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De Rham logarithmic classes and Tate conjecture

Johann Bouali

March 17, 2023

Abstract

We introduce the definition of De Rham logarithmic classes. We show that the De Rham class
of an algebraic cycle of an algebraic variety over a field of characteristic zero is logarithmic and
conversely that a logarithmic class of bidegree (d,d) is the De Rham class of an algebraic cycle (of
codimension d). We deduce from a previous work the Tate conjecture for smooth projective varieties
over fields of finite type over QQ, over p-adic fields and over field of characteristic p, p being a prime
number.

1 Introduction

In this work, we introduce for X a noetherian scheme, the definition of logarithmic De Rham cohomology
classes which are for each j € Z, the subgroup H/OLx (H7,(X, Q% 1,,)) C HL, (X, Q%) =: H},z(X) of the
De Rham cohomology abelian group. Let X a smooth connected variety over a field of characteristic zero.
To an algebraic cycle Z € Z4(X) one can associate its De Rham cohomology class [Z] € H#%(X), which
is by definition, as for any Weil cohomology theory, the image of the fundamental class [Z] € H %d& 7(X)
by the canonical morphism H%dRyz(X) — H*(X). In section 3, we show (c.f. theorem 1(i)) that

[Z] € HEL(X)is logarithmic of bidegree (d, d), that is
[2] = H*'OLx([2)) € HER(X), [Z] € H*'OLx (HE(X, Q% 10))

where H% (X, le()log) C H2(X, 0% 1og) I8 the canonical subspace. The main ingredient is that the Euler

class of a vector bundle of rank d over an algebraic variety is logarithmic of bidegree (d, d) (c.f. proposition
1). Conversely, we show (c.f. theorem 1(ii)), that a logarithmic class w € Hx(X) of bidegree (d,d)
is the De Rham class of an algebraic cycle (of codimension d). The point is that a logarithmic class of
bidegree (p, q) is locally acyclic for the Zariski topology of X since it is the etale cohomology of a single
sheaf. This allows us to proceed by a finite induction and we use at the final step the fact that for a
scheme X', HL (X', Q}{,)log) = H'(X',0%)) is the Picard group of X’. In the case X projective, we also
get a vanishing result (c.f. theorem 1(iii)) : H*?OLx (H% " (X, Qgglig)) =0 for k> 0.

In a previous work (see [4], prop 2,3), we show that Tate classes a € H?¥(Xy,Z,)(d)® of a smooth
algebraic variety X over a subfield of o, : k — C, gives by the comparison isomorphism

H*Ra(X): H3N(Xc,,Zy) ®z, Bst.c, — Hpn(X) @k B, ,

a sum of Z, multiple of logarithmic classes
w(e) = H*Ra(X)(a) == Y _ Nw(a)r; € HEr(Xc,), \i € Z,
i=1

with for each 1 < i < s, w(a)L,; € H2dOLXH§f(XCP,Q§g log)- We deduce, for X projective, by theorem
1(ii) and (iii), the Tate cojecture (c.f. theorem 2).
I am grateful for professor F.Mokrane for help and support during this work.



2 Preliminaries and Notations

e Denote by Top the category of topological spaces and RTop the category of ringed spaces.
e Denote by Cat the category of small categories and RCat the category of ringed topos.

e For § € Cat and X € S, we denote S/ X € Cat the category whose objects are Y/ X := (Y, f) with
Y eSand f:Y — X is a morphism in S, and whose morphisms Hom((Y”, f'), (Y, f)) consists of
g:Y" =Y in S such that fog=f'.

e For § € Cat denote GrS := Fun(Z, S) is the category of graded objects.

e Denote by Ab the category of abelian groups. For R a ring denote by Mod(R) the category of (left)
R modules. We have then the forgetful functor or : Mod(R) — Ab.

e Denote by AbCat the category of small abelian categories.
e For (S,05) € RCat a ringed topos, we denote by

— PSh(S) the category of presheaves of Og modules on S and PShp, (S) the category of presheaves
of Og modules on 8, whose objects are PSho (S)° := {(M,m), M € PSh(S),m : M @ Og — M},
together with the forgetful functor o : PSh(S) — PSho,(S),

— C(S) = C(PSh(S)) and Co4(S) = C(PShp,(S)) the big abelian category of complexes of
presheaves of Og modules on S,

= Cogs@2)fi(S) = C(2)7a(PShog(S)) C C(PShog(S), F, W), the big abelian category of (bi)filtered
complexes of presheaves of O modules on S such that the filtration is biregular and PSho (2) ri1(S) =
(PSho,(S), F,W).

