eulerian velocity components in
the same directions, 〈u2

i 〉1/2.

2. Lagrangian particle tracking

To characterize the flow in the Lagrangian framework, the tracking of fluid particles is performed
within the Navier-Stokes solver. Particles are considered as ideal Lagrangian tracers obeying the
equation of motion dX

dt (t ) = u[X (t ), t], where X (t ) is the instantaneous tracer position. The tracer
equation of motion is discretized in time using the same Adams-Bashforth scheme as for the
Eulerian fields. Instantaneous fluid velocities at particle positions are obtained using a sixth-order
Lagrange interpolation scheme [41].

To investigate the dispersion of multiparticle Lagrangian clusters, we track the motion of particle
tetrads initialized as the vertices of regular tetrahedrons of different sizes. Particles are released
at a time t = 0 at which the Eulerian fields have already achieved a statistically steady state. The
initial cluster size is denoted r0, and is defined such that the initial gyration radius of an n-particle
cluster is R2

0 = (n − 1)r2
0 . As a result of this convention, the initial separation between any pair

of particles is r0

√
2. The values r0/η = 1/2, 1, 4, 16, and 64 are considered, where η = (ν3/ε)1/4

is the Kolmogorov scale of the flow. Tetrads are initialized at random positions throughout the
computational domain. For each considered rotation rate, a total of 249 856 particles (81 920 tetrads)
is initialized at two independent time instants. The tetrads’ initial orientations are also random, i.e.,
there is initially no preferential alignment of the eigenvectors gi with the Cartesian axes e j . Note
that the faces and edges of each regular tetrad respectively define four equilateral triangles and six
Lagrangian pairs, enabling, in addition, the study of two- and three-particle clusters.

Furthermore, to investigate the role of flow anisotropy on relative dispersion, we consider a
second initialization scheme also considered in previous works [14,23,34]. Tetrads are then set up as
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FIG. 2. Visualization of Lagrangian tetrads in turbulent flow from DNSs at resolution N3 = 2563. Green
colors represent high values of the local vorticity magnitude |ω(x)|. The periodic computational domain is
represented by thin gray lines. (a) Isotropic case (run 1, RoL = ∞). (b) Strongly rotating case (run 4, RoL =
0.032). The rotation axis is aligned with the z direction. Snapshots are taken at time delays t/τη = 15 (a) and
12 (b) following the release of the particles.

trirectangular tetrahedrons, so that three of the edges are mutually orthogonal and aligned with the
three Cartesian axes and have equal lengths r0

√
2. In this case, a total of 131 072 particles (40 960

tetrads) is tracked for each rotation rate. This scheme will be used for the tracking of particle pairs
whose initial relative orientation is either parallel or perpendicular to the rotation axis. Concretely,
this second data set is used in Sec. IV A 2 b (Fig. 7) to investigate such orientation effects.

III. FLOW CHARACTERIZATION

A. Eulerian flow features

High-vorticity regions are visualized in Fig. 2 for a nonrotating and a highly rotating flow. In
the highly rotating case [Fig. 2(b)], the presence of large-scale vortex columns (volume-rendered in
green) aligned with the axis of rotation is clear, contrasting with the isotropic vorticity distribution
in the absence of rotation [Fig. 2(a)]. Such vortex columns are a well-known feature of rotating
turbulence, which have been observed in a number of experiments and numerical simulations (e.g.,
Refs. [17–20]).

To complement the above qualitative description of the different flows, we plot in Fig. 3 the
kinetic energy spectra obtained in the different runs considered here. As the rotation rate is in-
creased, the energy spectrum in the inertial range of scales departs from the E (k) ∼ k−5/3 power law
predicted by Kolmogorov’s K41 theory for isotropic turbulence [36] and becomes slightly steeper. In
particular, at the largest rotation rates, the inertial-range spectrum is compatible with the E (k) ∼ k−2

spectrum previously observed in rapidly rotating turbulence experiments and simulations [45–47]
and predicted using phenomenological arguments [48]. Due to flow anisotropy, note that the spectral
energy content is fully described by the 2D energy spectrum Ẽ (k‖, k⊥), where k‖ and k⊥ are the
components of the wave number vector k, respectively, parallel and perpendicular to the rotation
axis, which we do not consider here. The reader is referred to previous works [18,20,46,49] for
more details on directional spectra in homogeneous rotating turbulence.

Also shown in Fig. 2 are the instantaneous positions of a subset of Lagrangian tetrads in each
flow, at a time t/τη ∼ 10 after which they have been substantially dispersed by the flow. In both
cases, most tetrads appear as strongly flattened structures, far from their initial regular shape.
Moreover, in the rotating case [Fig. 2(b)], tetrads appear to be preferentially stretched along the
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FIG. 3. Kinetic energy spectra for different rotation rates. (a) Uncompensated spectra. (b) Spectra compen-
sated by k2. Inset: Spectra compensated by k5/3.

rotation axis—and have traveled longer distances in the vertical direction compared to the horizontal
ones—while they are mostly flattened in the horizontal directions.

B. Single-particle velocity autocorrelation and integral timescales

The velocity autocorrelation along fluid paths quantifies the loss of memory of the velocity of a
fluid particle over time. It provides important information on the Lagrangian structure of turbulent
flows, including the timescales relevant to dispersion phenomena, as well as characterizing the
anisotropy of such flows. The Lagrangian velocity autocorrelation is defined as

ρ
(v)
i (t ) = 〈vi(t0) vi(t0 + t )〉〈

v2
i

〉 , i ∈ {x, y, z}, (7)

where v is the velocity of a particle. Averages are performed over individual Lagrangian tracers
and initial times t0, and repeated indices do not imply summation. Note that the above expression
assumes a statistically homogeneous and steady turbulent flow (ρ (v)

i does not depend on t0 nor on
the initial location of the particle), which is the case studied here.

