N

N
N

HAL

open science

De Rham logarithmic classes and Tate conjecture

Johann Bouali

» To cite this version:

‘ Johann Bouali. De Rham logarithmic classes and Tate conjecture. 2023. hal-04034328v7

HAL Id: hal-04034328
https://hal.science/hal-04034328v7

Preprint submitted on 18 Jul 2023 (v7), last revised 19 Nov 2023 (v11)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04034328v7
https://hal.archives-ouvertes.fr

De Rham logarithmic classes and Tate conjecture
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Abstract

We introduce the notion of De Rham logarithmic classes. We show that the De Rham class of
an algebraic cycle of a smooth algebraic variety over a field of characteristic zero is logarithmic and
conversely that a logarithmic class of bidegree (d,d) is the De Rham class of an algebraic cycle (of
codimension d). We deduce the Tate conjecture for smooth projective varieties over fields of finite
type over Q and over p-adic fields for Q) coefficients, under good reduction hypothesis.

1 Introduction

1.1 De Rham logarithmic classes

In this work, we introduce for X a noetherian scheme, the definition of logarithmic De Rham cohomology
classes which are for each j € Z, the subgroup H/OLx (H,(X, Q% ,,)) C HL(X,Q%) =: Hpp(X) of
the De Rham cohomology abelian group. The subcomplex OLx : Q% )., < Q% of abelian sheaves on X
consisting of logarithmic forms is introduced in definition 1.

Let X be a smooth algebraic variety over a field k£ of characteristic zero. To an algebraic cycle
Z € Z4(X), we associate its De Rham cohomology class [Z] € H#%(X), which is by definition, as for any
Weil cohomology theory, the image of the fundamental class [Z] € H 12)‘131 (X)) by the canonical morphism
HE 7(X) — H?*A(X). In section 3, we show (c.f. theorem 1(i)) that [Z] € HpR(X) is logarithmic of
bidegree (d, d), that is

[2] = H**OLx ([Z]1) € HER(X), [Z]1 € HEG(X, Q% 1o5)

where H% (X, Q% log) C H24(X, Q% log) 18 the canonical subspace, as all the differentials of % ), vanishes
since by definition a logarithmic form is closed. This fact is a consequence of two properties :

e the Euler class of a vector bundle of rank d over an algebraic variety is logarithmic of bidegree (d, d)
(c.f. proposition 2)

e the motivic isomorphisms applied to De Rham cohomology preserve logarithmic classes (c.f. propo-
sition 1). The key point is that logarithmic De Rham forms on algebraic varieties over k are closed,
(trivially) A} invariant and compatible with the transfers maps induced by finite morphisms of alge-
braic varieties and in particular finite correspondences. Since Qfog C Q are (trivially) A} invariant
presheaves with transfers on the category of smooth algebraic varieties over k, by a theorem of
Voevodsky the cohomology presheaves of A} invariant presheaves with transfers are A} invariant.

Conversely, we show (c.f. theorem 1(ii)), that a logarithmic class w € H¥5(X) of bidegree (d,d) is the
De Rham class of an algebraic cycle (of codimension d).

The proof works as follows : A logarithmic class of bidegree (p, q) is locally acyclic for the Zariski topology
of X since it is the etale cohomology of a single sheaf. This allows us to proceed by a finite induction
using the crucial fact that the purity isomorphism for De Rham cohomology preserve logarithmic classes
(c.f. proposition 3). The proof of proposition 3 follows from the fact that the purity isomorphism is



motivic (see [5]), that the Euler class of a vector bundle of rank d over an algebraic variety is logarithmic
of bidegree (d, d) (c.f. proposition 2) and that the motivic isomorphisms applied to De Rham cohomology
preserve logarithmic classes (c.f. proposition 1). At the final step, we use, for simplicity, the fact that for
a scheme Y, H}(Y,Qy,,,) = H'(Y,05) is the Picard group of Y. In the case X projective, we also get
a vanishing result (c.f. theorem 1(iii)’) : H**OLx(H% (X, fo;flﬁg)) =0 for k> 0.

1.2 Tate conjecture

Let X be a smooth projective variety over a field k of finite type over Q. Let p be a prime number
unramified over k such that X has good reduction at p, o, : k — C, a fixed embedding and k the
algebraic closure of k inside C,. Denote by /Acgp C C, the p adic completion of k£ with respect to op.
We show (c.f. proposition 7) that Tate classes o € H2(X},Z,)(d)¢ of X gives by the p-adic crystalline
comparison isomorphism

H*Ra(X) : H¥(Xc,,Zp) ©2, B = Hpp(X) @1 B

cm’s,kc,p cris,kap ’

a @, linear combination of logarithmic classes
w(a) = H2dROt(X)(Oz) = Z /\iw(a)L,i S H%)dR(X(CP), N € Qp
i=1

with for each 1 <i < s, A\; € Q, and w(a),; € H**OLxH(Xc,, Q)Z(Z log)» using a result of [6] together
with results of [8] on the pro-etale topology, and a GAGA result on Togarithmic De Rham classes (c.f.
proposition 5) whose proof is motivic and similar to the proof of theorem 1. We deduce, by theorem 1(ii)
and (iii)’, the Tate conjecture for X with Q,, coefficient (c.f. theorem 2).

Note that for a p-adic field K C C,, dimHgt(X(cp,Zl)G > dim Hgt(XCp,Zp)G for I # p in general.
Hence it is not clear whether Tate conjecture holds for smooth projective varieties over finite fields ko,
since the base change for etale cohomology for f: X — Ok, Ox = W(ko) only holds for Z; coefficients,
l#p.

Let X a smooth projective variety over C. Then X is defined over a subfield £ C C of finite type
over Q, that is X = X, ®; C. Take an isomorphism C ~ C,, with p € N a prime number such that Xc,
has good reduction at p. As Tate conjecture holds for X}, with Q, coefficients, the standards conjectures
holds for X and any absolute Hodge class of X is the class of an algebraic cycle (corollary 2).

I am grateful for professor F.Mokrane for help and support during this work.

2 Preliminaries and Notations

Denote by Top the category of topological spaces and RTop the category of ringed spaces.

Denote by Cat the category of small categories and RCat the category of ringed topos.

For § € Cat and X € S, we denote S/ X € Cat the category whose objects are Y/X := (Y, f) with
Y eSand f:Y — X is a morphism in S, and whose morphisms Hom((Y”’, f'), (Y, f)) consists of
g:Y" =Y in S such that fog=f'.

For (S,0g) € RCat a ringed topos, we denote by

— PSh(S) the category of presheaves of Og modules on S and PSho, (S) the category of presheaves
of Og modules on S, whose objects are PSho, (S)? := {(M,m), M € PSh(S),m : M ® Og — M},
together with the forgetful functor o : PSh(S) — PSho,(S),

— C(S) = C(PSh(S)) and Cp,(S) = C(PShp,(S)) the big abelian category of complexes of
presheaves of Og modules on S,



— Cogs@2)fi(S) == C2)7i(PShog(S)) C C(PShog(S), F, W), the big abelian category of (bi)filtered
complexes of presheaves of Og modules on § such that the filtration is biregular and PShog (2) ra (S) =
(PSho,(S), F,W).

e Let (S,05) € RCat a ringed topos with topology 7. For F' € Cog(S), we denote by k : FF — E,(F)

~

the canonical flasque resolution in Cog(S) (see [3]). In particular for X € S, H*(X, E.(F)) —
H* (X, F).

e For f: 8 — S a morphism with §,S8" € RCat, endowed with topology 7 and 7’ respectively, we
denote for F' € Cp4(S) and each j € Z,

— = HjF(S, koad(f*, f.)(F)) : Hj(S,F) N Hj(S’, F*F),
— [* = HIT(S,koad(f*™°d, f)(F)) : HI(S, F) — H/(S, f*molF),

the canonical maps.

e For X € Cat a (pre)site and p a prime number, we consider the full subcategory
PShz, (X) C PSh(N x X), F = (Fy)nen, p"F, =0, Fopq/p" = F,
Cz,(X) := C(PShz, (X)) C C(N x &) and
Ly = Lpx = ((Z/p"Z)x) € PShy, (X)
the diagram of constant presheaves on X.

e Denote by Sch C RTop the subcategory of schemes (the morphisms are the morphisms of locally
ringed spaces). We denote by PSch C Sch the full subcategory of proper schemes. For a field k,
we consider Sch /k := Sch /Speck the category of schemes over Speck, that is whose object are
X :=(X,ax) with X € Sch and ax : X — Speck a morphism and whose objects are morphism of
schemes f : X’ — X such that f oax: = ax. We then denote by

— Var(k) = Sch’* /k < Sch /k the full subcategory consisting of algebraic varieties over k, i.e.
schemes of finite type over k,

— PVar(k) c QPVar(k) C Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

— PSmVar(k) € SmVar(k) C Var(k), PSmVar(k) := PVar(k) N SmVar(k), the full subcategories
consisting of smooth varieties and smooth projective varieties respectively.