e Let (S,05) € RCat a ringed topos with topology 7. For F' € Cog(S), we denote by k : F — E,(F)

the canonical flasque resolution in Cog(S) (see [3]). In particular for X € S, H*(X, E.(F)) —
H* (X, F).

e For f: 8 — S a morphism with §,8" € RCat, endowed with topology 7 and 7’ respectively, we
denote for F' € Cp4(S) and each j € Z,

= fr=HID(S koad(f*, f.)(F)) : HI(S, F) — HI(S', f*F),
— f* = HIT(S, koad(f*™°d f)(F)) : B/ (S, F) — H/(S', f*modF),
the canonical maps.

e For X € Cat a (pre)site and p a prime number, we consider the full subcategory
PShy, (X) C PSh(N x X), F = (F,)pen, p"F, =0, Fopq/p" = Fp
Cz,(X) := C(PShz, (X)) C C(N x X) and
Ly = Lpx = ((Z/p"Z)x) € PShy, (X)
the diagram of constant presheaves on X.

e Denote by Sch C RTop the subcategory of schemes (the morphisms are the morphisms of locally
ringed spaces). For X € Sch, we denote by

— Sch’* /X < Sch /X the full subcategory consisting of objects X’/X = (X', f) € Sch /X such
that f: X’ — X is an morphism of finite type

— X¢ < Sch’* /X the full subcategory consisting of objects U/X = (X,h) € Sch /X such that
h:U — X is an etale morphism.



— X®m c Sch’* /X the full subcategory consisting of objects U/X = (X, h) € Sch /X such that
h:U — X is a smooth morphism.

For a field k, we consider Sch /k := Sch/Speck the category of schemes over Speck. We then
denote by

— Var(k) = Sch’* /k < Sch /k the full subcategory consisting of algebraic varieties over k, i.e.
schemes of finite type over k,

— PVar(k) c QPVar(k) C Var(k) the full subcategories consisting of quasi-projective varieties
and projective varieties respectively,

— PSmVar(k) € SmVar(k) C Var(k) the full subcategories consisting of smooth varieties and
smooth projective varieties respectively.
For a morphism of field ¢ : k — K, we have the extention of scalar functor
QLK : SCh/k—>SCh/K, X = Xg = XKyg =X ®r K, (f:XI—>X) — (fK ZZf@IZX}( —)XK).
which is left ajoint to the restriction of scalar
Resy i : Sch /K — Sch /k, X = (X,ax) = X = (X,00ax), (f: X' > X)— (f: X' = X)
The adjonction maps are
— for X € Sch /k, the projection mj/x(X) : Xxg — X in Sch /K, for X = U; X; an affine open
cover with X; = Spec(A;) we have by definition 7,5 (X;) = ng/x (As),
— fOI‘XESCh/K,IXAK:X;)XK:XXKK(X)kKiH SCh/K, where Ag : K®p K — K is
the diagonal which is given by for z,y € K, A (z,y) =x — y.
The extention of scalar functor restrict to a functor
@K : Var(k) = Var(K), X = Xg =Xk, =X K, (f: X' > X) = (fk = f@1: X)x = Xk).

and for X € Var(k) we have m/x(X) : Xx — X the projection in Sch /k. An algebraic variety
X € Var(K) is said to be defined over k if there exists Xo € Var(k) such that X ~ Xy ®p K
in Var(K). For X = (X,ax) € Var(k), we have Sch’* /X = Var(k)/X since for f : X' — X a
morphism of schemes of finite type, (X', ax o f) € Var(k) is the unique structure of variety over k
of X’ € Sch such that f becomes a morphism of algebraic varieties over k, in particular we have

— X < Sch't /X = Var(k)/X,
— X < Sch’' /X = Var(k)/X.
A morphism f: X' — X with X, X’ € Var(K) is said to be defined over k if X ~ X, ®; K and

X'~ X[®, K are defined over k and 'y =T'y, @, K C X' x X is defined over k, so that fo®r K = f
with fo : Xé — Xp.

For X € Sch, we denote X?¢* C Sch /X the pro etale site (see [2]) which is the full subcategory of
Sch /X whose object consists of weakly etale maps U — X (that is flat maps U — X such that
Ay : U — U xx U is also flat) and whose topology is generated by fpqc covers. We then have the
canonical morphism of site

vy XP 5 X, (U— X) = (U — X)
For F € C(X*),
ad(vy, Rvx.)(F) : F — Rux.vx F
is an isomorphism in D(X¢), in particular, for each n € Z
(X, vx F)

v 1 HY (X, F) = Hp,,

are isomorphisms, For X € Sch, we denote



3

— Ly, =lim VX (Z/p"L)xer € PSh(XP?¢) the constant presheaf on X,
—lpx = (p(%)): Zy, — Vi (Z/pZ)xe the projection map in PSh(N x XP¢).

