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Abstract

We introduce the notion of De Rham logarithmic classes. We show that the De Rham class
of an algebraic cycle of a smooth algebraic variety over a field of characteristic zero is logarithmic
and conversely that a logarithmic class of bidegree (d, d) is the De Rham class of an algebraic cycle
(of codimension d). Moreover for smooth projective varieties, we show that there are non trivial
logarithmic classes of bidegree (p,q) for p # g. For smooth algebraic varieties over a p-adic field, we
also give an analytic version of this result. We deduce, from the analytic version, the Tate conjecture
for smooth projective varieties over fields of finite type over Q and over p-adic fields for Q,, coefficients,
under good reduction hypothesis.

1 Introduction

1.1 De Rham logarithmic classes

In this work, we introduce in a first part for X a noetherian scheme, the notion of logarithmic De Rham
cohomology classes which are for each j € Z, the elements of the subgroup H'OLx (HZ,(X, Q;(,log)) C
H, (X, Q%) =: H%,R(X) of the De Rham cohomology abelian group, where OLx : Q% ,,, < Q% is the
subcomplex of abelian sheaves on X consisting of logarithmic forms introduced in definition 2. To our
knowledge, the notion of logarithmic forms was introduced in the seventies by S.Bloch for varieties over
perfect fields of charactersitic p ([7], §3F) in order to compute the Frobenius fixed part of the De Rham-
Witt complex. Note that this notion is different from the notion of logarithmic forms along a divisor with
normal crossing as introduced by Deligne for exemple in Théorie de Hodge II. The presheaves Q;Qlog, as
for O% are not Ox modules, nor locally constant but they have good purity properties. Our main result
is that if X is a smooth algebraic variety over a field of characteristic zero, a de Rham cohomology class
which is logarithmic of type (d, d) is the class of an algebraic cycle of codimension d. More precisely, let
X be a smooth algebraic variety over a field k of characteristic zero. To each algebraic cycle Z € Z¢(X),
we associate its De Rham cohomology class [Z] € H%L(X), which is by definition, as for any Weil
cohomology theory, the image of the fundamental class [Z] € H%,‘k #(X) by the canonical morphism

HE 7(X) = H*(X). In section 3, we show (c.f. theorem 2(i)) that
e for Z € Z4X), [Z] € H¥,(X) is logarithmic of bidegree (d,d), that is
[2) = H*'OLx([Z]1) € HER(X), [Z]1 € HE (X, Q% 1og)

where HZ, (X, Q%log) C H24(X, Q% 1og) is the canonical subspace, as all the differentials of Q% .,
vanishes since by definition a logarithmic form is closed. This fact is a consequence of the fact that
motivic isomorphisms applied to De Rham cohomology preserve logarithmic classes (c.f. proposition
1). The key point is that logarithmic De Rham forms on algebraic varieties over k are closed,
(trivially) A} invariant and compatible with the transfers maps induced by finite morphisms of
algebraic varieties and in particular finite correspondences. Since Qfog C QO are (trivially) AL
invariant presheaves with transfers on the category of smooth algebraic varieties over k, by a
theorem of Voevodsky the cohomology presheaves of A} invariant presheaves with transfers are A}
invariant.



e Conversely, we show (c.f. theorem 2(ii)), that a logarithmic class w € H&%(X) of bidegree (d,d) is

the De Rham class of an algebraic cycle (of codimension d). In the case X projective, we also get
a vanishing result (c.f. theorem 2(iii)’) : H**OLx(HL (X, Q;l;rllgg)) =0 for k> 0.
The proof works as follows : A logarithmic class of bidegree (p,ﬁq) is locally acyclic for the Zariski
topology of X since it is the etale cohomology of a single sheaf. This allows us to proceed by a
finite induction using the crucial fact that the purity isomorphism for De Rham cohomology preserve
logarithmic classes (c.f. proposition 6). The proof of proposition 6 follows from the fact that the
purity isomorphism is motivic (c.f. [5], see proposition 1), that the Euler class of a vector bundle
of rank d over an algebraic variety is logarithmic of bidegree (d,d) (c.f. proposition 5) and that the
motivic isomorphisms applied to De Rham cohomology preserve logarithmic classes (c.f. proposition
4). At the final step, we use, for simplicity, the fact that for a scheme Y, Hg, (Y, Q4.,,) = H' (Y, 05)
is the Picard group of Y.

For X an algebraic variety over a p-adic field, we also introduce the notion of logarithmic analytic De
Rham cohomology classes. In proposition 8 we give an analytic analogue of theorem 2, that is if X is a
smooth projective variety over a p-adic field with good reduction,

e a logarithmic analytic De Rham cohomology class of type (d,d) is the class of a codimension d
algebraic cycle,

e there are no non trivial logarithmic analytic De Rham cohomology classes of type (p, q) for p # ¢,

ie. H¥OL ¢ (HIZ (X, Qiztfmog,o)) =0 for k # 0.

The proof of proposition 8 is motivic and similar to the proof of theorem 2 : a logarithmic analytic class
of bidegree (p, q) is acyclic for the pro-etale topology on each open subset U C X such that there exists
an etale map e : U° — G C Aé’;{ finite over e(U?), where U® C X© are integral models of U C X
and since this class is the pro etale cohomology of a single subsheaf of the De Rham complex (proposition
2). This allows us to proceed by a finite induction using the crucial fact that the purity isomorphism for
De Rham cohomology preserve logarithmic analytic classes since the purity isomorphism is motivic (c.f.
[5], see proposition 1). The GAGA comparison theorem for the De Rham cohomology of X induce, by
proposition 8 and theorem 2, a GAGA comparison result for logarithmic De Rham classes.

1.2 Tate conjecture

Let X be a smooth projective variety over a field k£ of finite type over Q. Let p be a prime number
unramified over k such that X has good reduction at p, o, : & — C,, a fixed embedding and k the algebraic
closure of k inside C,. We prove the Tate conjecture for X with Q,, coefficient (c.f. theorem 3). The proof
works as follows : let l%,,p C C, be the p-adic completion of k& with respect to o,. We choose a smooth

proper scheme X]gg over Of% which is an integral model of X, i.e. such that X© Xo; l%gp =X; . Let

op P D op
o € H2 (X%, Z,)(d)€ be a Tate class of X In proposition 9, we show, using a result of [7] together with
results of [11] on the pro-etale topology, that « gives by the p-adic crystalline comparison isomorphism

H*'Ro(X) : H(Xc,, Zp) ®z, B = Hpp(X) @k B

cris,k:(,p cris,k(,p ’

an analytic logarithmic de Rham class

. py2d 2d 2d o>d
w(a) := H*°Ra(X)(a) € H OLX(Hpet(Xf%p,QXép) ,log,o))'
op
Proposition 8 then implies that w(a) = [Z] € HEL(X f%p)’ is the de Rham cohomology class of an
algebraic cycle Z € Z4(X i ) ®Q, of codimension d. By the p-adic crystalline comparison isomorphism,

op

we get o = [Z] € H2(X¢,,Qp). Since a is G invariant, we get

a=(Z]=(Z") e HY(Xc, Qp), Z = (1/#92Z) Y 9Z € 2/(X)®Q,.
geG-Z



It follows from the proof that we have the p-adic Tate conjecture, that is for p-adic field with @Q,, coeffi-
cients. Some authors ([10],[6]) believe that the conjecture is only true under additional assumptions (for
example total degeneracy). The standard example provided is the product of two non-isogenous elliptic
curves with Hom(C, C") = 0, say C' and C’, with the fact that

Hom(C, C") ® @, — Homg (V,(C), V,,(C"))

is not surjective since Hom(C,C") ® Q, = 0. However, this does not contradict the general conjecture
because for C', C’ two smooth projective curve of genus greater or equal to one or two abelian varieties
over a p-adic field K, e.g. elliptic curves over K, we have dim NS*(C x C’) > 3 where

NSHC x C")y c HAZ((C x C')¢,,Qp)

is the Neron Severi group (see remark 5).
On the other side, for a p-adic field K C C, and X a smooth projective variety over K,

dim H/,(Xc,, Q¢) (k)¢ > dim H/,(Xc,,Q,) (k)¢

for ¢ # p in general and it is known that the ¢-adic Tate conjecture is not true. Hence there is no relation
with the classical Tate conjecture over finite fields.

Let X be a smooth projective variety over C. Then X is defined over a subfield & C C of finite type
over Q, that is X = X}, ®; C. Take an isomorphism C ~ C, with p € N a prime number such that
Xc, has good reduction at p. As the Tate conjecture holds for X with Q, coefficients, the standard
conjectures holds for X and any absolute Hodge class of X is the class of an algebraic cycle (corollary 2).

I am grateful for professor F.Mokrane for help and support during this work.

2 Preliminaries and Notations

2.1 Notations

Denote by Top the category of topological spaces and RTop the category of ringed spaces.

Denote by Cat the category of small categories and RCat the category of ringed topos.

For § € Cat and X € S, we denote S/ X € Cat the category whose objects are Y/X := (Y, f) with
YeSand f:Y — X is a morphism in S, and whose morphisms Hom((Y”, f'), (Y, f)) consists of
¢g:Y" =Y in S such that fog=f'.

For (S,0s) € RCat a ringed topos, we denote by

— PSh(S) the category of presheaves of abelian group on S and PShog(S) the category of
presheaves of Og modules on S, whose objects are

PSho, (S)? := {(M,m), M € PSh(S),m : M ® Og — M},

together with the forgetful functor o : PSh(S) — PSho,(S), for F € PSh(S) and X € S, we
denote F(X) :=T(X, F) the abelian group of section over X,

— C(S) = C(PSh(S)) and Cp4(S) = C(PShp,(S)) the big abelian category of complexes of
presheaves of Og modules on S,

— Cogs@2)fi(S) = C(2)7i(PShog(S)) C C(PShog(S), F, W), the big abelian category of (bi)filtered
complexes of presheaves of Og modules on S such that the filtration is biregular and PSho 2)7:(S) :=
(PSho,(S), F,W).

e Let (S,05) € RCat a ringed topos with topology 7. For F' € Cog(S), we denote by k : F — E,(F)
the canonical flasque resolution in Co4(S) (see [3]). In particular for X € S, H*(X, E,(F)) =
H* (X, F).



e For f: 8 — S a morphism with §,8" € RCat, endowed with topology 7 and 7’ respectively, we
denote for F' € Cp4(S) and each j € Z,

— f*i=HIT(S, koad(f*, f.)(F)) : H/(S,F) — HI(S', f*F),
— f* = HIT(S,koad(f*™°d f)(F)) : H/ (S, F) — H/(S', f*modF),

the canonical maps.

e For X € Cat a (pre)site and p a prime number, we consider the full subcategory
PShy, (X) C PSh(N x X), F = (Fy)pen, p"F, =0, Fopq/p" = Fy
Cz,(X) := C(PShz, (X)) C C(N x X) and
Ly = Lpx = ((Z/p"Z)x) € PShy, (X)
the diagram of constant presheaves on X.

e For X € Top and Z C X a closed subset, denoting j : X\Z < X the open complementary, we will
consider
I'YZx = Cone(ad(ji, j*)(Zx) : 51j"Zx — Zx) € C(X)

and denote for short vy := Y (Zx) : Zx — I'}Zx the canonical map in C(X).

e Denote by Sch C RTop the subcategory of schemes (the morphisms are the morphisms of locally
ringed spaces). We denote by PSch C Sch the full subcategory of proper schemes. For a field k,
we consider Sch /k := Sch /Speck the category of schemes over Speck, that is whose object are
X :=(X,ax) with X € Sch and ax : X — Speck a morphism and whose objects are morphism of
schemes f : X’ — X such that foax: = ax. We then denote by

— Var(k) = Sch’® /k < Sch /k the full subcategory consisting of algebraic varieties over k, i.e.
schemes of finite type over k,

— PVar(k) c QPVar(k) C Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

— PSmVar(k) C SmVar(k) C Var(k), PSmVar(k) := PVar(k) N SmVar(k), the full subcategories
consisting of smooth varieties and smooth projective varieties respectively.

For a morphism of commutative rings ¢ : A < B, we have the extention of scalar functor
®@aB:Sch/A—Sch/B, X — Xp:=Xp,:=X®@aB, (f: X' > X))~ (fp:=f®1: X5 — Xp).
which is left ajoint to the restriction of scalar

Resa/p:Sch /B — Sch /A, X = (X,ax) = X = (X,00ax), (f: X' = X)— (f: X' = X)

For a morphism of fields ¢ : k — K, the extention of scalar functor restricts to a functor

@K : Var(k) = Var(K), X = Xg =Xk, =X K, (f: X' > X)) (fk = fo1: X)x — Xk).
and for X € Var(k) we have 7,/ (X) : Xx — X the projection in Sch /k.

e For X € Sch a noetherian scheme and p € N, we denote by ZP(X) the free abelian group generated
by closed subset of codimension p.

e For X € Sch and p a prime number, we denote by c : X® — X the morphism in RTop which is
the completion along the ideal generated by p.



e For K a field which is complete with respect to a p-adic norm, we denote by RigVar(K) C RTop the
subcategory of rigid analytic space (i.e. locally given by affinoid which are Tate algebra spectrum).
We denote by An, : RigVar(K) — Var(K) the analytic functor and for X € Var(K), anx,, :=

An, | x : X®) .= XO.r) X0, K — X the corresponding morphism in RTop.

e Denote Sch? ¢ RTop? the subcategory whose objects are couples (X, Z) with X = (X,Ox) € Sch
and Z C X a closed subset and whose set of morphisms Hom((X', Z"), (X, Z)) consists of f : X' —
X of locally ringed spaces such that f~*(Z) c Z'.

e Let k be a field of characteristic zero. Denote SmVar?(k) C Var?(k) C Sch? /k the full subcategories
whose objects are (X, Z) with X € Var(k), resp. X € SmVar(k), and Z C X is a closed subset,
and whose morphisms Hom((X’, Z’) — (X, Z)) consists of f : X’ — X of schemes over k such that
12z cz.

e Denote by AnSp(C) C RTop the full subcategory of analytic spaces over C, and by AnSm(C) C
AnSp(C) the full subcategory of smooth analytic spaces (i.e. complex analytic manifold). Denote by
CW C Top the full subcategory of CW complexes. Denote by Diff (R) C RTop the full subcategory
of differentiable (real) manifold.

