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Many engineering problems are governed by complex governing equations that are difficult
and typically require high computational costs to solve. Machine learning and surrogate
modelling aid such an endeavour by providing a cheap-to-evaluate prediction model that acts
as a replacement of the original model. While most research focuses on predicting scalar
values (e.g., lift and drag), predicting the solution field is also of interest in many practical
engineering and scientific applications. This paper proposes a Physics-Informed Proper
Orthogonal Decomposition (POD) technique that improves the solution field prediction by
enforcing governing equations as a loss penalty. The proposed idea utilizes a reduced-order
modeling technique based on POD to decompose solution snapshots into singular vectors and
values. A Gaussian Process Regression is then utilized to predict the singular values from
variable parameters. The predicted singular values from the data of the problem are then
adjusted via optimization to minimize the physics-informed loss and achieve better prediction.
In this paper, we illustrate the efficacy of the proposed method on simple two-dimensional
partial differential equations. The result clearly shows that the proposed physics-informed POD
outperforms the conventional POD in terms of approximation error.

I. Introduction
One of the exciting current research trends in engineering focuses on utilizing machine learning and data science

technology to aid design optimization and exploration [1–4], acquire hidden physical insights [5] or even solve the
governing equation of the problem itself [6, 7]. Currently, two machine learning paradigms are extensively used and
studied in engineering: (1) data-driven approaches, which purely exploit available data, and (2) physics-informed
approaches, which utilize a priori information about the physics of the problem. Data-driven approaches are generally
used for predicting quantities of interests [8, 9], multi-fidelity modeling [10, 11], and flowfield reconstruction [12]
by solely relying on data (i.e., no prior physics information are involved). On the other hand, the physics-informed
approach leverages physical laws to improve the performance of the data-driven approach by imposing certain physical
laws into surrogate models [13, 14], replacing specific modeling to help numerical solver [15], or even acts as the solver
of the governing equations by using machine learning approach techniques such as neural networks [6, 16]. Moreover,
unlike a traditional numerical approach, the physics-informed machine learning method can exploit the solution of a
simpler equation to help predict the solution of a more complex governing equation [17].

Two main points motivate the development of the proposed method. First, although predicting scalar values
is important, fast prediction of a physical field is also essential in many engineering applications. In this regard,
reduced-order models aim to provide a quick-to-predict solution that significantly helps in the design, analysis, and
optimization process [18]. Furthermore, uncertainty quantification of a physical field is another crucial application that
requires fast prediction of multiple outputs [19]. The second motivation is that many of the existing machine learning
methods in this field are purely data-driven; thus, ignoring existing prior information or knowledge such as the governing
equation of the physical problem [20–22]. However, as mentioned before, most existing prediction or reconstruction
methods do not incorporate physical laws. The main aim of injecting physical laws into a machine learning method is to
reduce the required data for accurate prediction since engineering data is typically expensive.
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The proper orthogonal decomposition (POD) is a versatile and robust method that has been widely applied for field
reconstruction [23, 24], modal analysis [25, 26], design optimization [27–29], and uncertainty quantification [30, 31].
POD is a model order reduction technique that decomposes a physical field into the linear combination of orthogonal
eigenfunctions multiplied by the coefficients. To construct POD modes, one needs to collect the snapshots obtained by
varying the input parameters or from temporal evolution if the goal is to decompose a transient physical field. The
orthogonal nature of POD decomposition allows easy interpretation of the produced model, which is especially insightful
in modal analysis. The conventional POD is purely data-driven because no physics information is involved during the
process. However, recent advancements in machine learning have shown that injecting prior knowledge or physics
information can improve the accuracy of surrogate model [5]. The most notable algorithm is the physics-informed neural
network that takes advantage of physical laws to constrain the machine learning prediction [6]. Another example of
algorithms is the physics-informed Gaussian process (GP) [32, 33]. Besides the aforementioned well-known algorithm,
there is also a potential for utilizing the physics-informed framework for other data-driven algorithms such as POD.