An affine scheme U € Sch is said to be w-contractible if any faithfully flat weakly etale map V' — U,
V' € Sch, admits a section. We will use the facts that (see [2]):

— Any scheme X € Sch admits a pro-etale affine cover (r; : X; — X);e; with for each i € I, X;
a w-contractile affine scheme and r; : X; — X a weakly etale map. For X € Var(k) with k a
field, we may assume I finite since the topological space X is then quasi-compact.

— If U € Sch is a w-contractible affine scheme, then for any sheaf F' € Shv(UP®t), H!

pet(U7 F) =0
for ¢ # 0 since T'(U, —) is an exact functor.

Let X = (X,0x) € RCat a ringed topos, we have in C(X) the subcomplex of presheaves of abelian
group

OLx : Q% 1og = 2%, st for X° € X and p € N,
O 10y (X0) =< dfus/ for A+ Adlfay / foys fo € T(X, Ox)" >C QB (X0),

where Q% := DR(X)(Ox) € C(X) is the De Rham complex and I'(X°,Ox)* C I'(X°,Ox) is the
subring consisting of inversible elements for the multiplication.

Let X € Sch. Considering its De Rham complex Q% := DR(X)(Ox), we have for j € Z its De
Rham cohomology HY,,(X) := H/(X,Q%). If X € SmVar(k), then H}(X) = H/,(X, Q%) since
Q°* € C(SmVar(k)) is A! local and admits transfert (see [3]).

Let X € Var(k). Let X = U;_, X, an open affine cover. For I C [1,...,s], we denote X := N;er X;.
We get X, € Fun(P([1,...,s]), Var(k)). Since quasi-coherent sheaves on affine noetherian schemes
are acyclic, we have for each j € Z, H},,(X) = T'(X,, Q%.)-

For X € Sch noetherian irreducible and d € N, we denote by Z¢(X) the group of algebraic cycles of
codimension d, which is the free abelian group generated by irreducible closed subsets of codimension
d.

Denote by AnSp(C) C RTop the full subcategory of analytic spaces over C, and by AnSm(C) C
AnSp(C) the full subcategory of smooth analytic spaces (i.e. complex analytic manifold). Denote by
CW C Top the full subcategory of CW complexes. Denote by Diff(R) C RTop the full subcategory
of differentiable (real) manifold.

For X € Top and Z C X a closed subset, denoting j : X\Z < X the open complementary, we will
consider
F%Zx = Cone(ad(j!,j*)(Zx) Zj!j*ZX — Zx) S C(X)

and denote for short vy := Y (Zx) : Zx — '} Zx the canonical map in C(X).

De Rham logarithmic classes

Let X € Sch. Recall we have the canonical subcomplex OLx : Q% ., < Q% in C(X¢). For j € Z, the
De Rham logarithmic classes consist of the image

HIOLx (HL(X, 0% 105)) C HL, (X, Q%) = Hpp(X).

The filtered complex I'(X, Eet(Q%et 105 F)) € Cra(Z) has its differentials at the Ey level trivial since all
the logarithmic forms are closed, hence we have a canonical splitting

. . i1
Hit(Xa QX,log) = @OSISngt (X5 QlX,log)'



Let X € Sch a noetherian scheme. We have by definition the exact sequence in C(X )

dlog
0—>Zx - Ox — Qx10g = 0

Hence HYL(X,Qx 10) = HL(X,0%) and HL (X, Qx 10g) = HL(X,0%) =0 for ¢ < 2. Let X € Sch a
noetherian proper scheme. We have H°(X, Qf&log) =0.
We will use the following lemma :

Lemma 1. Let X € Sch. Let X = U;c1X; an open cover. Denote j; : X; — X the open embeddings.
Let w € Hpp(X). Then w € HIOLx(H (X, Q) if and only if jiw € HIOLx (H2, ' (X;, Q4 1))
foralliel.