In Fig. 4(a), the Lagrangian autocorrelation of the horizontal velocity component vx is plotted for
different rotation rates. In the isotropic case (infinite RoL), ρ (v)

x decays exponentially, with a long
time behavior ∼e−t/TL allowing us to define the integral time TL, as expected [1]. As the rotation rate
is increased (decreasing RoL), the horizontal velocity decorrelates faster relative to the dissipation
timescale τη. At intermediate rotation rates, the autocorrelation becomes negative before reaching
zero at long times, in contrast to the monotonically decreasing correlation in the absence of rotation.
This may be explained by the effect of large-scale vortex columns in rotating turbulence, which
are aligned with the rotation axis. These are expected to induce helical trajectories on Lagrangian
particles, leading to periodic oscillations of the horizontal velocity components. As shown by the
circles in Fig. 4(a), the fluctuations of the autocorrelation curves have a period close to but slightly
larger than the rotation period Trot = 2π/�rot. Note that the same behavior was displayed by the
Lagrangian autocorrelation of horizontal velocity in recent simulations of rotating and stratified
turbulence [29]. Furthermore, in all cases, the correlations reach zero at approximately the same time
t/τη ≈ 35. On a side note, we have checked that the autocorrelation of vy is statistically identical to
that of vx, as illustrated in Fig. 4(c) for the highest rotation rate.

At high rotation rates (RoL = 0.032), the autocorrelation stays positive and displays intense
fluctuations. We have verified the robustness of this observation using an independent particle
dataset (not shown here). The fact that the correlation does not become negative in this case
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FIG. 4. Lagrangian velocity autocorrelations. (a) Horizontal component ρ (v)
x (orthogonal to the rota-

tion axis) for different rotation rates. Circles mark the time t = Trot/2 after half a rotation period, where
Trot = 2π/�rot. (b) Vertical component ρ (v)

z (parallel to the rotation axis) for different rotation rates. (c) All
components for RoL = 0.032 (run 4). Time is normalized (a), (b) by the Kolmogorov timescale τη and (c) by
the rotation period Trot.

is somewhat at odds with the above picture of columnar vortices inducing helical Lagrangian
trajectories. This shows that the complexity of the Lagrangian particle dynamics goes far beyond
this very simple picture. To summarize, for the three finite Rossby numbers considered, ρ (v)

x (t ) first
decays in time, and starts increasing shortly after t = Trot/2 (see circles in the figure). The initial
decay is increasingly faster at increasing rotation rate: at t = Trot/2, ρ (v)

x (t ) is negative for the two
largest Rossby numbers, but for RoL = 0.032 it is still positive.

In the presence of rotation, the vertical velocity autocorrelation ρ (v)
z [Fig. 4(b)] displays a behav-

ior which differs from that of the horizontal component. This is a clear signature of the anisotropy
induced by rotation. The most striking difference is that ρ (v)

z displays very weak oscillations, even
at the highest rotation rate considered. Moreover, the vertical velocity vz stays correlated for a
time longer than the horizontal components. At long times, the decay rate of ρ (v)

z is slower than in
isotropic turbulence, an effect that becomes more pronounced at higher rotation rates. These features
reflect the quasi-two-dimensionalization of turbulence by rotation, according to which horizontal
and vertical motions decouple and the velocity field becomes nearly invariant along the vertical
direction.

The effect of rotation on the autocorrelation of the vertical velocity reported here [Fig. 4(b)] is
in agreement with experimental measurements available in the literature [26]. As for the horizontal
velocity, these experiments display a trend opposite to the present one, i.e., rotation was shown
to increase the correlation time of the horizontal velocity components. The precise reason of this
disagreement is not clear, but it is worth mentioning that the numerical and experimental flows are
certainly very different, the latter displaying strong confinement effects in the vertical direction, as
evidenced by the distribution of vertical velocity in the cited experiments.

The time integration of the autocorrelation functions displayed in Fig. 4 allows us to calculate
horizontal and vertical Lagrangian timescales, T x

L and T z
L . In agreement with the features of ρ (v)

x and
ρ (v)

z , the values provided in Table I show that the vertical (respectively, horizontal) integral timescale
increases (respectively, decreases) at decreasing Rossby number, i.e., at increasing rotation rate. The
interpretation of T z

L is clearer than that of T x
L because of the monotonous behavior of ρ (v)

z . For this
reason, we will thereafter use it to characterize the large Lagrangian timescale of the flow.

IV. MULTIPARTICLE STATISTICS

We discuss now the dispersion of multiparticle Lagrangian clusters in homogeneous rotating
turbulence. We start in Sec. IV A by looking at the relative dispersion of particle pairs. Then, in
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FIG. 5. Mean-squared separation between Lagrangian pairs. Dashed lines, mean-squared gyration radius
〈R2〉 [Eq. (2)]; solid lines, mean-squared change of gyration radius 〈�2〉 [Eq. (3)]. Distances are normalized
by the Kolmogorov scale η. (a) Pairs of initial scale r0 = η and different rotation rates. (b) Pairs of different
initial scales r0 under intense rotation (RoL = 0.032, run 4). Markers represent the ballistic timescale t0 =
〈(δv0 )2〉/|〈δv0 · δa0〉| (circles) and the vertical Lagrangian integral time scale T z

L (triangles) for the different
cases. Note that, for particle pairs, the gyration radius R is directly related to the pair separation vector
δX as R(t )2 = |δX (t )|2/2. Equivalently, �(t )2 = |δX (t ) − δX (0)|2/2. In (b), the horizontal dash-dotted line
corresponds to L2/η2, where L is the Eulerian integral length scale. Error bars are obtained after splitting each
dataset onto four disjoint sub-data-sets. The size of the error bars corresponds to the standard deviation of
the statistics computed from each separate sub-data-set. Throughout our results, error bars are rather small,
especially when plotted in logarithmic scale. In the following, for ease of readability, error bars are not shown
for quantities plotted in logarithmic scale.

Sec. IV B, we study the time evolution of the size, shape, and orientation of Lagrangian tetrads. We
finish, in Sec. IV C, with a description of the dynamics of Lagrangian triangles in rotating flows.

A. Pair dispersion

We consider in this section the time evolution of the relative separation between pairs of tracer
particles. This is the most basic Lagrangian observable providing information on the growth of
a fluid patch (or the spreading of an ideal passive scalar) in a turbulent flow. We investigate
the evolution of the total mean-squared separation between particle pairs, followed by a detailed
characterization of the anisotropy of pair dispersion when the flow is subject to global rotation.