For a morphism of field ¢ : k — K, we have the extention of scalar functor

@kK :Sch/k —Sch /K, X — Xxg = Xko =X K, (f: X' 5 X) = (fk = fR1: X — Xk).
which is left ajoint to the restriction of scalar

Resy i :Sch /K — Sch /k, X = (X,ax)— X = (X,00ax), (f: X' > X)— (f: X' = X)

The extention of scalar functor restrict to a functor

@K : Var(k) = Var(K), X = Xg =Xk, =X K, (f: X' > X)) (fk = fo1: X)x — Xk).

and for X € Var(k) we have 7,/ (X) : Xx — X the projection in Sch /k.



e For X € Sch, we denote XP* C Sch /X the etale site and X?P¢* C Sch /X the pro etale site (see [2])
which is the full subcategory of Sch /X whose object consists of weakly etale maps U — X (that
is flat maps U — X such that Ay : U — U x x U is also flat) and whose topology is generated by
fpgc covers. We then have the canonical morphism of site

vy : XP o X (U = X) = (U — X)
For F € C(X°),
ad(vx, Rvx.)(F) : F — Rvx..vx F

is an isomorphism in D(X®), in particular, for each n € Z

vi cHY(X, F) = H”

pet(Xﬂ/;(F)

are isomorphisms, For X € Sch, we denote
= Ly =lm vk (Z/p"7Z)xe: € PSh(XP') the constant presheaf on X,
— lpx = (p(x)) : Ly — Vi (Z/pZ)xe the projection map in PSh(N x XP¢).

e An affine scheme U € Sch is said to be w-contractible if any faithfully flat weakly etale map V' — U,
V' € Sch, admits a section. We will use the facts that (see [2]):

— Any scheme X € Sch admits a pro-etale affine cover (r; : X; — X);e; with for each i € I, X;
a w-contractile affine scheme and r; : X; — X a weakly etale map. For X € Var(k) with k£ a
field, we may assume I finite since the topological space X is then quasi-compact.

— If U € Sch is a w-contractible affine scheme, then for any sheaf F' € Shv(UP®t), H!

pet(U7 F) =0
for i # 0 since T'(U, —) is an exact functor.

e Let X € Sch. Considering its De Rham complex Q% := DR(X)(Ox), we have for j € Z its De
Rham cohomology H%,R(X) = HY(X,Q%). For X € Var(k), the differentials of Q% := Q% are
by definition k-linear, thus H é r(X) has a structure of a k vector space. If X € SmVar(k), then
H{)R(X) = H/,(X,Q%) since Q9 € C(SmVar(k)) is A local and admits transfers where

7k € C(Var(k)), X — Q7,(X) := I'(X, Q%),
(f: X' = X)—~ Q) = T(X, Q%) — X, a%)

(see [3]).

e Let X € Var(k). Let X = Ui_, X; an open affine cover. For I C [1,...,s], we denote X1 := N;er X;.
We get X, € Fun(P([1,...,s]), Var(k)). Since quasi-coherent sheaves on affine noetherian schemes
are acyclic, we have for each j € Z, H,p(X) = I'(X,, Q%.).

e For X € Sch noetherian irreducible and d € N, we denote by Z(X) the group of algebraic cycles of

codimension d, which is the free abelian group generated by irreducible closed subsets of codimension
d.

e For K a field which is complete with respect to a p-adic norm, we consider Ox C K the subring of
K consisting of integral elements, that is € K such that |z| < 1.

— For X € PVar(K), we will consider X© € PSch /Ok a (non canonical) integral model of X,
i.e. satisfying X© @0, K = X

— For X € Var(K), we will consider X© € Sch /O a (non canonical) integral model of X, i.e.
X9 = XO\Z° for X € PVar(K) a compactification of X, Z := X\ X, where X© € PSch /O
is an integral model of X and Z€ € PSch /Of is an integral model of Z.



For X € Var(K), we will consider X© € Sch /Ok a (non canonical) integral model of X, we then
have the commutative diagram of sites

Xpet o XOret ot U = XO) = (t Q0. K :U ®0, K = X° ®0, K = X)

Xet r X(’),et

For X € Sch and p a prime number, we denote by c : X® — X the morphism in RTop which is
the completion along the ideal generated by p.

Let K a field which is complete with respect to a p-adic norm and X € PVar(K) projective. For
X© € PSch /O an integral model of X, i.e. satisfying X© ®0,. K = X, we consider the morphism
in RTop . .
ci=(cal): XP .= X%P g, K- X0, K =X.
We have then, by GAGA (c.f. EGA 3), for F' € Coho,(X) a coherent sheaf of Ox module,
¢ HF(XO, F) & HFY(XO®), #modF) for all k € Z, in particular
* k o>\ ~ k< o>

cHFMX, Q) S H (X(p),QX—(p))

for all k,1 € Z.

Denote by AnSp(C) C RTop the full subcategory of analytic spaces over C, and by AnSm(C) C
AnSp(C) the full subcategory of smooth analytic spaces (i.e. complex analytic manifold). Denote by
CW C Top the full subcategory of CW complexes. Denote by Diff(R) C RTop the full subcategory
of differentiable (real) manifold.

Denote Sch? ¢ RTop? the subcategory whose objects are couples (X, Z) with X = (X,0x) € Sch
and Z C X a closed subset and whose set of morphisms Hom((X’, Z’), (X, Z)) consists of f : X' —
X of locally ringed spaces such that f~*(Z) c Z'.

Let k a field of characteristic zero. Denote SmVar?(k) C Var?(k) C Sch? /k the full subcategories
whose objects are (X, Z) with X € Var(k), resp. X € SmVar(k), and Z C X is a closed subset,
and whose morphisms Hom((X’, Z’) — (X, Z)) consists of f : X’ — X of schemes over k such that
12z cz.

Let k a field of characteristic zero. For X, X' € Var(k), with X’ irreducible, we denote Z/%/X" (X’ x
X) C Z4,,(X’' x X) which consist of algebraic cycles o = >, njo € Zq,, (X’ x X) such that,
denoting supp(«) = U;a; C X' x X its support and p’ : X/ x X — X’ the projection, p?supp(a) :
supp(a) — X' is finite surjective. We denote by Cor SmVar(k) the category such that the objects
are {X € SmVar(k)} and such that Homcor smvar(e) (X', X) := ZfS/X,(X’ x X).

For X € Top and Z C X a closed subset, denoting j : X\Z < X the open complementary, we will
consider
F\Z/ZX = COHe(ad(j!,j*)(Zx) Zj!j*ZX — Zx) € C(X)

and denote for short vy := Y (Zx) : Zx — I'}Zx the canonical map in C(X).

For X € Var(k) and Z C X a closed subset, denoting j : X\Z < X the open complementary, we
will consider
I'}Zx := Cone(ad(jy, j*)(Zx) : Zx — Zx) € C(Var(k)*"/X)

and denote for short vy := v%(Zx) : Zx — I'}Zx the canonical map in C'(Var(k)*™/X). Denote
ax : X — Speck the structural map. For X € Var(k) and Z C X a closed subset, we have the
motive of X with support in Z defined as

Mz(X) := ax.T%axZ € DA(k).



If X € SmVar(k), we will also consider
ax3T'yZx = Cone(axy o ad(jy, j*)(Zx) : Z(U) — Z(X)) =: Z(X, X\ Z) € C(SmVar(k)).
Then for X € SmVar(k) and Z C X a closed subset

Mz(X) :=axiTya\Z = axyTyZx =: Z(X, X\Z) € DA(k).

We denote I"™ := [0,1]™ € Diff(R) (with boundary). For X € Top and R a ring, we consider its
singular cochain complex

* (X, R) := (ZHomme, (", X)¥) ® R

sing

and for | € 7Z its singular cohomology H'

sing (X5 R) == H"CE,,, (X, R). In particular, we get by
functoriality the complex

sing

O;(,Rsing € CR(X)a (U C X) = O:ing(Ua R)
We will consider the canonical embedding

C*12in7)0(X) 1 Cle (X, 2inZ) = Cfe(X,C), a = a® 1

sing sing

whose image consists of cochains a € C7__ (X, C) such that a(y) € 2inZ for all ¥ € Z Homr,p (I*, X).

We get by functoriality the embedding in C(X)

C*L2iﬂZ/C,X : C;(,QifrZ,sing — C;(,C,siny
(U - X) = (C*L2i7rZ/(C(U) : :ing(Ua 2Z7TZ) — :ing(Uv C))
We recall we have

— For X € Top locally contractile, e.g. X € CW, and R a ring, the inclusion in Cr(X)
cx + Bx — Ok, is by definition an equivalence top local and that we get by the small

X, R).

R sing
chain theorem, for all I € Z, an isomorphism H'cx : H'(X, Rx) = H!

(
sing
I()I .;( (S Dlﬁ(R), llle IeSlIiCti()Il Illa.[)

rx : ZHomDiﬂ'(R)(H*vX)v — G (X7 R)a W= w ((b = w(¢))

sing
is a quasi-isomorphism by Whitney approximation theorem.

We will use the following theorem of Voevodsky (see e.g. [5]): Let k a perfect field (e.g. k a field of
characteristic zero). Let F' € PSh(SmVar(k)). If F is A! invariant and admits transfers, then for
all j € Z, HE2,(F) € PSh(SmVar(k)) are A! invariant. That is, if F is A! invariant and admits
transfers then F is Al local.

We introduce the logarithmic De Rham complexes

Definition 1. (i) Let X = (X,0x) € RCat a ringed topos, we have in C(X) the subcomplex of

presheaves of abelian groups

OLx : Q% jog = %, s.t. for X° € X andp e N, p > 1,
Qg(,log(XO) =< dfoa/fou /\"'/\dfap/fapufak eI'(X°, 0x)" >C Q%(XO),

where Q% = DR(X)(Ox) € C(X) is the De Rham complex and I'(X°,Ox)* C T'(X°,Ox) is the
multiplicative subgroup consisting of invertible elements for the multiplication, here <, > stand for



(i)

(iii)

the sub-abelian group generated by. By definition, for w € Q% (X°), w € Q% log (X ?) if and only if
there exists (n;)1<i<s € Z and (fia, )1<i<s1<k<p € ['(X°, Ox)* such that

18,13 R>

w= " nidfia,/fion N+ Ndfia,/ fisa, € W (XO).