Proof. The only if part is obvious. Considering the morphism of bicomplexes of abelian groups
F(X'v Ee.t(QlX,log)) — F(X'v Ee.t(QlX))
the if part follows from Mayer-Vietoris (i.e. etale hence Zariski descent of flasque etale sheaves). O

Let X € Sch a smooth connected noetherian scheme (X is quasi-compact since X is noetherian) and
7 C X a smooth subscheme of codimension d we have for each j € Z, the purity isomorphism given by
excision (using the deformation (X', Z’) — A', (X', Z') € Sch? of a pair (X', Z') € Sch® by the normal
cone Cz//x» — Z', i.e. such that (X', Z")s = (X', Z') for s € A"\0 and (X', Z")p = (Czi/x,2")) and the
cup product with the Euler class of of the normal tangent bundle Nz, x — Z :

(=) e(Nzyx) ' Hhp 7(X) = Hhp 70(Nzyx) = HS 24 (2).

Let k a field of characteristic zero. For X € SmVar(k) connected, we have the cycle class map for De
Rham cohomology

Z € ZUX) = [Z) = H*QUvy)([2]) € HER(X), [2] € Hpg2(X),
H?'Q(yy) : Hl2)dR,\Z|(X) — HpR(X)

where

Q(vz) = Hom(y;(Zx), Eet(Q%)) : Tz(X, Eet (2% )) = T(X, Eet (2%))

and, as for any Weil cohomology theory, we have the purity isomorphism given by excision and the cup
product with the Euler class of of the normal tangent bundle Nzo,x. — Z°, X? C X being a open subset
such that Z¢ := X° N Z has smooth components :

(=) - e(Nzgoyxo)) ™'t Hpg 2/(X) = Hplg 1 20/(X°) = Hpg 70| (Ngeyx0) = Hpp(12°)).

where the first equality follows from dimension reason : for X € SmVar(k) and Z’ C X smooth, we have
Hpp 7/(X) =0 for i <2codim(Z’, X) by the purity isomorphism.
We have the following key proposition:

Proposition 1. Let k a field of characteristic zero. Let p: E — X a vector bundle of rank d € N with
X, E € SmVar(k) connected. Then

(i) the Buler class e(E) € Hply y(E) is logarithmic of type (d,d), that is e(E) = H**OLp(e(E)) €
H%dR,X(E) with e(E) € Hg{,et(E’ Q%,log)7

(ii) the Euler class e(E) € Hj%dRX(E) induces for each i,j € Z an isomorphism

(=) - e(B) : HHOLx (H(X, Ry 105)) =+ H*HOLp(HL ™ (B, Q5 1,))-



Proof. (i):Let X = U;X; an open affine cover such that E; := Ex, is trivial : (s1,---,84) : Ejx, —
X, x A with s; € T(X;, E). Then

e(E)x, = 0(ds1/s1 A+ Ndsa/sq) € H*OLg, (H%, (Ei, Q% 10s))
where 8 : H™ N (E\X;, Q% ,,) = HE, (Ei, Q% ) is the boundary map. Hence
G(E) € H2dOLE (HO (E7 H?(QdE,log)) = Hedt,X(Ev Q%‘,log) - HO(Ea Hg(dQ.EZd) C H%dR,X(E)'
(ii):Follows from (i) and Kunneth formula for De Rham cohomology together with lemma 1. (]
The result of this section is the following :

Theorem 1. Let k a field of characteristic zero. Let X € SmVar(k) connected. Let d € N.

(i) The De Rham cohomology class of an algebraic cycle is logarithmic and is of type (d,d), that is, for
7 € Z4X)
(2] := H*Q(y2)([Z]) € H**OLx (HE(X, Q% 1)) © HER(X).

(i) Conversely, any w € H*¥OLx(H% (X, Q?{,log)) is the class of an algebraic cycle.
(iii) If X € PSmVar(k), H*OLx (Hg *(X,Q%%,)) = 0 for k > 0.
Proof. (i):We have
(2] := H**Q(vy)([2]) = H*'OLx o H'Qil, (v2)(1Z]) € HER(X), [Z] € Hfy | 7)(X, Q% 1og)

where
Qldog (7%) = HOIn(’Y% (ZX)a Eet (Qg(,log)) Tz (Xv Eet (ng,log)) — F(Xv Eet (ng,log))v

since if X? C X is a Zariski open subset such that Z? := X°NZ has smooth components and Nzo,xo —
Z° is the normal tangent bundle, proposition 1 implies that the Euler class of Nzo,xo induces the
isomorphism

(=) e(Ngoyxo)) ™ s H*OLx (HE 1 7)(X, Q% 105)) = H*OLx(HE | 70)(X% Q%0 105))
= H2dOLX(Hgt,\Z°|(NZ°/X°uQl]iVZO/Xo,log))'

Note that the excision isomorphism being motivic preserve logarithmic classes.
(ii):By assumption we have

w = HQdOLX(w) € H%dR(X)v w e Hgt(Xv Qg{,log)