1. Total mean-squared separation

We first consider the mean-squared gyration radius 〈R2〉 associated to particle pairs. We recall
that the gyration radius R is, up to a factor

√
2, equal to the pair separation |δX |. The mean-squared

gyration radius is represented in Fig. 5 (dashed lines) as a function of time, for different rotation
rates �rot and for different initial scales r0. As seen in the figure, the mean-squared separation stays
approximately constant over a time t ≈ τη, before reaching different regimes where the average
particle separation rate clearly speeds up. Before discussing the different separation regimes at t >

τη, let us first note that the short-time dynamics may be better described by the mean-squared change
of separation 〈�2〉 [8], defined in Eq. (3) and represented in Fig. 5 by solid lines. Indeed, this
quantity neatly displays the ballistic separation regime 〈�2〉 ∼ t2 predicted by Eq. (4) at times
t � τη. As suggested by Eq. (4) and confirmed by previous works [34,35], the duration of this
regime is controlled by the ballistic timescale t0, represented by circles in Fig. 5. For t � t0, the
curves for 〈R2〉 and 〈�2〉 are indistinguishable, as the instantaneous separation |δX | becomes much
larger than the initial separation |δX 0|.
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FIG. 6. Time evolution of mean-squared separation between Lagrangian pairs along different directions.
Dashed, dotted, and solid lines (in color) represent the squared separation �2

i along each direction (i = x, y, z).
Dash-dotted gray lines represent the total squared separation �2 = ∑

i �
2
i . In all cases, the initial scale is

r0 = η. (a) Moderately rotating case (run 3, RoL = 0.076). (b) Strongly rotating case (run 4, RoL = 0.032).
Horizontal dash-dotted lines correspond to the Eulerian integral length scales Lxy and Lz, respectively, associ-
ated to the horizontal and vertical directions. Circles show the diffusive regime predicted by Taylor’s theory,
�2

i (t ) = 2〈u2
i 〉T i

Lt for t � TL . Insets show the local slope of each curve—obtained as α = d log〈�2
i 〉/d log t—

where horizontal lines mark the slopes α = 1 and 2.

At long times, all cases asymptotically display the diffusive regime 〈R2〉 ∼ t suggested by Taylor
[10]. This regime is achieved when the distance between the particles in a pair is sufficiently larger
than the integral length of the flow, such that their motion is completely decorrelated. As seen in
Fig. 5(b), this regime (and the time at which the transition occurs) is nearly independent of the initial
scale r0, and is effectively reached when R is sufficiently larger than L.

At intermediate times, different power laws 〈R2〉 ∼ tα may be inferred. Indeed, as shown in
Fig. 5(b), the α exponent displays a strong dependence on the initial scale r0. In all cases, t0 is
close to (and sometimes larger than) the vertical Lagrangian integral time scale T z

L (represented by
triangles), and the scale separation requirement t0 	 t 	 TL for Richardson’s regime is therefore
never met. Nevertheless, our results are consistent with recent observations in isotropic turbulence
according to which, at finite Reynolds numbers, the regime α = 3 traditionally associated with
Richardson’s law is most likely to be observed for an initial separation r0/η ≈ 4 [50,51]. We finally
stress that, while only the case RoL = 0.032 is shown, the results are qualitatively similar in the
other runs (including the isotropic case).

Up to now, we have not discussed the effect of rotation. Figure 5(a) suggests that the impact
of rotation on the total relative dispersion is weak. The most important differences with isotropic
turbulence are observed at the highest rotation rate (RoL = 0.032), in which case the intermediate
regime displays a faster separation rate than in the other runs. We explain this result in the next
subsection, by distinguishing the pair dispersion in the horizontal and in the vertical directions, and
by investigating the effect of the initial particle pair orientation.

2. Anisotropy of relative dispersion

a. Horizontal and vertical dispersion. To further elucidate the effect of rotation on relative
dispersion, we now consider the change of gyration radius along each of the three Cartesian
directions, �i(t ) = |δXi(t ) − δXi(0)|/√2. Recall that the total change of gyration radius, defined
in Sec. II A 2, is given by �2 = ∑

i �
2
i . In Fig. 6, we plot 〈�2

i 〉 in cases of moderate and strong
rotation for particle pairs with an initial scale r0 = η. We have verified that the results discussed in
the following are also observed for the other considered values of r0. The local slope of each curve
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is displayed in the inset, confirming that all the �i components scale as ∼t2 at short times (ballistic
regime) and as ∼t at long time (Taylor diffusion regime).

The strongly rotating case [Fig. 6(b)] displays anisotropy effects at all times, with separation be-
ing always more intense in the vertical direction. In the initial ballistic regime, this can be explained
by the vertical velocity uz decorrelating over shorter distances than the horizontal velocity compo-
nents. Indeed, in analogy with Eq. (4), the ballistic regime for a given component can be written
as 2〈�2

i 〉(t ) = 〈|δvi(0)|2〉 t2 + O(t3) = S2,i(r0) t2 + O(t3), where S2,i(r) = 〈[ui(x + r) − ui(x)]2〉r

is the Eulerian second-order structure function associated to the velocity component ui, and spher-
ically averaged over all increments |r| = r. Therefore, at short times, 〈�2

z 〉 > 〈�2
x〉 is equivalent to

S2,z(r0) > S2,x(r0), i.e., the vertical velocity presents larger spatial fluctuations than the horizontal
velocity components. Such a result will be interpreted further below by investigating the effect of the
initial pair orientation or, equivalently, of the increment orientation. It is important to emphasize
the fact that the initial pair separation rates provide a direct estimation of the Eulerian velocity
structure functions at the scale at which the pairs are initially separated. This is precisely what is used
above and in the following to discuss the behavior of Eulerian structure functions in homogeneous
rotating turbulence.

In the long time limit, the relative dispersion obeys Taylor’s regime in all directions. Concretely,
in HIT, the mean-squared separation is expected to follow 〈�2

i 〉 = 2〈u2
i 〉T i

Lt for t � T i
L [10,44]. This

prediction is satisfied by our numerical data at all Rossby numbers, as shown by the circles in Fig. 6.
Table I shows that, in the presence of rotation, 〈u2

z 〉 and T z
L are, respectively, larger than 〈u2

x〉 and T x
L .