1<i<s

For p =0, we set Q%J% =7Z. Let f : X' = (X',0x/) = X = (X,0x) a morphism with X, X' €
RCat. Consider the morphism Q(f) : Q% — f.Q% in C(X). Then, Q(f)(2% 10g) C [+O2% 1og-
For k a field, we get from (i), for X € Var(k), the embedding in C(X)

OLx : Q% 105 = Q% = Q% y,,

such that, for X° C X an open subset and w € Q% (X°), w € ngog (X°) if and only if there exists
(ni)i<i<s € Z and (fi o )1<i<s,1<k<p € T'(X?,Ox)* such that

128,13 R>

w= Z nidfs.ar [ fian N Ndfia, ] fisa, € Q5% (X°),

1<i<s
and for p =0, Qg(,log :="1Z. Let k a field. We get an embedding in C(Var(k))
OL : QY 10g = Q7. given by, for X € Var(k),
OL(X) 1= OLx : QY 154(X) := T'(X, Q% 10g) = [(X, Q%) =1 Q9,(X)
and its restriction to SmVar(k) C Var(k).

Let K a field of characteristic zero which is complete for a p-adic norm. Let X € Var(K). Let
X9 € Sch /Ok an integral model of X , in particular X© ®0,. K = X. We have then the morphisms
of sites r : X — X and r : XPe — XOPe such that vxyo or =rovy. We then consider the
embedding of C(X°)

o— . L — ¥ O)® ° °
OLX = OLX oyl : QXct)log7O =T QXovet,log — Qxet)log — Qxet

consisting of integral logarithimec De Rham forms, with ¢ @ r*Q5

XO.et Jog — Q;{et7log- We will also
consider the embedding of C(Xovpet)

L . ° T * °
OL 0. = (OLxo pn)nen : Q)”((p),log,o " lgl VXOQXO’”/ZJ"Jog
neN
° R * [ )
— Qf(o,(p) = 1&1 ch)on,et/pn/(OK/pn)
neN

where we recall ¢ : XO:®) — X© the morphism in RTop is given by the completion along the ideal
generated by p. We then get the embeddings of C(XPet)

m o (OLX 4 I) . Q..Xpﬁt,log,(') ® Zp = Q..)(Pﬁt,log,o X @X — Q;{pct7 ('w & )\n)neN — ()\n)neN W

and

OLX(:D) = T*OLXO,(]J) : T*Q}((m’log70 — T‘*Q;ZO,(;:) — Q;A((p) = Q}((P)/K7
where we recall ¢ := (¢ ®o, K) : X® — X the morphism in RTop. Note that the inclusion
Qonvet7log/pn C Q;(Ove*/pn,log is strict in general. Note that

) kO pet
Sret log,0 = Vx Qxet 1og.0 € C(XPT),



but

L vx(Z/p" L) xe € C(XP), Q% ,, € C(XP), and
neN

* 7. * pet
0% logo =T l&n VxoQxo.et jpn 10g € C(XP)
neN

are NOT the pullback of etale sheaves by vx. We consider Sch™ /O := O(PSch? /Ok) C
Schft /Ox the full subcategory consisting of integrable models of algebraic varieties over K, where
O : PSch? /O — Sch! Ok, O(X,Z) = X\Z is the canonical functor. We denote by Var(K)Pe!
and (Sch™ /O )¢t the big pro-etale sites. We have then the morphism of sites r : Var(K)Pet —
(Sch™ JOx )P, We will consider the embedding of C((Sch™ /O )Pet)

OL 0y an * Qinog.0 = Dions for X € (Sch™ /O )P,

/K log,
OL /05c.an(X©) := OL 40,4, (X©) : Q% (XO®) 5 0%, ) (XOP)

X @) log,O
We get the embedding of C(Var(K)Pet)

OL/K’“" = T*OL/OK,an r Q;I?;og o= Q. on ‘—> Q. an

and its restriction to SmVar(K)P* C Var(K)Pet.

3 De Rham logarithmic classes

3.1 The De Rham classes of algebraic cycles vs De Rham logarithmic classes

Let X € Sch. Recall we have the canonical sub-complex OLx : Q% ,, < 2% in C(Xe) (c.f. definition
1). All the differential of Q% )., vanishes since by definition the logarithmic forms are closed. For j € Z,
the De Rham logarithmic classes consist of the image

HIOLx (HL, (X, % 105)) C HL(X, Q%) = H o (X).

The filtered complex I'(X, Eet (% et 100, F)) € Cra(Z) has its differentials at the E level vanishes since
the logarithmic forms are closed, hence we have a canonical splitting

Hit(Xa Q..X,log) @0<1<JH (X QX log)

Let X € Sch a noetherian scheme. We have by definition the exact sequence in C(X )

0— F* — 0% 29, Qx1og — 0

where F is a prime field (i.e. F = Q or F = Z/pZ for p a prime number). Hence H}(X,Qx 10g) =
H}(X,0%) and HY (X, Qx 10g) = HL(X,0%) =0 for ¢ < 2. Let X € Sch a noetherian proper scheme.
We have H(X, QY ,,) = 0.

Let k a field of characteristic zero. We get (see definition 1) the embedding in C(SmVar(k))

OL : QY o5 = Oy, given by, for X € SmVar(k),
OL(X) := OLx : Q9 1,,(X) := I'(X, Q% 1o5) = T'(X, Q%) =: Q7 (X).

We have also the sheaves

Oy, O;, € PSh(SmVar(k)), X € SmVar(k) — Ok (X) := O(X), O;(X) := O(X)",
(g:Y = X) = ag(X): Ox(X) = Oy (Y), Ox(X)* = Oy (Y)*



The sheaf O} € PSh(SmVar(k)) admits transfers : for W C X’ x X with X, X’ € SmVar(k) and W finite
over X" and f € O(X)*, W*f := Nw,x/(p% f) where px : W — X’ x X — X is the projection and
Ny, x: + k(W)* — k(X')* is the norm map. This gives transfers on Q}k,log € PSh(SmVar(k)) compatible
with transfers on Q}k € PSh(SmVar(k)) : for W C X’ x X with X, X’ € SmVar(k) and W finite over X’
and f € O(X)*,

W*df [ f == dW* f/W* f = Trw,x (px (df / f)),

where where px : W < X’ x X — X is the projection and Try,x, : Ow — Ox is the trace map. Note
that d(fg)/fg=4df/f + dg/g. We get transfers on

B2k 1ogr ®0, 2 € PSh(SmVar(k))

since ®(l@Q}k,log = H0(®é’l9}k)log) and ®}, Q, = H0(®é’le}k). This induces transfers on

and

/\lOkQ}k = COkeI‘(@]zc[l)m’[] ®lo_kl Q}k

[k

Brycit,... 1AL =(wOw —wRWRW')

.....

®52 1 10g) € PSh(SmVar(k)).

®rycqt,.... A =(w@uw —»wwew')

) ©0, 2, € PSh(SmVar(k)).

Let X € Var(k). We have by definition the exact sequence in C(X®)

di
0= k* = 0% =L Qx1og — 0

Hence H}, (X, Qx 10g) = HL(X,0%) and HL (X, Qx 10g) = HL(X,0%) =0 for ¢ < 2. For X € PVar(k),
we have H(X, Q% ,,) = 0.

e Let (X,Z) € Sch? with X € Sch a noetherian scheme and Z C X a closed subset. We have the

deformation (DzX,AL) — Al (DzX,AL) € Sch? of (X, Z) by the normal cone Czix — Z, ie.
such that

(DzX,A%)s = (X,2), s € ANO, (DzX,Ay)o = (Cz/x,Z).
We denote by i1 : (X, Z) < (DzX,A}) and ig : (Cz/x,Z) < (DzX,A}) the closed embeddings
in Sch?.

Let k a field of characteristic zero. Let X € SmVar(k). For Z C X a closed subset of pure

codimension ¢, consider a desingularisation € : Z — Z of Z and denote n: Z 5 Z C X. We have
then the morphism in DA (k)

Gzx : M(X) 2220 (Z)(e)[2d] 2% M(Z)(e)[2d]
where D : Hompa ) (Mc(Z), Mo(X)) = Hompa ) (M(X), M(Z)(c)[2c]) is the duality isomor-
phism from the six functors formalism (moving lemma of Suzlin and Voevodsky) and Z(n) :=
ad(m,n!)(a!XZ)l noting that ny = n. since n is proper and that a'y = a’[dx] and a!Z = a}[flz]
since X, resp. Z, are smooth (considering the connected components, we may assume X and Z of
pure dimension).

We recall the following facts (see [5] and [3]):

Proposition 1. Let k a field a characteristic zero. Let X € SmVar(k) andi: Z C X a smooth subvariety
of pure codimension d. Then Cz;x = Nz/x — Z is a vector bundle of rank d.



(i) The closed embeddings iy : (X, Z) — (DzX,A}) and io : (Cz/x,Z) — (DzX,A}) in SmVar? (k)
induces isomorphisms of motives Z(i1) : Mz(X) — My, (DzX) and Z(io) : Mz(Nz/x) =
My (DzX) in DA(k). We get the excision isomorphism in DA (k)

Pyx = L(ig) " o Z(i1) : Mz(X) = Mz(Nz/x).
We have
Th(Nz/x)o Pzx ov5(Zx) = Gz x = D(Z(i)) : M(X) — M(Z)(d)[2d].

(ii) For each j € Z, the excision isomorphism induced by (i)
HIQ(Pz,x) := H’ Ect(09,)(Z(i0)) o H? Eet (27,,)(Z(i1)) ™" -
Hpp (X) 3= HT2(X, Bt(Q%)) = Hpp z(Nzyx) = HT2(Ny ., Ea ()

preserve logarithmic De Rham classes, that is for eachl € Z,

HIQ(Py,x )(H/ OLx (HY (X, Q% 105))) = HOLn,, (H; 5 (Nz/x, U, o og)

Proof. (i): See [5].