In this paper, we propose a Physics Informed POD (PI-POD) method that takes advantage of physical laws to
reconstruct the solution of the engineering problem. Our method leverages a GP surrogate model [34] to aid in predicting
POD coefficients. Similar strategies have been explored previously in the context of fluid-structure interaction [9] and
multidisciplinary optimization [4]. Notice that no physics is involved during the construction of our GP model since it
primarily acts as a tool to map POD coefficients. However, there are variants of physics-GP in which the physics is
incorporated into the GP formulation [13, 14, 33]. This paper explains the working mechanism of the proposed method
and presents some preliminary results on a relatively simple problem.

The rest of this paper is structured as follows: Section II explains the details of our proposed method. Section III
presents the demonstration of PI-POD in a two-dimensional partial differential equation (PDE). Section IV discusses the
result of our proposed method and its comparison with conventional POD. Section V concludes the current results of
PI-POD with a pointer of future works.

II. Method
In this section, we explain the main idea behind our proposed method. This section are divided into three parts: the

data-driven POD part, the proposed PI-POD part which depends on the governing equation, and the last part explains
the proposed method.

A. Proper Orthogonal Decomposition
Consider a set of solutions A of a governing PDE equation, with 𝑁 data for each solution and 𝑀 solutions, denoted

as
A = [𝐴1, 𝐴2, ..., 𝐴𝑀 ] ∈ R𝑁×𝑀 (1)

In fluid dynamics literature, each solution in the solution matrix A is usually called a "snapshot", so we are going to refer
to these solutions as "snapshots". In this regard, the 𝑀 solutions are obtained from varying the boundary conditions or
other parameters (e.g., Reynolds number). The 𝑁 rows in solution matrix A refers to the number of points in the PDE
solution.

We can perform the singular value decomposition (SVD) procedure on the solution matrix A to obtain the singular
vectors U and V, and singular values 𝚺

A = U𝚺V𝑇 =

𝑟∑︁
𝑖=1

𝜎𝑖b𝑖𝜓
𝑇
𝑖 , (2)

where

U = [b1, ..., b𝑟 ] ∈ R𝑁×𝑟

V = [𝜓1, ..., 𝜓𝑟 ] ∈ R𝑀×𝑟

𝚺 = diag(𝜎1, ..., 𝜎𝑟 ) ∈ R𝑟×𝑟

𝑟 ≤ min(𝑁, 𝑀)

(3)

Due to the unitary property of U, we can calculate a coefficient matrix 𝚫 such that A = U𝚫.

𝚫 = U𝑇A
𝚫 = [𝛿1, ..., 𝛿𝑟 ] ∈ R𝑀×𝑟 (4)
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To reduce the computational cost of POD, the solution matrix A is usually approximated by truncating some columns in
U. The approximated solution matrix Â is computed as

Â = Û�̂�, (5)

where
Û = [b1, ..., b𝑘] ∈ R𝑁×𝑘 (6)

�̂� = Û𝑇A (7)

The parameter 𝑘 is determined by defining an error tolerance 𝜖𝑡𝑜𝑙

E(𝑘) =
∑𝑘

𝑖=1 𝜎
2
𝑖∑𝑟

𝑖=1 𝜎
2
𝑖

≥ 1 − 𝜖2
𝑡𝑜𝑙 (8)

where E(𝑘) denotes the energy percentage contained within the first 𝑘 modes.
We can then reconstruct a solution, given the POD coefficients, by

𝑢∗ = ÛΔ∗ (9)

where 𝑢∗ is the predicted field and Δ∗ is the given POD coefficients for prediction. If we are given a solution 𝑢∗ instead,
we can calculate the corresponding POD coefficients by

Δ∗ = Û𝑇𝑢∗. (10)

An example of situations where we want to reconstruct a solution field is predicting a flow field given untested flow
conditions (e.g., untested Mach number or Reynolds number). To that end, one needs to estimate Δ∗ so that the flow field
can be reconstructed without running more computational fluid dynamics simulations. In this paper, we use the SVD
implementation of MATLAB to perform the decomposition. As explained in the next section, our proposed method
leverages a surrogate model based on GPR to estimate the POD coefficients for untested conditions. In this paper, we
use MATLAB’s SVD subroutine that removes extra rows and columns of zeros from the diagonal matrix of singular
values and the corresponding rows and columns of the singular vector.