2.2 The pro-etale site of schemes

For X € Sch, we denote X* C Sch /X the etale site and X?** C Sch /X the pro etale site (see [2]) which
is the full subcategory of Sch /X whose object consists of weakly etale maps U — X (that is flat maps
U — X such that Ay : U — U xx U is also flat) and whose topology is generated by fpqc covers. We
then have the canonical morphism of site

vy : XP 5 X (U = X) = (U— X)

For F € C(X*®),
ad(vy, Rvx.)(F) : F — Rux..vx F

is an isomorphism in D(X®), in particular, for each n € Z

v cH(X,F) = H”

pet(X7 Vi F)
are isomorphisms, For X € Sch, we denote
© Zy, =lm Vi (Z/p"Z)xer € PSh(XP') the constant presheaf on X,
o I, x:=(p(x)): Zy, — Vi (Z/pZ)xe the projection map in PSh(N x XPet).

An affine scheme U € Sch is said to be w-contractible if any faithfully flat weakly etale map V — U,
V' € Sch, admits a section. We will use the facts that (see [2]):

e Any affine scheme X € Sch admits a faithfully flat pro-etale map r : U — X with U w-contractile.

e Any scheme X € Sch admits a pro-etale affine cover (r; : X; — X);es with for each i € I, X; a
w-contractile affine scheme and r; : X; — X a weakly etale map. For X € Var(k) with & a field,
we may assume [ finite since the topological space X is then quasi-compact.

e If U € Sch is a w-contractible affine scheme, then for any sheaf F' € Shv(U?¢t), H;et(U, F) =0 for
i # 0 since T'(U, —) is an exact functor.



2.3 Integral models and p-adic completion of algebraic varieties over a p-adic
field

For K a field which is complete with respect to a p-adic norm, we consider O C K the subring of K
consisting of integral elements, that is € K such that |z| < 1.

e For X € PVar(K), we will consider X© € PSch /Ok a (non canonical) integral model of X, i.e.
satisfying X© ®o, K = X

e For X € Var(K), we will consider X© € Sch/Og a (non canonical) integral model of X, i.e.
X% = XO\Z° for X € PVar(K) a compactification of X, Z := X\ X, where X© € PSch /O is
an integral model of X and Z© := V(I$) C X© is an integral model of Z.

We consider Sch™ /O := O(PSch? /Ok) C Sch’* /O the full subcategory consisting of integral models
of algebraic varieties over K, where O : PSch? /Ox — Sch!' JOk, O(X,Z) = X\Z is the canonical

functor, and

Sch™™*™ /O = Sch™ /Ok N Sch®™ /Ok C Sch /O

the full subcategory consisting of integral models of (smooth) algebraic varieties over K which are smooth
over Ok. For X € Var(K), we will consider X© € Sch /Ok a (non canonical) integral model of X, we
then conisder X ¢ C (Sch™ /O )/X© the full subcategory consisting of e : U = U® — X© such that
e is an etale morphism of schemes, we have then the commutative diagram of sites

Xpet —Ls XOret | p(t:U=U° = X9) :=(t®o, K :U®o, K= X°®0, K=X)

Xet r XO,et

Let K be a field which is complete with respect to a p-adic norm and X € PVar(K) projective.
For X9 € PSch/Og an integral model of X, i.e. satisfying X© ®0, K = X, we consider X :=
X0 @4, K € RigVar(K) and the morphism in RTop

any, : X® .= XOW g, K - X%, K = X.
given by the analytical functor. We have also the Raynaud generic fiber morphism in RTop.
NX.p - xX® .— X0 ®o, K — X0:(p)
We have then the commutative diagram in RTop

X " %0,p)

lanx’p \Lc

X—r - X

Recall (see section 2.1) that c : X0 - X© is the morphism in RTop which is the completion along
the ideal generated by p. Then, by GAGA (c.f. EGA 3), for FF € Cohp, (X) a coherent sheaf of Ox
module, for all k& € Z, the canonical map ¢* : H*(X©, F) = H* (XO’(p), ™1 F) is an isomorphisms. In
particular,

an’ , = nxc 1 HANX, Q") S HN (X P, 32!

X ()
for all k,l € Z, where Q% := Q;(/K and Q}((p) = Q;A((M/K are the De Rham complexes.



2.4 De Rham cohomology

We recall some properties of the De Rham cohomology.
o We have
Q® € C(Sch), X — Q*(X) :=T'(X,Q%),
(f: X' = X)—=Q(f) = f:T(X,Q%) - (X", Q%)
Let X € Sch. Considering its De Rham complex Q% := DR(X)(Ox), we have for j € Z its De
Rham cohomology H}p(X) := H7 (X, Q%).
o We will consider
7k € C(Var(k)), X — Q9,(X) == ['(X, Q%),
(f: X' = X) = QU(f) = f7: T(X, Q%) = T(X', Q%)
and its restriction to SmVar(k) C Var(k). Let X € Var(k). Considering its De Rham com-
plex Q% = Q% , = DR(X/k)(Ox), we have for j € Z its De Rham cohomology H}p(X) =
HY(X,Q%). The differentials of Q% := Q% . are by definition k-linear, thus H}p(X) == H/(X, Q%)
has a structure of a k vector space.
If X € SmVar(k), then H},R(X) = H/,(X,Q%) since Q9 € C(SmVar(k)) is A' local and admits
transfers where (see [3]). Note that for X € Var(k) singular, we also consider its realized De Rham

cohomology . _ s
Hp(X) =1 (X,,Q%,) = H? (X, RT'x Q%)

where € : Xo — X in Fun(A,SmVar(k)) is a simplicial desingularization of X and X < X is a closed
embedding with X € SmVar(k), and note that H}, »(X) is NOT isomorphic to H% o(X) in general since
Q9 € C(Var(k)) does NOT satisfied cdh descent.

Let X € Var(k). Let X = U;_, X; an open affine cover. For I C [1,...,s]|, we denote X := Njcr X;.
We get X, € Fun(P([1,...,s]), Var(k)). Since quasi-coherent sheaves on affine noetherian schemes are
acyclic, we have for each j € Z, H},5(X) = I'(X,, Q2%.).

2.5 Singular chains

We denote I" := [0,1]" € Diff(R) (with boundary). For X € Top and R a ring, we consider its singular

cochain complex

ving (X, R) := (ZHomrop (I7, X))Y®R
and for | € Z its singular cohomology HY;,. (X, R) := H"C%, (X, R). For f: X’ — X a continous map
with X, X’ € Top, we have the canonical map of complexes

[ i Ch (X, R) = Cho (X, R), 0= ffo = (y— o(foy)).

sing sing
In particular, we get by functoriality the complex
O;(,Rsing € OR(X)a (U C X) = s*ing(Ua R)
We will consider the canonical embedding

C* 124z (X) : Chpg (X, 2inZ) — Cfo(X,C), a = a® 1

sing sing

whose image consists of cochains a € Cging(X, C) such that a(y) € 2inZ for all v € ZHomro,(I*, X).

We get by functoriality the embedding in C(X)

C*L2iﬂ'Z/(C,X : C;(,%Trl,sing — C;(,(C,siny
(U C X) = (Cgirzyc(U) : C4p (U, 2inZ) — Cf (U, C))

sing sing

We recall we have



e For X € Top locally contractile, e.g. X € CW, and R a ring, the inclusion in Cr(X) ¢x : Rx —
CX Rsing 18 by definition an equivalence top local and that we get by the small chain theorem, for

all | € Z, an isomorphism H'cx : H/(X, Rx) = H. (X, R).

sing

e For X € Diff (R), the restriction map

X ZHomDiﬁ-(R)(H*,X)V = Ch (X, R), w— w: (¢ — w(d))

sing

is a quasi-isomorphism by Whitney approximation theorem.

2.6 Algebraic cycles, motives and the theorem of Voevodsky

For X € Sch noetherian irreducible and d € N, we denote by Z¢(X) the group of algebraic cycles of
codimension d, which is the free abelian group generated by irreducible closed subsets of codimension d.

For X, X’ € Sch noetherian, with X’ irreducible, we denote Z/¢/X' (X' x X)) Z4,., (X' x X) which
consist of algebraic cycles a = ), nya; € Z4,, (X’ x X) such that, denoting supp(a) = Usa; € X' x X
its support and p’ : X’ x X — X’ the projection, pi supp(a) ° supp(a) — X’ is finite surjective.

[0}

e Let k be a field. We denote by Cor SmVar (k) the category such that the objects are { X € SmVar(k)}
and such that Homcor smvar(e) (X', X) = Zfs/X! (X" x X). See [5] for the composition law. We
denote by Tr : Cor SmVar(k) — SmVar(k) the morphism of site given by the embedding Tr :
SmVar(k) < Cor SmVar(k). Let F' € PSh(SmVar(k)). We say that F' admits transfers if F' = Tr, F’
with F' € PSh(Cor SmVar(k)).

e Let A a regular commutative noetherian ring. We denote by Cor Sch®™ /A the category such that
the objects are {X € Sch®™ /A} and such that Homeo, gepsm /4 (X', X) 1= ZFs/X (X" % X). See [5]
for the composition law. We denote by Tr : Cor Sch®” /A — Sch®™ /A the morphism of site given
by the embedding Tr : Sch®” /A < Cor Sch®™ /A. Let F' € PSh(Sch®™ /A). We say that F' admits
transfers if F' = Tr, F' with F' € PSh(Cor Sch®™ /A).

We recall the following standard notion (see e.g. [5] or [3]) :

Definition 1. (i) Let F € PSh(Var(k)) or F € PSh(SmVar(k)). We say that F is A invariant if for
all X € Var(k) (resp. X € SmVar(k)), p* := F(p) : F(X) — F(X x Al) is an isomorphism where
p: X x Al = X is the projection.

(ii) Let F € PSh(Var(k)) or F € PSh(SmVar(k)). We say that F is A" local if for all j € Z and
all X € Var(k) (resp. X € SmVar(k)), p* := H'E..(F)(p) : H,(X,F) — H,(X x A, F) is an
isomorphism.

(ii)” Let F € C(Var(k)) or F € C(SmVar(k)). We say that F is A' local if for all j € Z and all
X € Var(k) (resp. X € SmVar(k)), p* := HE.(F)(p) : H,(X,F) — HJ,(X x A", F) is an

isomorphism. Note that (ii) is a particular case of (ii)’.

For X € Var(k) and Z C X a closed subset, denoting j : X\Z — X the open complementary, we will
consider
I'}Zx := Cone(ad(js, j*)(Zx) : Zx — Zx) € C(Var(k)*"/X)

and denote for short v} := v%(Zx) : Zx — I'}Zx the canonical map in C(Var(k)*™/X). Denote
ax : X — Speck the structural map. For X € Var(k) and Z C X a closed subset, we have the motive of
X with support in Z defined as

My (X) = axiIyaxZ € DA(k).
If X € SmVar(k), we will also consider

axyl'yZx = Cone(axy o ad(jy, i) (Zx) : Z(U) — Z(X)) =: Z(X, X\ Z) € C(SmVar(k)).



Then for X € SmVar(k) and Z C X a closed subset
Mz(X) = axiTya'yZ = ax;TyZx = Z(X, X\Z) € DA(k).

e Let (X,Z) € Sch? with X € Sch a noetherian scheme and Z C X a closed subset. We have the
deformation (DzX,AL) — Al (DzX,A}) € Sch? of (X, Z) by the normal cone Czix — Z, ie.
such that

(DzX,Ay)s = (X,2), s € ANO, (DzX,A;)o = (Cz/x,Z).
We denote by i1 : (X,Z) — (DzX,A}) and ig : (Cz/x,Z) — (DzX,A}) the closed embeddings
in Sch?.

e Let k be a field of characteristic zero. Let X € SmVar(k). For Z C X a closed subset of pure
codimension ¢, consider a desingularisation € : Z — Z of Z and denote n: Z % Z € X. We have
then the morphism in DA (k)

D(Z(n)) > Z(€)

Gz x : M(X) M(Z)(c)[2¢) —= M(Z)(¢)[2¢]

where D : HomDA(k)(MC(Z),MC(X)) = HomDA(k)(M(X),M(Z)(c)[2c]) is the duality isomor-
phism from the six functors formalism (moving lemma of Suzlin and Voevodsky) and Z(n) :=
ad(TLg,?"L!)(OL!XZ)7~ noting that ny = n. since n is proper and that a'y = a’[dx] and a!Z = a}[fiz]
since X, resp. Z, are smooth (considering the connected components, we may assume X and Z of
pure dimension).

We recall the following facts (see [5] and [3]):

Proposition 1. Let k be a field a characteristic zero. Let X € SmVar(k) and i : Z C X a smooth
subvariety of pure codimension d. Then Cz/x = Nz/x — Z is a vector bundle of rank d. The closed
embeddings i1 : (X,Z) — (DzX,A}) and iy : (Cz/x,Z) — (DzX,A}) in SmVar?(k) induces isomor-
phisms of motives Z(i1) : Mz(X) = My (DzX) and Z(io) : Mz(Nzx) = My (DzX) in DA(k). We
get the excision isomorphism in DA(k)
Pzx = ZL(io) " 0 Z(i1) : Mz(X) = Mz(Ng/x).
We have
Th(Nz/x)o Pz x ovy(Zx) =Gz x := D(Z(i)) : M(X) — M(Z)(d)[2d].
Proof. See [5]. O
We will use the following theorem of Voevodsky :

Theorem 1. (Voevodsky)Let k be a perfect field (e.g. k a field of characteristic zero). Let F €
PSh(SmVar(k), Q). If F is A' invariant and admits transfers, then for all j € Z, HY E;(F) € PSh(SmVar(k))
are Al invariant. That is, if F is A" invariant and admits transfers then F is Al local.