(ii): The de Rham complex 09, € C (SmVar(k)) admits transfers using trace map for commutative rings,
that is Q* € C(Cor SmVar(k)) (see [7]) and the inclusion OL : Ql/k,log[_l] = Q7 in C(SmVar(k)) is
compatible with transfers. Since Ql/k,log € PSh(SmVar(k)) is A} invariant (Ogi = k* and for A € k* we
have d\ = 0) and admits transfers, for each j € Z, the presheaves Hg{lQl/k)log € PSh(SmVar(k)) are A},
invariant by a theorem of Voevodsky (c.f. [5] for example). It then follows from (i) (see [5] or [3]) that

H Quog(Pz,x) = H? Bet () 10g) (Z(i0)) 0 H Eet (2], 10g) (Z(i1)) " -

j—1 l ~ j—1 l
Hét,Z(Xv QX,log) - Hgt,Z(NZ/X’ QNZ/X,log)'

Hence,

HJQ(PZ,X)(H]OLX(Hé;é(X7 QlX,log))) = HjOLNZ/X (QIOg(PZ7X)(Hg;é(X7 QfX,log)))

. i1
= HJOLNZ/X(Hgt)Z(NZ,XuQINZ/X,log))'

Remark 1. Let k a field a characteristic zero.

(i) The statement of proposition 1(ii) also holds for the subcomplex Q;fzo — QY of closed forms

by the same argument since the inclusion Ql/’szo[—l] — Qf, in C(SmVar(k)) is compatible with
transfers.

(i) The statement of proposition 1(i) does NOT hold for presheaves which do not admits transfers
(they are A' invariant but not A' local in general). Note that the result of proposition 1(ii) does
NOT hold for the embedding in C(SmVar(k)), associated to an embedding o : k — C,

MO 1] = A%, X € SmVar(k), T(X, My )[~1] = T(X, Axgn)

of the subsheaf of harmonic differential forms, the sheaves of differential forms A € C(SmVar(k))
does NOT admits transfers (finite algebraic correspondences are not smooth and for f: X' — X a
morphism with X', X € Diff(R) wvector fields on X only lift if [ is a smooth morphism i.e. if the
differential of df is surjective), transfers maps are only defined on cohomology.
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Let k a field of characteristic zero. Let X € SmVar(k) and Z C X a smooth subvariety of pure
codimension d. We have for each j € Z, the purity isomorphism given by H’Q(Pz x) (see proposition 1)
and the cup product with the Euler class of of the normal tangent bundle Nz/x — Z :

HIQ(Pz,x) ((=)-e(Nz/x))~*
e

HIDR(Py,x) : Hbypy(X) Hpp 7 (Nz/x) H)2(Z).
Now, we have the following :

Proposition 2. Let k a field of characteristic zero. Let p: E — X a vector bundle of rank d € N with
X, E € SmVar(k) connected. Then

(i) the Buler class e(E) € Hply x(E) is logarithmic of type (d,d), that is e(E) = H**OLg(e(E)) €
le)dR,X(E) with G(E) € Hf)i(,et(E7 Q%,log%

(ii) the Euler class e(E) € Hj%dRX(E) induces for each i,j € Z an isomorphism
(=) - e(B) : HOLx (HL(X, Qy 1)) = H*MHOL(HL (B, Q1))
Proof. (i):Let X = U;X; an open affine cover such that E; := Ex, is trivial : (s1,---,8q4) : Ejx, —
X; x A? with s; € I'(X;, E). Then
e(E)x, = 0(ds1/s1 A+ ANdsa/sq) € H*OLg, (H%, (Ei, Q% 105))
where 0 : Hi™1(E;\ X5, QdEJOg) — HY (E;, Q%)log) is the boundary map. Hence
¢(E) € H*OLp(H"(E, HYQ 1,)) = H, x (B, Q% 10,) C HO(E, HYQ37") C Hpg x(E).

(ii):Follows from (i) and Kunneth formula for De Rham cohomology : let X = U; X; an open affine cover
such that E; := E|x, is trivial and consider the morphism of bi-complexes of abelian groups

(=) - e(B)) : OLx (T(Xo, Ect(Vy 10g))) = OLp(T(Es, Bt (1)) [2d].

By (i) an Kunneth formula for De Rham cohomology, ((—)-e(E)) induces an isomorphism on the F; level
of the spectral sequences for the filtrations associated to bi-complex structures on the total complexes.
Hence, ((—) - e(F)) is a quasi-isomorphism. This proves (ii). O

We deduce from proposition 1 and proposition 2, the following key proposition

Proposition 3. Let k a field of characteristic zero. Let X € SmVar(k) and Z C X a smooth subvariety
of codimension d. For each j € Z, the purity isomorphism

HIQ(Pz,x) ((=)-e(Nzyx)~*

j j j j—2d
HIDR(Pzx) : Hjp 5(X) H}p 7(Nz/x) H}Z24(Z)

preserve logarithmic De Rham classes, that is for eachl € Z,
HIDR(Pz.x)(H/OLx (H}; 7(X, 9 105))) = H OLz(HY (2.0 15))-
Proof. Follows from proposition 1(ii) and proposition 2(ii). O

Let k a field of characteristic zero. For X € SmVar(k), we have the cycle class map for De Rham
cohomology

Z € ZUX) = [Z) = H*Qvy)([2]) C HER(X), [2] € Hp2(X),
H*'Q(yy) : H12)dR,\2|(X) — HpR(X)
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where

Q(vz) = Hom(yz(Zx), Eet(Q%)) : T2(X, Eet(2X)) = T(X, Eet (2%))

and, as for any Weil cohomology theory, we have the isomorphism given by purity : if X° C X is an open
subset such that Z¢ := X° N Z has smooth components we have the isomorphism

H*'DR(Pzo x0) : Hpp 7/(X) = HpR | 70/(X%) = HER 70/(Nzex0) = Hpp(1Z2°)).

where the first equality follows from dimension reason : for X € SmVar(k) and Z’ C X smooth, we have
Hpp 7/(X) =0 for i <2codim(Z’, X) by the purity isomorphism H*DR(Pyz x).
The main result of this section is the following :

Theorem 1. Let k a field of characteristic zero. Let X € SmVar(k). Let d € N.

(i) The De Rham cohomology class of an algebraic cycle is logarithmic and is of type (d,d), that is, for
7 € Z4X)
(2] := H*Q(y2)([Z]) € H**OLx (HE(X, Q% 1op)) C HER(X).

(i) Conversely, anyw € H*?OLx (H% (X, Q%)log)) is the class of an algebraic cycle. Note that it implies
w E WQH%dR(X) as it is easily seen for d = 1 by the Chow moving lemma since j* : Pic(X) —
Pic(X) is surjective if j : X — X is a smooth compactification of X, X € PSmVar(k) and since
HL(Y, Q%’,log) = Pic(Y) for Y € Var(k).

(iii) We have HIOLx (H? (X, QlX)log)) =0 for j,l € Z such that 2l < j.

(iii)’ If X € PSmVar(k), we also have HIOLx (H3 (X, QlX)log)) =0 for j,l € Z such that 21 > j. That
is, if X € PSmVar(k), we only have logarithmic classes in bidegree (d,d) for d € N, in particular
there is mo non trivial logarithmic classes for odd degree De Rham cohomology H%dgl(X).

Proof. (i):We have
(2] == H*Q(v)([2]) = H*'OLx o H'Qjt, (v2)((2)) € HER(X), [Z] € Hey7/(X, Q% 10g)

where

Qd (W%) = HOm(W%(ZX)a Eet(ng,log)) : FZ(X7 Eet(Qg(,log)) — F(X7 Eet(Qg(,log)%

log

since if X C X is a Zariski open subset such that Z° := X°NZ has smooth components and Nzo/xo — Z°
is the normal tangent bundle, we have by proposition 3 the isomorphism

HYDR(Pgo x2) : H¥OLx (H 17)(X, W 10g)) = H2OLx(HE |70 (X, 0% 105)
H*'OLx(HE, | 70)/(Nzo)xo, Q?vZO/Xo,log))-
(ii):By assumption we have
w=H"OLx(w) € Hx(X), w € HL(X, Q% 10z)

As Q%)log € PSh(X*) consist of a single presheaf, that is a complex of presheaves concentrated one
degree, there exist an etale open cover r = r(w) = (r; : X; — X)i<i<s, depending on w, such that
riw =0 € HL(X,, le(,log) for each i. Choose i = 1 and denote j : U := r1(X;) < X the corresponding
(Zariski) open subset. As Q§(710g has no torsion and admits transfers, we have j*w = 0 € HZ (U, le(,log)'
Hence, denoting D := X\U, we have

w = H*OLx (w),w € H'Q, (7)) (He, p (X, 0% 1og))-

We may assume, up to shrinking U, that D C X is a divisor. Denote D° C D its smooth locus and
l: X°— X a Zariski open subset such that X° N D = D°. We then have by proposition 3

"w € H* DR(Ppo xo)(H**?OLpo(H& 1 (D°, Q5. 1,)))-
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We repeat this procedure with each connected components of D° instead of X. By a finite induction of
d steps, we get
w = szOLX (w)v w e HQf! (7%)(Hgt,Z(X7 Qg{,log))v

log

with Z := Dq C --- C D C X a pure codimension d (Zariski) closed subset and w = Y, n;[Z;] € HER(X),
where n; € Z and (Z;)1<i<t C Z are the irreducible components of Z, using in the final step the
isomorphism

Helt(DgflngZ,plOg) = Helt(DgfhoBd,l) = Pic(Dg_).