B. Gaussian Process Regression
GPR, or also known as Kriging, is a type of surrogate model that takes an input x ∈ R𝐷 to predict the outputs 𝑦,

which are treated as realizations of Gaussian Processes. The prediction structure of a GPR model is given by

�̂�(x) = 𝛽𝑇𝜙(x) + Z(x) (11)

The first term 𝛽𝑇𝜙(x) represents the mean term, or also known as the trend function, while the second term Z(x) is the
stochastic part of the GPR model, respectively. Each single point in the input space is treated as a Gaussian random
variable, in which all points in the input are space are correlated with each other as modeled by the covariance function.
The term 𝜙(x) denotes a set of regression functions and 𝛽 is the vector of the corresponding coefficients. In this paper,
we utilize a constant trend (i.e., `) for the sake of simplicity. The corresponding GPR prediction then becomes

�̂�(x) = ` + Z(x) (12)

The stochastic term Z(x) with a constant trend can then be written as

Z(x) = 𝜓𝚿−1 (y − 1`) (13)

where 𝚿 and 𝜓 are correlation matrix and vector respectively. The covariance function used in this paper is the Gaussian
correlation function, reads as

Ψ(𝑖, 𝑗 ; \) = exp
(
(𝑥𝑖 − 𝑥 𝑗 )2

2\

)
, (14)

where \ is the length-scale of the correlation function. Notice that a multi-dimensional correlation function is
simply constructed by the product of one-dimensional correlation functions. We then have a vector of lengthscale
𝜽 = {\1, \2, . . . , \𝐷} for a 𝐷-dimensional correlation for a 𝐷-dimensional approximation.

3

D
ow

nl
oa

de
d 

by
 P

ra
m

ud
ita

 P
al

ar
 o

n 
Ja

nu
ar

y 
31

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

05
38

 



The vector of lengthscale 𝜽 is determined by maximizing the so-called likelihood function, as given by

ln(𝐿) = −𝑛

2
ln 2𝜋 − 𝑛

2
(�̂�2) − 1

2
ln𝚿 − (y − 1`)𝚿−1 (y − 1`)

2�̂�2 , (15)

where
` =

1𝑇𝚿−1y
1𝑇𝚿1

(16)

and
�̂�2 =

(y − 1`)𝚿−1 (y − 1`)
𝑛

(17)

The optimization of Eq.15 is a 𝐷-dimensional optimization problem with respect to 𝜽. Once the optimum
hyperparameters are found (including 𝜽, `, and 𝜎2), we can then use GPR to make predictions at any point by using
Eq.12.

GPR typically provides an accurate prediction for low sample size, a scenario that some supervised learning models
cannot handle. Another reason why we picked GPR as the method of choice is that it naturally provides an uncertainty
estimate for the mapping process in POD (explained in the next sections). Although not explored in this paper, the
uncertainty estimate of GPR will be useful later for facilitating adaptive sampling to reduce the number of samples for
the mapping.

C. Incorporating Physics Information
Suppose that partial-differential equation as the governing equation of the problem is given by

D(𝑢(x, 𝑡)) = 0, x ∈ 𝛀, 𝑡 ∈ [0, 𝑇] (18)

where 𝑢(x, 𝑡) represents the solution of the partial-differential equation 18, D represent the non-linear partial-differential
operator, and 𝛀 is a subset of R𝐷 in D-dimensional space. In this paper, we only consider a PDE defined in a spatial
domain. The governing equation of the problem is be treated as loss function to adjust the singular values from the
singular value decomposition. The adjustment variable, 𝛼 is computed from the minimization problem 19.