As le()log € PSh(X*®) consist of a single presheaf, that is a complex of presheaves concentrated one
degree, there exist an etale open cover r = r(w) = (r; : X; — X)i<i<s, depending on w, such that
rfw=0¢€ HL(X;, Q%log) for each . Choose i = 1 and denote j : U := r1(X1) — X the corresponding
Zariski open subset. As Q;lmog has no torsion and admits transfert, we have j*w = 0 € HZ (U, le(,log)'
Hence, denoting D := X\U, we have

w = H*OLx (w),w € Qe (7)) (Hey p(X, 0% 10g))-

We may assume, up to shinking U, that D C X is a divisor. Denote D° C D its smooth locus and
l: X°— X a Zariski open subset such that X° N D = D°. We then have by proposition 1

Fw € (=) - e(Npoyxo)) (H**2OLp(HLH (D%, QFah,,))-



We repeat this procedure with each connected components of D° instead of X. By a finite induction of
d steps, we get
d d
w = H2 OLX (’LU), w e Qlog(’YZ)(Het Z(X7 QX,log))7

with Z := Dy C --- C D C X a codimension d Zariski closed subset and w = [Z] € H,(X), using in
the final step the isomorphism

Helt(Dd 1aQD3 1,log) = Helt(Dg—laO}k:)d,l) = PiC(Dg—l)-

(iii):Follows from the proof of (ii) and the fact that for X’ € PSmVar(k), HO(X’,QZX/)IOg) = 0 for all
I>0. O

Let 0, : k — C,, a subfield. Let X € Var(k). We will write for short

— . O° NEYeY )
OLX = OLXCG:ﬂO : QXE;,log,O = Xf)t 1 ‘—> QXer
Cp

the embedding in C(X¢! ). We will also consider

o(OLx ®1I): ® Ly —>Q WRA—= A w

[ ] P [ ]
Xg;;f,log,o ® Ly = nggf,log,o XP“’

in C’(ngt). Note that

pet
Xpet log, O VXQXCt Jlog,0 S C(X )

but
@X = %u}}(Z/p”Z)Xct € O(XP), and Q°

X2 log o0 ®Lp e C(XPe)

are NOT the pullback of etale sheaves by vx.
Proposition 2. Let k a field of characteristic zero. Let X € SmVar(k). Let o : k — C an embedding.
(i) Let w € Hpp(X) = HI (X,Q%) = H! (X, Q%). If

w € HIOLx (H pet(XC= X‘” log))

then Hiev(X)(w) € Hsjmg( X¢, 2imQ).
(i1) Let p € N a prime number and o, : k < C, an embedding. Let j € Z. Let w € H}p(X) :=
HI(X,Q%) = H,,(X,Q%). If

pet

w = Tg/C, (X)*w S HjOLX(HZt(XCp7 Q;(E;,log,o))

= H/,(Xc, Q8

then Hiev(X)(w) € H, (X&",2inQ). Recall that H Xet Jlog, o)

sing pet

(Xc, QXW Jlog o)
Proof. (i): Let ‘ ‘ ‘

w e Hi o (X) =1 (X,0%) = HIT(X.,Q%).
where (r; : X; = X)i<i<s is an affine etale cover. Let X&" = U]_;D; an open cover with I; ~ D(0, 1)<
Denote jrj : Xy NDy; — X; the open embeddings. Then by definition Hiev(X)(w) = Hjev(X“")(jf o
an’, w) with

jo o ank, w € H'T(XJE N Da, Q%an ).

Now, if w = H'OLx (HZ,(Xc, QS

Xet log)): We have a canonical splitting

J
Z P Zw’J b€ Hpp(Xe), wy' ™' € HI 7 (Xe, et o), w7 7Hi= HIOLyee (wy? ™),
=0



Let 0 <1 < j. Using an affine w-contractile pro-etale cover of X, we see that there exists an affine etale
cover r = r(w ) = (r; : X; = X)1<i<n of X (depending on w"/~!) such that

Wt = [(wi? )] € HIOLxet (H™'T(Xe,0, U 1og)) C T (X0, 0%, )-

Note that since X is an algebraic variety, this also follows from a comparison theorem between Chech
cohomology of etale covers and etale cohomology. By [4] lemma , we may assume, up to take a desingu-
larization 7 : X’ — X of (X,U;(r;(X\X;))) and replace w with 7*w, that r;(X;) = r(X;(w)) = X\D;
with D; C X smooth divisors with normal crossing For 1 <[ < j, we get

w[ijjl deVl/fVl '/\dfuz/fuz EF(XCJvaXC)'
For [ =0, we get ‘ ‘
w”’ = [(A1)] € HT(Xc,1,Ox, ,), A € I'(Xc,r, Zxgt,)