(iii):Let j > 2. Let w € HIOLx(HI; ' (X, leﬁlog)). By the proof of (ii) there exists Z C X a closed
subset of pure codimension [ such that

w=HOLx(w), w e H ™'y (V1) (H, (X, Uy 105):
By a finite induction of dx — [ steps, restricting to the smooth locus of closed subsets of Z, w = 0 since
by proposition 1(i), H'OLx (Hgt_é/ (X, leylog)) =0 for all Z’ € SmVar(k) such that codim(Z’, X) > I.
(iii):Let j < 2l. Let w € HIOLx(H? (X, leylog)). By the proof of (ii) there exists Z C X a closed
subset of pure codimension j — [ such that

w=(HIOLx o HI'Q,(v%))(w), w € H (X, 10,),

For Z' C X a closed subset of pure codimension c, consider a desingularisation e : 7' — Z' of Z' and
denote n : Z' % Z' € X. The morphism in DA (k)

Z(€)

ZE, M(Z) ()2l = M(Z') (e[l

GZ/,X : M(X)

where D : Hompa () (M(Z'), M.(X)) = Hompa (1) (M(X),M(Z")(c)[2¢]) is the duality isomorphism
from the six functor formalism (moving lemma of Suzlin and Voevodsky) and Z(n) := ad(ni,n')(a'yZ),
is given by a morphism in C(SmVar(k))

Gz x : Lun(X) = Eoy(CuZun(Z"))(¢)[2¢].

Let [ : X° — X be an open embedding such that Z° := Z N X? is the smooth locus of Z. We then have
the following commutative diagram of abelian groups

i1 r* il vo 0 141
0 Hgt,Z(X7 Q{X,log) - Hgt,ZO (X 7Q{X,log) — H] \ (X7 Q{X,log) -

et,Z\Z°
Q(GZ’X)T DR(PZD,XD)T Q(GZ’X)T
2l—j I o 2l—j %) 2l—j
0—— Hgt(ngz,lng) —=H%(Z ,on)fog) —>He1t,Z\Z° (Z7QZ,lng) —_ .

whose rows are exact sequences. Consider

* o j—1 0 o o 2l—j
Pw = DR(Pzo xo)(w®) € H, 7,(X%, Q% 10g), w® € HY(Z°, Q50 1..).

Since dl*w = 0 € Hé;g{lzo (X, leylog), we get using proposition 3 applied to ((Z\Z°)°?, X°°), where

(Z\zZ°)° C Z\Z° is the smooth locus and X°° C X is an open subset such that X N (Z\Z°)° =
X°0n (2\2°), |
o’ =0¢€ HY, 5 2.(Z, Q?);Jg),

since Hy, (Z\Z")\(Z\ZO)O(Z ) Q2Z{1_0jg) = 0 for dimension reasons, that is
w = Q(GZ,X)(w), withw € H%(Z, QQZli)Jg)

Hence w = 0 since H*(Z',Q%, |..) = 0 for all k > 0 and all Z’ € PVar(k). O

\log
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3.2 Complex integral periods

Let k a field of characteristic zero.
Let X € SmVar(k) a smooth variety. Let X = U$_; X, an open affine cover. We have for o : k — C
an embedding, the evaluation period embedding map which is the morphism of bi-complexes

ev(X)s : T(X,,Q%,) = ZHOleﬂ‘(H. X&YW eC,
wlI IS I‘(XI,QZXI) — (ev(X)lI(wlI) : qSlI IS ZHomDig(Hl,ng})v QC+— evl (;5] / ¢1 wI

given by integration. By taking all the affine open cover (j; : X; — X) of X, we get for o : k — C, the
evaluation period embedding map

ev(X):=  lim ev(X)s : lim I'(X,., Q%,) — lim Z Homp;gr) (I*, X&Ty)Y @ C

It induces in cohomology, for j € Z, the evaluation period map

Hiev(X) = Hev(X)s : Hhp(X) = HT(X., Q%) — H  (X&" C)= H7 (Hompyg(r) (I°, X&) @ C).

sing

which does NOT depend on the choice of the affine open cover by acyclicity of quasi-coherent sheaves on
affine noetherian schemes for the left hand side and from Mayer-Vietoris quasi-isomorphism for singular
cohomology of topological spaces and Whitney approximation theorem for differential manifolds for the
right hand side.

Proposition 4. Let k a field of characteristic zero. Let X € SmVar(k). Let o : k — C an embedding.
(i) Let w € Ho(X) = H/(X,0Q%) = pet(X 0%). If
w e HJOLX( pet(X(C’ QXet log))
then Hev(X)(w) € Hsjmg(X(‘cm, 2irQ).

(1) Let p € N a prime number and op : k — C, an embedding. Let j € Z. Let w € H%)R(X) =
(X 95 ) = pet(X 95 ) ]f

w = 7Tk/<Cp (X)*’LU € H]OLX( (X(C nger ,log, O))

then Hiev(X)(w) € Hgmg(Xg", 2iwQ). Recall that Hfoet(X(c, QXP‘” log O) =W, (Xc, Q;(d log,0)-
Proof. (i): Let ‘ ‘ ‘
w e Hi o (X) = (X, Q%) = HIT(X,,Q%).
where (r; : X; = X)1<i<s is an affine etale cover. Let X" = U]_;D; an open cover with ID; ~ D(0, 1)<

Denote jr; : X; NDy; < X7 the open embeddings. Then by definition HYev(X)(w) = Hﬂev(X‘m)(]f o
an, w) with

jaoank, w € HIT(XJE N Dy, Qxgn).
Now, if w = H'OLx (H,(Xc, QX@' log)): We have a canonical splitting

J
Z W Zw” b€ Hyp(Xe), wi' ™' € HIH(Xe, et o), w771 i= HIOLyee (wy? ™).
=0
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Let 0 <1 < j. Using an affine w-contractile pro-etale cover of X, we see that there exists an affine etale
cover r = r(w ) = (r; : X; = X)1<i<n of X (depending on w"/~!) such that

w = (Wi )1] € HHOLxer (HI'T(Xc,0, O 1)) € BT (Xc 0, Q%)

Note that since X is an algebraic variety, this also follows from a comparison theorem between Chech
cohomology of etale covers and etale cohomology. By [4] lemma 2, we may assume, up to take a desingu-
larization 7 : X’ — X of (X,U;(r;(X\X;))) and replace w with 7*w, that r;(X;) = r(X;(w)) = X\D;
with D; C X smooth divisors with normal crossing For 1 <[ < j, we get

w[ijjl deVl/fVl '/\dfuz/fuz EF(XCJvaXC)'
For [ =0, we get ‘ ‘
w”’ = [(A1)] € HT(Xc,1,Ox, ,), A € I'(Xc,r, Zxgt,)

There exists k' C C containing k such that wlL’j;l e N Xy 1, Qle/) for all 0 <[ < j. Taking an embedding
o’ : k" — C such that U|/k = ¢, we then have

jsoank, w=j;((mi - wi’oci<s) = (wi'y irs € HIT(XEE NDy, Qen).
where for each (I, J,1) with cardl + cardJ +1 = j,
wilny = i € DIXFENDy, Qlyan)-
We have by a standard computation, for each (I, J,1) with cardl + cardJ +1 = j,
He(XTeNDy, Z) =< 315+, Yeardl >,

where for 1 < i < cardl, v; € Hom(A*, X'tz N D) are products of loops around the origin inside the
pointed disc D*\0. On the other hand,

l l ¥ an .
o wlry=35(Z, dfu/fo Ao Ndfu /) € DX N Dy, Qen) for 1 <1<,
b w%JIJ = \; is a constant.

Hence, for p € P([1,---,s]) with carduy = I, we get, for | = 0 HIGU(X((Cln)I,J(’LU%)jI)J) = 0 and, for
1<i<y,

Hlev(X&);, J(wlL ) 25,,#2271' € 2inZ.

where 7y, := Y, - - vu,. We conclude by [4] lemma 1.
(ii):It is a particular case of (i). See [4] proposition 1. O

Let k a field of characteristic zero. Let X € SmVar(k). Let X = Uj_;X; an open affine cover with
X; = X\D; with D; C X smooth divisors with normal crossing. Let ¢ : k& — C an embedding. By
proposition 4, we have a commutative diagram of graded algebras

H*ev(X)

Hpr(X) H,e (XE",C)
CT TH*C*L%'WQ/C(XEn)
* * . * H"ev(X) * an o,
H OLx(Het(X QXS' log)) N HDR(X) Hbmg(X(C ,2imQ)
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where
C*LZiﬂ'Q/C (Xgn) : s.ing (Xgna 22#@) — s.ing (X(E:ln, (C)

is the subcomplex consiting of v € €7 (X&", C) such that a(y) € 2inQ for all v € C'Js»ing(X(‘Cm, ). Recall

sing
that

H*ev(Xc) = H*RU(X&", (X)) o [T(X&", Esar(Qany))) : Hpyp(Xc) = HZ, o (XE, C)

sing

is the canonical isomorphism induced by the analytical functor and a(X) : C xan < Qg%m, which gives
the periods elements H*ev(X)(Hpz(X)) C HY, . (X&",C). On the other side the induced map

sing

H*ev(Xc) : H*OLx (Hy(Xe, Vet 1)) = H taing/c Hipg(XE", 2iQ)

sing

is NOT surjective in general since the left hand side is invariant by the action of the group Aut(C) (the
group of field automorphism of C) whereas the right hand side is not. The fact for a de Rham cohomology
class of being logarithmic is algebraic and invariant under isomorphism of (abstract) schemes.