Proof. By [9], H' En;s(F) € PSh(SmVar(k)) are Al invariant. On the other hand since F' takes values
in Q-vector spaces, H' En;s(F) = H/ E¢ (F). O
2.7 The logaritmic De Rham complexes

We introduce the logarithmic De Rham complexes

Definition 2. (i) Let X = (X,0x) € RCat a ringed topos, we have in C(X) the subcomplex of
presheaves of abelian groups

OLx : Q% 1og = 2%, s.t. for X° € X andp €N, p > 1,
Qg()log(X") =<dfa,/far N Ndfa,/ fa, fa, € O%(X°) >C Q5 (X°),



(ii)

(iii)

where Q% = DR(X)(Ox) € C(X) is the De Rham complex and O%(X°) C Ox(X°) is the
multiplicative group consisting of invertible elements for the multiplication, here <,> stand for the
sub-abelian group generated by. By definition, for w € Q% (X°), w € ngog(X") if and only if there
exists (ni)lgigs € 7Z and (fi,ak)lgigs,lgkgp S O}(XO) such that

w= Z nidfs,ar /[ fian N Ndfia, ] fisa, € Q5 (X°).

1<i<s

For p =0, we set Q% log ‘= L if Z C Ox and Qg(,log :=Z/n if Ox is a ring of characteristic n.

2

Let f : X' = (X',0x/) = X = (X,0x) a morphism with X, X’ € RCat. Consider the morphism
Q(f) : Q% = f.Q% in C(X). Then, Q(f)(Q% 105) C 2%/ 10g-

For k a field, we get from (i), for X € Var(k), the embedding in C(X)
OLX : Q..X,log — QS{ = Q;{/k}’

such that, for X° C X an open subset and w € Q5 (X°), w e Q% log (X ) if and only if there exists
(ni)1<i<s € Z and (fi,an )1<i<s,1<k<p € O%(X°) such that

w=Y idfia,/fion N Adfiay ] fio, € (X0,

1<i<s

and for p =0, Qgﬁog := Z if k is of characteristic zero, Qgﬁog :=Z/p if k is of characteristic p.
We get an embedding in C(Var(k))

OL : Q9 10y = Q9y,, given by, for X € Var(k),
OL(X) := OLx : QY 154(X) 1= T'(X, Q% 10g) = [(X, Q%) =1 Q7,(X)

and its restriction to SmVar(k) C Var(k).

Let K be a field of characteristic zero which is complete for a p-adic norm. Recall that Ox C K
denotes its ring of integers. Let X € Var(K). Let X© € Sch/Ox an integral model of X, in
particular X© @0, K = X. Consider the full subcategory Xt  (Sch™ /Ok)/X©. We have
then the morphisms of sites r : X — X9 and r : XP* — XOP sych that vyo or = rovyx.
We then consider the embedding of C(X*t)

OLx :=0OLxou: Q;{ct)log70 = T*Q;(o,etﬁlog s let)log — Qe

consisting of integral logarithime De Rham forms, with ¢ @ r*Q5

XO.et Jog — Q%e‘,log' We will also
consider the embedding of C(Xovpet)

R . o 15 * °
OLXO,(P) = (OLXo/pn)neN . QX(T”),]Og,O = !lm VXoaetQXo’ﬁt/p",log
neN
° T * .
= Q50,0 = W Vx0aetQx 0.0t ypn (04 fpm)
neN

=7/p", and we recall c : XO0:(0) 5 XO the morphism in RTop

is given by the completion along the ideal generated by p, and ae : PSh(X P ®)) — Shv,, (X ©-®)
is the sheaftification functor. We then get the embeddings of C(XP)

_ 0 )
where forp = 0, we set QXovet/p",log :

m o (OLX & I) : Q;{pct7log7o & Zp = Q;{pﬁt,log7o & @X — Q;{pct7 (w & )\n)nEN — ()\n)nEN - W

and

=0

% R Lok O)e * ()@ .
OLX(:D) =T OLXO,(;D) . r Q 5 —Tr Q — QX(P) : X(p)/K,

X (@) log,O XO.(»)
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where we recall anx y, : X®) .= X0 ®ox K — X the morphism in RTop induced by the analyti-
fication functor and r o anyx , = conx,,. Note that the inclusion QlXo,et log/p" C Q}o,et/pn log 18
strict in general. Note that

Q;(petylog,o = V;(Qg(e“,log,(’) € C(Xpet)a
but
Ly, = ]Lny}(Z/p”Z)Xet € C(XP), 0%, € C(XP"), and

neN

* ()@ N T * pet
r QX<P),log,O =" im0 et x0.et pn 1og € C(XPT)
neN

are NOT the pullback of etale sheaves by vx.

(iii)” We consider the morphism of sites
r: SmVar(K) — Sch™ ™ /O, X© € Sch™*™ /O = X := X° @0, K,

and for X© € Sch™*™ /O and X := X© ®0,. K the commutative diagram of sites

SmVar(K) — (Sch™*™ /Ox)

lox loX

Xet r XO,et

with ox (U® — X©) =U® and ox (U — X) = U. We will consider the embedding of C(Sch™ /Of)

OL0sc.an : Qe 0 = Q35" for X© € (Sch™ ™ /Ok),

/K.log,O /OK’
OL 0y an(X?) := OL 30,61 (X9) : Q%) 105.0(X ) = Qyo.0 (XF) 1= Q%0 (XP)).

and its restriction to Sch™*™ /O C Sch™ /Ox. We get the embedding of C(SmVar(K)et)

OL /g an :=7"0OL 0, an : T*Q;}?ﬁog,o s T*Q;’(';Z — Q;;"
Lemma 1. (Faltings Small open subsets) Let K be a field of characteristic zero which is complete for a
p-adic norm. Recall that Og C K denotes its ring of integers. Let X € SmVar(K) with good reduction.
Let X© € Sch™ ™ /O a smooth integral model of X, in particular X© @0, K = X and X© is smooth
over Oy . Letz € X©. There exists a (non empty) open subset U® C X© which is an integral model (i.e.
U® € Sch™*™ /O ) such that x € U® and such that there exists an etale map e : U° — G C Adol;(

with e : U® — e(U®) finite etale.

Proof. Let V€ C X© an affine open subset which is an integral model. Then by an integral version
(over Ok) of Noether’s normalization lemma or by taking a linear projection, there exists a quasi-finite
surjective map e : VO — Adol; such that x does not belong to the branch locus of a R of a compactification

e: VO — Ado’; of e. Then the complementary open subset U® := VO\R is finite etale over e(U®). O

Let K be a field of characteristic zero which is complete for a p-adic norm. Recall that Ox C K
denotes its ring of integers. Let U® € Sch™"*™ /O be an affine integral model of dimension d such that
the (co)tangent bundle Qo € Shvp(U?) is trivial. In particular

Q'U°) = &, 0(U°)dx;, Q' (U® /p") = &, 0(U° /p")da;,

11



(i) Consider a cartesian square in Sch”**™ /O

o o b2 o
VO xyo V3 V3

1

Ve U°

where ry : Vi€ = U and ry : Vj© — U are etale. Then the cotangent bundles Q! ve € Shvo (V©),
ol ve € Shvo (VL), Qll O oV € Shvo (V€ xyo Vi) are trivials and we have in particular the
sphttlngs

QU VO /p") = &L, OV, [p)day, Q1(Vy [p") = &L, OV, [p™)da,
Q' xpe V7 /p") = &L, 0(Vi? xpo V7 [p")dai.

Choose by induction on n € N, for each 1 <4 < d, compatible splittings of Z/p™ modules

OWVEMM =( Y,  0uf/NH@A, OV =( >, 0uflf)® As

fEO(Vlo/p")* fEO(Vzo/p")*
Denote by
a(p1) : OV /p") = O(V,P xgo Vi [p"), h— a(p1)(h) ==h®1,
alp2) : OV [p™) = O(VE xyo ViE [p™), h > alpa)(h) i= h & 1,

the canonical maps. We claim that for each 1 <1i < d

a(p1)(A1i) 0 ( > Oa f/ 1) = 0, alp2) (A1) O ( ) Ouif /1) = 0.
feO(VIOXUOVZO/pn)* fEO(VloXUoVQO/p”)*

Indeed, let f € O(V©/p™). Let f € Ok/p"[[z1, - ,xq4)] such that f = 9,,f. Then f =

(a, (exp(f)))/exp(f) with

cap(f) =Y _(1/n) " € Ox/p"[[x1,--- 4]

neN

But then exp(f) € Ok /p"[[x1, - ,zd]] does not belong to any algebraic extension O(V{® /p™) C
O(V) C Ok /p™[[x1,- -+ ,x4]], since if exp(f) € Ok /p™[[z1," -+ ,x4]] is algebraic over K (V;° /p), that
is exp(f)stt = Yro akexp(f)k with ax € K(V,°/p) and s € N minimal, we get

S

Fls+ Dexp(H)™ = 30, ar + kfar)eap(f)*

k=0

which implies (1 — k/(s 4+ 1))ax = (0z,ax)/f(s + 1) by the unicity of the minimal polynomial and
thus ar = 0 = exp(f) for 0 < k < s (there is no algebraic solution to this differential equation for

each 0 < k < s), in particular exp(f) € Ox /p"[[z1,- - - ,24]] does not belong to O(V;€ xyo VL /p™).
Hence, we can choose by induction on n € N, for each 1 < i < d, compatible splittings of Z/p™
modules
O(V,€ xyo V3 [p") = ( > 9u, f/ 1) ® A1z
FEO(VP X o VP [pm)*

such that a(p1)(A1;) C A12; and a(p2)(Aa;) C Aje;. Now, set

Ln(VP) = @, (Asd; @ (,4,0(V,° [p™)da;)) € @ (Vi /p™),
Ln(VY) = @ (Arsda; @ (,,0(V,° [p")da;)) € Q' (VS /p™),
NL,(V® xpo Vi) := @?:1(A12id$i (®£0(V,° xpo V52 [p™)dx;)) € Q' (V€ xyo Vi /p™).
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We then have
(Vo/p ) Vo/p log(Vl )®NL ( ) Ql(vo/p ) Vo/p log(‘/2 )GBNLR(‘/QO%
NV xpo Vo2 /") = Qo pn 10g (VI Xpo Vo) @ NLy(V)© xyo Vi),
a(p1)(NLa(V7)) € NLn(Vi? xpe Vy'), a(p2)(NLn(Vs”)) € NLy (VY7 xyo V7).
(i) Let 7 = (r; : V.© = U9)icr be an etale cover in Sch”™*™ /Og. Denote

Ve € Fun(A(I),Sch™*™ /Ok), V.., ==V xyo -+ xyo VP
the associated Cech simplicial scheme. We get by (i) a subcomplex of Z/p™ modules
NL,(VO) C Qo (V)
satisfaying
QVO/p (Vo) = Q%/o/pn log(v )& NL,(V2).

such that for each p,n € N we get a (non canonical) compatible splitting of complexes of Z/p™

modules
QIK)}O/? (Ve ) QIK)}O/? log(Vo)®QUo/p nl(VO)’ (1)
Qo spn i (Va") 7= NLa(V2), Qo (V) i= NLa (V) A Qo0 (ViO). (2)

For each p € N we get a (non canonical) splitting of complexes of Z, modules

Q;Z]o (p) (VO) Q;Z](p) log, O(VO) S3) QZ[)JO (p) (Vo) Q;Z]o (p) nl( ) IL Uo /p nl (Vo) (3)
neN

We have the following result :

Proposition 2. Let K be a field of characteristic zero which is complete for a p-adic norm. Recall that
Ok C K denotes its ring of integers.

(i0) Let U € SmVar(K) with good reduction such that there exists an etale map e : U° — GIv C Adol;(

with e : U® — e(U©) finite etale, where U € Sch™*™ /Oy is an integral model of U, in particular
U® ®o, K =U. Then, for each p,q €Z, ¢ #0, p# 0, H, (U, QU(M Jog, o) =0.

(i) Let U € SmVar(K) with good reduction such that there exists an etale map e : U® — G C Aé‘;{

with e : U® — e(U©) finite etale, where UC € Sch™*™ /Oy is an integral model of U, in particular
U® @0, K =U. Then, for each p,q €Z, ¢ #0, p# 0, Hp. (U, QpU(p) log,O) = 0.

(i) Let X € SmVar(K) with good reduction. Let X© € Sch™™*™ /Ok a smooth integral model of X,
in particular X© ®o, K = X and X© is smooth over O . Then, for each p,q € Z,

Hp+qT(E,p£1)(X) P HG (X, ) log ) — Q%Het (X, %0 1og) = Hper (X, %0 ) log)
ne

is an isomorphism.

()" Let X € SmVar(K) with good reduction. Let Z a closed subset. Let X© € Sch™"*™ /O a smooth
integral model of X, in particular X© ®0,, K = X and X© is smooth over O. Then, for each
PqEL,

Hp+qT(E7£n)(X) : Hgt,Z(Xv Q?(o,(p))] - L Het Z Xo/pn 10g) ngt,Z(X’ Q?{o,(p))]og)
neN

is an isomorphism.
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Proof. (i0):Similar to the proof of (i).
(i):By a standard result of Bhatt and Scholze (proposition 5.6.2 of [2]), we have for X € Var(K)

]gl HE (X, Qz))(o/p",log) = Hper(X, Q?(Q(Pﬁlog)

neN
since for each m > n, QI;(O Jpmlog QI;(O /o log is surjective locally for the etale topology. Hence its
suffice to show that HZ (U, Q’[}o/pn 1Og) = 0 for ¢ # 0 for each n € N. On the other hand, for each

quasi-compact scheme X, and F' € PSh(X®), we have, for q € Z,

Hq(XetvF) = hﬂ HqF(XO)a
("’iCXi‘}X)iEI
(Ti X > X)ie[ etale cover, Xe € FUD(A(I), SCh), Xil,--- i i = Xil Xx -+ Xx Xil

that is Chech etale cohomology coincide with etale cohomology. Since U® /p™ is an affine scheme, we have

for (r; : V© — U9),cs an etale cover HqQ’[’JO/pn (VO) = 0 since ng/pn € PShp(U9¢) a (quasi)coherent

O(U®)/p™-module. Let (r; : V.© — U®),cr be an etale cover. Denote
VE € Fun(A(I),Sch™*™ /Ok), V€ ., ==V xpo -+ xyo V

the associated Chech simplicial scheme. Since the cotangent bundle Qbo € Shvp(U®) of UY is trivial as
U® admits an etale map to Ado‘; , we have a (non canonical) splitting (1)

QP

o (V) = o (VO 00 (V).