This explains our observation that, at long times, the relative vertical dispersion �z is faster than the
horizontal one, �x and �y.

In contrast, in the moderately rotating case [Fig. 6(a)], pairs separate at nearly equal rates along
the three directions at short times (t � 20τη). The effects of anisotropy are only evident at longer
times, where the separation �z along the rotation axis becomes larger than the separation in the
directions orthogonal to the rotation for the reasons given above. The anisotropy effect is therefore
visible only at large scales for a moderate RoL = 0.076 [Fig. 6(a)], whereas all scales are affected by
rotation for a smaller RoL = 0.032 [Fig. 6(b)]. This is a well-known feature of rotating turbulence,
previously evidenced in the Eulerian framework [42,52,53].

b. Effect of the pair initial orientation. In an anisotropic flow, the initial orientation r̂ of the
Lagrangian pairs is also expected to have an impact on their separation rate, at least at short times
following their release. As introduced in Sec. II B 2, we consider here particle pairs initially oriented
with the Cartesian axes, i.e., δX 0 = r0

√
2 r̂ with r̂ ∈ {ex, ey, ez}.

We first consider the total separation � instead of the componentwise separation �i. As seen in
Fig. 7(a), in the ballistic regime and at high rotation rate, pairs initially aligned with the rotation
axis take considerably longer to separate than those initially oriented horizontally. The effect of
anisotropy is visible over a long time span, and disappears only when the diffusive regime is reached,
i.e., when the memory of the initial condition has been lost. As before, the observed short-time
behavior can be linked to the Eulerian velocity structure functions. Indeed, in the ballistic regime,
2〈�2〉(t ) ≈ S(i)

2 (r0) t2, where S(i)
2 (r) = 〈[u(x + rei ) − u(x)]2〉 is the second-order structure function

along direction i. The slower separation rate for particles aligned with the rotation axis can therefore
be attributed to the quasi-two-dimensionalization of the flow by rotation, which implies that the
flow is nearly invariant along the rotation axis. Another consequence of this short-time effect is
that, at intermediate times, the separation rate is strongly accelerated for particles initially aligned
with the rotation axis [Fig. 7(a)]. This is due to the fact that these slow pairs need to catch up
with faster ones such that, at long times, they all reach the diffusive regime. This also explains
the accelerated separation rate observed in Fig. 5(a) at intermediate times for the highest rotation
rate.

Figure 7(b) shows the time evolution of the mean-squared componentwise separation of
pairs conditioned on their initial orientation, 〈[�( j)

i ]2〉, where �
( j)
i (t ) = |δXi(t ) − δXi(0)|/√2 such

that δX (0) is aligned with the Cartesian direction e j . In the ballistic regime, the following
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FIG. 7. Effect of the initial particle pair orientation on relative dispersion. (a) Time evolution of the total
mean-squared separation 〈�2〉 for pairs oriented along the x, y, and z directions (dashed, dotted, and solid lines,
respectively). (b) Time evolution of the mean-squared separation 〈[�( j)

i ]2〉 along direction i for pairs initially
oriented along direction j. In all cases, the initial scale is r0 = η and the Rossby number is RoL = 0.032 (run 4).

ordering holds: 〈[�(z)
x ]2〉 ∼ 〈[�(z)

y ]2〉 ∼ 〈[�(z)
z ]2〉 < 〈[�(x)

x ]2〉 ∼ 〈[�(y)
y ]2〉 < 〈[�(y)

x ]2〉 ∼ 〈[�(x)
y ]2〉 <

〈[�(x)
z ]2〉 ∼ 〈[�(y)

z ]2〉. Recalling that in this regime 2〈[�( j)
i ]2〉(t ) ≈ S( j)

2,i (r) t2, where S( j)
2,i (r) =

〈[ui(x + re j ) − ui(x)]2〉—which reduces to 〈(∂ jui )2〉r2 in the limit of small r—this ordering is
equivalent to the following one:

〈(∂zux )2〉 ∼ 〈(∂zuz )2〉 < 〈(∂xux )2〉 < 〈(∂xuy)2〉 < 〈(∂xuz )2〉, (8)

given the fact that, by symmetry in the horizontal plane, 〈(∂zux )2〉 = 〈(∂zuy)2〉, 〈(∂xuz )2〉 = 〈(∂yuz )2〉,
〈(∂yux )2〉 = 〈(∂xuy)2〉, and 〈(∂xux )2〉 = 〈(∂yuy)2〉. Equation (8) shows that the spatial variations in the
vertical direction are the weakest, as expected in rotating turbulence. The horizontal longitudinal
second-order structure functions are larger than their transverse counterparts, as is the case in HIT.
The vertical velocity component displays the largest spatial variations, in the horizontal direction.
This ordering allows us to interpret the short-time behavior of the mean-squared separations �i

for pairs initially randomly oriented [Fig. 6(b)]. In Batchelor’s regime, Fig. 7(b) shows that pairs
oriented horizontally at the initial time diffuse faster in the vertical direction than in the horizontal
one [〈(�(x,y)

z )2〉 > 〈(�(x,y)
x,y )2〉], while those with an initial vertical orientation diffuse at comparable

speeds in all directions [〈(�(z)
x,y)2〉 ∼ 〈(�(z)

z )2〉]. Randomly oriented particle pairs are therefore
expected to diffuse faster in the z direction, which is precisely the behavior observed in Fig. 6(b).

B. Lagrangian tetrads

We now investigate the dispersion of Lagrangian tetrads in homogeneous rotating turbulence.
Tetrads encode additional information compared to that provided by particle pairs. In particular,
they allow us to quantify the deformation of fluid elements. In anisotropic flows, a preferential
alignment of this deformation along different spatial directions is also expected.