Corollary 1. Let X € PSmVar(C). Then the Hodge conjecture holds for X if and only if the Hodge
classes are given by logarithmic De Rham classes.

Proof. Follows from theorem 1. O

3.3 Rigid GAGA for logarithmic de Rham classes

Let K a field of characteristic zero which is complete for a p-adic norm. We consider Sch™™ /Ok =
O(PSch2 /OK) C Sch/? /O the full subcategory consisting of integrable models of algebraic varieties over
K, where O : PSch? /Ox — Sch’' Ok, O(X,Z) = X\Z is the canonical functor. Denote by Var(K)P¢!
and (Sch™ /Ox)P¢* the big pro-etale sites. We then have the morphsim of sites r : Var(K)P** —
(Sch™ /O )Pt We will consider

Q;}?ﬁog,(’) € O((SChlnt /OK)pet)a XO = Q}((p)ylogﬁo(XO)(p))a (f : XI — X) — Q(f) = f*

and the embedding of C'(Var(K)Pe!) (see definition 1(iii))

OL := OL /K an : T*Q;;ﬁog,o — Q;;n, for X € Var(K)P*,
OL /K ,an(X) := OL 5 (X) : lim Q (X)) = 0%, (X)),
XOE(SChint /OK)pCt,XOXoKK:X

./\
X (@) log,O0

and their restrictions to SmVar(K)P¢* C Var(K)P¢'. Denote FSch /Ok is the category of formal schemes
over O. The morphism of site in RCat given by completion with respect to (p)

¢:FSch /O — Var(K), X —» X := XOWP g, K, X© e Sch™ /O, st X° ®o, K = X
induces the map in C(Var(K)P¢')

¢ QY = QU= Q" for X € Var(K), ¢ Q% (X) = Q%,, (X)),

which induces for each j € Z and X € Var(K) the morphism

¢ Hyp(X) = H

pet(XaQS() _>Hj

pet

(X,0%,.,) =H

X () pet (X(;D), Q.A )

X (»)

which is an isomorphism for X € SmVar(K) or X € PVar(K) by GAGA (c.f. EGA 3) and the properties
of w-contractile rings (for the pro-etale toplogy ¢, = Re.). On the on the other hand, it is well-known
(see [8]) that for X € SmVar(K)

J
Hpet

(j((p)vgs (p)) — H

% J‘t(f(@ksz;m), that is, HY (X, Q%)) = H/,(X,0%,,,).

e pet X® X (®)
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We have also the sheaves

0,0" € PSh(Var(K)), X € Var(K) = O(X) := lim O(X}},.), 0" (X) := lim O(Xf).)",
N

The sheaf O* € PSh(SmVar(k)) admits transfers : for W C X’ x X with X, X’ € SmVar(K) and W
finite over X’ and f € O(Xgn)*, W*f = Nw,x/(pXx f) where px : W — X’ x X — X is the projection
and Ny/x: @ k(W)* — k(X')* is the norm map. This gives transfers on Q}}?ﬁog,(’) € PSh(SmVar(K))
compatible with transfers on Q}I?n € PSh(SmVar(K)) : for W € X’ x X with X, X’ € SmVar(k) and W

finite over X’ and f € O(Xg)n)*7

W*df ) f == dW* f/W* f = Trw,x (px (df / f)),

where where px : W < X’ x X — X is the projection and T'ry,/x/ : Ow — Ox is the trace map. Note
that d(fg)/fg=df/f + dg/g. We get transfers on

®g, Y @L Q1" ¢ PSh(SmVar(K))

/Klog, 07 Z O™ /K
since @F, QL = HO(@E'0ben ) and @L Q%" = HO(@%'0™). This induces transfers on
Qp™"/ K log,0 Qp "/ K log,0 o™ /k T o /K
! ’
. 1,an o -1 ~1,an Dryciy,... . 1AL =(wRUW —wWRWRW') I 1,an
/\Qp /K,log,O " COker(@bC[l »»»»» ] ®Qp /K ,log,O Qp /K,log,O)

€ PSh(SmVar(K)).

and

) @k Q)" € PSh(SmVar(K)).

l l,an ,__
NAQ) := coker(®r,cpn oYk

O /K n®

.....

The result of this section is the following ([4] proposition 2 (i)), we recall and give some precisions to
the proof :

Proposition 5. Let K a field of characteristic zero which is complete for a p-adic norm. Let X €
PSmVar(K). Let X© € PSch /Ok such that X© ®0, K = X. We have then the morphism ¢ : X — X

in RTop given by completion with respect to (p). For each j € Z, the isomorphism ¢* : Hg)et(X, Q%) =
Hf)et (X, Q;A((p)) and its inverse preserve logarithmic classes, that is for each j,1 € Z,
¢*(H (m o (OLx © I))(Hyet (X, Qxpet tog.0 @ Zp))) = HOL g (Het (X, ) 105 0))
is an isomorphism.
Proof. Consider, for j,l € Z, the presheaf
LY = HIOL k¢ an (H T B} Q53 , o) € PSh(SmVar(K)).
By definition, for X € SmVar(K),
LY7H(X) i= HIOL g gn (H? ™ Hom(Z(X), By (r* Qg o 0))) = HIOL g (Hpe (X, Q) 104 0))-
Consider also for X € SmVar(K) and Z C X a closed subset,
l,j—1 j j— . *yl,an j j—1
LY N(X) = HOL kg 0n(H' "' Hom(Z(X, X\ Z), E3,, (r*Q ieog.0)) = H OL g (Hy, (X, QlX(m)logp)).
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For the second equalities of L/~!(X) and LlZ’jfl(X), note that

l,an *
aetOL/K,an( Q/K log, (’))IXT"” = aetOLX(p) (T QX(F)Jggy(’))?

where XP¢* C Var(K )P is the small pro etale site and ae; : PSh(X?¢) — Shv,(XP°") is the sheaftifica-
tion functor. For I,n € N, consider the presheaves in (Sch”* /O )Pt

OL/OK,[)” : Ql/(OK/p"),log — Ql/(OK/p")’ for XO S (SChint /O )pEt
l Oy . o l Oy .
Q/(OK/p"),log(X ) = QXO/;D",log(*XV ) — Q/(OK/;D")(X ) = QXO/pn (X )

which induces the presheaves in SmVar(K )P
OL/(OK/;D") = T*OL/OK,])" : T*Ql/(OK/p"),log — T*QI/(OK/;D")'

% l l % l .
Note that by definition Q/(o Jpn)dog = V I/*Q/(OK/;D"),log and Q/(Ok/p”) =v V*Q/(OK/pn), where v :
(Sch™™ /O )Pt — Sch™ /Og. We have then for X € SmVar(K)

LYH(X) = HjOLX(P)(@Hgt_l(X7Qon/p",log,O))
neN

HjOL/K,an(l.&l HI Hom(Z(X, X\Z)v Ee.t(T*Ql/(OK/p"),log)))'
neN

We have for X € SmVar(K) and Z C X a closed subset,

Lléj_l(X) = H’ OLX(P) LH;é X QXo/p Jlog, o))
neN
= HjOL/K,an(l.gll\]Hj_lHom( (X X\Z) (T Q/(OK/p )log)))
ne

The presheaves Ql/(OK/p"),log € PSh(SmVar(K)), I,n € N, are A! invariant and admit transfers. Hence
by a theorem of Voevodsky (c.f. [5] for example), Ql/(oK/pn),log € PSh(SmVar(K)), [,n € N, are A! local

since they are A! invariant and admit transfers. This gives in particular, for Z C X a smooth subvariety
of (pure) codimension d, by proposition 1(i) an isomorphism

(@0 /pmya0e(Pz.x))nen : LY THX) 5 LY I (Ngyx) & LE477174(2).
Let

a=0Lgq (a)€e LM7H(X) = HIOL ) (Hi l(X 0%

pet X (@) log, (9)) =pfi HOIH(Z(X) E®

pet

(’I“ Ql/?(nlog O))

Let r=(r;): Y := @iel U; - U — X a pro-etale map where U is an affine open subset such that there

exists an etale map e : U — T C A% and Y is w-contractile such that 7;(Y(0)) = U, where Y© C Y
are the closed points. As Q! / K"I og,© CONSists of single presheaf, we have

rfa=0¢ H%,R(Y(p ) = HJQ;((p)( )= pet(y Q%)

that is o
r*a = 0= [0(Nn)nen] = [(OMn)nen] € H{)R(Y( ), With (7n)nen € QX(p)( )-

Denote j : U — X the open embedding. Consider

J = [(wn)nen) € Hhp(UP) = HIQS,

X(p) (U) Hpet(U Q.

X(p))
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Let n € N. There exists i, € I (depending on n) such that n, = 7} 7,, with 7, € Qj);r(i)(Uin). Then,
there exists a;; : Uj, — Us,, jn,as; € I such that

T;nwn = a:]aﬁn + a/Bn € Q;(O/p" (an)

Since e : U — A% is an etale map, the divisors, hence the closed subset of U are given by irreducible
components of closed subsets given by global equations, hence

W = (i + ) € Vo (U).
Hence j*a =0 € LY~Y(U). Let 7o : Yo — U be a pro-etale cover by w-contractile schemes. Then,

jra=(0;) € H_ (U, Q%

pet X(P)710g70) = Hj_ll—‘(yn Ql )

X®) log,©
Since j*a =0 € L=4(U), we have

9[ = él,IYI + a'}/[ 6 F(YI7Q§((;:))7

with I ¢ I', 6p € I‘(Yp,QlX(p)) and y; € I‘(YI,Q?{F&)). Since the closed subset of U are given by

irreducible components of closed subsets given by global equations, we get ;7 = 0 r'|y; and

Jra=0.0r) =0 Hy' (U.Q% ), o) = H T (Ye, Qs 10, 0)-

Considering a divisor X\U C D C X, we get

e +l,an 1,51
o= H’ lE:Det(T Q/K,log,@)(ﬁyg))(a)v a€ Ly (X).