U9 /pnlog U® /p™,nl

It induces for each q € Z a splitting

HqQI[)JO/p" (V'O) = HQQZI)JO/p",log(V'O) ® HqQZI)JO/p",nz(V-O)'
Hence
_ oy _
HL(U, QZIJJO/;D",log) = HqQZ[)jO/pnylog(Vo )=0.

This proves (i).

(ii):Take (see lemma 1) an open affine cover X = Uj<;<,X; of X such that for each 1 < ¢ < r such that
there exists an etale map e; : X — T9% C A?;: with e; : X — €;(XP) finite etale. Denote, for each
1<i<r, j;: X; — X the open embedding. Consider then the commutative diagram of abelian groups

HP*QT(E,l'&n)(X.)

q Y4 q p
Het(X.’QX(P),log,O) Hpet(X.’QX(P),log,O) 9
®1<i<TEetQ(ji)T ®1<i<TEpetQ(ji)T
YT (8 Jm)(X)
q '4 q P
HE (X, 100 0) Ho (X, 2% ) 1o.0)

where the vertical maps are isomorphisms since the Zariski topology is finer then the etale topology. By
(i) the upper map is an isomorphism (using the spectral sequence associated to the trivial filtration of
complexes). Hence the lower map is also an isomorphism. This proves (ii).

(ii):Follows from (ii) applied to X and X\Z by the distinguish triangle in Ho(C(SmVar(K)))

72(x\2) 29 7(X) = 2(X, X\Z) — Z(X\2)[1],

where j : X\Z — X is the open embedding. O

Remark 1. Let k be a field of characteristic zero of transcendence degree lower or equal to the cardinal
of R. Let V.C A{ be a Zariski open subset.
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(i) Let e : U — V be a finite etale map with U € Var(k). Let Z € ZP(U). Then [Z] =0 € H%pR(U).

(ii)

Indeed, note that U is smooth. Considering an embedding k — C, we may assume k = C. By the
Leray spectral sequence for Cyan, we have the following commutative diagram, where | is the degree
of e,

ol

AV
HY U V261 (e(2n) Q-1 (e(z2))
pr.z(U)

H]DRe 1(6(Z))(U) H%)R(U)

T X

QY )} |
SUH? DL el (V)

V)

DR,e(Z)
But [e(Z)] =0€ Hiu(V).

More generally, let e : U — V be a faithfully flat etale map, U € Var(k). Let Z € ZP(U). Then

[Z] =0¢€ H%pR(U). Indeed, note that U is smooth. Let e : U 2 W 5V be a compactitication
of e, with W € Var(k) normal, € : W — V a finite morphism and j an open embedding. Let
R C W be the ramification locus of € and F := W\U. We have R C F since e is etale. Denote
B :=¢&(R) C V which is a divisor. Then e '(B) = RUR' C W is a divisor. Denotel:V\B <V
and l' : U\R' < V the open embeddings. Consider the exact sequence

HIQ V/ . ! % .
08, b (U) s B p(U\R)),

Hppp(U)
Since e : U\R' — V\B is finite etale, I'*[Z] = 0 by (i). That is
2] = B Qv)((2)), (2] € HEp o (U).
We have Z = j*Z, where Z € ZP(W) is the closure, and then
(2] = j*(2),12) € H**Q(vi)([2)), [Z) € Hp o (W).

Consider then the following commutative diagram

Qvpor)
HE (U\R') —2> HE o (W) 22

2p 1 Q(vjr)
(V\B) ——= H¥y, 5(V) — = H(V)

Note that . is well defined since V' is smooth. Since e : U\R' — V\B is finite etale, e, is surjective,
hence [Z] =0, thus [Z] = 0.

We will use the following result from Illusie:

Proposition 3. Let K be a p adic field. Let X € SmVar(K) with good reduction. Consider X© €
Sch™*™ /O a smooth integral model of X, in particular X© @0, K = X and X© is smooth with
smooth special fiber. Assume there exist lifts ¢, : X© /p™ — X© /p™ of the Frobenius ¢ : X© /p — X©/p,
such that for n' > n the following diagram commutes

0 —— OXO/pn’fn pﬁ OXO/pn’ /p; OXO/p" —0

¢T qu ¢T

O —_— OXO/pn’fn I OXO/pn’ L OXO/p" —— 0
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For each n € N, the sequence in C(X ), where we recall X2t C (Sch™*™ /O )/ X©,

OL

. XO /pn . Pn—1
0— ae’fQXo/p"Jog

L]
xoppm — 7 Hxopm =0

is exact as a sequence of complexes of etale sheaves (i.e. we only have local surjectivity on the right),
et : PSh(XO€) — Shv (X O¢t) being the sheaftification functor.

Proof. Tt follows from [7] for n = 1 since X©:¢¢ = (XY /p)¢ by definition of integral models (factor an
etale map of UY — X© as the composition of a finite etale map and open embeddings). It then follows
for n > 2 by induction on n by a trivial devissage. O

3 De Rham logarithmic classes

3.1 The De Rham classes of algebraic cycles vs De Rham logarithmic classes

Let X € Sch. Recall we have the canonical sub-complex OLx : Q% j,, = Q% in C(X) (c.f. definition
2). All the differential of % 1oz vanishes since by definition the logarithmic forms are closed. For j € Z,
the De Rham logarithmic classes consist of the image

HIOLx (H2, (X, 9% 1)) C HL(X, Q%) = Hpp(X).

The differentials of the filtered complex I'(X, Eet(Q%et 10, F)) € Crut(Z) vanishes at the Ey level since
the logarithmic forms are closed, hence we have a canonical splitting

j ° j—1
HY, (X, Q% 10g) = Po<i<iHL (X, 10g)-

Let X € Sch a noetherian scheme. We have by definition the exact sequence in C(X*")

dl
0— F* = 0% =% Qx1og — 0

where F' is a prime field (ie. F = Q or F' = Z/pZ for p a prime number). Hence H (X, Qx 10g) =
H}(X,0%) and HY, (X, Qx 10g) = HL(X,0%) =0 for ¢ < 2. Let X € Sch a noetherian proper scheme.
We have H(X, QfX,log) =0.

Let k be a field of characteristic zero. We get (see definition 2) the embedding in C'(SmVar(k))

OL : QY 1oy = Q7 given by, for X € SmVar(k),
OL(X) 1= OLx : Q7 154(X) := I'(X, Q% 105) = T(X, Q%) =: Q7 (X).

We have also the sheaves

Oy, O;, € PSh(SmVar(k)), X € SmVar(k) — Ok (X) := O(X), O5(X) := O(X)",
(g:Y = X) = ag(X): Ox(X) = Oy (Y), Ox(X)" = Oy (Y)"

Lemma 2. (i0) The sheaves O; € PSh(SmVar(k)) and Q)

o € PSh(SmVar(k)) admit transfers com-
patible with transfers on Q}k € PSh(SmVar(k)).

(i) For each | € Z, the sheaf Ql/k log € PSh(SmVar(k)) admits transfers compatible with transfers

on Ql/k € PSh(SmVar(k)), that is 99, € C(CorSmVar(k)) (see [8]) and the inclusion OL :
Ql/k logl =l = Q3,, in C(SmVar(k)) is compatible with transfers.

2 or eac € 4, the sheq, S mvar 18 nvariant.
i) F hleZ, the sh le/k)log PSh(SmVar(k)) is A® i )
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Proof. (i0):The sheaf O;, € PSh(SmVar(k)) admits transfers : for W C X’ x X with X, X’ € SmVar(k)
and W finite over X’ and f € O(X)*, W*f := Ny, x (pkf) where px : W — X' x X — X is
the projection and Ny, x : k(W)* — E(X')" is the norm map. This gives transfers on Q}k,log €
PSh(SmVar(k)) compatible with transfers on Q}k € PSh(SmVar(k)) : for W C X' x X with X, X’ €
SmVar(k) and W finite over X’ and f € O(X)*,

Wrdf [ f = dW”" f/W* f = Trw;x (px (df/ f)),

where where px : W < X’ x X — X is the projection and T'ry,x/ : Ow — Ox is the trace map. Note

that d(fg)/fg=df/f +dg/g.
(i): By (i0), we get transfers on

D02k 1ogr ©0, 2}y, € PSh(SmVar(k))
since ®<l@9}k,1og = HO(®é’lQ}kﬁlog) and ®lOkQ}k = H%@é’iQ}k). This induces transfers on

@rycit,... 1AL =(ww —swWRW')

®52 1 10¢) € PSh(SmVar(k)).

and

®@rycq,..., 1AL =(w@w —wuwew')

Now Q). = coker(Br,c1,..q @6 Q) ) @b, Q) € PSh(SmVar(k)).

(ii): Follows from the fact that for X € Var(k), O*(X x Al) = O*(X) since for a commutative ring A4,
(A[X])* = A*. O
Let X € Var(k). We have by definition the exact sequence in C(X )

dl
0= k" = 0% =L Qx1og — 0

Hence H} (X, Qx 10g) = HH(X,0%) and HL (X, Qx 10g) = HL(X,0%) = 0 for ¢ < 2. For X € PVar(k),
we have H(X, Q% ,,) = 0.

Proposition 4. For each j € Z, the excision isomorphism induced by (i)
HIQ(Pz,x) = H’ Eet(Q7,,)(Z(io)) 0 HY Eet(Q29,)(Z(i1)) ™"
H)p 7(X) = HT 7(X, Bt (2%)) = Hhp 5 (Nzyx) == H'T 2(Ng/x, Ea(2%,,,))

preserve logarithmic De Rham classes, that is for eachl € Z,

HJQ(PZVX)(HJOLX(Hé;é()C QlX,log))) = HjOLNZ/X (Hj;,é(NZ/Xa QINZ/X,log»

€

Proof. Since Ql/k,log € PSh(SmVar(k)) is A} invariant and admits transfers by lemma 2, for each j € Z,

the presheaves HI~! E,, (Ql/k,log) € PSh(SmVar(k)) are A} invariant by a theorem 1. It then follows from
proposition 1 that
HleOg(PZ,X) = HjEet( 7k,1og)(Z(i0)) © HjEet( 7k,1og)(Z(il))_l :
Hé;é(X’ QlX,log) :_) Hg;,é(NZ/X’ QINZ/X,log)'
Hence,
HIQ(Py,x)(H'OLx (HY (X, Q% 1,)) = HOLn, y (Qog(Pz.x) (HY (X, O 1o)))
= HjOLNZ/X(Hé;é(NZ,XaQlNZ/X,log))'
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Remark 2. Let k be a field a characteristic zero.

(i) The statement of proposition 4 also holds for the subcomplex Q;}f:O — Q;k of closed forms by the

same argument since the inclusion Ql/’szo[—l] — €9, in C(SmVar(k)) is compatible with transfers.

(i) The statement of proposition 4 does NOT hold for presheaves which do not admits transfers (they
are Al invariant but not Al local in general). Note that the result of proposition 4 does NOT hold
for the embedding in C(SmVar(k)), associated to an embedding o : k — C,

HEI 1] A%, X € SmVar(k), T(X, MY [=1] = D(X, Axgr)

of the subsheaf of harmonic differential forms, the sheaves of differential forms A € C(SmVar(k))
does NOT admits transfers (finite algebraic correspondences are not smooth and for f: X' — X a
morphism with X', X € Diff(R) wvector fields on X only lift if [ is a smooth morphism i.e. if the
differential of df is surjective), transfers maps are only defined on cohomology. Recall that we do
NOT have the Hodge decomposition for open complex varieties.

Let k be a field of characteristic zero. Let X € SmVar(k) and Z C X a smooth subvariety of pure
codimension d. We have for each j € Z, the purity isomorphism given by H'Q(Pz x) (see proposition 1)
and the cup product with the Euler class of of the normal tangent bundle Nz, x — Z :

HIQ(Pz, x) ; ((=)-e(Nz/x)~"
— -

HjDR(PZ,X) : H%JR,Z(X) H%)R,Z(NZ/X) Hf;;d(Z),

Now, we have the following :

Proposition 5. Let k be a field of characteristic zero. Let p : E — X a vector bundle of rank d € N with
X, E € SmVar(k) connected. Then

(i) the Buler class e(E) € Hpl x(E) is logarithmic of type (d,d), that is e(E) = H**OLp(e(E)) €
le)dR,X(E) with G(E) € Hg(,et(E7 Q%,log)7

(ii) the Buler class e(E) € Hyly «(E) induces for each i,j € Z an isomorphism
(=) - e(E)) : HHOLx (HL(X, Uy 1o5)) = H* M HOLp (HL (B, Q3 ,))-
Proof. (i):Let X = U;X; an open affine cover such that E; := E\x, is trivial : (1, ,84) : Ex, =
X; x A? with s; € I'(X;, E). Then
e(E)x, = 0(ds1/s1 A+ Ndsa/sq) € H**OLg,(HY, (Ei, Q0 105))
where 9 : H™H(E\X;, Q% ,,) = HE, (Ei, Q%) is the boundary map. Hence
G(E) € H2dOLE(HO(E7 H?(Q%,log)) = Hedt,X(Ev Q%,log) - HO(Ea Hg(dQ.EZd) C H%dR,X(E)

(ii):Follows from (i) and Kunneth formula for De Rham cohomology : let X = U; X; an open affine cover
such that E; := E|x, is trivial and consider the morphism of bi-complexes of abelian groups

(=) - e(E)) : OLx (T(Xa, Eet(x 10g))) = OLE(T(Ea, Eet (U f5,.)))[2d]-

By (i) an Kunneth formula for De Rham cohomology, ((—)-e(FE)) induces an isomorphism on the F; level
of the spectral sequences for the filtrations associated to bi-complex structures on the total complexes.
Hence, ((—) - e(F)) is a quasi-isomorphism. This proves (ii). O

We deduce from proposition 4 and proposition 5, the following key proposition
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Proposition 6. Let k be a field of characteristic zero. Let X € SmVar(k) and Z C X a smooth subvariety
of codimension d. For each j € Z, the purity isomorphism

H'Q(Pz,x) ((=)-e(Nz/x)~*

j j j j—2d
HIDR(Pzx) : Hjp 5(X) H}p 5(Nz/x) H}24(Z)

preserve logarithmic De Rham classes, that is for each | € 7Z,
HIDR(Pz.x)(H/OLx (H}; 7(X, 9 105))) = H OLz(HY (2.0 15))-
Proof. Follows from proposition 4 and proposition 5(ii). O

Let k be a field of characteristic zero. For X € SmVar(k), we have the cycle class map for De Rham
cohomology

Z € 2UX) m [2] = H*Q(v3)([2)) C HpR(X), [Z] € Hpg2(X),
H*¥Q(yy) : H%JdR,\z|(X) — HpR(X)
where
Q(yz) = Hom(vz(Zx), Eet(X)) : T2(X, Eet(Q% ) = T(X, Eet(Q% )

and, as for any Weil cohomology theory, we have the isomorphism given by purity : if X° C X is an open
subset such that Z¢ := X° N Z has smooth components we have the isomorphism

H*'DR(Pzo xo) : Hplg 1 7/(X) = Hplg 70/(X%) = Hplg 70| (Nzox0) = Hpp(|1Z°)).

where the first equality follows from dimension reason : for X € SmVar(k) and Z’ C X smooth, we have
Hpp 7/(X) =0 for i < 2codim(Z’, X) by the purity isomorphism H*DR(Pz x).
The main result of this section is the following :

Theorem 2. Let k be a field of characteristic zero. Let X € SmVar(k). Let d € N.