There exists k' C C containing k such that wlL’j;l e ' Xy 1, Qle/) for all 0 <1 < j. Take an embedding
o’ : k" — C such that U|/k = ¢g. We then have

deoank, w =5 ((m - wi’ No<i<y) = (Wi’ Dirs € HIT(XIE N Da, Qxan).
where for each (I, J,1) with cardl + cardJ +1 = j,
Wiy =it € IXFENDy, Qlyan).
We have by a standard computation, for each (I, J,1) with cardl + cardJ +1 = j,
Ho(X7eNDy, Z) =< 91,7+, Yeardr > -
On the other hand,
o wilr =55, dfui ) o A Ndfu fu) € (X MDDy, Q) for 1 <1<,

0,5 _ :
o Wy = A7 is a constant.

Hence, for p € P([1,---,s]) with carduy = I, we get, for | = 0 HIGU(X((Cln)I,J(’LU%)jI)J) = 0 and, for
1<i<y,

Hlev(X&);, J(wlL ) 25,,# € 2inZ.

where 7y, := v, - - - yu,. We conclude by [4] lemma.
(ii):See [4] proposition 1. Note that it follows immediately from (i). O

Let k a field of characteristic zero. Let X € SmVar(k). Let X = Uj_;X; an open affine cover with
X; = X\D,; with D; C X smooth divisors with normal crossing. Let ¢ : K — C an embedding. Let p € N
a prime number and o, : k — C, an embedding. By proposition 2, we have a commutative diagram of
graded algebras

* Hev(X) * an
HDR(X) Hsmg(X(C 7C)
C TH*C*L%”Q/C(XE")
" . N H*ev(X) N an o
H OLX( pet(X(C QX£€t710g)O))mHDR(X> Hsmg(X(C ’27’7TQ)
P



where
C*LZiﬂ'Q/C (Xgn) : s.ing (Xgna 22#@) — s.ing (X(E:ln, (C)

is the subcomplex consiting of o € Cging(XE”, C) such that a(y) € 2irQ for all v € C’;ing (X&™, Q). Recall
that
H*ev(Xc) = H*RT'(XE", (X)) o T(XE", ELr (N anx))) : Hpr(Xc) = HY

sing

(Xg",C)

is the canonical isomorphism induced by the analytical functor and a(X) : C xgn = Q}En, which gives
the periods elements H*ev(X)(Hpz(X)) C HY, . (X&",C). On the other side the induced map

sing

H*ev(Xc¢) : H*OLx (H}, (Xc, Q;(Et7log)) = H19irq/c Hing (X", 2imQ)
is NOT surjective in general since the left hand side is invariant by the action of the group Aut(C) (the
group of field automorphism of C) whereas the right hand side is not. The fact for a de Rham cohomology
class of being logarithmic is algebraic and invariant under isomorphism of (abstract) schemes.

Corollary 1. Let X € PSmVar(C). Then the Hodge conjecture holds for X if and only if the Hodge
classes are given by logarithmic De Rham classes.

Proof. Follows from theorem 1. O

4 Tate conjecture

Let k a field of finite type over Q. Denote k the algebraic closure of k and G = QQZ(E/k) the absolute
Galois group of k. Let X € SmVar(k) a smooth variety. Take a compactification X € PSmVar(k) of X
such that D := X\X C X is a normal crossing divisor, and denote j : X < X the open embedding.
Let p € N a prime number. Consider an embedding o, : kK < C,. Then k C k C C, and k C I%gp C
C,, where IACUP is the p-adic field which is the completion of k with respect the p adic norm given by
op. Denote G'UP = Gal((Cp/lAfUp) = Gal(@p/ffgp) the Galois group of l%,,p. Recall (see section 2) that
@XCP =lm u}(Z/p"Z)XE; € Shv(ngt) and Q;(g:f,log,o = Q;(g;;,log € C(ngt)_ We have then the

. . . N v-an,pet
commutative diagram in Cg, ;) Gy (XCP )

. Jx Epet(a(X)) R
]*Epet (BdT,ch ) F) - E)Pet((QXCp (10g DCp)? Fb) ®OXCP (OBdr,ch Jog» F)) )
Epet(j*b’xget)jizEpet(lHl»l)j TEpet(mO(OLX®I)):—Epct((w®A)H(w®A))
’ j*Epct(Lxget)
j*EZDBt(@XCP) j*Epet(QB(%,log,o ®@ch7Fb)

where for j' : U’ — X’ an open embedding with X’ € RTop and 7 a topology on RTop we denote for
m: J.Q — Q" with @ € PShpo(U’), Q" € PShpo(X’) the canonical map in Co(X')