Similarly to the proof of theorem 1, we get by induction (restricting to the smooth locus of the divisors)
a closed subset Z C X of pure codimension ¢ = min(l, j — [) such that

a=H"'E}

pet

(T*Ql/?g,llog,o)(’yg)(a)’ = LlZJ_l(X)_

Hence, as in the proof of theorem 1,
o if j # 2], a =0, we use the fact that X is projective for j < 2,

o if j =2, o € B1<i<sZp[Z;], where (Z;)1<i<t C Z are the irreducible components of Z.

4 Tate conjecture

Let k a field of finite type over Q. Denote k the algebraic closure of k and G = Gal(k/k) the absolute
Galois group of k.

Let X € SmVar(k) be a smooth variety. Let p € N a prime number. Consider an embedding
op : k — C,. Denote I%gp C C, the p-adic completion of k& with respect to 0;,. We have the commutative

. . N an,pet
diagram in ClB%drfil,an (X(Cp )

a(X) R
(Bdr,ch ) F) (QXCP s Fb) ®OXCP (OBd’I‘,X@p R F)
L’Xgﬁt::ml,l OLx®I:=(W®An)neNs (w®An)nen
g LXpet::(I,O)
Cp .
@ch (QXCP Jlog, O ® Zpu Fb)
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Consider an integral model X ]S) € Sch™ / O, ofX; . IfX 1? has good reduction modulo p, we have
op op op op
(see e.g. [1]) the embedding in C’((Xg) YFalty
op

CY(X) :Bcris,Xfc — ao*Q;(o,. ®OXO OBCT‘iS,X;
(Tp 7 o

kgp P

which is a filtered quasi-isomorphism compatible with the action of Gal(C,/ l%gp) and the action of the
Frobenius ¢, where (X ]? yFalt denote the Falting site.

For k a field of finite type over Q and X € SmVar(k), we denote §(k, X) C N the finite set consisting
of prime numbers such that if p € N\d(k, X) is a prime number, k is unramified at p and there exists an
integral model X 1? € Sch™ / O;. of X; with good reduction modulo p for all embeddings o, : k — C,,

op 9p op

I;gp C C,, being the p-adic completion of k£ with respect to op.

Remark 2. To see that 0(k, X) is a finite set, considering k = ko(x1,- - ,2q)(Tqy1) where x1,---xq are
algebraicaly independent and kg is a number field one can take an integral model Y — Oy lx1, -+ , xat+1]/fa+1
of X, a desingularization of Y — Y of Y and then see that §(k, X) is contained in the discriminant of
the family Y' —Y — Oy, [21,- -, %as1]/ far1-

Let X € PSmVar(k) be a smooth projective variety. Let p € N\d(k, X) a prime number. Consider
an embedding oy, : k < C,. Then X;  has good reduction modulo p and let Xf? € PSch /Okg be a

P

smooth model, i.e. Xf? ®o, IACUP = X; and Xf? is smooth with smooth special fiber. The main
op p op op

result of [1] say in this case that the embedding in C’((Xg) yFalt)
op

CY(X) :Bcris,Xfc — ao*Q;(o,. ®OXO OBCT‘iS,X;
(Tp 7 o

kgp P

induces a filtered quasi-isomorphism compatible for each j € Z, a filtered isomorphism of filtered abelian
groups

HIiT(ax ,Beris) * ; .
cris,fc(,p X—) Hgt((X)Fa t)(ch's,Xfcgp )

HIRD(XY ,a(X))
Ip

H/Ra(X) : H,(Xc,, Z,) @z, B

H%)R(Xk ) ®

op k(,p cris,k(,p

compatible with the action of Gal(C,/ /%gp) and of the Frobenius ¢,.

Definition 2. Let k a field of finite type over Q. Denote k the algebraic closure of k and G = Gal(k/k)
the absolute Galois group of k. Let X € PSmVar(k). Let p € N\o(k,X) a prime number. Consider
an embedding o, : k — C,. Denote ]Afgp C C, the p-adic completion of k with respect to o,. For
o€ Hgt(X@p,Zp), we consider

w(a) == H/Ra(X)(a ® 1) € Hhp(X; )5 By j .
the associated de Rham class by the p-adic periods. We recall
HIRa(X) : H),(Xc,,Zp) ®z, B = HOp(X;, ) ®

crzs,k(,p op kdp crzs,k(,p

is the canonical filtered isomorphism compatible with the action of Ggp and with the action of the Frobenius

bp-

We recall the following result from Illusie:
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Proposition 6. Let k a field of finite type over Q. Let X € SmVar(k). Let p € N\do(k,X) a prime
number. Consider an embedding oy : k — C,. Denote k,, C C, the p-adic completion of k with respect
to op. Consider XQ € Sch™* /OA a smooth model of Xj_ o i particular XQ ®o;_ l%,,p = X3,

9p G'P p

and XO is smooth with smooth special fiber. Assume there emst lifts ¢n : XO /p — XO /p of the
Frobemus o: XO /p — XO /p, such that for n’ > n the following diagram commutes
p"- /'

0—>OXo /p" “n —>OXo v w —>=0x0 ;pn —>0
ko

qbn’nT ¢HIT (lbnT
n /pn —n

p

0—>OXO /pn/,n —>OXO / o —>OX1?<, Jpn ——0
Letl € Z. For each n € N, the sequence in C(Xg’et)
0 0! OLx0/pn 0! pn—1I el 0

— ——
XO [pnlog XO Jpn X0 fpn
ko ko ko

is exact as a sequence of complexes of etale sheaves (i.e. we only have local surjectivity on the right).
Proof. Tt follows from [6] for n = 1. It then follows for n > 2 by induction on n by a trivial devissage. 0O

We have the following key proposition (the projective case of [4]), we state and prove it for smooth
projective varieties, the case for smooth varieties is obtained in the same way using a smooth compacti-
fication with normal crossing divisors. The projective case suffices for our purpose:

Proposition 7. Let k a field of finite type over Q. Let X € PSmVar(k). Let p € N\d(k, X) a prime
number. Consider an embedding o, : k — C,. Denote k C k,, C C, the p-adic completion of k with
respect to o,. Consider XO € PSCh/O a smooth model of X; , i.c. X]gg ®o, ]%Up = X;. and

op Tp op Tp k P
XO 18 smooth with smooth special fiber.

Up

(i) Let j,l € Z. We have, see definition 1(iii),

F'Hpp(Xy,, ) 0V HIRa(X) (), (Xe,, Zy)) = ()7 (HIOL g (B (X5, 5500 )

c H%)R(ngp) ®;, B

op cris,kap ’

x®
[

where we recall ¢ : Xép) — X is the completion with respect to (p), and
op Ip

HJ

pet

(X;, p,Qg(A )—>HJ

pet

(Xk op Q;A(Ep) )

kap kdp

is an isomorphism by GAGA and the properties of w-contractile open covers.

(i1) Let j,1 € Z. We have, see definition 1(iii),
P Hha(Xy,,) 0 HRa(X) (X, 2)) = HIm o (OLx © D) (X O g0 ©2)

C Hpp(X;, )@, B

cris,kap ’
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(1)’ For a € Hgt(X@p,Zp) such that w(a) € FlHi)R( ) (see definition 2), there exist

(Ni)i<i<n € Zyp and (wri)i<i<n € Hpet(XCp,Q;(iJogyo)
such that

w(a Z \i -wr; € Hpet(ch,Q'>l )= FZH%,R(XCP), wr; = H'OLx (wr;).
1<i<n

Proof. (i): Consider ¢ : X f P X O the morphism in RTop which is the formal completion along the

ideal (p). Take a Zariski or etale cover r = (r; : X; — X )1<i<,r such that for each ¢ there exists an etale
map X; — Axi. Then, by [1], we have for each i explicit lifts of Frobenius ¢!, : Xiofc /" — Xl_ol% /p"
Koy Koy

of the Frobenius ¢ : Xiofc /p— Xl_ol% /p, such that for n’ > n the following diagram commutes
ko, Koy

p’n.' /pn —n
0 ——Oxo Jpn!—n —> Oxo St T OXO
ikoy ikop i kop

iz’nT ¢:L’T qb:Ln,T
pr- /pn —n

0—— OXOA Jpr!—n > OXO Jpn! T OXO

ikop i,fcn-p ikop

/pn —— 0

/pm —>0

and such that the action of ¢! on Q9 is a morphism of complex, i.e. commutes with the differen-

Xffc(rp /p"
tials. On the other hand, by [6], we have action of the Frobenius on H%,R(X,; )= H%,R(XO ) ®o, l%gp
op op
by
) ¢W(Xk ) )
qS:H{)R(XO )—>HJ(X WS )—>HJ(X WQo ) = Hpp(XD )
kop kgp 9p
We then have the following commutative diagram, where R :=[1,...,7] and X := X3 Xx -+ xx X,
Lipi=1(y O 9 Lryd o i l o I
F'Hpp (XRJ%UP) FH]DR(X;;%) Diz I H]DR(X )
1—¢" I-¢ I1—¢
i—1 o j i j Ty
————=F'H], (ng ) ———> FlH]J:,R(XIgzp) —— @l F'H] ,(X° )——s -
HI™'r"OL Lo, () Hr*OL Lo, () Hr*OL Lo, ()
R.kop ikop ikop
-1 o>l d o>l r o>l I
e— Hi)et (XRJACUP’ ) o O) — > Hpet( Fop QX_ET’) log O) — ®_ 1Hi)€t( = ) - ...
o, 1108 o, 108

kap’ X}{cp) Jlog,©
‘ 4 (1)
whose rows are exact sequences. By [1], o € H,(Xc,,Zy) is such that w(a) € FZH%,R(X,;U ) if and only
if

w(a) € ker(I — ¢ : FUHL o(XE ) = FUHLR(XP ).

ko, ko,
On the other hand, for each I C [1,...,r], the sequence in C’(X?’pet)
Ty T L=(oh-D)
o>l kop o>l ¢ —L:=(dp—LDnen  ~e>i
ey ——
0— QX(p) log,O 92 ) Q°; <0 —0
ko, ’ ’ I,fcdp 1 k(,p
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is exact for the pro-etale topology by proposition 6 and since for each I,n € N the map in PSh(XP¢)
Q(/p) : Qfxg Jon QfX;? Jpn+1

are surjective and since the pro-etale site is a replete topos by [2]. Hence, for each I C [1,...,7], by
applying 7* where r : X" — Xlo’pet7 the sequence in C(X?)