1. Tetrad volume

As opposed to particle pairs and triads, Lagrangian tetrads (and, more generally, clusters of n � 4
particles) have a volume V that is generally nonzero. The average volume-based tetrad size 〈V 2/3〉 is
plotted in Fig. 8 for different rotation rates and different initial tetrad sizes r0 (the initial volume of
the regular tetrahedrons herein considered is V0 = r3

0/3). For reference, we also plot in dash-dotted
lines the (compensated) mean-squared gyration radius 〈R2〉/3 of the tetrads, defined in Eq. (2), for
selected cases. Compensated this way, we have verified that the tetrad gyration radius superposes
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FIG. 8. Time evolution of the mean-squared tetrad size 〈V 2/3〉 estimated from their volume V (solid lines).
Curves are premultiplied by C = 32/3 ≈ 2.08. For comparison purposes, the normalized mean-squared tetrad
gyration radius 〈R2〉/3η2 is plotted for selected cases (dash-dotted lines). Markers are the same as in Fig. 5.
(a) Tetrads of initial scale r0 = η and different rotation rates. Inset: local slope of the curves in the main panel.
The horizontal dotted line indicates the scaling t1. (b) Tetrads of different initial scales r0 under intense rotation
(RoL = 0.032).

exactly to the pair gyration radius (Fig. 5) at all times. In fact, it can be shown that the compensated
squared gyration radius 〈R2〉/(n − 1) is exactly the same for different cluster sizes n (see Appendix).
This supports the idea that, while being very appropriate for estimating the shape and volume of
Lagrangian objects, tetrads do not provide additional information on the linear growth of fluid blobs
compared to particle pairs.

Interestingly, as seen in Fig. 8, the tetrad volume not only stays nearly constant at short times,
but it does so for a considerably longer time than the gyration radius. This is confirmed by the
inset of Fig. 8(a), where the local slopes of the different curves are represented. This slower change
of volume may be explained by the effect of incompressibility, which imposes a hard constraint
dV/dt = 0 for sufficiently small tetrads (small enough so that the velocity field is smooth at their
scale). Apart from this difference, the average evolution of the tetrad volume displays features
qualitatively similar to the mean gyration radius, with an accelerated growth rate at intermediate
times and an asymptotic long-time regime compatible with Taylor’s diffusive regime, 〈V 2/3〉 ∼ t
[see, in particular, the inset of Fig. 8(a)]. This degree of similarity is also observed in the effect of
the rotation rate, which adds a time delay, in units of τη, before the tetrad volume starts increasing.

2. Tetrad shape

We now focus on the time evolution of the tetrad shape. A convenient way to characterize it is to
measure the nondimensional parameter � = V 2/3/R2 [14], which is zero for sheetlike or needlelike
structures and reaches a maximal value of �reg = 3−5/3 ≈ 0.16 for perfectly regular tetrads (see
Sec. II A 1). The average value of � is plotted in Fig. 9 for tetrads of different initial scales r0 and for
different rotation rates. In all cases, the mean shape parameter 〈�〉 first drops from the initial value
�reg = 3−5/3 associated with a regular tetrad. The precise nature of this decay is likely a response
to our choice of the initial tetrad shape. The minimal value of 〈�〉, corresponding to a maximal
average distortion of the structures, occurs at t ≈ (10 − 30)τη. At this point, for r0 = η, the average
size of the tetrads is about 3η (see Fig. 8), at the low end of the inertial range. The same behavior
was observed in HIT by Pumir et al. [12] by using other indicators. As seen in Fig. 9(b), in rotating
turbulence the minimal value of 〈�〉 significantly decreases as r0 decreases. The same behavior has
been observed in isotropic turbulence and attributed to the increasing influence of dissipative scale
motions [14].
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FIG. 9. Time evolution of the mean tetrad shape parameter 〈�〉 = 〈V 2/3/R2〉. Curves are normalized by
the upper bound of the shape parameter, �reg = 3−5/3 ≈ 0.16, associated with regular tetrads. (a) Tetrads of
initial scale r0 = η and different rotation rates. (b) Tetrads of different initial scales r0 under intense rotation
(RoL = 0.032, run 4). Error bars are obtained as described in the caption of Fig. 5. The horizontal dotted line
represents the asymptotic diffusive regime in HIT [14].

During this initial stage, rotation delays the time at which distortion is maximal (consistently
with the delay observed for dispersion) and increases the strength of this deformation [Fig. 9(a)].
In the presence of rotation, tetrads are therefore more likely to have sides of disparate lengths at
t ≈ (10 − 30)τη, i.e., at the end of Batchelor’s regime. In other words, at this time rotation allows
some pairs to be much further apart than others. This is consistent with the results of Sec. IV A
[Fig. 7(a)].

At later times, the mean shape parameter 〈�〉 relaxes in the isotropic case toward the diffusive
value �∞ ≈ 0.0645 (�∞/�reg ≈ 0.40, dotted horizontal lines), first estimated by Hackl et al. [14].
Figure 9(a) shows that this asymptotic limit departs from the isotropic value under rotation and
decreases at decreasing Rossby number. This means that, in the diffusive regime, tetrads become
more and more elongated as the rotation rate increases, as qualitatively seen in Fig. 2(b). Their
asymptotic shape is naturally independent of the initial conditions [Fig. 9(b)].

A more complete description of the tetrad deformation is provided by the shape distribution. The
probability density functions (PDFs) of � are plotted in Fig. 10 at different times for the strongly
rotating [Figs. 10(a) and 10(b)] and nonrotating [Fig. 10(c)] cases. Note that the two-dimensional
representation in Figs. 10(b) and 10(c) is such that each horizontal cut corresponds to an instanta-
neous PDF at a given time. At t = 0, since the tetrads are initially regular, the PDFs are described
by a delta function centered at the maximal value � = �reg (not shown here). The distributions,
initially peaked near this value, quickly shift toward smaller values of � at times t ≈ (10 − 30)τη, in
agreement with Fig. 9. Interestingly, the distribution is strongly peaked when distortion is maximal,
meaning that a very large fraction of the tetrads are then subject to this strong deformation. The
distribution then broadens and relaxes at long times towards an asymptotic diffusive state. These
observations apply both to rotating and to isotropic turbulence, and are consistent with previous
results in the latter case [14]. In particular, in the absence of rotation, we have checked (not
shown) that the PDF relaxes toward the diffusive state expected for isotropic turbulence. This state,
represented by a dashed line in Fig. 10(a), is not recovered in the presence of rotation, highlighting
the persistent effect of rotation on the deformation of Lagrangian blobs.