min
𝛼

L(�̂�) = D(�̂�) + 𝛾𝑏𝑐𝜖𝑏𝑐

�̂� = Ûℎ (𝛿∗ + 𝛼)
(19)

where the term 𝛾𝑏𝑐 is a constant to impose boundary condition from the governing equation and 𝜖𝑏𝑐 denotes the error
at the boundary condition. Note that we need to perform this minimization problem each time we want to make a
prediction using PI-POD, so the term 𝛿∗ here denotes the predicted POD coefficient for this prediction. The term 𝛼 has
size equal to the number of truncated singular values, so the dimensionality of the minimization problem in Eq. 19
equals the size of the truncated singular values. The value of variable 𝛾𝑏𝑐 is defined to be adaptive, in the sense that
when the value of 𝜖𝑏𝑐 gets too high when minimizing the term D(�̂�), then the value of 𝛾𝑏𝑐 is increased into significantly
high value. In this paper, we set 𝛾𝑏𝑐 equals 107 when 𝜖𝑏𝑐 > 0.05, and 1 otherwise. Such a condition will force the
model not to violate the boundary condition during the optimization process. There is no definitive reason why we
choose 107 value for 𝛾𝑏𝑐. Setting 𝛾𝑏𝑐 to other value would result in roughly the same prediction, as long as the value is
high enough. An adaptive setting of 𝛾𝑏𝑐 is one subject of future works.

D. Physics-Informed POD
Our objective is to reconstruct the field solution from POD and tune it according to the governing equations. We can

create a solution matrix by concatenating all snapshots as columns in the solution matrix:

A = [𝑢1, ..., 𝑢𝑀 ] ∈ R𝑁×𝑀 , (20)

where A is the solution matrix for our problem. The pseudo-algorithm of the PI-POD method is written in Algorithm 1
For the GPR-assisted mapping procedure, the next step is to build 𝑟 GPR models where 𝑟 is the number of bases

retained in the POD model, and each GPR model predicts each POD coefficient as a function of all variable parameters
in our problem. Up until this point, the proposed method is still data-driven. The main goal here is to predict 𝚫 for
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Algorithm 1 Constructing Physics-Informed POD (Offline Phase)
Require: Solution Matrix A

Perform SVD to Solution Matrix A
Require: User-defined 𝜖𝑡𝑜𝑙 value

Compute 𝑘 by using Eq. 8.
Truncate singular sector U𝑙 and Uℎ by its corresponding 𝑘 column
Calculate truncated POD coefficients 𝚫 by using Eq. 7 by its corresponding singular vector U
Create GPR mappings between 𝚫𝑙 as inputs to 𝚫ℎ as outputs

the desired solution at an untested parameter. The main novelty of the proposed method is the physics-informed part
when we reconstruct the predicted solution. The central idea here is to refine the predicted POD coefficients so that
the reconstructed solution, ideally, satisfies the physical laws and boundary conditions. The POD coefficients are first
predicted using GPR models from unobserved parameters. Finally, the proposed method applies a gradient-based
optimization to minimize the loss function by optimizing 𝛼 (see Eq. 19), with predicted POD coefficients from the
GPR model treated as the initial guess for the gradient-based minimization. The pseudo-algorithm for prediction using
Physics-Informed POD is written in Algorithm 2.

Algorithm 2 Prediction using Physics-Informed POD (Online Phase)
Require: Parameters 𝛾𝑏𝑐, 𝛾𝛼

Compute POD coefficients by GPR model from untested parameters
Compute 𝛼 by solving minimization problem Eq. 19
Compute predicted solution �̂�ℎ∗ with Eq. 9 by using truncated singular vector Û

The predicted solution �̂�∗ is the final output of the Physics-Informed POD. Notice that the procedure outlined in
Algorithm 1 is only performed once using the training data, while the prediction procedure in Algorithm 2 is performed
every time we want to predict a different solution.