(i) The De Rham cohomology class of an algebraic cycle is logarithmic and is of type (d,d), that is, for
Z € Z4X)
(2] := H*¥Q(v)(1Z]) € H*OLx (H&(X, Q% o)) C HBR(X).

(ii) Conversely, any w € H?*?OLx(H% (X, le(,log)) is the class of an algebraic cycle Z € Z4(X), i.e.
w = [Z]. Note that it implies w € WoH%5(X) as it is easily seen for d =1 by the Chow moving

lemma since j* : Pic(X) — Pic(X) is surjective if j : X — X is a smooth compactification of X,
X € PSmVar(k) and since H}, (Y, Qy,,,) = Pic(Y) for Y € Var(k).

(iii) We have HIOLx (H? (X, QZX)log)) =0 for j,l € Z such that 2l < j.

(iii)’ If X € PSmVar(k), we also have HIOLx (H? (X, leﬁlog)) =0 for j,l € Z such that 21 > j. That
is, if X € PSmVar(k), we only have logarithmic classes in bidegree (d,d) for d € N, in particular
there is mo non trivial logarithmic classes for odd degree De Rham cohomology H%‘ﬁ'l(X).

Proof. (1):We have
(2] .= H**Q(vy)([Z]) = H*'OLx o H'Qi (v2)(1Z]) € HER(X), [Z] € HEy ) 7)(X, Q% 1g)

where

Qiiog (’Y%) = HOID(’Y% (ZX), Eey (ng,log)) Iz (Xv Ee (Qg(,log)) — F(Xv Eey (Qg(,log))v

since if X C X is a Zariski open subset such that Z° := X°NZ has smooth components and Nzo/xo — Z°
is the normal tangent bundle, we have by proposition 6 the isomorphism

H*'DR(Pygo xo) : H*OLx(H%, 7/(X,Q% 105) = HOLx(HS | 50/(X%, Q%0 10))
H2dOLX(Hgt1‘Zo|(NZO/X°7Ql]iVZO/Xo,log))'

19



(ii):By assumption we have
w=HOLx(w) € HER(X), w € HL(X, Q% 10z)

As le()log € PSh(X*®) consist of a single presheaf, that is a complex of presheaves concentrated one
degree, there exist an etale open cover r = r(w) = (r; : X; = X )1<i<s, (depending on w or take X; such
that there exists an etale map X; — A%%: which works for all w), such that 7fw = 0 € H% (X, Q%log) for
each i. Choose i = 1 and denote j : U := r1(X;) — X the corresponding (Zariski) open subset. As Q;lmog

has no torsion and admits transfers, we have j*w = 0 € H% (U, le(,log)- Hence, denoting D := X\U, we
have
w = H2dOLX (’LU), w e Hde (WB)(Hgt,D(Xv Qg{,log))'

log

We may assume, up to shrinking U, that D C X is a divisor. Denote D° C D its smooth locus and
l: X°— X a Zariski open subset such that X°N D = D°. We then have by proposition 6

I"'w € H**DR(Ppo xo)(H**"2OLp.(HS (D%, Q5:1,))-

We repeat this procedure with each connected components of D° instead of X. By a finite induction of
d steps, we get
w = szOLX (w)a w e Hiniog (’Y%)(Hgt,Z(Xa Qg{,log))a

with Z := Dq C --- C D C X a pure codimension d (Zariski) closed subset and w = 3", n;[Z;] € H¥L(X),
where n; € Z and (Z;)1<i<¢ C Z are the irreducible components of Z, using in the final step the
isomorphism

Helt(Dg—laQDg,l,IOg) = Helt(Dg—lvOBd,l) = Pic(Dg_4).

(iii):Let j > 2I. Let w € HIOLx(H (X, QlX)log)). By the proof of (ii) there exists Z C X a closed
subset of pure codimension [ such that
w=H/OLx(w), w e HI ™'y (v7) (H]; 7(X, U 105),

By a finite induction of dx — [ steps, restricting to the smooth locus of closed subsets of Z, w = 0 since
by proposition 1, H/OLx (Hgt_é, (X, Q%)log)) =0 for all Z' € SmVar(k) such that codim(Z’, X) > I.
(iii):Let j < 2l. Let w € HIOLx(H? (X, QlXJOg)). By the proof of (ii) there exists Z C X a closed
subset of pure codimension j — [ such that

w = (HjOLX © Hjileog(’Y%))(w)v w e Hé;,é(Xa QfX,log)a
For Z' C X a closed subset of pure codimension ¢, consider a desingularisation e : Z' — Z' of Z' and
denote n : Z' % Z' € X. The morphism in DA (k)

Gzx : M(X) 22 v 27 ()[2¢) 29 M(27)()[2¢]

where D : Hompy ) (Mc(Z'), Me(X)) > Hompa k) (M (X), M(Z')(c)[2¢]) is the duality isomorphism
from the six functor formalism (moving lemma of Suzlin and Voevodsky) and Z(n) := ad(ni,n')(a'yZ),
is given by a morphism in C(SmVar(k))

Gz x t Lir(X) = Eei(CuZun(Z'))()[2¢].

Let [ : X° — X be an open embedding such that Z° := Z N X°? is the smooth locus of Z. We then have
the following commutative diagram of abelian groups

j=l l r j—1 o Ol 9 j=l41 1
0 Het,Z(Xv QX,log) Het,ZO(X 7QX,log) Het,Z\ZO(X7 QX,log) T

Q(CAT‘Z,X)T DR(PZO,XO)T Q(éz,x)T

Ux 0 (70 2l—J o 1
Ho (Z 7QZ°,log) - Het,Z\Zo

—j 1—i
0—— Hgt(Z7 Q2Z,lojg) (Z7 Q2Z,lojg) -
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whose rows are exact sequences. Consider
* l o o o 21
'w = DR(Pz0,x0)(w°) € Hét 70(X°, QX log> w € HY(Z°, Q7 10g)

Since Ol*w = 0 € Hgt g{lzo (X, leylog), we get using proposition 6 applied to ((Z\Z°)°, X°°), where

(Z\Z°)° C Z\Z° is the smooth locus and X° C X is an open subset such that X N (Z\Z°)°
Xoon(2\z°),
21
uw® =0€ H,, 202,y lojg)

since Helt7(Z\Zo)\(Z\ZD)O (Z, QQZZ lojg) = 0 for dimension reasons, that is
w = Q(Gz.x)(w), withw € H%(Z, QQleojg)

Hence w = 0 since H(Z', Q’%,Jog) =0 for all £ > 0 and all Z’ € PVar(k). O

3.2 Complex integral periods

Let k be a field of characteristic zero.
Let X € SmVar(k) a smooth variety. Let X = U{_; X, an open affine cover. We have for ¢ : k — C
an embedding, the evaluation period embedding map which is the morphism of bi-complexes

ev(X)s : T(X,,Q%,) = ZHOmDiﬂ‘(H.,XETZ.)V ®C,

wh € (X1 9,) = (eolX)} wh) : ¢} € ZHompun (1, XE)” © € enb)(6}) = [ o)
It

given by integration. By taking all the affine open cover (j; : X; — X) of X, we get for o : k — C, the
evaluation period embedding map

ev(X) = lim ev(X)g:  lim I'(X., Q%,) — lim Z Hompgr) (I°, X&7)Y @ C

It induces in cohomology, for j € Z, the evaluation period map

Hlev(X) = Hlev(X)s: Hhp(X) = H'I'(X.,Q%,) = Hgmg(Xg", ) = H7 (Hompg () (I*, X&%)Y @ C).
which does NOT depend on the choice of the affine open cover by acyclicity of quasi-coherent sheaves on
affine noetherian schemes for the left hand side and from Mayer-Vietoris quasi-isomorphism for singular
cohomology of topological spaces and Whitney approximation theorem for differential manifolds for the
right hand side.

Proposition 7. Let k be a field of characteristic zero. Let X € SmVar(k). Let o : k — C an embedding.

(i) Let w € H)n(X) = H/(X,0%) = H.,,(X,Q%). If

pet

w e H]OLX( pet(X(C’ Xet IOE))

then Hiev(X)(w) € H (X&",2inQ).

sing

(ii) Let p € N a prime number and o, : k < C, an embedding. Let j € Z. Let w € Hpp(X) =
(X 95 ) = pet(X Q5 ) If

w = T/c, (X)*w S HjOLX(HZt(XCp7 Q;(E;,log,o))

then Hiev(X)(w) € HZ _(X&",2inQ). Recall that H’

sing pet(XC?QXPGt lo g,O) H (X(CvQXef Jlog, (9)
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Proof. (i): Let _ ‘ ‘
w € Hpp(X) =H/(X,0%) = HT(X., Q%)

where (r; : X; = X)i<i<s is an affine etale cover. Let X&" = U]_;D; an open cover with D; ~ D(0 , 1),
Denote jr; : X; NDy — X7 the open embeddings. Then by definition HYev(X)(w) = Hjev(X“")(jf o
an’, w) with

jo o ank, w € H'T(XJE N Da, Q%an ).

Now, if w = H'OLx (H,(Xc, Qxct log)): We have a canonical splitting

w—ZwU ! Zw’J Le pr(Xc), wlL’jflEHj_l(Xc,QlXEtylog), whi=t H]OLXer( ;l).

Let 0 <[ < j. Using an affine w-contractile pro-etale cover of X, we see that there exists an affine etale
cover r = (w1 = (r; : X; = X)1<i<n of X (depending on w"/~!) such that
w = [(wi)1] € HOLxer (HI7'T(Xc,0, O 10e)) € BT (Xc 0, Q%)

Note that since X is an algebraic variety, this also follows from a comparison theorem between Chech
cohomology of etale covers and etale cohomology. By [4] lemma 2, we may assume, up to take a desingu-
larization 7 : X’ — X of (X,U;(r;(X\X;))) and replace w with 7*w, that r;(X;) = r;(X;(w)) = X\D;
with D; C X smooth divisors with normal crossing For 1 <1 < j, we get

w7 =" df, [ fo AN Ndfu fo € T(Xer, Q).

v

For [ =0, we get _ _
w®’ = [(A1)] € H'T(Xc,1,Ox, ,), A € I(Xc,1,Zxg,)

There exists k' C C containing k such that wlLJI_l e ' X 1, Qle,) for all 0 <[ < j. Taking an embedding
o’ : k' — C such that U|/k = o, we then have

deoany, w=j;((m - wi’ocicy) = (wi’y Dirs € HT(XEE NDa, Q%gn).

where for each (I, J,1) with cardl + cardJ +1 = j,
Wiy =it € DIXTENDy, Qlyan).

We have by a standard computation, for each (I, J,1) with cardl + cardJ +1 = j,
H o (X7eNDy, Z) =< 31,y Yeardl >,

where for 1 < i < cardl, v; € Hom(A*, XienD J) are products of loops around the origin inside the
pointed disc D*\0. On the other hand,

o Wil =355, dfu/for N N f) € T(XEE D, Q4an) for 1 <1<,

0,5 _ :
o wpy = A7 is a constant.

Hence, for p € P([1,---,s]) with cardy = I, we get, for I = 0 Hlev(Xg")I,J(w%)jLJ) = 0 and, for
1<1<y,

H'ev(X&);, J(U]LI 7 25,,#2171' € 2inZ.
k

where 7y, := Y, - - vu,. We conclude by [4] lemma 1.
(ii):It is a particular case of (i). See [4] proposition 1. O
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Let k be a field of characteristic zero. Let X € SmVar(k). Let X = U;_; X; an open affine cover with
X; = X\D; with D; C X smooth divisors with normal crossing. Let ¢ : k& — C an embedding. By
proposition 7, we have a commutative diagram of graded algebras

H*ev(X)

Hpp(X) H,g (X", C)
CT TH*C*LZM\-Q/C(XE”)
* * . * Hev(X) * an 9
H OLX (Het(X7 QXE‘,log)) n HDR(X) Hsing (X(C ’ 2’”1-@)

where

C*LZiﬂ'Q/C (Xé:m) : s.ing (Xan, 22#@) — Cs.ing (X(gna )
is the subcomplex consiting of a € Csjing(X(‘cm, C) such that o(7) € 2iwQ for all y € C'Js»ing (X&", Q). Recall
that

H*ev(Xc) = H*RT(XE", (X)) Lo T(XE", ELar(Q(anx))) : Hpp(Xc) = HE (X", C)

sing
is the canonical isomorphism induced by the analytical functor and a(X) : Cxgn — Qg%m, which gives
the periods elements H*ev(X)(Hjz(X)) C HY,,(X&",C). On the other side the induced map

sing

H*ev(Xc) : H*OLX(H:t(X(C7Q;(EtJOg)) — H"19ixq/c H;

ing (Xgnv 2’”1-@)

is NOT surjective in general since the left hand side is invariant by the action of the group Aut(C) (the
group of field automorphism of C) whereas the right hand side is not. The fact for a de Rham cohomology
class of being logarithmic is algebraic and invariant under isomorphism of (abstract) schemes.

Corollary 1. Let X € PSmVar(C). Then the Hodge conjecture holds for X if and only if the Hodge
classes are given by logarithmic De Rham classes.