A tetrad is a three-dimensional structure and its shape cannot therefore be fully represented by a
single parameter. A more complete characterization of the shape is provided by the eigenvalues gi

of the moment-of-inertia tensor, defined in Sec. II A 1. Recall that g1 � g2 � g3 by convention, that
the sum of these quantities is the squared tetrad size R2, and that their product is, up to a scaling
factor, the squared tetrad volume V 2. Figure 11(a) shows the time dependence of the mean values of
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FIG. 10. Probability density function (PDF) of the tetrad shape parameter �. (a) PDF of � at different
times under intense rotation (RoL = 0.032, run 4) for tetrads of initial scale r0 = η. Dashed black line: PDF
of � in the isotropic diffusive regime obtained from Monte Carlo simulations. (b) Alternative representation
of the PDF of � at different times, for the same case shown in (a). Each horizontal cut of the contour plot
represents the PDF at a given time. Dash-dotted horizontal lines correspond to the different times plotted in
(a). (c) Similar to (b) but for the nonrotating run (run 1).

gi. The three eigenvalues remain constant at short times before a shape relaxation from the chosen
initial condition occurs. In the long-time limit, the three eigenvalues exhibit a clear diffusive regime,
〈gi〉 ∼ t , like their sum 〈R2〉 (Fig. 5).

We now focus on the nondimensional shape factors Ii = gi/R2, commonly used to characterize
the tetrad deformation in HIT [12–14,54,55]. We recall that only two of these three parameters
are independent since their sum is, by definition, equal to unity. The evolution of their respective
mean values is plotted in Fig. 11(b) in nonrotating and in strongly rotating turbulence. At very short
times, all eigenvalues are equal for regular tetrads, namely, gi = r2

0 and Ii = 1/3. At later times, their
mean values significantly depart from this initial value, consistently with what was observed for the
volume-based shape parameter � (Fig. 9). At t ∼ τη, the stretching eigenvalue g1 is much larger than
the compressive one g3, suggesting that tetrads are already strongly flattened at times comparable

FIG. 11. Average statistics of tetrad shape eigenvalues. (a) Average tetrad eigenvalues 〈gi〉. (b) Average
tetrad shape parameters 〈Ii〉, with Ii = gi/R2. Solid lines, i = 1; dashed lines, i = 2; dotted lines, i = 3. In each
panel, the nonrotating and strongly rotating cases are shown. In all cases, the initial tetrad scale is r0 = η. In
(b), triangles mark the expected diffusive values in HIT. Error bars are obtained as described in the caption of
Fig. 5.
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FIG. 12. Mean alignment ψi = 〈(gi · ez )2〉 between the moment-of-inertia tensor eigenvectors and the
Cartesian axis ez, aligned with the rotation axis. Horizontal dotted lines represent the isotropic value ψi = 1/3.
In all cases, the initial tetrad scale is r0 = η. Error bars are obtained as described in the caption of Fig. 5.

to the dissipative timescale. Consistently with Fig. 9, the mean tetrad distortion is maximal when its
size is of order 3η (t ≈ (10 − 30)τη), and rotation delays the time at which this occurs. The mean
value of I3 is then very close to zero, which indicates that the structures are extremely flattened
(sheetlike).

The three eigenvalues relax at long times toward asymptotic values characterizing the tetrad
mean shape in the diffusive regime. In the isotropic case, these values are in agreement with those
calculated for a Gaussian distribution [see green triangles in Fig. 11(b)]: 〈I1〉∞ ≈ 0.75, 〈I2〉∞ ≈ 0.22
and 〈I1〉∞ ≈ 0.03. This corresponds to very elongated structures [12–14,54,55] (〈I1〉∞ ≈ 25〈I3〉∞).
In the presence of rotation, the asymptotic shapes are even more flattened: For RoL = 0.032, we get
〈I1〉∞ ≈ 0.81, 〈I2〉∞ ≈ 0.17 and 〈I1〉∞ ≈ 0.02, therefore 〈I1〉∞ ≈ 40〈I3〉∞. The ratio between the
two largest shape factors is also larger in the presence of rotation: 〈I1〉∞/〈I2〉∞ is ≈3.4 in HIT, and
≈4.8 for RoL = 0.032. The large faces of the tetrads are therefore more distorted in the strongly
rotating case.

The anisotropy of rotating turbulence and, in particular, the formation of large-scale columnar
vortices aligned with the rotation axis, is also expected to have a signature on the direction in which
tetrads are stretched or compressed. We therefore now focus on the orientation of these structures
with respect to the rotation axis.

3. Tetrad orientation

The tetrad orientation with respect to the rotation axis can be characterized by measuring the
variance of the scalar product between the unit vectors gi and ez, ψi ≡ 〈(gi · ez )2〉. Both vectors are
preferentially collinear if ψi > 1/3, normal to each other if ψi < 1/3, and oriented independently
if ψi = 1/3. The time evolution of the mean alignment ψi is shown in Fig. 12 for different rotation
rates. In isotropic turbulence, gi is expected to be randomly oriented and one expects ψi to be
equal to 1/3 for all i ∈ {1, 2, 3} and at any time. This is confirmed at sufficiently long times (black
curves), while ψi weakly departs from this value at shorter times. This may be attributed to an
imperfect statistical convergence due to the finite number of tetrads tracked in the simulations, or
to the short-lived presence of anisotropic structures in the statistically-isotropic simulations. In any
case, this departure is negligible in comparison with the preferential alignment visible at long times
in the rotating flows.