E9(m); : 5. E2(Q) — E2(7.Q) = BO(Q),

giving by induction the canonical map E (m); : 7. E-(Q) — E-(Q') in Co(X'). Let p € N € §(k, X)

a prime number (any but finitely many) so that k,, = Frac(W(O;_ /pO; )) and so that the canoni-
op op

cal model (X©,D®) € Sch? /O;  of (X; ,D; )€ PSmVar®(k,,) has good or semi-stable reduction

modulo p. We have then the morphisms of sites

vx.N (XD Nuo)™ = (X2, Nuo)™, uxn : (Xe,, Mz, )" = (X2, Nyo)™™
op Tp op



where (XI? , Ny o)Flt denote the Falting site, and for (Y, N) € logSch, (Y, N)kt C logSch /(Y, N) is
op

the small Kummer etale site. If (XI? , Nu,0) is log smooth, we consider an hypercover
p
Qe (X,?",NU,O) — (X ,Nuo)
op op

in Fun(A,logSch) by small log schemes in sense of [1]. The main result of [1] say that the embedding in
C((XO yrai
op

. — . —
Q(X) : IBgsiE,Xic Jlog — a.*Qx?,' (IOg Di%p) ®OXO OBst,Xg Jlog
9p ko, op

is a filtered quasi-isomorphism compatible with the action of the Frobenius ¢, and the monodromy N.
This gives if (X ]S) , Nu,o) is log smooth, for each j € Z, a filtered isomorphism of filtered abelian groups
op

. i HIT(a Bt -1 j a
HIRa(X) : HYy(Xe, ) @2, B, 5, s BT N)FO) (B 5, o)

st St’Xfcdp ,Jlog

HjRF((XgU ,D; ),a(X))

ko

Hhp(X;, ) ®;, Boi

compatible with the action of Gal(C,/ iﬂgp), of the Frobenius ¢, and the monodromy N.

Definition 1. Let k a field of finite type over Q. Denote k the algebraic closure of k and G= Gal(k/k) the
absolute Galois group of k. Let X € SmVar(k) a smooth variety. Take a compactification X € PSmVar(k)
of X such that D := X\X C X is a normal crossing divisor, and denote j : X — X the open embedding.

Let p € N\6(k, X) a prime number. Consider an embedding o, : k — C,. Then k C k C C, and
k C l;:gp c C,, where l;:gp is the p-adic field which is the completion of k with respect the p adic norm
given by o,. For a € H),(Xc,,Zy), we consider

wla) i= HIRa(X)(a 1) € Hhp(Xy, )&

the associated de Rham class by the p adic periods. We recall
HIRa(X): Hl\(Xc,,Zp) ®2,B,,; = Hphp(X; )®; B,,;
op

st, op op 5t7k7(rp

is the canonical filtered isomorphism compatible with the action of Ggp, of the Frobenius ¢, and the
monodromy N .

We have the following key propositions (see [4]):

Proposition 3. Let k a field of finite type over Q. Let X € SmVar(k). Take a compactification
X € PSmVar(k) of X such that D := X\X C X 1is a normal crossing divisor. Let p €¢ N € 6(k, X) a
prime number. Consider an embedding op : k — C,. Let j,l € Z. We have then

F'H}, p(Xe,) N H,(Xc,,Zy) = H (mo (OLx ® I))(Q;ii’log)@ ®Zy) C Hhp(X; )®

op I%(rp BStJ%(rp

where we recall the map in Cry (ngt)
mo(OLx ®1): Q}CPJ%O QRZy — QB(CP (logDc,), w @A = X-w

given in section 2. Hence for o € Hgt(XCp,Zp) such that w(a) € FlH%,R(XCP) (see definition 1), there
exists (Ai)i<i<n € Zp and _
(wri)i<i<n € Hi)et(XCpaQ;(ZCi log,0)
such that
w(e)= Y N-wp; € H;et(XCP,Q;ECi (log Dc,)) = F'H},z(Xc,), wri := HOLx (wr;).