III. An Illustrative Example

A. Poisson Equation
For demonstration purposes, we use a simple linear two-dimensional partial differential equation. The governing

equation used for this problem is the Poisson equation, reads as

∇2𝑢 = 10, (21)

In this problem, the spatial domain is a 100x100 grid two-dimensional space within [0, 1]2, with Dirichlet boundary
conditions on the four sides surrounding the domain. The boundary conditions imposed are the parameters of interests;
That is, we aim to predict the physical field under variations in the boundary conditions. The samples for POD and
PI-POD are then taken by sampling from the domain of the input parameters.

There are two cases for this test problem. The first compares the predictive power of PI-POD and conventional POD
with a small number of snapshots, and the second compares the robustness performance of PI-POD and conventional
POD with more snapshots. Notice that the conventional POD here does not use the physics-informed correction. Instead,
the conventional POD directly uses the mapped coefficients to reconstruct the high-fidelity solution.

The 𝜖𝑡𝑜𝑙 value is chosen to be 0.01 for all cases in this problem. The root-mean-squared-error (RMSE) is chosen to
be the error metric for this problem, written as

𝜖𝑟𝑚𝑠𝑒 =

√︄∑𝑁
𝑖 (�̂�𝑖 − 𝑢𝑖)2

𝑁
(22)

where �̂� represents the predicted field and 𝑁 is the number of nodes in the spatial domain. Notice that 𝜖𝑟𝑚𝑠𝑒 is calculated
for a single combination of untested parameters. For multiple combinations (e.g., as in optimization or uncertainty
analysis), we can depict multiple 𝜖𝑟𝑚𝑠𝑒 is the form of a boxplot to analyze the robustness of the algorithm.
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1. Case 1: Few snapshots case
We only use six snapshots as training data to create our model for the first case of this problem. The snapshots are

created by using six variations of boundary conditions. The goal is then to reconstruct the solution field for boundary
conditions outside the training snapshots. The boundary conditions for the training snapshots are written as follows:

B.C. 1: 𝑢(𝑥, 0) = 0
𝑢(𝑥, 1) = sin(𝜋𝑥)
𝑢(0, 𝑦) = − sin(𝜋𝑥)
𝑢(1, 𝑦) = 0

B.C. 2: 𝑢(𝑥, 0) = − sin(𝜋𝑥)
𝑢(𝑥, 1) = 0
𝑢(0, 𝑦) = 0
𝑢(1, 𝑦) = sin(𝜋𝑥)

B.C. 3: 𝑢(𝑥, 0) = 2 sin(𝜋𝑥)
𝑢(𝑥, 1) = −0.5 sin(𝜋𝑥)
𝑢(0, 𝑦) = 0
𝑢(1, 𝑦) = 0

B.C. 4: 𝑢(𝑥, 0) = 0
𝑢(𝑥, 1) = 0
𝑢(0, 𝑦) = −2 sin(𝜋𝑥)
𝑢(1, 𝑦) = 0.5 sin(𝜋𝑥)

B.C. 5: 𝑢(𝑥, 0) = −2 sin(𝜋𝑥)
𝑢(𝑥, 1) = 2 sin(𝜋𝑥)
𝑢(0, 𝑦) = 0.5 sin(𝜋𝑥)
𝑢(1, 𝑦) = −0.5 sin(𝜋𝑥)

B.C. 6 : 𝑢(𝑥, 0) = 0.5 sin(𝜋𝑥)
𝑢(𝑥, 1) = −2 sin(𝜋𝑥)
𝑢(0, 𝑦) = 0.5 sin(𝜋𝑥)
𝑢(1, 𝑦) = −0.5 sin(𝜋𝑥)

The accuracy of the constructed POD models is evaluated using the following three boundary conditions as our
testing data:

B.C. 1: 𝑢(𝑥, 0) = 0
𝑢(𝑥, 1) = sin(𝜋𝑥)
𝑢(0, 𝑦) = −2 sin(𝜋𝑥)
𝑢(1, 𝑦) = 0

B.C. 2: 𝑢(𝑥, 0) = 0
𝑢(𝑥, 1) = 1.3 sin(𝜋𝑥)
𝑢(0, 𝑦) = −0.8 sin(𝜋𝑥)
𝑢(1, 𝑦) = 0.6 sin(𝜋𝑥)