In the presence of rotation, ψi departs from the value 1/3 at times shorter than 10τη. The three
indicators evolve in time until they reach their asymptotic values ψ∞

i . For the lowest Rossby number
considered, ψ∞

1 ≈ 0.70, ψ∞
2 ≈ 0.17, and ψ∞

3 ≈ 0.13. This means that the largest dimension of
the tetrads is preferentially vertical (aligned with the rotation axis), and the two other ones are
preferentially horizontal (perpendicular to this axis). This is illustrated in Fig. 2(b), in which most of
the tetrads are very elongated and their maximal dimensions are oriented vertically. Before reaching
the discussed asymptotic states, the tetrad alignments follow a temporal dynamics which is not
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FIG. 13. Main panels: Time evolution of the mean triad shape parameter 〈w〉. (a) Triads of initial scale r0 =
η and different rotation rates. (b) Triads of different initial scales r0 under intense rotation (RoL = 0.032, run
4). Insets: (a) mean shape factor 〈I (triad)

2 〉; (b) Euler angle 〈χ〉 normalized by its upper bound χmax = π/6. Error
bars are obtained as described in the caption of Fig. 5. Horizontal dotted gray lines represent the asymptotic
diffusive values in high Reynolds number HIT [12,14], 〈w〉 = 2/3, 〈I (triad)

2 〉 ≈ 0.16.

necessarily monotonic. This is, in particular, the case for the alignment of g2 with the rotation
axis [Fig. 12(b)]: at short times, g2 is slightly preferentially collinear with the rotation vector �rot,
whereas in the asymptotic state, both vectors are preferentially perpendicular to each other. Such a
behavior can be interpreted by recalling that, at short times, the deformation of isotropic tetrads is
strongly influenced by the local rate of strain [15]. As shown in Ref. [56], in rotating turbulence the
eigenvector associated with the largest (positive) eigenvalue of the strain is weakly perpendicular
to �rot, the one associated to the smallest (negative) eigenvalue is normal to it, and the eigenvector
associated to the intermediate (positive) eigenvalue is strongly collinear to �rot. This explains why,
at short times, g1 is preferentially slightly perpendicular to �rot, whereas g2 and g3, respectively,
tend to be collinear and normal to �rot. At long times, the behaviors reflected in Fig. 12 can be
interpreted by using the results obtained in Sec. IV A for pairs: As shown in Fig. 6, at long times
the vertical relative dispersion is faster than the horizontal one, which explains why tetrads tend to
align vertically in the flow.

C. Lagrangian triads

We finally investigate the dispersion and distortion of triads, vertices of initially equilateral
triangles. The full description of the geometric features of a three-dimensional flow requires us
to consider clusters of at least four particles, but investigating the shape of triads allows us to extract
general considerations on the effect of the number of particles in a cluster on its shape factors [14].

As mentioned earlier for tetrads and shown in the Appendix, the statistics of the gyration radius
R of the considered regular triads is equivalent to that of pairs (Fig. 5), so we focus here on their
distortion. A common measure of deformation of triads is the nondimensional shape parameter
w = A/Areg = 4A/(

√
3R2) [14,16,30,31], where A is the triangle area and Areg = √

3R2/4 is the
area of an equilateral triangle with the same gyration radius. This parameter takes the values
w = 0 and w = 1 in the respective limiting cases of a collinear triangle with zero area and of
an equilateral triangle. As seen in the main panels of Fig. 13, the average value of w evolves
similarly to that of � for tetrads (Fig. 9), indicating that, just like the latter, triads become strongly
deformed at intermediate times, before relaxing toward an asymptotic shape factor at long times.
A more straightforward comparison with tetrads can be performed by considering the eigenvalues
of the triangle’s moment-of-inertia tensor. The inset of Fig. 13(a) shows the time dependence of

034602-17



POLANCO, ARUN, AND NASO

FIG. 14. Mean alignment 〈(g(triad)
i · ez )2〉 between triangle eigendirections g(triad)

i and the Cartesian axis ez.
Horizontal dotted lines represent the isotropic value 1/3. In all cases, the initial triangle scale is r0 = η. Error
bars are obtained as described in the caption of Fig. 5.

the average of the smallest normalized eigenvalue I (triad)
2 = g(triad)

2 /(g(triad)
1 + g(triad)

2 ) (recall that, by
definition, I (triad)

1 = 1 − I (triad)
2 ). The general trends of 〈I (triad)

2 〉(t ) are the same as those of 〈w〉(t ).
In the isotropic flow, the asymptotic values of the triad shape factors display a very satisfactory

agreement with their expected values [12,14], 〈w〉∞ ≈ 2/3 and 〈I (triad)
2 〉∞ ≈ 0.16, as shown by the

horizontal dotted lines in Fig. 13(a). These asymptotic values decrease at increasing rotation rate,
meaning that, in the long-time diffusive regime, triads are more distorted in rotating turbulence.
They seem to reach a limit value for the two smallest RoL, for which 〈w〉∞ ≈ 0.6 and 〈I (triad)

2 〉∞ ≈
0.13.

Figure 13(b) shows that the dependence of the triads shape factor on the initial size r0 is the same
as for tetrads [Fig. 9(b)]), namely, the maximal mean distortion increases at decreasing r0. This
trend is observed for all considered rotation rates. Finally, the inset of the same figure shows the
time dependence of the Euler angle χ [16,31], which provides information on triangle’s symmetry.
In the present simulations, 〈χ〉 is equal to π/12 at all times, for all initial scales r0 and all considered
rotation rates. Note that at t = 0, the value of χ for equilateral triangles is not well-posed. As
particles move away from this initial condition, the fact that 〈χ〉 ≈ π/12 means that the triangles do
not seem to become more or less isosceles on average. The value π/12 is also the expected diffusive
limit in HIT [14,30]. It is reached here for all rotation rates.

We finally consider the preferential orientation of the triangle eigenvectors g(triad)
i relative to the

global rotation axis. As mentioned in Sec. II A 1, g3 = 0 for triangles, and therefore only g(triad)
1

and g(triad)
2 are relevant to describe their deformation axes. These two eigenvectors are, respectively,

associated with the directions in which a triangle is most elongated or compressed. The average
orientation of these eigendirections with the rotation axis is plotted in Fig. 14. Overall, the results are
qualitatively similar to those obtained for tetrads (Fig. 12). As with tetrads, these can be summarized
by a preferential stretching of triangles along the axis of rotation. Besides, it is interesting to note
that the compressive direction g(triad)

2 displays a behavior that is most similar to the intermediate
eigendirection g2 for tetrads, instead of being similar to the compressive tetrad direction g3. For the
smallest Rossby number and in the long-time limit, 〈(g(triad)