Proof. Follows from theorem 2. O

3.3 Rigid GAGA for logarithmic de Rham classes

Let K be a field of characteristic zero which is complete for a p-adic norm. Denote by O C K its ring
of integer. We consider Sch™ /O := O(PSch® /Ok) C Sch’/' /Ok the full subcategory consisting of
integral models of algebraic varieties over K, where O : PSch? /O — Sch'* /Ox, O(X,Z) = X\Z is
the canonical functor, and

Sch™*™ /O := Sch™ /Og N Sch®™ /O C Sch /O

the full subcategory consisting of integral models of (smooth) algebraic varieties over K which are smooth
over Og. We then have the morphism of etale sites

r: SmVar(K) — Sch™"*™ /O, X© € Sch™"*™ /Ox — X° @0, K
We will consider for each n € N

Q504 /) Jog = @t (0, /) 1og € C(SH™ ™™ [Oxe),
X = Q%0 pn10g(X9), (f: X' = X) = Qf) = f*

which gives

Qi log,0 7= UM At 0, /) 105 € C(S™ ™ [Oc),
neN
X9 Qs (XO@), (f: X' = X) = Qf) = f*

X (@) log,O
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together with the embedding in C(Sch™™*™ /Oy) (see definition 2(iii))
OL :=OL0y.an : Q)00 = Vo, for X € (Sch™*™ /O),

/K.log,O /OK’
OL/OK,an(XO) = OLXO,(p) (XO) : Q;A(O,(p)ﬁlogyo(XO&p)) — Q;A(O,(p) (X01(p))'

which induces the embedding of C'(SmVar(K)) (see definition 2(iii))

7"OL;,0 e an

OL := OL /g o T*Q;’;ﬁogﬁo — = T*Q;SZ — Q;I?n, for X € SmVar(K),
OL K an(X) == (2(€) o OLy ) (Y))
hﬂ Q;"(P),log,(’)(y(p)) N Q}((p) (X(p)).

YOg(Schint:sm /Og),e: X =Y O x o, K=Y
We have also, for each n € N, the sheaves
On, O}, € PSh((Sch™"*™ /Ok)), X© = 0,(X?) := O(X)).), O5(X°) :== O(X7.)",
(g:Y = X) = ag(X70) : On(XP) = 0n(Y?), 0u(XP)" = On(YO)",

and O,, := 1r*0,, 0} := r*0; € PSh(SmVar(K)). We will also consider the De Rham-Witt complex of
Nlusie ([7])

WQ,. € C(Sch™*™ /Ok),
X € Sch™ ™ [0k = WQko ,,(X9), (f: Y = XO) = W(Q)(f)

and the map in C(Sch™"*™ /Ox)

1. 1. oban OL' ~e,an IW .
OL:, .= OL': Q/K,log,o[_l] —_— Q/OK — WQ/OK,

which induces in particular the map in PSh(SmVar(K))

H'OLY, .= H'(kor*OLY,) : T*Ql/%ﬁog,o[_l] — HlEet(T*WQ;gZ).

We will use the following :
Lemma 3. (i0) For each l,n € N, the sheaf Ql/(OK/p") € PSh(Sch®™ /Ok) admits transfers

(i1) For each n € N, the presheaves O}, € PSh(Sch®™ /Ok) and Q}(Ok/p"),log

transfers compatible with transfers on Q}(Ox/p") € PSh(Sch®" /O).

€ PSh(Sch®™ /Ox) admit

(i2) For each l,n € N, the sheaf aeth/(OK/pn))log € PSh(Sch®™™ /Ok) admits transfers compatible with
transfers on Ql/(OK/pn) € PSh(Sch®™ /Ox), that is D30, /) € C(CorSch®™ /Ox) and the inclu-
sion OL = Q)6 10 10g =1 = Q5 0, jpny @ C(Sch™ /Orc) is compatible with transfers.

(i8) The sheaf T*Ql/?{"log o € PSh(SmVar(K)) admits transfers.

(ii0) Let o : Sch™™ " /O < Sch"™™*™ Ok be the full subcategory consisting of X© € Sch™*™ /O
such that there exists a finite etale map e : X© — e(X9) C Ado);, where e(X9) C Ado); is an open
subset. Denote o : Sch™*™ /O — Sch™™* /O, o : SmVar(K) — SmVar(K ), SmVar(K ) :=
r=1(Sch™™°* /O), the corresponding morphisms of sites, with o(U®) = U®, o(U) = U, so that
roo=oor. Then the map in PSh(SmVar(K)*)

o.H'OLY, - O*T*Ql/?:logc — o ker((¢p—1I): HlEet(r*WQ;OK) — HlEet(r*WQ;OK))
= 0,7 (X9 € Sch™ ™ /O = ker((¢p — I) : Hpr(X) = Hpp(X))),

is an isomorphism.
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(ii) For eachl € N,

*yl,an * 71s * .
Qet™ Q/K;IOE;O "= et ]£1 aeth/(OK/P")xIOg =T Get ]&n aﬁth/(OK/p"),log € PSh(vaar(K))
neN neN

is Al invariant, where ae; : PSh(SmVar(K)) — Shve,(SmVar(K)) is the sheaftification functor.

Proof. (i0):The sheaves Q) /n) € PSh(Sch®™ /Ok) admit transfers. Indeed, let W C X' x X finite

over X', with X, X’ € Sch®™ /Og. Take n : W — W the normalisation of W. Since X’ is of finite type
over Ok it is an excellent scheme, thus n is a finite surjective morphism. Hence m :=px/on: W — X !
is a finite surjective morphism. Since X’ is smooth and W is normal, m is a finite flat morphism. By
base change m /pn : Wy,n — X ;pn are finite flat, since m is finite flat. We thus have a canonical trace
map T'r(m pn) OW/pn — OX}pn- We get transfers on Ql/(OK/p") € PSh(Sch*™ /Ok) by induction on !
(see the proof of (i2)).

(i1):By (i0), the sheaves Q}(OK/;D”) € PSh(Sch®™ /Ok) admit transfers. On the other hand the sheaf
O7 € PSh(Sch®™ /Ok) admits transfers : for W C X’ x X with X, X’ € Sch®" /O and W finite over
X'and f € O(Xg)*, W*f = Nw,x/ (p%x f) where px : W — X' x X — X is the projection and Ny, x
Ok /p(W)* — Ok/p(X’)* is the norm map. This gives transfers on Q}(Ox/p),log € PSh(Sch®™ /Ok)
compatible with transfers on Q}(OK/p) € PSh(Sch®™ /Og) : for W C X’ x X with X, X’ € Sch®™ /Ok

and W finite over X’ and f € O(Xgn)*,

Wedf [ f = dW” f/W* f = Trw;x (px (df / f)),

where where px : W < X’ x X — X is the projection and T'ry,x/ : Ow — Ox is the trace map. Note
that d(fg)/fg=df/f + dg/g. Considering the commutative diagram in PSh(Sch®"™ /Og)

1 Q(/p) Ol
Ox /p /(OK /p™) /(Ok /p

OLT OLT OLT

0— > a,Q 0,0 2UP) ot S
Qet32/(Ok /pn—1) Qet3%/(Ok /p Qet*2/ (O /p).log

O—>Q}( ”*1)—>Q )—>O

,log ™),log

we see by induction on n € N that the transfers on Q}(OK/pn) € PSh(Sch®™ /Oy ) send logarithmic forms
to logarithimc forms. Hence the transfers on Q}(OK /om) € PSh(Sch®™ /Ok) send logarithmic forms to

logarithime forms. This proves (i0).
(i2): By (il), we get transfers on

l 1 ! 1 sm
B2/ 20k o) togr ©0,2/(0xc spmy € PSW(Sch™ /Ok)

: l _ L,l 1 1l,an _ Lil~l,an o
since @7,0 Q)i 10g = HUSz)n L0, o) 108) 304 @0, Q)01 ) = H(®5 Q) pymy)- This induces

transfers on

l 1 L -1 1
Nz S (0 Jpm) Jog = COKT(Dr,c1,...0) B pn )0k /pm) log

@rycq,..., 1AL =(w@w —wuwew")

@100 Q) (0 ) 10g) € PSR(Sch®™ /O).

and
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(i3):The presheaves for each [ € Z

l,an : l int,sm
QK log,0 = UM act€) (0, /pn) 105 € PSh(Sch /Oxk)
neN

admits transfers by (i2). Hence, the presheaves for each | € Z

GetT Ql/;’("bg 0 = Qe L aetQ/ (Ox /pm).log € PSh(SmVar(K))
neN

admit transfers since if I' € X’ x X" with X', X” € SmVar(K) is finite surjective over X', then,
L cXOxX"0with X'©, X" e Sch™*™ /O such that X' = X'© x, K,X" = X"© x¢, K is finite
surjective over X % (T is proper and affine over X 'O and recall that a proper affine morphism is finite).
(ii0):Let X© € Sch™*™ /Oy such that there exists a finite etale map e : X© — ¢(X9) C Ado); to an
open subset of the affine scheme. By proposition 3 and since the pro-etale site is a replete topos by [2],
for each | € Z, the sequence of abelian groups
. rOLxo ¢y 2L (X ®)

pet(X Q% o) 10&0) - HDR(X ) — Hpp(X™)
is exact. Hence, by proposition 2(i) and since a logarithmic form is exact if and only if it vanishes, we
get an isomorphism

Ol o : T(X©, a Q! ) S ker((¢ — 1) : Hb n(X®) - HL L (XP))).

X ® log,0

(ii): The question is local, hence we may consider X© € Sch”"*™ /Oy such that there exists a finite
etale map e : X© — ¢(X9) C Ado’;. Then by (ii0),

04 Qet 1'&2{ aeth/(OK/pn)Jog(Xo) = aetO*Q/?\fnlo& (X(’))
ne

does not depend on the integral model X© € Sch”*™ /O of X, since in PSh(SmVar(K)**)

0. H'OLY, : 0. Qi L 5 = 0.r* (X € Sch™ ™ /O = ker((¢ —I) : Hpp(XP)) = Hpp(X®))).

Hence, considering an integral model of X x A! of the form X© x A}, _, we get that o.r Ql/Klog o €

PSh(SmVar( )¢®) is Al invariant since for a commutative ring A, (A[X D* = A*.. Since moreover
*Ql/?(nlog o admits transfers, we get that o*aetr*Ql/’?(rflog70 = Qe 0T Q/;("log o € PSh(SmVar(K)) is
also Al invariant by theorem 1. This proves (ii). O

The morphism of site
An, : RigVar(K) — Var(K), X — X := X9® @4, K, X° € Sch™ /Ok, st X© @0, K = X

induces the map in C(Var(K)P¢t)

Ang Q/K—>Q/K .—Anp*Q/K , for X € Var(K), An,, : Q% (X )—>Q;((p)(f((?))7
which induces for each j € Z and X € Var(K) the morphism
Any HjDR(X) = Hit(X, Q%) — Het(X Q;ap)) Hé (X Q;ap))

which is an isomorphism for X € SmVar(K) or X € PVar(K) by GAGA (cf. EGA 3), and for each
j € Z and X € Var(K) the morphism

An}: HLp(X) = HY (X, Q%) — H (X, Q%) = HY,, (X @), Q%

X(p))
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which is thus an isomorphism for X € SmVar(K) since (see [11])

HY,, (X®), %) = HZ, (X @), 0%,), that is, HY,, (X, %) = HY, (X, Q% 0)-

by considering an open cover X = U; X; such that there exist etale maps X° — Gixi C A?;; which are
the composite of a finite etale map and an open embedding. The result of this section is the following

([4] proposition 2 (i)), we recall and give some precisions to the proof :

Proposition 8. Let K be a field of characteristic zero which is complete for a p-adic norm. Let X €
PSmVar(K) with good reduction. Let X© € PSch /O, smooth over O such that X© ®0, K = X.
Consider the morphism anx p : X®) — X in RTop given by completion of Xo with respect to (p).

(i) The analytic De Rham cohomology class of an algebraic cycle is logarithmic and is of type (d,d),
that is, for Z € Z4(X)

2] == H*'Q(y2)(12)) € H*OL ¢ (Hpet(X, %) 10, 0)) © HEr(XW) = HER(X).
(ii) Conversely, any w € H**OL ¢ (HE, (X, Q?{@ log o)) is the class of an algebraic cycle Z € Z4X)®
Qyp, te. w=1[Z].
(ii) We have HjOLX(Hg;l(X, QlX(p) log o)) = 0 for j,l € Z such that 2l # j. That is, we only

have analytic logarithmic classes in bidegree (d,d) for d € N, in_particular there is no non trivial
logarithmic classes for odd degree De Rham cohomology H%dgl(X(p)) = H%dgl(X).

(iv) ([4] proposition 2 (i)). For each j € Z, the isomorphism
an’, : Hjp(X) = HY

pee (X, %) = Hiet(X’ Q%) = H{)R(X(p))

and its inverse preserve logarithmic classes, that is for each j,l € Z,

* j 1—1 j 1—1
me,p(HJ (mo(OLx ® I))(ngt (X, lepet,log,o ® Zp))) = HJOLX@) (ngt (X, Qlfg(p),log,o))-

Proof. Consider, for j,l € Z and X € SmVar(K) with good reduction,

- , -
LMY X) = H'OL g, (Hi ' (X, Qlfcm,]og,o))'

Consider also for j,1 € Z, X € SmVar(K) with good reduction and Z C X a closed subset,

l,j—1 L j j—1 l
LZJ (X) — HJOLX(p)(H;Et,Z(X’ QX(p),log,O)).