1<i<n
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Proof. See [4] proposition 2. We recall the proof. By [1], o € Hgt(X@p,Zp) is such that w(a) €
FlH{)R(XCP) if and only if there exists an w-contractile pro etale cover (r; : X; — X)1<;<, such that

X9
ko

w(a) € Hjl"(X.,(cp,Q'Zl (longg ) ®00 OBst,X,; )10g)¢”=
P Ip

note that the differentials of the De Rham complex DR(X¢, )(OB,; x, commutes with the Frobenius

action. On the other hand, the sequence

Jog)
P

F(X.’(cp ,mo(OLx®I))

o>]
0= D(Xec,s 0% 1og.0 ® Zp)

I'(Xec,, % (log DY ) ®0,o OByt x; )
k P P

p

F@Xmﬁp(¢p_1)®kdpcp)

F(X.,(va Q;{chol (10g Dlip) ®OXO OBSt7XI%gp ) —0

p
is exact since it is exact modulo p™ for each n € N, n < 1 by [5] for n = 1 and devissage for n < 2, and

by the properties of w-contractile pro-etale affine covers (see [2]). Hence a € H, (Xc,,Zy) is such that
w(a) € F'HY,5(X¢,) if and only if

X9
ko

w(e) € BT (Xac,, %0 (108Df )00 OB g, 10g)”
= H'T(Xo,mo (OLx © D) (H'T(Xe,c,, Q% 1og.0 © Zp)) = Byt (Xe,, O 10g.0 © Zp)-

O

Proposition 4. Let k a field of finite type over Q. Denote k the algebraic closure of k. Denote G :=
Gal(k/k) its absolute Galois group. Let X € SmVar(k) a smooth variety. Take a compactification
X € PSmVar(k) of X such that D := X\X C X is a normal crossing divisor, and denote j : X — X the
open embedding. Let p € N a prime number. Consider an embedding oy : k — C,. Denote k C /Afgp cC,
being the p-adic competion with respect to the p adic norm induced by op,. Then égp = Gal((Cp/lAfUp) C

G := Gal(k/k). Let o € H,(Xc,,Z,). Consider then its associated De Rham class (see definition 1)
w(a) = HIRa(X)(a @ 1) € Hhp(Xe,) Ge, Barc,

Then o € HI,(Xc,,Z,)(1)% if and only if w(a) € FHY, (X, ) = F'H] o(Xe,) N Hp(X, ). That
Tp op
is we have

H(Xe,,Zy) (1) @z, Q, =< F'HL (X, )N H(Xc,,Zp) >0,C H(Xc,, Zp xet) @ Barc,,

P

where < — >q, denote the Q, vector space generated by (—). Note that Hgt(X(cp,Zp) and FlH{)R(XfCUp)

are canonically embedded as subabelian groups of H?, (Xc,, Zp,xet)@Barc, by (=) @1 and a(X)o((—)®1)
respectively.

Proof. Follows immediately from the fact that H JRa(X) is a filtered quasi-isomorphism compatible with
the Galois action of G, by [1]. O

These propositions, together with the results of section 3 implies the Tate conjecture :

Theorem 2. (i) Let k a field of finite type over Q. Let X € PSmVar(k). Then the Tate conjecture
holds for X .

(ii) Let p a prime number. Let K a p-adic field, that is a finite extension of Q,. Let X € PSmVar(K).
Then the Tate conjecture holds for X.

11



(ii) Let p a prime number. Let ko a field of characteristic p. Let Xo € PSmVar(ky). Then the Tate
conjecture holds for Xy.

Proof. (i):Let p € N a prime number. Consider an embedding o}, : k < C,. Then k C k C C, and
k C ]Afgp C C,, where ]Afgp is the p-adic field which is the completion of k with respect the p adic norm
given by o,. Let a € H*(X},Z,)(d)¢. Using definition 1, by proposition 3 and proposition 4 there
exists ()\i)lgign S Zp and

>d
(WLi)i<i<n € H?yzt(XCp5Q;(Ep,log7O)

such that

w(a) = Y Ai-wri € Hply(Xe,, Q%) = FUHER(Xc,), wii == H*'OLx (wr:).

1<i<n

By theorem 1(ii) and (iii), there exists Z; € Z%(X¢,) such that wr; = [Z;] € HE}(Xc,). Hence,

= Y AilZ] € 2%Xc,) ®Qp

1<i<n

satisfies w(a) = [Z] € HE(Xc,). By [1], we get o = [Z] € H2 (X}, Zy). Since [Z] is G invariant,

7' :=1/card(gZ,g € G) Z 9Z € Z4X)® Qp
geqG

satisfy [Z'] = [Z] = a € H}( X}, Zy).
(ii):Similar to (i).
(iii):Follows from (ii) by taking X € PSmVar(K) with K := Frac(W (ko)), such that X ®x kg = Xo. O
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