2 · ez )2〉 ≈ 0.19 for triads, whereas for
tetrads 〈(g2 · ez )2〉 ≈ 0.16 and 〈(g3 · ez )2〉 ≈ 0.12. These results may be intuitively understood by
considering the four triangular faces of an extremely flattened tetrad. In this case, the tetrad can be
seen as composed of two nearly parallel triangles of large area, connected by other two triangles of
negligible area. The large triangles are expected to have the same eigendirections as the tetrad so
they are approximately orthogonal to the tetrad compressive direction g3. The added contributions of
the large triangles may explain the similarity between the orientation of triad and tetrad eigenvectors.
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V. CONCLUSIONS AND DISCUSSION

We have investigated the Lagrangian properties of homogeneous rotating turbulence using
DNSs. We have first characterized single-particle Lagrangian velocity autocorrelations, finding a
strong modification of this quantity compared to the isotropic (rotationless) case. In particular, the
autocorrelation of the horizontal velocity components (perpendicular to the rotation axis) displays
oscillations with a period close to the rotation one, Trot = 2π/�rot. This is likely explained by the
effect of large-scale cyclonic and anticyclonic vortex columns that rotate at a rate comparable to
�rot. Meanwhile, the vertical velocity component (parallel to the rotation axis) remains correlated
for a longer time. This time is an increasing function of the rotation rate.

We have then focused on the statistics of the size and shape of two-, three-, and four-particle
Lagrangian clusters. For the initially isotropic triads and tetrads considered in the present paper,
the size statistics are, at first order, completely described by the mean-squared separation of particle
pairs. By subtracting the initial separation, we have recovered in all cases a clear ballistic regime
at short times, expected to occur as long as particles have memory of their relative initial velocity.
At later times, an accelerated separation regime is observed. While qualitatively compatible, this
regime cannot be attributed to Richardson’s explosive regime, as the Lagrangian scale separation of
our simulations is not sufficient. Finally, at long times, the diffusive regime first predicted by Taylor
is observed. In this regime, and in the presence of rotation, the diffusion is faster in the vertical
direction than in the horizontal one, as a result of the slower decorrelation of the vertical velocity.

The initial orientation of a particle pair has an important influence on their dispersion at short
and intermediate times. In particular, pairs oriented horizontally at the release time diffuse faster
in the vertical direction than in the horizontal one, while pairs initially vertical diffuse at speeds
comparable in both directions. As a consequence, at short times randomly oriented pairs diffuse
faster in the vertical direction than in the horizontal one. These results are the signature of the
anisotropy of Eulerian second-order structure functions.

We have then focused on the deformation and preferential orientation of Lagrangian tetrads and
triads. In both cases, the clusters undergo a strong flattening at intermediate times before their shape
statistics relax toward a diffusive regime. This is consistent with previous observations in isotropic
turbulence. Rotation delays the time at which this distortion is maximal, while also increasing
its strength. It also increases the shape distortion in the asymptotic regime, in which tetrads
transported by rotating turbulence are more flattened and have more elongated large faces than
in HIT. Furthermore, and consistently with our observations for pairs, clusters tend to preferentially
stretch along the rotation axis. The effect of rotation on triads is similar: in the presence of rotation,
these clusters are more distorted, both in the intermediate and in the asymptotic regimes, and they
are preferentially aligned vertically.

We have dealt with Lagrangian dispersion in the ideal framework of homogeneous rotating
turbulence. Other effects which are relevant for geophysical applications, in particular, vertical
density stratification and confinement, are absent in this setting. They are both expected to suppress
the transport of Lagrangian tracers along the vertical direction [22,26,29], therefore one may expect
some of the conclusions of the present work to change under those conditions. It would be interesting
in the future to perform numerical studies of multiparticle dispersion in confined rotating geometries
to better characterize the effect of confinement and of the formation of Ekman layers on Lagrangian
transport. An example of such an idealized setting is the rotating channel flow geometry, previously
used to investigate Eulerian features of confined rotating flows [57]. Multiparticle statistics could
also be investigated in homogeneous turbulence subject to both rotation and stratification.
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APPENDIX: EQUIVALENCE BETWEEN GYRATION RADII OF n-PARTICLE CLUSTERS

In the following, we consider the compensated gyration radius R̃n ≡ Rn/
√

n − 1 of n-particle
clusters. The purpose of this Appendix is to show that, given a set of n particles, the compensated
squared gyration radius R̃ 2

n of the resulting cluster is equal to R̃ 2
2 averaged among all particle pairs

that compose the cluster, that is,

R̃ 2
n = 〈

R̃ 2
2

〉 ←→ R2
n = (n − 1)

〈
R2

2

〉
for n � 3, (A1)

where averages are performed over all possible particle pair combinations within the set of n
particles.

Using the first definition in Eq. (2), we write the compensated gyration radius of an n-particle
cluster as

R̃ 2
n = 1

2n(n − 1)

n∑
i=1

n∑
j=1

d2
i j = 1

n(n − 1)

n−1∑
i=1

n∑
j=i+1

d2
i j, (A2)

where d2
i j = |X i − X j | is the distance between two particles. In the last equality, we have used the

i ↔ j symmetry of d2
i j , as well as the fact that d2

ii = 0 for all i. Noting that the last double sum is
over the n(n − 1)/2 possible combinations of di j within the n-particle cluster, we can alternatively
write

R̃ 2
n = 1

n(n − 1)

n(n − 1)

2

〈
d2

i j

〉 = 1

2

〈
d2

i j

〉 = 〈
R2

2

〉
, (A3)

where 〈d2
i j〉 is the average squared distance among all particle pairs composing the n-particle cluster.

In the last equality, we have used the fact that the squared gyration radius of a single particle pair
(X i, X j ) is precisely R2

2 = d2
i j/2.

Equation (A3) thus shows that the compensated squared gyration radius R2
n/(n − 1) of an

n-particle cluster is equal to the mean-squared gyration radius 〈R2
2〉 of all pairs composing the

n-particle cluster. This supports the intuition that tracking pairs of particles in turbulent flows is
sufficient to obtain a full description of the linear growth of a patch of fluid. Specifically, in the
context of the present paper, this means that gyration radius statistics are expected to be equivalent
for tetrads, triads, and pairs—which we have verified in our data.
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