T*OLXEQ’(p)

> ko > T —I:=(¢} —Dnen >
0— Q% — Q0 0l =0
X®) 1og.0 X0 @ :(P)
I,kap’ ’ Lkoy Lkoy

is exact for the pro-etale topology. Hence the columns of the diagram (1) are exact. This proves (i).
(ii): Follows from (i) and proposition 5.
(ii): By (ii), if (5 : Xi = X)1<i<r is a w-contractile affine pro-etale cover

w(@) = (Y A wiin)scp e earas=; € HD(X g smo(OLx @) (HT(X, 5 Q%" 10, 0®Zy)),
1<i<ny P
with wr;; € I‘(XJ,Q;(Z;/ 710g70), "> 1 and Ay € Z,. Since w(a) is a Chech etale cycle (i.e. closed for

the Chech differential) without torsion and since the topology consists of etale covers of X € PSmVar(k)
(which we way assume connected), ny = n and \;y = \; € Z,, for each J, which gives

w(a) = Z N - wr; € HZ)et(XCp?Q;(%lp) = FlH%)R(XCp)’ Wy, 1= HjOLx(’wLi).

1<i<n

We also have

Proposition 8. Let k a field of finite type over Q. Denote k the algebraic closure of k. Denote G :=
Gal(k/k) its absolute Galois group. Let X € PSmVar(k) a smooth projective variety. Let p € N a
prime number. Consider an embedding o), : k — C,. Denote k C l;:gp C C, being the p-adic completion
with respect to the p adic norm induced by o,. Then G'UP = Gal((Cp/lAfUp) C G = Gal(k/k). Let
a€ Hgt(ch,Zp). Consider then its associated De Rham class (see definition 2)

w(a) == HRa(X)(a® 1) € Hx(Xc,) @c, Barc,-

Then o € H2,(Xc,, Z,)(1)%"» if and only if w(a) € F'H) (X, ) = F'H}p(Xe,) N Hpyp(X;, ). That
is we have

H(Xe,,Zy) (1) @72,Q, =< F'HL p(X; )NH!Ra(X)(H2,(Xc,,Zp)) >q0,C HLY(Xc,, Zp xet)@Barc,,

op
where < — >q, denote the Q, vector space generated by (—).

Proof. Follows immediately from the fact that H JRa(X) is a filtered quasi-isomorphism compatible with
the Galois action of G, by [1]. O

These propositions, together with the results of section 3 implies the Tate conjecture :

Theorem 2. (i) Let k a field of finite type over Q. Let X € PSmVar(k). Let p € N\d(k, X) be a
prime number. Then the Tate conjecture holds for X. That is for d € Z, the cycle class map

ZUX)®Qp » HE (X, Qp)Y, Z — [Z]

is surjective, where G = Gal(k/k).
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(ii) Let K a p-adic field which is unramified. Let X € PSmVar(K) with good reduction. Then the Tate
conjecture holds for X. That is for d € Z, the cycle class map

2UX)©Q, — HZ(Xc,, Q)¢ 2+ [Z]
is surjective, where G = Gal(Cp, K).
Proof. (i):Consider an embedding o, : k < C,. Then k¥ C k C C, and k C /Ac c C,, where l%,,p

is the p-adic field which is the completion of k with respect the p adlc norm glven by op,. Consider
XO € PSch/O;  a smooth model of X} i, o Le XO ®o;. kgp = X; and XO is smooth with

dp Ip P P dp
smooth special fiber. Let a € H2 (X}, 7Z,)(d)¢. Using deﬁmtlon 2, by proposition 7(ii)’ and proposition
8 there exists (\i)i<i<n € Z, and

d >d
(wri)i<i<n € Hzet (Xc,, Q..XEP log,0)

such that

wa) = > Ni-wp; € Hggt(xcp,s);gcj) = FUHY (Xc,), wri = H*OLx (wr;).
1<i<n

By theorem 1(ii) and (iii)’, there exists Z; € Z4(X¢,) such that wz; = [Z;] € Hi%(Xc,). Hence,

= Y \lZi] € 2YXc,) @ Q,

1<i<n

satisfies w(a) = [Z] € HR(Xc,). By [1], considering the commutative diagram of abelian groups whose
rows are exact, where j : X\|Z| — X denote the open embedding,

Bcris, ('Yv) i
ekl H2(X}, Zp) ©2, Beris — = HZH((X\Z)3, Zy) @2z, Beris

HngZ (Xfw Z;D) ®Zp ch’s

lRaX*an(X) lRa(X) lRa(X\Z)

DR(X)(OBeris, x)(7Y)

ok

H%dR,Z(Xfc ) Ok, Beris

op

J
H%dR(X]%dp) ®fc<,p BCTiS H%dR((X\Z)];Up) ®fgdp Bcris

we get o = [Z] € H2}(X},Z,). Since [Z] is G invariant,

7' :=1/card(gZ,g € G) Z 9Z € Z4X)2Q,
geG/Gz

satisfy [Z'] = [Z] = o € H}( X}, Zy).
(ii):Similar to (i).

It is well known that theorem 2 implies the following :
Corollary 2. Let X € PSmVar(C).
(i) The standard conjectures holds for X.

(i) Let k C C a subfield of finite type over Q over which X is defined, that is X ~ Xj @ C in
PSmVar(C) with X € PSmVar(k). For 6 € Aut(C/k), we have the isomorphism 0 : X = Xy in
Sch. Then 6 € Aut(C/k) induces, for each j € Z, an isomorphism

Hiev(X) ! Hiev(Xy)

6: HI (X, C) Hpp(X) 55 H] 1(Xo)

sing

H},o (X", C).

sing

Let d € N. Let « € FIH?(X Q) where FIH?*(X Q) := FIH¥,(X) N Hfl‘f]g(X“",Q) C
H* (X C). If (o) € HX (X", Q) for all 0 € Aut(C/k), then a = [Z] with Z € Z4(X).

sing
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Proof. Standard. We consider, for i € Z, k' C C a subfield and Y € Var(k’), the canonical morphism

T(Y) = TH(Y) : Hijpg (VE" Q) 200 B (VE™ Q) S HY(Ye, Q) S5 HE (Y, Q).
(i): Let k C C of finite type over Q such that X is defined. Denote G = Gal(k/k) the Galois group.
Denote dx = dim(X) and for short X = X. Let L/ € H2X"%(X x X,Q) the class inducing the

sing ) ‘

cup product with of the intersection of j hyperplane sections on Hgﬁgﬁ (X,Q) and zero on Hg,,(X,Q),
i #dx —j. Let A7 € Hfi‘ig”j(X x X,Q) inducing the inverse of L; on Hgﬁ;j(X, Q) and zero on
H,(X,Q), i # dx + j. Consider an isomorphism g, : C —N—> C, such that l;gp C C, is unramified and
X has good reduction. We have T(X x X)(L7) € HX> "% ((X x X)i, Qp)¢ since it is the class of an
algebraic cycle. Hence,

T(X x X)(N) € HEX T (X x X)p, Q)
since the inverse of a Galois invariant morphism is Galois invariant. Hence, by theorem 2(i),
A =[Z], with Z € ZX T (X x X)® Q.

(ii): As o € H*I'(X,,Qx), where X = U;_; X; is an open affine cover, there exists a subfield k C k' C C
of finite type over Q over which « is defined, that is @ € HZ% (X)) C HEL(X), where Xjr := X @1 k' €
PSmVar(k') satisfy Xi ®p C ~ X in PSmVar(C). Let p € N\6(k’, X}/) be a prime number. Consider

T(Xw)(a) € H* (X3, Qp).
If (o) € HX (X", Q) for all 0 € Aut(C/k'), we get

sing

T(Xw)(e) = 1/card(Aut(C/K)a) Y 67" T(Xp)(0(a)) € HE (Xp, Qp) = H(X, Qp),

6€ Aut(C/k)
hence, for g € Gal(k'/k), we get
9-T(Xp)(@) = 1/card(Aut(C/E)a) > g-07""T(Xp)(0(ax))
6c Aut(C/k)
= 1/card(Aut(C/k)a) > 07*T(Xp)(0(a)) = T(Xp) (o) € HE(Xp, Qp),
6€ Aut(C/k)

that is, T(Xp)(a) € H*(X},Q,)¢, with G := Gal(k'/k). Hence, if 0(a) € H2

X sing (X", Q) for all
0 € Aut(C/k"), we get by theorem 2(i),

T(X) (o) = T(Xw) () = [Z], with Z € 24 X) ® Q.
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