B.C. 3: 𝑢(𝑥, 0) = −6 sin(𝜋𝑥)
𝑢(𝑥, 1) = 3 sin(𝜋𝑥)
𝑢(0, 𝑦) = 7 sin(𝜋𝑥)
𝑢(1, 𝑦) = −5 sin(𝜋𝑥)

2. Case 2: Medium size snapshots case
In the second case, we generated 100 snapshots with random variations in the boundary conditions. The variations

in the boundary conditions are modelled by varying the vector of constants 𝝀, where 𝝀 = {_1, _2, _3, _4}, as shown in
the following:

𝑢(𝑥, 0) = _1 sin(𝜋𝑥)
𝑢(𝑥, 1) = _2 sin(𝜋𝑥)
𝑢(0, 𝑦) = _3 sin(𝜋𝑦)
𝑢(1, 𝑦) = _4 sin(𝜋𝑦)

(23)

where _𝑖 , 𝑖 = 1, 2, 3, 4, is a normally distributed random variable with the distribution of N(0, 2). In total, we generated
100 snapshots for this case, in which 70 and 30 snapshots were used as training and validation snapshots, respectively.
The PI-POD and POD were constructed for three different sub-cases with different sizes of snapshots: 10, 20, and 30
snapshots for each sub-case (taken from 70 training snapshots with 50 random shuffles).

The metric that we use in the boxplot for the second case is the Averaged-RMSE, which is computed using the
following equation

Averaged-RMSE =

∑𝑁𝑣

𝑖=1 𝜖𝑟𝑚𝑠𝑒

𝑁𝑣

, (24)

where 𝑁𝑣 is the number of validation snapshots used.
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Table 1 RMSE of POD and PI-POD for Case 1, first validation data.

Model 𝜖𝑅𝑀𝑆𝐸 𝜖𝑅𝑀𝑆𝐸 at boundaries
PI-POD 3.35 1.12

POD 13.13 17.61

IV. Results

A. Poisson Equation: Case 1 Results
For case 1, we analyze the reconstructed solution for each validation data separately so that we can perform a more

thorough analysis.

1. First validation data
For the first validation snapshot, the resulting prediction and the error surfaces for Physics-Informed POD and

conventional POD are plotted in Fig. 1. Besides the RMSE in the whole domain, the RMSE at the boundary points is
also calculated. For this result, the accuracy for both Physics-Informed POD and the conventional POD is summarized
in Table 1. It is clear that the Physics-Informed POD outperforms the conventional POD in terms of overall accuracy, as
indicated by the lower total RMSE and RMSE in the entire domain and at the boundary conditions. It can also be seen
from Fig. 1 that the reconstructed solution from the PI-POD is closer to the true solution than the conventional POD.

The error level of the PI-POD is notably lower than the conventional POD. It can also be seen that the error from the
PI-POD is the highest at the center of the computational domain, with the errors are lower at locations close to the
boundaries. This indicates the success of PI-POD in better predicting the solution by an extra adjustment to satisfy the
governing equations. On the other hand, the errors from the POD are more spread across the computational domain,
with the highest errors observed at the boundaries.
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Fig. 1 Results for Case 1, first validation data, and the corresponding error surfaces.
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Model 𝜖𝑅𝑀𝑆𝐸 𝜖𝑅𝑀𝑆𝐸 at boundaries
PI-POD 18.59 1.12

POD 20.09 31.97
Table 2 RMSE of POD and PI-POD for Case 1, second validation data.

2. Second validation data
For the second validation snapshot, the resulting prediction for PI-POD and conventional POD are plotted in Fig. 2.