By proposition 2(ii) and (ii)’, we have

LY7YX) = HIOL 4, (HJ, (X, QlX(m)]% o)) = HIOL i o (H' ' Hom(Z(X), Eet(r*Ql/’?(’flogyo))).
and
LlZ)j_l(X) = HjOLX(P) (Hg;é(Xv Ql)”((p)ylogyo)) = HjOL/K,an(Hjil HOID(Z(X, X\Z)v Eet(T*Ql/?g)l]og)O)))v

for the second equalities of L*/~!(X) and LlZ’j_l(X), note that by lemma 3 (ii0) and its proof

I ~
(aetHZOL%/V)\X‘Zt :aet(r*ﬂ/?gjlog,o)lxd —

aet (X' = X) € X = ker((¢ — 1) : Hpp(X'©) = Hpp(X'9)) = aei(r* Q) 10p.0)
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where X C SmVar(K) is the small etale site and ae; : PSh(X®) — Shv (X ) is the sheaftification
functor. By lemma 3 (i3), the presheaves for each | € Z

et Qi e 0 = Qe T ace Q) 0, /) 1o € PSh(SmVar(K))
neN

admit transfers. The presheaves for each | € Z

(aetr*gl/;’;ogp) ©z, Qp = (acer™ Tm acey 0,/ 10g) ©2, Qp € PSh(SmVar(K))
neN

are also A! invariant by lemma 3 (ii). Hence by theorem 1, they are A! local since they are A! invariant
and admit transfers. This gives in particular, for Z C X a smooth subvariety of (pure) codimension d
with good reduction, by proposition 1 an isomorphism

Eor* Qi op 0(Pzx) t LY 1 (X) S LY T (Ngyx) = L 47174(2),
Let

j— i i—1 j— *yl,an
o = OLX(P) (a) € Ll)] l(X) = HJOLX(F) (ngt (Xv Qlf((p)’]ogy(/))) = H’ lHOm(Z(X), Eet('r Q/}(’]Og,o))'

with j —1 # 0. Let (see lemma 1) U C X a (non empty) open subset such that there exists an etale map
e:U° - Gl C Aé‘; with e : U® — e(U®) finite etale, where U© := XO\V(I)(?\U). Denote j : U — X
the open embedding. By proposition 2(i), we have

Sk j—1
jJ7a=0¢€ Hét (Uv fo{(?),log,(’)) =0.

Considering a divisor X\U C D C X, we get

i *yl,an Lj—1
o= H’ lEet(T Q/K)log)o)(/yz/))(a)v o€ LDJ (X)

e Proof of (i):Similar to the proof of theorem 2(i).

e Proof of (ii):By assumption we have w € L%4(X). Let U C X an open subset such that there
exists an etale map e : U® — G C Aé‘; with e : U — e(U?) finite etale. Considering a divisor
X\U C D C X, we get

*d,an d,d
w=HEy(r Q/K,log,o)(”ﬁ{))(w)v a € LEY(X).

Denote D° C D its smooth locus with good reduction and [ : X° < X a Zariski open subset such
that X°N D = D°. We then have

I'w e LEE(X°) = L& 141(D0)

We repeat this procedure with each connected components of D instead of X. By a finite induction
of d steps, we get

*yd,an d,d _ S o
w= HdEet(r Q/K710g70)(’y¥)(w), we LyY(X) = LY9(Z°).

with Z := Dq C --- C D C X a pure codimension d (Zariski) closed subset, thus o =}, n;[Z;] €
Hl%dR(X), where n; € Q, and (Z;)1<i<¢t C Z are the irreducible components of Z,

e Proof of (iii) part 1: Let j > 2I. Let w € L"~!(X). By the proof of (ii) there exists Z C X a
closed subset of pure codimension [ such that

w=H B, (r 5 ) () w), we LY H(X).

By a finite induction of dx — [ steps, restricting to the smooth locus with good reduction of closed
subsets of Z, w = 0 since LZZ’J,fl(X) = 0 for all Z' € SmVar(k) with good reduction such that
codim(Z’, X) > L.
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e Proof of (iii) part 2: Let j < 2I. Let w € L"“~=!(X). By the proof of (ii) there exists Z C X a
closed subset of pure codimension j — [ such that

j— *yl,an 1,71
w=HI""E,(r Q/K7log70)(”y§)(w), we Ly (X).
For Z' C X a closed subset of pure codimension ¢, consider a desingularisation e : 7' = 7' of 7'
and denote n : Z’ < Z' C X. The morphism in DA (k)

Z(¢€)

2, M(Z') (2] Z M(Z') (el

GZ/,X . M(X)
where D : HomDA(k)(MC(Z'),MC(X)) — Hompa i) (M(X),M(Z")(c)[2¢]) is the duality isomor-
phism from the six functor formalism (moving lemma of Suzlin and Voevodsky) and Z(n) :=
ad(ni,n')(a'yZ), is given by a morphism in C(SmVar(k))

Gz x : Lir(X) = Bt (CuZey(Z7))(c)[2¢].

Let [ : X? < X be an open embedding such that Z¢ := Z N X is the smooth locus of Z with good
reduction. We consider Z := V(I$) C X© so that Z° € Sch™ /O is an integral model of Z.
We then have the following commutative diagram of abelian groups

j—1 ! r j—1 o Ol 9 j—l+1 l .
0 Het,Z(Xv QX(p)7log7O> I{eiE,ZO (X ’QX(p)7log7o) Hetyz\zo (Xa QX(p),logﬁo)
Q(éz,x)T Q(PZD,XD)T Q(GZ,X)T
0— HY z Q%7 )$~HO (ZO Q%7 )%B-Hl z Q%7 ) ——
e\ 2" Z () log,O et ? 7" Z0(P) log,O0 et,Z\Z°\2 "7 Z(») 1og,0
whose rows are exact sequences. Consider
*, o j—1 o Ol o 0 (70 2l—j
UFw = Q(Pzo,x0)(w’) € H 7o (X 79)&(;:),10&0)7 w® € Hyy(Z aQZo<p)7log)O)~

Since 0l*w =0 € Hg;;{lzo (X, Qlf((m,log,o)’ we get, considering the smooth locus with good reduc-

tion (Z\Z°)° C Z\Z° and X°° C X is an open subset such that X N (Z\Z°)° = X°°N (Z\Z°),
o __ 1 2l—4
ow® =0¢€ Hgy 5 7.(Z, QZ(P)J,log,O)’

. 1 2l—j _ . . .
since Het(Z\Zo)\(Z\ZO)O(Z7 QZ<P),1og,O) = 0 for dimension reasons, that is

w=UGCzx)(w), withw € H,(Z,Q% 77 ),

Z(®) log,O
Hence w = 0 since H°(Z', Qé/(m,log,o) =0 for all £ > 0 and all Z’ € PVar(K).
(iv):Follows from (ii),(iii) on the one hand, and on the other hand theorem 2(ii)and (iii). O

Remark 3. Let K be a field of characteristic zero which is complete for a p-adic norm. Let X €
PSmVar(K) with good reduction. Let X© € PSch /O, smooth over Ok such that X© ®o,, K = X. The
canonical map

(HjEet (Q(/pn))) : Hgt (X7 Q;(o,log) - @ Hit (X7 Q;(o/p",log) = Hiet (X7 Q}(O,(P))]og)
neN

is NOT surjective and NOT injective in general.

29



4 Tate conjecture

Let k be a field of finite type over Q. Denote k the algebraic closure of k and G = Gal(k/k) the absolute
Galois group of k.

Let X € SmVar(k) be a smooth variety. Let p € N a prime number. Consider an embedding
op : k — C,. Denote I%gp C C,, the p-adic completion of £ with respect to o,. We have the commutative

. . N an,pet
diagram in CBdrfil,an (X(Cp )
a(X) .
(BdT,ch ) F) (QXCp ) Fb) ®OXCP (OBdT,ch ) F)
-
Lxgﬁt'_b_)l'l TOLX ®I::(w®>"n)n€NH(w®>\n)neN
P
Lxé;:t :=(1,0)
L[]
_Pch (QX\QP ,log,© ® L, Fb)

Consider an integral model X l? € Sch™* / Op, of X ho, If X 9 has good reduction modulo p, we have
PO \Falty fo
(see e.g. [1]) the embedding in C((Xf%p) )

O[(X) :BC”Svacgp — QQ*Q;(SD,o ® o OBCT’iS,X’:

k(,-p p

which is a filtered quasi-isomorphism compatible with the action of Gal(C,/ l;:gp) and the action of the
Frobenius ¢,, where (X % )F alt denote the Falting site.

For k a field of finite type over Q and X € SmVar(k), we denote d(k, X) C N the finite set consisting
of prime numbers such that if p € N\d(k, X) is a prime number, k is unramified at p and there exists an
integral model X ]? € Sch™" / Oy, of X with good reduction modulo p for all embeddings o, : k — C,,

/Acgp C C,, being the p-adic completion of k£ with respect to op.

Remark 4. To see that 6(k, X) is a finite set, considering k = ko(x1,- - ,xq)(xq4+1) where x1,--- x4 are
algebraicaly independent and kg is a number field one can take an integral model Y — Oy [x1, -+ , xat+1]/ fa+1
of X, a desingularization of Y’ — Y of Y and then see that §(k, X) is contained in the discriminant of
the family Y' —Y — Oy, [21,- -, %as1]/ far1-

Let X € PSmVar(k) be a smooth projective variety. Let p € N\§(k, X) a prime number. Consider
an embedding op, : k < C,. Then X; has good reduction modulo p and let Xf? € PSch /Ofcc, be a

op

smooth model, i.e. X o ®o kgp = X and X O ig smooth with smooth special fiber. The main
result of [1] say in thls case that the embeddlng in C((XO yFralt)

O[(X) ZIBECM&X,Ac — CL.*Q;((Q,. ®OX‘9 OBCT’iS,X;
op h

ko op

induces a filtered quasi-isomorphism compatible for each j € Z, a filtered isomorphism of filtered abelian
groups

HIT(ax Beris) ™' 1)
cm’s,fcc,p X—) Hgt((X)Falt)(Bcris,Xfcgp )

HIRD(XP ,a(X))
Ip

HIRa(X) : H.,(Xc,,Zp) ®z, B

H%R(Xfcc,p) O

op ch’s,kgp

compatible with the action of Gal(C,/ /%gp) and of the Frobenius ¢,.
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Definition 3. Let k be a field of finite type over Q. Denote k the algebraic closure of k and G = Gal(k/k)
the absolute Galois group of k. Let X € PSmVar(k). Let p € N\o(k,X) a prime number. Consider

an embedding op : k — C,. Denote l;:gp C C, the p-adic completion of k with respect to o,. For
o € Hl(Xc,,Zy), we consider

w(@) == H/Ra(X)(a @ 1) € H}x(X; ) @

op op crzs,k:(,p .

the associated de Rham class by the p-adic periods. We recall

HIRa(X) : H),(Xc,,Zp) ®2, B = Hhp(X, ) oy

cris,kap op op cris,kap

is the canonical filtered isomorphism compatible with the action of G'UP and with the action of the Frobenius

bp-

We have the following key proposition (the projective case of [4]), we state and prove it for smooth
projective varieties, the case for smooth varieties is obtained in the same way using a smooth compacti-
fication with normal crossing divisors. The projective case suffices for our purpose:

Proposition 9. (projective case of [4] proposition 4(i)). Let k be a field of finite type over Q. Let
X € PSmVar(k). Let p € N\d(k,X) be a prime number. Consider an embedding oy, : k — C,. Denote

by k C l;:gp C C, the p-adic completion of k with respect to o,. Consider Xf? € PSch/O;_ a smooth
op

op

integral model of X; , i.c. X]gg ®o; l%,,p =X; and Xf? 18 smooth with smooth special fiber. Let
op op op op op
j € Z. We have, see definition 2(ii),

H%‘)R(X];ap) N HjRO‘(X)(Hgt(XCpr)) = (anéf.,p)_l(HjOLX,i” (Hfoet(Xl%np’ ;QEP> log om
op kop 777
C HJDR(XIACUP) ®fc(,p cris,fc(,p’

where we recall any j : X}gp) — X 1s the morphism in RTop given by the completion of X]gg with

op p op

Q;({p) )

kgp

respect to (p), and

(X, %, )= H

L & ] )
a'nX,p . Hpet - pet (Xk
P

)
9p

is an isomorphism by GAGA and considering an open cover X = U; X; such that there exist etale maps
X9 — G;inxi C Ado)fi which are the composite of a finite etale map and an open embedding of integral

9p

model.

Proof. Consider c : X S @ x 1? the morphism in RTop which is the formal completion along the ideal
Tp op

(p). Take a Zariski or etale cover r = (r; : X; = X©)1<i<, such that for each i there exists an etale map
e X; — ngx" - Adozi with e; : X; — €;(X;) finite etale. Then, by [1], we have for each 4 explicit lifts

o

. P .
of Frobenius ¢, : Xff%p /p" — Xff%p /p" of the Frobenius ¢! : Xf];ap /p— Xff%p /p, such that for n’ > n

the following diagram commutes

’
pTL' /p'Vl —_-n
0 —_— OXOA /p’!ll7'7l —— OXOA /p"ll —— O}(’(ﬁ/v /p"l —_— 0
ikoy i ko i kop
iz’nT ¢:L’T qb'lnT
’_
p'Vl_ /p'Vl n
0—— OX_OA Jpr!—n > OXO Jpn! T OXO Jpn T 0
'L,kdp z,kn—p z,kgp
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and such that the action of ¢/, on Q%

tials. On the other hand, by [7], we have action of the Frobenius on H%,R(Xf%p) = H%,R(Xf? )®of%p ko

by

] (@]
¢ . H%)R(Xfcap)

where IW = (IW,,)nen is given by the morphisms of complexes in C'(X ]? )

o,,
iskap,

/p™

Pwix, )

kgp

Q(IWn) O

/pn

kap

induced by the morphism of rings JW, : Oxo ,,n — W, 0(X ]S) /p). We then have the following
ko, op

W W (X, WQSo ) ——2 HI(
Up 7

X
kdp

Wa(XO /p)
op

, WO

kgp

p

Wallko /p
kop

HITw 1
o ) ——

Hpp(X

is a morphism of complex, i.e. commutes with the differen-

P
p

o
ko,

)’

commutative diagram, where R :=[1,...,r] and Xg := X7 xx -+ xx X,
L] T’? T L] T; [ ]
WQSo —— & 4rWQo —————rrWQ5%0
fcc,p i,icap R,fcc,p
I—¢ 17¢i I—¢>R’
[ ] Tr [ ] T; [ ]
WS —— & 4riWQio rrRW Q%0
fcc,p i,icap R,fcc,p
T*OLXO,(IJ) oIW, T*OLXO,(P) oI W T*OLXO‘(”) oIW,
Fop ivkayp Rikoy
o0 RS o T
N _— . ; N _— N
X® 1og,0 =11 () e 0 Refx®  oe 0
kop ko Rkop,

and (I — @) or*OL yo.m) o IW, = 0. It induces the following commutative diagram, where R := [1,...,7]
ko
P
andXR ::Xl XX+ XxXT,
Hj—l(XO ) 0 Hj (XO ) i @r Hj (XO ) i
pr\AR4, pr\AL i=tHpr(A;g
I_¢R 17¢ qubi
. ijl(XO ) 0 Hj (XO ) i @r Hj (XO ) i .
~Hpr\Ap ko DR\* i=1""DR\"*, {
i} P (Tp bl Up
Hjil’l‘ OLXO’EP) HjT*OLXEQ’(p) HjT*OLXo:(p)
Rokoy, fop ko
j—1 . . 0 j ) . "o . . 1
o Hmt (XRka’p ’ QXE” log (’)) Hpet (kafp ’ QXE” log (’)) ®i:1HPet (Xiﬁkap ’ QXEP) log O) o
Fop 18 Fop 18 ko p 108