The accuracy of both PI-POD and conventional POD for the second validation data is summarized in Table 2. As shown
in Table 2, the PI-POD model still outperforms POD in terms of overall accuracy, indicated by the higher RMSE value
of the latter. Although there is still a mismatch between the true solution and PI-POD, the solution from PI-POD closely
resembles the true solution better than POD. Furthermore, notice that the RMSE at the boundaries is higher for the
conventional POD than the PI-POD. Another important result to notice is the difference in the error surface between the
PI-POD and the POD model (see Fig. 2). The error surface of the PI-POD model spreads more evenly, with noticeably
small errors around the boundaries. On the other hand, the error surface for the POD model is significantly high at
locations close to the boundaries. Interestingly, the errors from POD are the highest at the boundary with zero values
(i.e., 𝑥 = 0). Although the error surface of PI-POD looks symmetric compared to the first validation data, there is no
particular reason why it should be symmetric. In fact, despite not being visible from the error surface, there is a slight
asymmetry in the error surface of PI-POD.
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Fig. 2 Results for Case 1, second validation data, and the corresponding error surfaces.

3. Third validation data
Finally, the resulting prediction for PI-POD and conventional POD for the third validation data are plotted in figure

3. For this result, the accuracy for PI-POD and conventional POD is summarized in Table 3. The boundary condition
imposed on this case has a significantly higher amplitude compared to the boundary conditions of the training data,
which is why we expected that predicting this third validation data would be more difficult. Indeed, from Table 3, it can
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Model 𝜖𝑅𝑀𝑆𝐸 𝜖𝑅𝑀𝑆𝐸 at boundaries
PI-POD 7.73 1.12

POD 283 391
Table 3 RMSE of POD and PI-POD for Case 1, third validation data.

be seen that the POD model produces a highly inaccurate prediction for this case. The reason why POD performs poor
on the third validation data is because it needs to extrapolate outside the training data. On the other hand, PI-POD
still managed to yield a highly accurate prediction for the third validation data. Such high accuracy is due to the
incorporation of physics information that gives the ability to better extrapolate outside the training data by obeying the
corresponding governing equation.
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Fig. 3 Results for Case 1, third validation data, and the corresponding error surfaces.

B. Poisson Equation: Case 2 Results
The second case is a more realistic application of POD because it acts more like an interpolation rather than an

extrapolation, as in the third validation data of Case 1. The boxplots of RMSE for both types of POD are plotted in
Fig. 4. It is interesting that the proposed method consistently outperforms the conventional POD for all variations in the
number of snapshots. The better accuracy of the PI-POD for the smallest number of snapshots (i.e., ten snapshots)
is a clear evidence of how readjusting the coefficients with physics information can improve the accuracy of POD
reconstruction. Furthermore, it is interesting to see that the PI-POD yields lower errors even for a high number of
snapshots. The results for Case 2 then show the potential of PI-POD to reconstruct high-fidelity solutions, with potential
applications in uncertainty quantification and design optimization.
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V. Conclusion and Future Works
This paper proposes a method that reconstructs a PDE solution based on Physics-Informed Proper Orthogonal

Decomposition (PI-POD). The proposed method improves the POD-based reconstruction method by incorporating
physics information to increase accuracy and force the prediction to satisfy the physics and boundary conditions. Further,
the proposed method also takes advantage supervised learning method (i.e., GPR) to map between POD coefficients
and variable parameters. We demonstrate the efficacy of the proposed method on a simple two-dimensional PDE (i.e.,
Poisson equation) in a squared-shaped domain. Our proposed method consistently outperforms conventional POD in
terms of accuracy and robustness. The PI-POD method especially yields better accuracy than POD at the boundaries
since the former also incorporates boundary losses in the prediction process.

For future works, we plan to study the efficacy of PI-POD on a set of physical problems with more complex PDEs.
In particular, we aim to apply PI-POD on a set of structural and fluid mechanics problems. Furthermore, the use of
other methods than GPR should also be studied. It is also important to investigate the impact of PI-POD parameters
(e.g., 𝛼𝐵𝐶 ), and develop an adaptive method to automatically tune the parameters.
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PI-POD vs POD comparison

Fig. 4 The RMSE boxplot of PI-POD and POD for Case 2.
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