(4)

whose rows are exact sequences and (I — ¢) o H'r*OL go.s) = 0. By [1], a € H),(X¢,,7Zy) is such that

w(a) € HJJ_;,R(X,AC ) if and only if
op

w(e) € ker(I — ¢ : Hp (XS

kap

(@]

) = H{)R(X

)

9p

On the other hand, considering X @7t C ((Sch™"*™ /O )/ X PP, for each I C [1,...,7], the sequence

in C(X 9P

OL .0,m) s E
ko ¢ —I:=(¢p,—I)nen
L] P L[] n °
0— QX(p) log,© QXOL(p) QXol(p) —0
Ikoy Lkoy, Ikoy
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is exact for the pro-etale topology by proposition 3 and since for each I,n € N the map in PSh(X©-P¢)
l l
Q(/p) : QX? /pm — QX? /pntt
ko ko

are surjective for the etale topology and since the pro-etale site is a replete topos by [2]. Hence, for each
I C[l,...,r], by applying r* where r: X" — X;Q’mt, the sequence in C(X?")

r"OL Lo, (p) , D
ko ¢ —I:=(¢,,—nen
0— 708 — 0 - r Qs -0
X® 1og,0 X0.@® X0:@®
Lkoy, Lkoy, I.koy,

is exact for the pro-etale topology. Hence the columns

HqT*OLXOY(P)

ko I—-¢ o
H? (X,: ,Q°% — " 3 H? (X9 )—% H? (X9
pet( Lkoy? X}gz)p,log,(’)) pr( I,kc,p) prl( I,kap)

of the diagram (4) are exact. Using proposition 2(i) and the fact that a logarithmic form is exact if and
only if it vanishes, we get

* . . q ~ _ q (@] q (@]
r OLX)%;P) : F(XI’kUP’QXéz)p,log,O) — (ker(! ¢)(HDR(XL;;UP) - HDR(X”;UP)))
from which we see that the remaining columns are also exact. This proves the proposition. o

This proposition together with proposition 8 implies the Tate conjecture for smooth projective varieties
over fields of finite type over Q :

Theorem 3. (i) Let k be a field of finite type over Q. Let X € PSmVar(k). Let p € N\d(k, X) be a
prime number. Then the Tate conjecture holds for X. That is for d € Z, the cycle class map

29X) ® Qp = HE (X5, Q)(d), Z = [Z]
is surjective, where G = Gal(k/k).

(i) Let K C C, be a p-adic field which is unramified. Let X € PSmVar(K) with good reduction. Then
the Tate conjecture holds for X. That is for d € Z, the cycle class map

2UX) © Qp » Hi (Xc,, Q) (), Z = [Z]
is surjective, where G = Gal(C,/K).

Proof. (i):Consider an embedding o, : k — C,. Then k C k € C, and k C l%gp C C,, where l%gp

is the p-adic field which is the completion of k& with respect the p adic norm given by o,. Consider

X]gg € PSch/O;  a smooth model of X; , ie. X]gg ®o, ]%Up = X; and X]gg is smooth with
op op op op 9p Ip op

smooth special fiber. Let o € H2!(X},Z,)(d)¢. Using definition 3, by proposition 9

w(a) € H*OL ¢, (H24,(X; ,Q

L]
pet op? XD log,0
kop

) © HER(X ) = HER(X;, )

9p

is the morphism in RTop given by the completion of X l? with

P op
respect to (p). Considering the decomposition

where we recall anx , : )A(fip) - X;
op o

2d . _2d pr2d—l)y 1
Hpet (Xffap ) QX;CP) ,log,O) - 69l:OI{peiE (X]g(,p ) QX}EP) ,10g,(’)>’
op op
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by proposition 8 (ii) and (iii) there exists Z € Z%(X; ) ® Q, such that w(e) = [Z] € HE%(X;, ). By
op op

[1], considering the commutative diagram of abelian groups whose rows are exact, where j : X\|Z] — X

denote the open embedding,

Beris,x (V)

i
Hggz(Xfcv Zp) ®Zp Beris Hthd(Xfw Zp) ®Zp Beris —— Hftd((X\Z),;, Zp) ®Zp Beris

lRax*an(X) lRa(X)

DR(X)(OBeris,x)(7%) 7
H%)dR,Z(Xfcgp) ®fcap Bcris : H%dR(Xfcap) ®f€6p BCMS - H%dR((X\Z)]%”P) ®IA€”P BCMS

lRa(X\Z)

we get o = [Z] € H2} (X}, Zp). Since [Z] is G invariant,

Z'=1/#(9Z.9g€G) Y gZcZ'X)®Q,
geG/Gz

satisfy [Z'] = [Z] = a € H}( X}, Zy).
(ii):Similar to (i).
(]

Remark 5. Let K C Q, be a p-adic field. Denote by G := Gal(Q,/K) the absolute Galois group.
Consider an isomorphism Qp, ~ C so that K C C.

(i) Let C,C’" € PSmVar(K) be two smooth projective curve of genus g(C) > 1 greater or equal to one
or two abelian varieties. Since g(C) > 1 in the case of curves, there exists a non trivial Hodge class
a#0€e FIH?((CxC"E, Q). By the Hodge conjecture for divisors there exists Z € Z'((C x C')¢)
such that

~ (2] € F¥(C x O/, Q).

Consider the splitting
Z=2,—Zye ZY((C x ")),

where Z1 and Zo are effective cycle. Then since o # 0, either [Z1] # 0 or [Zs] # 0. Hence we may
assume for instance that [Z1] # 0. Consider that the effective cycle

=Y 9Z1€ 2'(CxC)g,)

geG

and [2') = T(C x C')([Z']) € HZ((C x C")g, . Qp), where
T(C % C) = (/p")nen - HX(C x €&, Q) — H2((C x C')g,, Qp)
is the canonical map. Then [Z'] # 0 € H%((C x C")g,,Q,)(1)¢. Hence the Neron Severi group
<exC,Cxe (2] >C NSYC x C) € HA((C x C')g,,Q,)(1)¢

is of rank dim NS1(C x C") > 3.
(11) Let X € PSmVar(K). Let j € Z. Denote

— G2 (X) is the motivic Galois group of M2 (X) and G _,(X¢) is the motivic Galois group of
M%(Xc),

— Gur(Xc) == hx(S1)" the Munford Tate group of Xc where hx : S1 — Gunot(Xc) is the
morphism given by the Hodge structure of H*/ (X&", Q).
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The Hodge conjecture for X implies that G2, (XC)/G +(Xc) acts trivially on H*I (X", Q)Gng(XC).
Hence we expect that the action of Gpor(X) on HZ (Xc,,Qp) is given by a torus.

It is well known that theorem 3 implies the following :
Corollary 2. Let X € PSmVar(C).
(i) The standard conjectures holds for X.

(ii) Let k C C be a subfield of finite type over Q over which X is defined, that is X ~ X ®; C in
PSmVar(C) with X;, € PSmVar(k). For 6 € Aut(C/Q), we have the isomorphism 6 : X = Xy in
Sch. Then 6 € Aut(C/Q) induces, for each j € Z, an isomorphism

Hiev(X) ! Hiev(Xy)

an j 0" j an
0: Hglng(X 7(C) H]DR(X) —>H]DR(X9) HJ (XG 7(C)

sing

Let d € N. Let a € FIH?(X Q) where FIH?*(X Q) := FIH¥,(X) N H2L, (X, Q) C

sing

H2(X*" C). If 0(a) € HEL(X§™,Q) for all 0 € Aut(C/k), then oo = [Z] with Z € Z4(X).
Proof. Standard. We consider, for j € Z, k' C C a subfield and Y € Var(k’), the canonical morphism
T(Y) = T(Y) : Hippg (V8" Q) 75 L, (V8" Q) 55 (Ve Q) = HE(Ven Q).
For Y € Var(k’) and 6 € Aut(C/k’), we have the commutative diagrams in C(Y x N)

" ad(An™,An,)(Z,
An* Eusu (Z) M AH* Eusu (Zp) ( ) Eeth,Yc

lad(@*ﬂ*)(—) lad(@* 0.)(—) ad(0",0.)(—)

0.07 ad(An™,An

9*9* An* Eusu (Z)(MN 0.0* An* usu (zp) éLEZth Ye — Eeth,YQg

Ur™) Any,Ang.)(Zy)
P )neN

Ang, Eysy (Z) ——— Ang. Eysu (Z;D)

and
t2inz/c (Y™ An
An. By (Z) 27 N, B (00) E.,0,
lad(e*,e (=) l ad(0,0,)(—) lad(@*ﬁ*)()
t2inz/c(YE 0.0"Q(An

0,6% An, Buon (27 22X, 0% An, Euau(Q00) = 0.0" B, = B3,

Q(Ang)
toinzc(YE'g)

An@* Eusu (Q;/Cag )

An@* Eusu (Z)

where An : Y — Y and Ang : V) — Y are the analytical functors, usu denote the usual complex
topology and Eusu is the canonical ﬂasque resolution (see section 2.1). Hence for Y € SmVar(k’) and
€ Hgmg( " Q) such that 6(a) € H, (Y%, Q) for some 6 € Aut(C/k'), where

sing

T ev -1 I ev
6.1 (yen c) L) Mevea),

. 0 .
sing H]DR(YC) — H]DR(YC;G) HJ (Y(C 6> C)’

sing

we have

0 T(Y)() = T(Yo)(O(ex)) € HL, (Y, Qp).
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(i): Let & C C be a subfield of finite type over Q such that X is defined. Denote G' = Gal(k/k) the
Galois group. Denote dx = dim(X) and for short X = X. Let L7 € Hsziig_2j (X x X,Q) the class
inducing the cup product with of the intersection of j hyperplane sections on Hgif]‘g_j (X,Q) and zero on
Héing(X, Q),i#dx —j. Let AV € H2dx+2 (X x X,Q) inducing the inverse of L; on Hix+i (X,Q) and

sing sing

zero on HY, (X, Q), i # dx +j. Consider an isomorphism o, : C =+ C, such that IACUP C C, is unramified

sing

and X has good reduction. We have T'(X x X)(L7) € HX* %1 (X x X)5,Qp)¢ since it is the class of
an algebraic cycle. Hence,

T(X x X)(A) € Hy™ ™ ((X x X)f, Qp)(dx + )¢
since the inverse of a Galois invariant morphism is Galois invariant. Hence, by theorem 3(i),
A = [Z], with Z € ZXT(X x X)® Q.

(ii): As o € H?I['(X,,Qx), where X = U5_; X; is an open affine cover, there exists a subfield k C k' C C
of finite type over Q over which « is defined, that is a € Hk%(Xy) C HEL(X), where Xp := X, @1 k' €
PSmVar(k') satisfy Xy @k C ~ X in PSmVar(C). Let p € N\6(k', Xi/) be a prime number. Consider

T(Xpw)(a) € H* (X5, Qp)-

If O(a) € HX (X§", Q) for all § € Aut(C/k'), we get

sing

T(Xp)(a) = L/#(Aut(C/K)a) > 607V T(Xp ) (0(a)) € H( X5, Qp) = HEH(X, Qp),
0 Aut(C/k')

hence, for g € Gal(k'/K'), we get

g-T(Xp)(a) 1/#(Aut(C/K)a) > g 07" T(Xp )(0(c))

0 Aut(C/k)

V#(Aut(C/K)a) > 07T (Xp p)(0() = T(Xw) (@) € HZH( X5, Qp),
0 Aut(C/k")

that is, T(Xp)(a) € H* (X}, Q,)(d)%, with G := Gal(k'/k). Hence, if 0(a) € H2 (X", Q) for all

sing

0 € Aut(C/k), then in particular 6(a) € H2¢ (X§", Q) for all € Aut(C/k") and we get by theorem 3(i),

sing
T(X)(a) =T (Xp)(a) = [Z], with Z € Z4X) 2 Q.
O
We get the following. See [12] for conditions for families where the hypothesis of the theorem holds.

Theorem 4. Let X € PSmVar(C), X = V(I) C PY. Consider the canonical deformation f : X =
V() c ]P)g x8 =S CS, with S C S the open subset over which f is smooth, where S := 0x2 C A ,
X € SmVar(Q), and X = X; with s := 0x € Sc. Denote (E¥L(X/S),F) := H* ff(OX,Fb) € Vectp(S5)
and

HLYYX/S) := FYERy(Xe/Sc) N frev(X) ™ (R* £,Quen) C EBR(Xe/Sc)

the locus of Hodge classes. Let A € FAH?I(X Q). If the irreducible components W C HL*24(X/S) of
the locus of Hodge classes such that A € W are defined over Q and if their Galois conjugates o(W) with
o € Gal(Q/Q) are also components of HLY?4(X/S), then \ = [Z] € H*} (X Q) with Z € 24X, Q).
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Proof. We have \ € Us_, W; where W; C HL%24(X/S) are the irreducible components passing through
A. If the irreducible components W C HL%24(X/S) of the locus of Hodge classes such that A € W
are defined over Q and if their Galois conjugates o(W) with o € Gal(Q/Q) are also components of
HL%?(x/8S), we get

A C UL, Uy (W)

since U3_; U, (W;) is then defined over Q. Since A% = {#*\, 6 € Aut(C,Q)} we get

{6°),0 € Aut(C,Q)} ¢ HL*¥(x/S).

In particular, for all § € Aut(C,Q), 0(\) € Hfif]g(Xg", ). Hence, by corollary 2(ii) A = [Z] €

H2(X, Q) with Z € 24(X,Q). O
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